Régression logistique

Application à la base de données du TITANIC

Sommaire

- Partie 1 : Généralités
- Partie 2 : Interprétations
- Partie 3 : Pour un meilleur modèle...

Partie 1 : Généralités

- ▶ 1. Principe et estimation
- 2. Bonne ou mauvaise régression ?
- 3. Significativité des coefficients

- Objectif: Prédire les valeurs prises par Y définie dans {y₁, y₂, ..., y_K}
- Y prend deux modalités : {+,-} ou {1,0}
- Echantillon Ω de taille n
- La valeur prise par Y pour un individu w est notée Y(w)

- ▶ J descripteurs $\{X_1, X_2, ..., X_J\}$
- Le vecteur de valeurs pour un individu w s'écrit (X₁(w), X₂(w), ..., X_I(w))
- P[Y(w) = 1] = p(w)
- Probabilité a posteriori : $P[Y(w) = 1|X(w)] = \pi(w)$
- LOGIT d'un individu w

- Données
- 2201 observations
- 3 variables prédictives
- Objectif : prédire la survie (ou le décès) d'un passager du Titanic
- Y = 1 si survie, 0 sinon
- ▶ Classe : 0 à 3
- Age: 0 (enfant) ou 1 (adulte)
- Sexe : 0 (femme) ou 1 (homme)

Principe et estimation

Principe et estimation : Un cadre bayesien pour l'apprentissage supervisé

- Y = $f(X, \alpha)$ α est le vecteur des paramètres de la fonction
- Comment évaluer la qualité de la modélisation ?
 - Mesurer la qualité de prédiction dans la population Ω^{pop}
 - Erreur théorique

Principe et estimation : Un cadre bayesien pour l'apprentissage supervisé

- $P[Y(w) = y_k \mid X(w)]$
- Y_k = arg max_k $P[Y(w) = y_k \mid X(w)]$
- Application : Titanic
 - Survie = f(Classe)

	CLASSE				
SURV	0	1	2	3	Total
0	76%	38%	59%	75%	68%
1	24%	62%	41%	25%	32%
Total	100%	100%	100%	100%	100%

29 % de chance de se tromper

Principe et estimation : Un cadre bayesien pour l'apprentissage supervisé

Problèmes :

- Lourdeur des calculs si nombreuses variables
- Impossible à exploiter si faibles effectifs
- Impossible à utiliser tels quels les descripteurs continus

Principe et estimation : Hypothèse fondamentale de la régression logistique

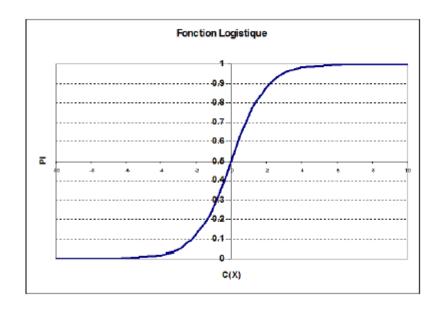
 La régression logistique produit un séparateur linéaire

$$P(Y = y_k \mid X)$$

 Régression logistique est une méthode semi-paramétrique

Principe et estimation : Le modèle LOGIT

Fonction logistique



$$P(Y = 1 \mid X) + P(Y = 0 \mid X) = 1$$

Principe et estimation : Estimation par maximum de vraisemblance

- Vraisemblance
- Log-vraisemblance
- Déviance
- Optimisation
- Application : Titanic
- Occurrence de la survie :

$$\begin{array}{l} logit = 2,05 + 0,2*1_{Classe=0} + 1,06*1_{Classe=1} + \\ 0,04*1_{Classe=2} - 0,72*1_{Classe=3} - 1,06*1_{age=adulte} \\ -2,42*1_{sexe=Homme} \end{array}$$

Principe et estimation : Première évaluation de la régression

- Modèle trivial M₀
- Vérifier que le modèle fait mieux que le modèle trivial
- R² de Mac-Fadden : $R^2_{MF} = 1 - LL_M / LL_0 = 0,20$

Bonne ou mauvaise régression?

- a sont les vrais positifs : individus qui ont été classés positifs et qui le sont réellement
- c sont les faux positifs : classés positifs alors qu'ils sont négatifs

$Y \times \hat{Y}$	Ĥ	<u>^</u>	Total
+	a	b	a + b
_	c	d	c+d
Total	a + c	b+d	n = a + b + c + d

- Taux d'erreur : nombre de mauvais classement rapporté à l'effectif total
- Taux de succès : probabilité de bon classement du modèle
- Sensibilité : capacité du modèle à retrouver les positifs
- Précision : proportion de vrais positifs parmi les individus classés positifs
- Spécificité : proportion de négatifs détectés

$Y \times \hat{Y}$	÷	<u>^</u>	Total
+	a	b	a + b
_	c	d	c+d
Total	a + c	b+d	n = a + b + c + d

- Le taux de faux positifs (TFP) : proportion de négatifs qui ont été classés positifs
- La F-Mesure: moyenne harmonique entre la sensibilité et la précision

$Y imes \hat{Y}$	Ĥ	Ŷ	Total
+	a	b	a + b
_	c	d	c+d
Total	a + c	b+d	n = a + b + c + d

Survie = f(age, sexe, classe)

	Prédiction		
SURV	Décès	Survie	Total général
Décès	1364	126	1490
Survie	362	349	711
Total général	1726	475	2201

Indicateurs						
Vrais positifs	349					
Faux positifs	126					
Taux d'erreur	22%					
Taux de succès	78%					
Sensibilité	92%					
Précision	79%					
Spécificité	49%					
F-Mesure	0,85					
Rapp.	4.00					
Vraisemblance	1,80					

 $R^2_e = 0.31$

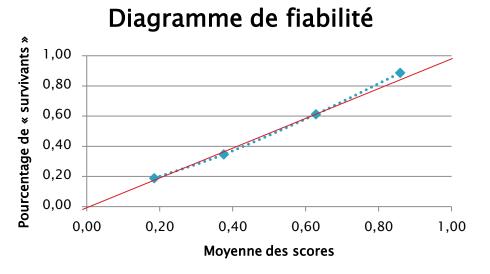
Ce modèle est meilleur que le modèle trivial

- Attention lors de son utilisation :
 - Se repose sur les prédictions sans tenir compte des probabilités

 Le classement dans le groupe le plus important est toujours favorisé

Bonne ou mauvaise régression ? : Diagramme de fiabilité

 Confronter les probabilités estimées et celles observées



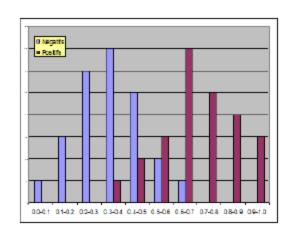
 Ici, les points sont proches de la droite, ainsi les scores sont bien calibrés

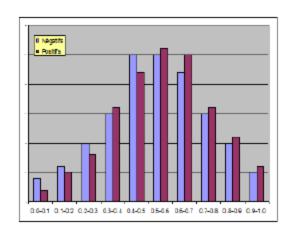
Bonne ou mauvaise régression ? : Test de Hosmer-Lemeshow

- Repose sur la même logique que le diagramme de fiabilité
- H0: Le modèle n'apporte rien H1: Le modèle logistique apporte de l'information
- Statistique de test C ~ Khi²_(G-2)
- $1592 > Khi_{(0,95;G-2)}^2 = 0.35$
- On rejette H0 : Le modèle est validé

Bonne ou mauvaise régression? : Le test de Mann-Whitney

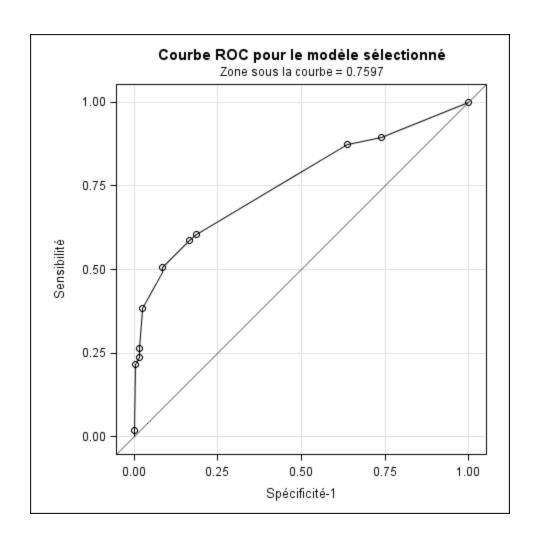
 H0: Les scores des survivants ne sont pas significativement différents des scores des décédés





- Statistique de test Z ~ N(0;1)
- |-13,43| > U(95)=1,96

Bonne ou mauvaise régression ? : la courbe ROC



Test de significativité des coefficients

Test de significativité des coefficients : Quoi et comment tester ?

Différentes hypothèses à tester pour valider le modèle :

```
• H_0: a_j = 0

• H_0: a_j = a_{j+1} = ... = a_{j+q} = 0

• H_0: a_1 = a_2 = ... = a_1 = 0
```

- 2 approches pour les tests :
 - Rapport de vraisemblance
 - Test de Wald

Test de significativité des coefficients : Tests fondés sur le rapport de vraisemblance

- 2 modèles
 - $M_r: Y = a_0 + a_1 X_1 + ... + a_s X_s + a_{s+1} X_{s+1} + ... + a_r X_r$
 - M_s : $Y = a_0 + a_1 X_1 + ... + a_s X_s$
- Comparaison des vraisemblances des modèles emboités
- $H_0: a_{s+1} = ... = a_r = 0$
- Statistique de test LR ~Khi²_(r-s)

Test de significativité des coefficients : Tests de Wald

 Repose sur des propriétés asymptotiques de l'estimateur

$$H_0: a_1 = ... = a_j = 0$$

- Statistique de test W_j ~Khi²_(j)
- On privilégie le test du rapport de vraisemblance pour les petites bases de données car il est plus puissant.
- Pour les grosses bases de données, on privilégie le test de Wald qui est moins gourmand en ressources.

Partie 2 : Interprétations

- 1. Interprétation des coefficients
- 2. Les interactions

Interprétation des coefficients

Interprétation des coefficients : Risque relatif, odds, odds-ratio

- Risque relatif : surcroit de chance d'être positif du groupe exposé par rapport au groupe témoin
- Odds : rapport de probabilités dans un groupe
- Odds-ratio : rapport entre l'odds du groupe exposé et l'odds du groupe témoin

- Survie = f(age)
- Odds = 0,45
 - Les adultes avaient 2,2 fois plus de risque de décéder que de rester en vie.
- Odds-ratio = 0,41
 - On a 2,4 fois plus de chance de survivre en étant enfant qu'en étant adulte.
- ▶ Intervalle de confiance de l'OR : [0,28 ; 0.61]
 - Lien significatif entre l'âge et la survie

Interprétation des coefficients : Le cas de la régression simple

Survie = f(classe)

Estimation par l'analyse du maximum de vraisemblance

Paramètr	е	DDL	Valeur estimée	Erreur type	Khi-2 de Wald	Pr > Khi-2
Intercep	ot	1	-1.0873	0.0867	157.3831	<.0001
CLASS	0	1	-0.0678	0.1171	0.3356	0.5624
CLASS	1	1	1.5965	0.1436	123.5199	<.0001
CLASS	2	1	0.7400	0.1482	24.9200	<.0001

Estimation des odds-ratio

Effet	Valeur estimée du point		valle de confiance le Wald à 95 %	
CLASS 0 vs 3	0.934	0.743	1.175	
CLASS 1 vs 3	4.936	3.725	6.541	
CLASS 2 vs 3	2.096	1.567	2.803	

Interprétation des coefficients : Le cas de la régression multiple

Survie = f(sexe, age)

Estimation par l'analyse du maximum de vraisemblance

Paramètre	DDL	Valeur estimée	Erreur type	Khi-2 de Wald	Pr > Khi-2
Intercept	1	1.5140	0.2355	41.3294	< .0001
AGE	1	-0.5564	0.2276	5.9770	0.0145
SEX	1	-2.2940	0.1199	365.7942	<.0001

Estimation des odds-ratio

Effet	Valeur estimée du point	Intervalle de confiance de Wald à 95 %		
AGE	0.573	0.367	0.896	
SEX	0.101	0.080	0.128	

Les interactions

Exemple :

- X_1 = adulte et X_2 = sexe masculin
- $Z = X_1 * X_2 = 1$ si adulte ET sexe masculin
- Z = 0
 - Si adulte et de sexe féminin
 - Si enfant et de sexe masculin
 - · Si enfant et de sexe féminin

Application aux données du Titanic

Estimation par l'analyse du maximum de vraisemblance

Paramètre	DDL	Valeur estimée	Erreur type	Khi-2 de Wald	Pr > Khi-2
Intercept	1	0.4990	0.3075	2.6338	0.1046
AGE	1	0.5654	0.3269	2.9911	0.0837
SEX	1	-0.6870	0.3970	2.9953	0.0835
AGE*SEX	1	-1.7465	0.4167	17.5661	<.0001

- Logit = 0,5 + 0,57 x Adulte 0,69 x Homme
 1,75 x Homme * Adulte
- $\Delta_{logit}(sexe) = -0.69 1.75 \times 1 = -2.44$
- $e^{-2,44} = 0.09$
 - Un homme adulte a 11 fois plus de risque de se noyer qu'une femme adulte
- Un garçon a 3 fois plus de chance de survivre qu'un homme

Partie 3 : Pour un meilleur modèle

- 1. Sélection de variables
- 2. Analyse des résidus

La sélection de variables

- Moins il y aura de variables, plus facile sera l'interprétation
- Le déploiement sera facilité
- Plus de chance que le modèle soit robuste
 - Principe du Rasoir d'Occam
- La sélection manuelle est à préférer (à condition d'être expert dans le domaine)

La sélection de variables : Pourquoi la sélection ?

- Procédures pas-à-pas :
 - Sélection FORWARD
 - Sélection BACKWARD
 - Méthode STEPWISE

La sélection de variables : Sélection par optimisation

- Objectif : minimiser un des 2 critères :
 - AIC = $-2LL + 2 \times (J+1)$
 - BIC = $-2LL + ln(n) \times (J+1)$
 - Avec –2LL la déviance
 - J+1 le nombre de paramètres à estimer
 - · J le nombre de variables explicatives

Survie = f(classe, sexe, age)

Estimation par l'analyse du maximum de vraisemblance

Paramètre	DDL	Valeur estimée	Erreur type	Khi-2 de Wald	Pr > Khi-2
Intercept	1	2.1448	0.2766	60.1435	<.0001
class1	1	0.9022	0.1498	36.2820	<.0001
class3	1	-0.8634	0.1352	40.7638	<.0001
AGE	1	-1.0315	0.2412	18.2893	<.0001
SEX	1	-2.3813	0.1338	316.9023	<.0001

Estimation des odds-ratio

Effet	Valeur estimée du point	Intervalle de confiance de Wald à 95 %		
class1	2.465	1.838	3.306	
class3	0.422	0.324	0.550	
AGE	0.356	0.222	0.572	
SEX	0.092	0.071	0.120	

La sélection de variables : Sélection par optimisation

- Survie = f(classe, sexe, age)
 - Avec interaction

Estimation par l'analyse du maximum de vraisemblance

Paramètre	DDL	Valeur estimée	Erreur type	Khi-2 de Wald	Pr > Khi-2
Intercept	1	3.1208	0.3278	90.6106	<.0001
AGE	1	-0.9709	0.2278	18.1663	<.0001
SEX	1	-3.5167	0.2453	205.5231	<.0001
class1	1	0.7760	0.1632	22.6144	< .0001
class3	1	-2.4654	0.2834	75.6842	< .0001
SEX*class3	1	2.1465	0.3088	48.3280	< .0001

Proportion de survivants	CLASSE					
SEXE	Equipage	1 ^{ère} classe	2º classe	3e classe		
Femme	87%	97%	88%	46%		
Homme	22%	34%	14%	17%		

Analyse des résidus

Analyse des résidus

- Deux tests principaux :
 - Résidus de déviance (Ecart)
 - Résidus de Pearson

H0 : Bon ajustement du modèle aux données

H1 : Qualité du modèle insuffisante