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1. Undirected graphical models, continuous variables

Multivariate Gaussian distribution

needed packages: ade4, FactoMineR, qgraph, fields, glmnet

Data download

library(ade4)
data(deug)
str(deug)

This dataset gives the exam results of 104 students in the second year of a French Uni-
versity onto 9 subjects. The best mark is 20 and the worse 0. Options 1 and 2 are not
precisely described. Sport gives additive points if the student get a mark over 10. For
instance, one student with 12 obtains 2 points.
We suppose that the data are independant observations of a multivariate Gaussian dis-
tribution. We aim at finding conditional independencies. Sport can be considered as a
supplementary variable.

Questions

1. Data exploration

(a) Look at scatter plots to find the strongest correlations between the variables

pairs(deug$tab,pch=20)

(b) Use principal component analysis to give an overview of the data.

library(FactoMineR)
PCA(deug$tab,quanti.sup=9)

Does it confirm what you observed in the previous question?

(c) Plot the empirical correlation precision matrices of the data. You can used
the following function for the plot.
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plot.mat <- function(A,zr=NULL,col = tim.colors(64),main=NULL){
par(mar=c(4, 5, 5, 5) + 0.1)
if (is.null(zr)) {zr = range(A)}
n1 = dim(A)[1]
ticks = seq(0,1,length.out=dim(A)[1])
image(t(A)[,rev(1:n1)],zlim = zr,axes=FALSE,col=col,main=main)
box(col="black")
axis(1,at=ticks,labels=FALSE)
text(ticks, par("usr")[3] - .12, labels = colnames(C), srt = 45,
pos = 2, xpd = TRUE)
image.plot( legend.only=TRUE, zlim= zr,col=col)
}

Some coefficients of the precision matrix are small. How can you interpret it?

2. Undirected graphical model.

(a) Plot a graph of the data from the correlation matrix C

linrary(qgraph)
C = cor(data$deug[,-9])
qgraph(C,labels=colnames(C))

Can you explain why all the variables are connected? Is it a good representa-
tion of the true model?
The graph can also be plot from the precision matrix as follows.

C = cor(data$deug[,-9])
C.inv = solve(C)
qgraph(wi2net(C.inv),labels=colnames(C))

(b) Hard thresholding for edge selection.
For the sequel, we can work with standardized data and exclude the sport
variable. It will leads to simpler programs without changing the results.

Xc = scale(deug$tab[,-9])

We will try to simplify the graph by finding the null partial correlations. We
first use hard thresholding. It means taht we will set to zeros all the cefficients
of the transition matrix which are below a fixed threshold. The "best" thresh-
old can be chosen by comparing BIC criteria.
Write a program which, for a sequence of thresholds s,
- set to zero the coefficients of the precision matrix which are least than s
- compute the BIC criteria corresponding to the new precision matrix
- select the best threshold s
- plot the corresponding graph.
Now interpret the obtained graph.

(c) Link with the linear model and stepwise variable selection.
Choose a variable and fit a linear model to predict this variable given the
others (use R function lm).

2



Compare the estimated coefficients to the graph.
Use the step function to select a parcimonious model. Compare it to the graph.
The step function works according to AIC cirteria. Cross-validation is another
interesting way to compare models.
Compare the complete linear model and the ones you selected using 10 folds
cross-validation.

(d) Soft thresholding for edge selection.
Soft thresholding can also be used for edge selection using Lasso penalty. For
Lasso penalization, there is no threshold to select but a reguralisation constant.

i. Variable per variable analysis.
Choose a variable as exemple and use glmnet to find a good set of predic-
tors of this variable.

ii. All at one time
Use glasso to build a sparse graph.

iii. Compare both results with each other and with the results obtained in
the previous questions.

3. More classical tests for zero partial correlation.
Zero partial correaltion can be tested using conditional independence test. For
testing the independance of X andd Y given Z in a Gaussian model, the test
statistic is defined as follows

z(ρXY |Z =
1

2
log

(
1 + ρ̂XY |Z

1− ρ̂XY |Z

)
S =

√
n− dim(Z)− 3|z(ρXY |Z|.

S tends in distribution to a standard Gaussian variable when n tends to infinity.

(a) Use this to test conditional independencies you found with the graphical model.

(b) Propose a bootstrap test to do the same.

4. Give a conclusion to resume the results you found in the previous questions.

5. Latent factors.
According to the previous result, one can assume that the dataset could be described
by a small number of latent factors.

(a) Use function factanal()

(b) Propose a graph structure and write an EM algorithm to estimate the param-
eters of the model and infer the latent variables given the observations.
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2. Undirected graphical models, binary variables

needed packages: IsingSampler, IsingFit, glmnet, qgraph

Data download
We will work with a survey on Portoguese student habits concerning alcohool consump-
tion. Here, we will mainly focus on understanding the life environment of the students.
The data, their description and a file to load them are available on my teaching webpage
under the SummerSchool link.
Some variables are binary and others are nominal. At a first step we transform the
variables to have only binary variables in order to be able to use the binary Ising model.

Questions

1. Data exploration

(a) Use multivariate correspondance analysis (MCA) to give an overview of the
data. For this analysis, data have to be defined as factor.

library(FactoMineR)
mca = MCA(d3)

It is also interesting to look at the results when the G1 to G3 variables are
considered as supplementary variables.

p = ncol(d3)
mca = MCA(d3,quali.sup=(p-2):p)

(b) Can you already see significant dependence between the variables?

2. Ising model

(a) Use the IsingFit function to fit and plot an Ising model. This function use a
elasso algorithm to fit the model
(more details on http://www.nature.com/articles/srep05918)1.
Can you explain why all the variables are not connected?

(b) Compare the graph to the results of CMA. What appends if the G1 to G3
variables are kept out from the graph estimation?

(c) Compare the graph to the weighted adjacency matrix obtained as an output
of the IsingFit function.

(d) Give an interpretation of the fitted model. Are there interesting subgraphs
that one could focus on?

3. Link with the logistic regression and stepwise variables selection.

(a) Choose a variable and fit a logistic regression to predict this variable given the
others (use R function glm). Compare the estimated coefficients to the graph.

1Caution: definition of the penalty is such that γ can be negative?
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(b) Use the step function to select a parcimonious model. Compare it to the
graph.

(c) Use the glmnet function ot fit a regularized logistic regresion with lasso penalty.
Compare it to the graph.

4. Now, we wish to verify the robustness of the estimator. You can choose to work on
a smaller set of variables corresponding to a subgraph.

(a) Fit a model on the observations of the subset of variables.

(b) Use the IsingSampler function to sample several realizations of this model.
The sample size can be fixed to the number of observations.

(c) Fit again the model on the simulations and compare it to the reference model
(the one fitted on the observations).

(d) Propose a bootstrap test to test conditional dependencies.

5. Latent factors
We remarked earlier that the nodes of the graph can be grouped in clusters. Latent
discrete varables can be infered to resume the data.
Propose an algorithm to estimate such latent variables. You can just give the ideas
without implement them.
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