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1 Animation de la recherche

1.1 Situation

Actuellement maitre de conférences en mathématiques a 'université de
Montpellier 2 au sein de 'I3M (Institut de Mathématiques et de Modélisation
de Montpellier), je suis également chercheur associé au LIRMM (Labora-
toire d’Informatique, de Robotique et de Microélectronique de Montpellier).
Je participe donc activement a la vie de deux équipes de recherche, d’une
part ’équipe de théorie des nombres, dirigée par Philippe Michel (I3M) et
d’autre part 'équipe ARITH d’arithmétique des ordinateurs dirigée par Ar-
naud Tisserand (LIRMM).

Par ailleurs, je suis responsable de la filiere Mathématiques et Informa-
tique du département de Mathématiques de Montpellier. En particulier, en
tant que responsable du Parcours Mathématiques-Informatique du Master 2
Recherche, je reste en contact permanent avec les étudiants désirant faire de
la recherche dans cette voie. J’ai donc pour responsabilité de les conseiller, de
les orienter, de leur trouver des stages (aussi bien dans le monde académique
que dans le monde industriel) et des financements pour poursuivre en doc-
torat.

1.2 Enseignements liés a la recherche

J’enseigne également dans ce M2 recherche un module de cryptographie
théorique et appliquée depuis 2003 (15 puis 30 heures). J’y aborde tous les
aspects de la cryptographie moderne (fonctions de hachage, cryptographie
par flot, générateurs aléatoires) et ses applications (internet, téléphonie mo-
bile, protection contre la copie, ...) avec bien sur une attention particuliere
portée sur les systemes de chiffrement symétriques (DES, Blowfish, AES) et
asymétriques (RSA, courbes elliptiques et hyperelliptiques). Ce module fait
également partie du M2 recherche d’informatique de Montpellier.

D’autre part j’ai accepté de dispenser un cours en anglais dans le Master
2 SISA (Security of Integrated Systems Applications) de I’école des Mines
de Saint-Etienne sur les chiffrements asymétriques.

1.3 Participation a la formation doctorale

Lors de I’école d’été de Cryptologie organisée en 2002 et destinée a pro-
mouvoir la recherche en cryptologie aupres des jeunes doctorants ou futurs



doctorants, j’ai donné une conférence sur le theme de 1'utilisation des courbes
hyperelliptiques en cryptographie et sur les avantages et les inconvénients
que ces courbes apportaient.

Avec 'aide d’Emmanuel Royer et de Thomas Hausberger, j’ai organisé
le colloque “Jeunes Chercheurs en théorie des nombres” qui s’est tenu a la
Grande Motte en mars 2004, réunissant une soixantaine de jeunes cher-
cheurs (essentiellement des doctorants). L’objectif de ce colloque était de
permettre a ces doctorants de se réunir, de présenter leurs travaux lors d’ex-
posés de vingt minutes et de rencontrer des chercheurs confirmés qui ont
chacun donné un cours durant trois heures sur un sujet en développement.

Lors de I’école jeunes chercheurs en algorithmique et calcul formel de
2005, j’ai été sollicité pour présenter un cours sur les courbes elliptiques et
leur utilisation en cryptographie.

1.4 Encadrement de travaux de recherche

Depuis mon arrivée a Montpellier, j’ai encadré plusieurs étudiants pour
leur stage de recherche de premiere année de Master. Les sujets tournent
autour de la théorie des nombres et de la cryptographie.

J’ai également encadré, chaque année, un étudiant pour son stage de
deuxiéme année de Master (ou de DEA) :

— Nicolas Méloni en 2004 sur I'utilisation des couplages en cryptographie.

— Moana Tetiarahi en 2005 sur le comptage de points sur les courbes
elliptiques en caractéristique 2.

— Nadia EI Mrabet en 2006 sur les attaques sur carte & puces et contre
mesures mathématiques.

— Julien Hoarau en 2007 sur la sécurité dans la téléphonie mobile (stage
en entreprise).

Enfin, avec Jean Claude Bajard, professeur au LIRMM, je coencadre ac-
tuellement 2 doctorants en cryptographie dont les sujets sont détaillés dans
la partie 3.

Nicolas Méloni va soutenir sa these le 26 novembre 2007. Il avait obtenu
une allocation de recherche 50% Mathématique et 50% Informatique en 2004
grace a ses bons résultats dans le DEA de Mathématiques de Montpellier.
Ses recherches se sont concentrées sur les représentations alternatives per-



mettant d’accélérer ou de sécuriser les opérations cryptographiques basées
sur les courbes elliptiques. Ses travaux ont pour l'instant donné lieu & 5
publications dans des conférences internationales a comité de lecture. Pour
Pannée 2007-2008, il a obtenu un demi poste ’ATER a 'université de Tou-
lon.

Nadia El Mrabet a commencé sa thése en octobre 2006. Titulaire de
lagrégation de mathématiques, elle a obtenue une bourse DPI cofinancée
par la région et le CNRS. Son sujet de these porte sur 1'utilisation des cou-
plages, récemment apparus en cryptographie. Elle travaille plus précisément
sur les algorithmes permettant de les calculer et sur leur résistance aux fuites.
Ses travaux ont déja donné lieu a une publication dans une conférence in-
ternationale & comité de lecture.

2 Travaux de recherche

Mon domaine de recherche est ’algorithmique en théorie des nombres
et la cryptographie. Je me suis plus particulierement intéressé a 1’algorith-
mique des courbes elliptiques et des courbes hyperelliptiques de genre 2 ou
3 ainsi qu’a leurs applications en cryptographie.

Mes travaux s’articulent autour de deux idées directrices qui me tiennent
a coeur et continueront & me guider dans les années a venir :
— Une démarche expérimentale, peu courante en recherche mathématique.
— L’utilisation d’outils théoriques et abstraits pour résoudre des proble-
mes tres concrets rencontrés par les industriels.

Le domaine des courbes elliptiques (et des courbes algébriques en général)
fait partie des grands axes de la théorie des nombres. Elles sont par exemple
a la base de la démonstration du grand théoreme de Fermat. Je parle bien
str ici de mathématiques dites pures ou plus généralement de recherche fon-
damentale rimant trop souvent aux yeux du grand public avec inutilité voire
méme gaspillage de Pargent public. Il faut bien avouer que de savoir (et
encore pire : d’avoir une preuve) que I’équation

l,n_’_ynzzn

n’a pas de solutions entieres non triviales si n est un entier supérieur a 3 ne
va pas aider a résoudre le probleme du réchauffement climatique. Cela n’a



pas empéché des centaines de chercheurs du monde entier de s’attarder sur
ce probléeme pendant 350 ans. Aucun de ces chercheurs ni des gouvernements
ou mécenes qui les financaient ne pensait que ces travaux finiraient un jour
entre les mains de chacun d’entre nous. Et pourtant, les courbes elliptiques
(et plus généralement les courbes algébriques) constituent, a n’en pas douter,
I’avenir de la cryptographie moderne. Elles sont déja utilisées dans certains
produits de grande consommation (Blackberry, protection de HD-DVD et
Blue-ray, serveurs de paiement en ligne) et leur récente recommandation par
la NSA (National Security Agency, ’agence de sécurité américaine) leur pro-
met un avenir radieux partout autour de nous (internet, cartes bancaires,
téléphonie mobile, vote électronique, télévision payante, ...).

Pour ma part je me suis intéressé aux deux aspects des courbes algébri-
ques, aspect “fondamental” et I'aspect “appliqué”’. Ces deux aspects ne
sont bien str pas indépendants et les mémes outils servent dans les deux
cas. J'expliquerai en particulier dans la partie 2.3 comment la variété de
Kummer, étudiée du point de vue théorique dans la partie 2.2, peut servir
a sécuriser les algorithmes de chiffrement basés sur les courbes elliptiques et
hyperelliptiques.

2.1 Etude algorithmique de familles de courbes algébriques

Les courbes algébriques sur lesquelles j’ai travaillé sont données par des
équations de la forme

v = fla), (1)

ou f est un polynome a coefficients dans Q. Lorsque le degré de f vaut
3 ou 4, on a a faire aux courbes elliptiques et lorsque le degré est plus
grand aux courbes hyperelliptiques. Ces courbes possedent des propriétés
tres similaires du point de vue diophantien. D’une part Siegel a démontré
en 1928 qu’une courbe elliptique ne pouvait posséder qu'un nombre fini de
points entiers (c’est a dire de couples d’entiers (x,y) vérifiant ’équation (1)).
D’autre part Faltings a démontré dans [Faltings 83] qu’une courbe hyper-
elliptique (sous-entendu non elliptique) ne pouvait posséder qu'un nombre
fini de points rationnels.

Ces deux propriétés n’ont toutefois pas que leur énoncé comme ressemblance.
Dans les deux cas, en effet, on ne connait pas de méthode effective pour trou-
ver ces points ni méme pour connaitre leur nombre.



Ces deux problemes, tres similaires, sont donc centraux dans la recherche
actuelle en théorie des nombres et plus particulierement pour les chercheurs
intéressés par les équations diophantiennes. Dans cette section, je m’intéresse
au premier probleme en cherchant des points entiers sur des familles de
courbes elliptiques. J’aborderai le second probléeme dans la section 2.2.

2.1.1 Les “simplest cubic fields”

Soit m un entier positif tel que
A=m>+3m+9

soit sans facteur carré.
Le corps cubique K,,, défini par le polynome irréductible sur @Q,

fX)=X34+mX? - (m+3)X +1

a été introduit dans [Shanks 74] et est appelé un “simplest cubic field”.
Shanks a introduit cette classe de corps car les calculs sont particulierement
faciles a effectuer sur de tels corps, ce qui leur a valu leur nom. Ces corps ont
été par la suite beaucoup étudiés car leur régulateur est explicite et petit.
Ainsi leur nombre de classes a tendance a étre particulierement grand.

Je me suis pour ma part intéressé aux courbes elliptiques définies sur Q
par les équations :

Ep Y =X34mX? - (m+3)X+1, (2)

pour un entier m définissant un “simplest cubic field”.

Cette famille de courbes elliptiques a été introduite dans [Washington 87].
L’auteur y établit une relation entre le rang de la courbe elliptique E,, sur
Q et le 2-rang du groupe des classes de K,,. On peut ainsi espérer que le
rang des courbes elliptiques de cette famille ne sera pas trop petit, du moins
qu’il sera suffisamment grand pour que ces courbes contiennent des points
entiers. C’est la raison pour laquelle je me suis intéressé au calcul de ces
points sur les courbes de cette famille qui semblaient bien s’y préter.

Dans un premier temps, j’ai utilisé une méthode permettant de calculer
les points entiers sur une courbe elliptique lorsque son groupe de Mordell-
Weil est connu. Cette méthode développée dans [Stroeker-Tzanakis 94],
[Gebel-Petho-Zimmer 94], et [Smart 94] entre autres, est basée sur les formes
linéaires de logarithmes elliptiques.



Elle m’a permis de calculer tous les points entiers sur les courbes elliptiques
E,, pour les valeurs du parametre m inférieures a 1000 et définissant un
“simplest cubic field”. A partir de ces calculs, j’ai émis plusieurs conjectures
concernant bien sur les points entiers de ces courbes mais aussi la structure
du groupe de Mordell-Weil E(Q). J’ai finalement démontré ces conjectures
dont la principale concerne le point [0,1] qui joue un roéle central dans ce
travail. Les résultats les plus intéressants sont en effet :

— d’une part la preuve que le point [0, 1] est un générateur du groupe de
Mordell-Weil,

— d’autre part le calcul explicite de tous les multiples entiers de ce point.

J’ai démontré ces résultats pour un entier m quelconque définissant un “sim-
plest cubic field”. C’est le fait de travailler sur une famille infinie qui fait
la difficulté de ces travaux. Ce type de calcul est en effet classique et bien
connu sur une courbe donnée.

Il devient alors possible de déduire de ces deux résultats que, lorsque la
courbe E,, est de rang 1, les points entiers de E,, sont exactement les points
[0,1], [0, —1] et leurs doubles si m est pair.

C’était la premiere fois que ce type de travail était réalisé sur une famille
de courbes elliptiques et cela a donné lieu a la publication [Duquesne 01].
Ce premier travail a été pour moi la découverte de I'intérét d’une démarche
expérimentale (expérimentations, conjectures, preuves) en recherche mathé-
matique et m’a encouragé a poursuivre dans cette voie.

Les preuves sont basées sur 'utilisation de la hauteur canonique sur les
courbes elliptiques F,, et leur encadrement. Bien évidemment la méthode
employée n’est pas généralisable a n’importe quelle famille (cela donnerait
une version explicite du théoréme de Siegel). Il est en effet nécessaire de
pouvoir éliminer, grace a une autre méthode ou a des astuces, les cas ou une
telle borne sur les hauteurs canoniques n’existe pas.

J’ai par la suite précisé les conditions pour qu’elle s’applique lors de mon
étude des “simplest quartic fields” [Duquesne 07a).

En dehors de la problématique des points entiers, le fait de connailtre ex-
plicitement le générateur d’une famille de courbes elliptiques ouvre de nou-
velles perspectives. En effet la structure du groupe de Mordell-Weil d’une



courbe elliptique est ’outil de base pour une étude poussée de cette courbe.
Avoir a sa disposition une famille de courbes dont on connait la structure
précise du groupe de Mordell-Weil permet ainsi de faire plus facilement des
calculs et des statistiques sur un grand nombre de courbes. Avec Chris-
tophe Delaunay, nous avons ainsi étudié dans [Delaunay-Duquesne 03] les
valeurs critiques des séries L associées aux courbes elliptiques de rang 1
définies par des “simplest cubic fields”. D’apres la conjecture de Birch et
Swinnerton-Dyer, ces valeurs sont reliées a des invariants géométriques de
la courbe elliptique tels la hauteur canonique du générateur et le groupe de
Tate-Shafarevitch. La hauteur canonique du générateur étant connue grace
au travail précédent, on peut déduire des informations sur le groupe de Tate-
Shafarevitch habituellement difficilement accessibles surtout sur une famille
de courbes. Ce type de travail sur une famille de courbes elliptiques avait
précédemment été réalisé ([Zagier-Kramarz 87]) dans le cas du rang 0 (ou
la structure du groupe de Mordell-Weil est particulierement simple). Outre
le fait d’étudier une autre famille pour valider ou moduler les constata-
tions de [Zagier-Kramarz 87], le passage a une famille de courbes de rang
1 apporte d’autres nouveautés. Par exemple, il n’existe que peu d’exemples
dans la littérature de courbes elliptiques de rang non nul et de groupe de
Tate-Shafarevitch non trivial. Cela est di a l'existence d’une infinité de
points rationnels (contre un nombre fini en rang nul), il est donc plus dif-
ficile de trouver des points p-adiques ne correspondant pas a des points
rationnels (c’est ce déséquilibre local/global que mesure le groupe de Tate-
Shafarevitch). Ainsi déterminer I'ordre du groupe de Tate-Shafarevitch pour
un grand nombre de courbes dans ces conditions revét un intérét particulier.

Nous avions, & I’époque, constaté (comme Zagier et Kramarz) une densité
positive de courbes de rang strictement supérieur a 1, ce qui est contraire a
I’opinion généralement admise sur le sujet. Des calculs plus avancés, réalisés
dans [Watkins 07], sur la famille de courbes étudiée par Zagier et Kramarz
d’une part et la théorie des matrices aléatoires d’autre part nous ont par la
suite laissé penser que cette constatation était erronée et que nous n’avions
pas poussé les calculs assez loin pour voir la courbe s’infléchir.

Par contre, concernant les fréquences d’apparition des différents ordres
du groupe de Tate-Shafarevtich, nous avons constaté des densités non nulles,
ce qui était cette fois en accord avec les heuristiques de [Delaunay 01].

Finalement nous avons utilisés nos calculs pour produire des exemples
de courbes de rang 3 et 5 possédant des groupes de Tate-Shafarevitch non



triviaux qui sont extrémement rares dans la littérature.

2.1.2 Les “simplest quartic fields”

Plus récemment dans [Duquesne 07a], j’ai continué ’étude des familles
de courbes elliptiques en faisant un travail similaire & [Duquesne 01] sur une
famille ne possédant pas les mémes propriétés. J’ai ainsi étudié la famille,
en apparence tres similaire, des courbes elliptiques associés aux “simplest
quartic fields”. Les “simplest quartic fields” ont bien str la méme origine
que les “simplest cubic fields” et les courbes elliptiques qui leur sont associés
sont de la forme

Qr: Y2=X*—tX3—6X2+tX +1,
ou, en envoyant le point [0, 1] & I'infini, de la forme (de Weierstrass)
Cy: y? =2®— (16 + t?)x.

Certaines propriétés des courbes elliptiques associées aux “simplest cubic
fields” et aux “simplest quartic fields” sont communes. Ainsi, dans les deux
cas, il existe un point d’ordre infini (le point [0,1]) et je démontre que ce
point est de plus un générateur du groupe de Mordell-Weil. Cela laisse penser
que la méthode utilisée dans [Duquesne 01] (utilisant les encadrements de
hauteurs canoniques) peut étre étendue a d’autres familles de courbes ellip-
tiques. En fait, j’explique dans [Duquesne 07a] que si on dispose d’un point
d’ordre infini et que celui ci est effectivement générateur, alors la méthode
utilisée dans [Duquesne 01] permet de le démontrer.

Cette propriété est bien str fondamentale pour la suite puisqu’elle concerne
la structure du groupe de Mordell-Weil qui doit étre connue si on veut aller
plus loin dans I’étude des propriétés arithmétiques des courbes elliptiques
(par exemple si on veut connaitre les points entiers).

Ainsi, comme c’était le cas pour les “simplest cubic fields”, la structure
du groupe de Mordell-Weil est completement déterminée dans le cas des
courbes de rang 1 associées aux “simplest quartic fields”. La situation est
toutefois différente pour les points entiers a cause de la présence d’un point
de torsion, ce qui n’était pas le cas avec les courbes elliptiques associées aux
“simplest cubic fields”. Trouver exactement les points entiers sur la famille
de courbes C} de rang 1 devient alors impossible avec la méthode utilisée
quand le parametre t est pair. Toutefois une astuce m’a permis de contour-
ner cette difficulté et de trouver quand méme les points entiers sur la famille
des courbes Q; de rang 1, ce qui était le probléeme initial.
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L’autre particularité de la famille des courbes elliptiques définies par

des “simplest quartic fields” est la possibilité d’en extraire une sous-famille
de courbes de rang 2 dont on connait explicitement 2 points d’ordre in-
fini. J’ai da alors généraliser la méthode utilisée dans [Duquesne 01] pour
démontrer que ces deux points sont indépendants et engendrent la partie
libre du groupe de Mordell-Weil. Le passage a deux points est loin d’étre
aisé. Il utilise la méthode de descente infinie décrite dans [Siksek 95] et le
régulateur. Le régulateur étant une différence de hauteurs canoniques, les
bornes sur celles ci doivent étre trés précises sous peine de trouver de mau-
vaises bornes sur le régulateur.
Encore une fois la connaissance de la structure compléte du groupe de
Mordell-Weil (ici en rang 2) permet de s’attaquer a la détermination des
points entiers. J’ai donc généralisé la méthode utilisée en rang 1 et obtenu
exactement tous les points entiers sur la sous famille des courbes @); de rang
2 considérée. Pour des raisons similaires au cas du rang 1, je n’ai pas pu
conclure sur la famille des C4.

A ma connaissance, c’est la premiere fois que 'on a autant d’information
sur la structure du groupe de Mordell-Weil et sur les points entiers pour une
famille infinie de courbes de rang 2. Ce travail m’a également permis de
mieux cerner les cas ou les méthodes employées dans [Duquesne 01] peuvent
étre utilisées avec succes.

2.1.3 Pistes de futures recherches

Malgré 'orientation plus cryptographique de mes dernieres recherches,
j'ai plusieurs idées pour continuer mes travaux dans cette voie. La plus
naturelle est de regarder ce qui se passe pour les “simplest quintic fields”
ou les “simplest sextic fields”. On quitte alors le monde des courbes el-
liptiques pour celui des courbes hyperelliptiques. Le reste de mes travaux
concernant en grande partie les courbes hyperelliptiques, je connais bien les
outils nécessaires a 1’étude des courbes associées a ces corps et des résultats
intéressants devraient pouvoir étre obtenus.

D’autre part, tres peu de travaux ont été réalisés dans le domaine de
la vérification expérimentale de la conjecture de Birch et Swinnerton-Dyer
pour les courbes hyperelliptiques. Des travaux du type de ceux entrepris
dans [Delaunay-Duquesne 03] mais dans le cadre des courbes hyperellip-
tiques seraient particulierement intéressants. Cette piste, ainsi que ’étude
de familles de courbes elliptiques tordues quadratiques, fait partie de PANR
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ALGOL dont je fais partie et qui démarre en 2007.

2.2 La Variété de Kummer d’une courbe algébrique

Dans cette partie, je m’intéresse a la variété de Kummer d’une courbe
elliptique ou hyperelliptique. Du point de vue théorique, cet objet est sim-
plement le quotient de la Jacobienne de la courbe par I'involution hyperellip-
tique. Cela signifie qu’il devient impossible de distinguer un diviseur de son
opposé. Du point de vue pratique, cet objet présente 'avantage d’étre plus
simple & manipuler que la Jacobienne elle méme. Il faut cependant, dans un
premier temps, donner une description explicite de ce quotient et c’est ce qui
va me préoccuper dans cette partie. Je donnerai aussi des applications de ce
nouvel outil a des problemes classiques sur les courbes algébriques comme
la recherche de points rationnels.

Le fait qu’on ne puisse pas distinguer un élément de son opposé n’est a
priori pas tres restrictif. Par exemple dans le cas des courbes elliptiques, cela
revient a ne conserver que l’abscisse des points qui contient I’essentiel de I'in-
formation puisque y = ++/ f(x). Malheureusement, cela a des conséquences
regrettables sur la loi de groupe. En effet il devient impossible d’additionner
deux éléments A et B puisqu’il y a confusion pour le résultat entre A + B
et A — B. La loi de groupe de la Jacobienne, si fondamentale dans les ap-
plications, n’est donc plus valable dans la variété de Kummer. Cependant
des traces de cette loi de groupe subsistent sur la variété de Kummer. Ainsi,
un élément de 2-torsion est égal a son opposé, de sorte que 'addition par
un élément de 2-torsion reste valable. De la méme maniere, il est possible
d’ajouter un élément A avec lui-méme puisque A — A est I’élément neutre. 11
est donc facilement reconnaissable et il ne peut pas y avoir de confusion avec
A+ A. Dans le cas des courbes de genre 2 (et en caractéristique impaire),
Flynn a donné dans [Flynn 93] une version explicite de la variété de Kummer
(qui est une surface dans P? dans ce cas) et a donné des formules permettant
de calculer rapidement ces traces de la loi de groupe. Il a également donné
des formules pour les expressions de la forme

ot k;(A) représente la i-eme coordonnée dans P? de A. Ces formules sont
bien définies sur la surface de Kummer (remplacer A ou B par son opposé
ne les modifie pas) et permettent de faire explicitement la somme de A et
de B sur la surface de Kummer si leur différence est connue.
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Dans [Cassels-Flynn 96] Flynn reprend cette construction et décrit deux
applications importantes de cette description complete des traces de la loi
de groupe de la Jacobienne sur la surface de Kummer. La premiere est le
développement d’une théorie explicite des hauteurs ([Flynn 95]) sur les Ja-
cobiennes de courbes de genre 2 permettant d’effectuer une descente infinie
[Flynn-Smart 97]. Cette descente infinie est la derniére étape du processus
permettant de calculer les générateurs du groupe de Mordell-Weil. La se-
conde concerne la recherche des points rationnels d’une telle courbe.

2.2.1 Utilisation pour la recherche des points rationnels d’une
courbe hyperelliptique

Le théoreme de Faltings permet d’affirmer qu’il n’y a qu’un nombre fini
de points rationnels sur une courbe de genre 2 sans toutefois donner d’angle
d’attaque pour les déterminer. Une version plus explicite de ce résultat avait
été donnée précédemment dans [Chabauty 41] mais & la condition que le rang
de la Jacobienne soit strictement inférieur au genre de la courbe.

Dans [Flynn 97], la description de la surface de Kummer permet d’élabo-
rer une méthode explicite pour appliquer le théoreme de Chabauty a une
courbe de genre 2 dont le rang de la jacobienne vaut 1 (le cas du rang 0
est résolu depuis longtemps puisqu’il ne s’agit que de calculer la torsion).
Plus précisément, cette méthode permet de borner de facon fine le nombre
de points rationnels et dans la plupart des cas, on peut ainsi connaitre effec-
tivement tous les points rationnels. Le principe simplifié de cette méthode
est le suivant :

— On considére connue la structure du groupe de Mordell-Weil (c’est a

dire sa torsion et un générateur G puisqu’on est en rang 1).

— Pour chaque élément de torsion 7', on cherche un point rationnel sous
la forme T+ nG.

— On utilise la surface de Kummer pour assurer I’annulation d’une série
formelle p-adique en n.

— On utilise le théoréeme de Strassman pour trouver une borne sur le
nombre de valeurs de n annulant cette série formelle.

— En recollant toutes ces bornes, on obtient une borne sur le nombre de
points rationnels.

— Si cette borne correspond aux nombre de points déja connus, ce qui
est souvent le cas, le probleme de trouver tous les points rationnels est
résolu.

Bien stir, “souvent” ne veut pas dire “tout le temps” et les cas restants sont
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sources de nouvelles idées et de nouvelles méthodes de résolution.

La plus prometteuse d’entre elle est la méthode dite de Chabauty ellip-
tique. C’est fondamentalement la méme méthode : au lieu de travailler sur
une courbe de genre g dont le rang de la jacobienne est strictement inférieur
a g, on travaille avec une courbe elliptique définie sur un corps de nombres
de degré d et dont le rang r est strictement inférieur a d. En utilisant la loi
de groupe formelle sur cette courbe elliptique, on se rameéne également a une
condition d’annulation de séries formelles.

Il existe plusieurs méthodes pour ramener le probleme de la recherche
de points rationnels sur une courbe hyperelliptique a celle d’un probleme
résoluble par la méthode de Chabauty elliptique et ces approches ont permis
de résoudre bon nombre de cas ou la méthode de Chabauty usuelle ne per-
mettait pas de conclure ([Flynn-Wetherell 99], [Bruin 99],[Flynn-Wetherell 01],
[Flynn 01], [Duquesne 03]).

Ces exemples restent cependant dans la méme catégorie que la méthode
de Chabauty pour les courbes de genre 2, a savoir que le rang de la courbe
elliptique vaut 1 et qu’une seule série formelle en une seule variable doit s’an-
nuler. Un nouveau probléme se pose donc : que faire dans le cas ou la courbe
elliptique est de rang strictement supérieur a 1 (et bien str toujours stric-
tement inférieur & d). La méthode (tout comme une éventuelle méthode de
Chabauty basée sur la variété de Kummer d’une courbe dont la Jacobienne
a un rang strictement supérieur & 1) conduit alors non pas a annulation
d’une série formelle en une variable, mais a ’annulation simultanée de d — 1
séries formelles en r variables (et on voit bien ici d’ailleurs pourquoi le rang
doit étre strictement inférieur au degré).

Dans [Duquesne 02a], j’ai utilisé le théoréme de préparation de Weiers-
trass pour généraliser le théoreme de Strassman au cas de plusieurs variables,
j’en ai écrit une version explicite et déduit un algorithme permettant donc
de borner effectivement et finement le nombre de solutions d’un systeme de
séries formelles. Cela m’a permis de traiter le cas des points rationnels d’une
courbe hyperelliptique de genre 4 dont le rang de la jacobienne vaut 4. Bien
stir cette courbe ne vérifie pas les conditions du théoreme de Chabauty, mais
le probleme de trouver ses points rationnels se ramene au probleme de Cha-
bauty elliptique pour une courbe de rang 2 définie sur un corps de nombres
de degré 3 (qui rentre dans le cadre de la méthode de résolution donnée dans
[Duquesne 02a])
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2.2.2 Cas des courbes de genre 3

La construction explicite de la variété de Kummer par Flynn a ainsi
eu des applications variées et importantes quant a 1’étude des propriétés
arithmétiques et géométriques des courbes de genre 2. Il semble donc natu-
rel d’essayer de les généraliser au cas des courbes hyperelliptiques de genre
3 en espérant que les applications pourront également se généraliser.

Dans [Stubbs 00], un doctorant de Flynn a commencé ce travail en
décrivant la variété de Kummer d’un courbe hyperelliptique de genre 3
définie sur un corps de caractéristique impaire par une équation de la forme

y?> = f(z) o f est un polynéme de degré 7.

Il donne ainsi un plongement de la variété de Kummer dans P7 ainsi que 27
équations polyndmiales explicites reliant ses coordonnées dans P7. Dans le
cas du genre 2, la variété de Kummer était une surface de P3, c’est & dire
qu’une seule telle équation suffisait a la décrire. Les objets manipulés en
genre 3 sont donc bien plus complexes qu’en genre 2 et les calculs sont bien
plus lourds a réaliser.

Exactement comme dans le cas des courbes de genre 2, la structure de
groupe de la jacobienne est perdue en passant dans la variété de Kummer
mais les calculs s’en retrouvent considérablement simplifiés. Il reste cepen-
dant des traces de la loi de groupe qui sont d’ailleurs les mémes que dans le
cas des courbes de genre 2. L’objectif de [Duquesne 02b] était d’étudier ces
traces de la loi de groupe. J’ai, dans un premier temps, calculé la matrice
d’addition d’'un élément de 2-torsion. Pour cela, j’ai suivi la méthode em-
ployée par Flynn moyennant quelques modifications techniques permettant
d’accélérer les calculs qui auraient été trop lourds si une simple généralisation
avait été effectuée. De plus, dans le cas du genre 2, une astuce est nécessaire
a la fin du calcul pour remplir la derniere ligne de la matrice. Dans le cas
du genre 3, ce sont les 4 dernieres des 8 lignes qui doivent étre déterminées
et I'astuce utilisée par Flynn en genre 2 n’est plus suffisante.

L’addition d’un élément de 2-torsion n’est pas qu’une simple trace de la
loi de groupe sans intérét. Elle est a la base de la méthode utilisée par Flynn
pour déterminer explicitement les formes biquadratiques B;; telles que

ki(A+ B)kj(A — B) + ky(A — B)k;(A + B) = B;;(A, B).

En effet, le calcul direct de ces expressions aurait été irréalisable (comme
on le verra dans la partie suivante) avec les moyens dont Flynn disposait
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a I’époque et il est certainement toujours irréalisable pour les courbes de
genre 3.

La méthode que Flynn emploie en genre 2 et que j’ai généralisée en
genre 3 est tres surprenante mais terriblement efficace ; elle consiste a cal-
culer les B;; en faisant I’hypothése que B est un élément de 2-torsion mais
sans l'exprimer dans ses coordonnées. Autrement dit on prend un élément
B quelconque et on calcule les coordonnées de A + B et de A — B en utili-
sant la matrice d’addition d’un élément de 2-torsion précédemment calculée.
Le résultat obtenu n’est alors, a priori, valable que pour les éléments de 2-
torsion mais un argument d’indépendance des produits 2 a 2 des coordonnées
formelles de A permet de conclure a leur validité pour un élément B quel-
conque. Cette méthode se généralise bien aux courbes hyperelliptiques de
genre 3 sauf que 'argument d’indépendance ne peut étre utilisé tel quel a
cause des 27 relations définissant la variété de Kummer. Un argument du
méme type mais plus fin doit étre utilisé.

Comme dans le cas du genre 2, ces résultats m’ont permis d’esquisser une
théorie explicite des hauteurs pour les courbes hyperelliptiques de genre 3
définies par un polynéme de degré 7.

2.2.3 Cas des courbes de genre 2 en caractéristique 2

Dans tous ses travaux, Flynn se place en caractéristique impaire. Les
différences avec la caractéristique 2 sont multiples puisque méme ’équation
de la courbe de départ n’a pas la méme forme. Les outils utilisables sont tres
différents et la plupart des applications des travaux de Flynn sont en ca-
ractéristique nulle (et méme sur Q a vrai dire). Il n’était donc pas nécessaire
pour lui de se compliquer la tache avec la caractéristique 2. Comme détaillé
dans la section 2.3, j’ai pour ma part trouvé des applications de la variété de
Kummer en cryptographie. Les corps finis de caractéristique 2 sont souvent
utilisés en cryptographie si bien que le besoin d’une théorie analogue a celle
de Flynn s’est vite fait ressentir en caractéristique 2.

Je me suis donc attelé a cette tache dans [Duquesne 07b]. J’ai di redéfinir
le plongement dans P? de la surface de Kummer ainsi que recalculer son
équation, puis déterminer la matrice de ’addition d’un élément de 2-torsion.
J’ai fait tout ceci avec des méthodes similaires a celles employées par Flynn
en caractéristique impaire a ceci prés que 'on tombe souvent sur des diffi-
cultés propres a la caractéristique 2. Il a fallu ensuite calculer les formes bi-
quadratiques permettant d’additionner deux éléments de la surface de Kum-
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mer si leur différence est connue. Comme je I’ai expliqué dans le paragraphe
précédent, Flynn supposait pour cela que B était un élément de 2-torsion
et utilisait la matrice d’addition d’un élément de 2-torsion bien définie sur
la surface de Kummer. Malheureusement, ceci ne peut pas étre appliqué en
caractéristique 2 pour la simple et bonne raison que les expressions

ki(A+ B)k;j(A— B) + kj(A+ B)ki(A— B),

sont toutes nulles si B est un élément de 2-torsion. Cette obstruction a une
généralisation trop simpliste de la méthode de Flynn illustre d’ailleurs tres
bien le type de problemes rencontrés en caractéristique 2.

J’ai donc dii m’attaquer directement au cas ou A et B sont des éléments
quelconques de la surface de Kummer. Les calculs deviennent alors vite tres
gourmands. En effet les éléments A et B sont définis par 8 variables reliées
par 4 équations et ce travail nécessite des polynomes de degré supérieur a
10 en ces 8 variables, le tout sur un corps défini a I’aide de 10 variables (les
coefficients de la courbe). Dans ces conditions une simple multiplication mal
placée a vite fait de prendre toute une nuit de calcul ou d’utiliser toute la
mémoire de la machine. J’ai donc di utiliser des astuces pour alléger ces
calculs et les rendre possibles. J’ai par exemple du faire des essais sur des
éléments B ayant certaines particularités ou méme sur des exemples pour
deviner la forme que devraient avoir les formes biquadratiques (ou méme
la forme des résultats intermédiaires). Cela a permis de diminuer les res-
sources informatiques nécessaires en rajoutant des contraintes sur le résultat.
Comme dans le cas des familles de courbes elliptiques que j’ai étudiées et
bien que dans un registre tout a fait différent, une démarche expérimentale
m’a ainsi permis d’obtenir des résultats significatifs.

2.2.4 Pistes de futures recherches

Du point de vue de la construction de variétés de Kummer et applica-
tions arithmétiques, le cas du genre 3 ouvre de nombreuses portes. Il serait
bien sur intéressant de généraliser la construction de la variété de Kummer
et la description explicite des traces de la loi de groupe aux courbes hyper-
elliptiques de genre 3 définies par un polynéme de degré 8 ou aux courbes
de genre 3 non hyperelliptiques. Cependant, méme dans le cas des courbes
définie par un polyndéme de degré 7, il reste beaucoup a faire. Je n’ai par
exemple pas encore calculé les constantes permettant de borner la hauteur
d’un élément car il est fort probable que leur taille les rende inexploitables
en pratique (ce n’est déja pas efficace en genre 2). Mes espoirs reposent sur
une version équivalente de la méthode que Flynn emploie pour améliorer ces
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constantes dans le cas des courbes de genre 2. Cela permettrait d’écrire un
algorithme pour le calcul du sous-groupe de torsion de la jacobienne et pour
la descente infinie qui sont deux des étapes majeures de la détermination
de la structure du groupe de Mordell-Weil. Malheureusement la méthode de
Flynn ne peut pas se généraliser telle quelle puisqu’elle utilise le fait que
toutes les courbes de genre 2 sont hyperelliptiques, ce qui n’est plus le cas
en genre 3. Une nouvelle approche est donc nécessaire.

A plus long terme, on peut espérer une méthode de Chabauty analogue a
celle de Flynn pour les courbes de genre 3.

2.3 Application a la cryptographie : arithmétique résistante
aux fuites sur les courbes algébriques

Une grande partie de mes travaux dans le domaine de la cryptographie
tourne autour de la résistance aux fuites et c’est donc cet aspect que je
vais détailler dans cette partie. Une premiere approche de la cryptographie
consisterait a se satisfaire d’une primitive cryptographique mathématique-
ment robuste (comme RSA ou ECC) et a 'implémenter. Malheureusement,
le monde réel n’est pas aussi idyllique que le monde abstrait des mathémati-
ques. Ainsi, méme si le probléme mathématique sous-jacent est incassable,
son implémentation peut facilement s’avérer désastreuse et révéler tres rapi-
dement des informations capitales sur les secrets a protéger, voire les secrets
eux-mémes. Les implémentations sur des systémes embarqués, comme les
cartes a puces, sont plus particulierement sensibles a cette problématique
puisque l'attaquant a acces a I’ensemble du systeme de chiffrement. Ce type
d’attaques, couramment appelées attaques par canaux cachés, est basé sur
I’observation d’informations fuyant de la carte a puce, comme ses temps
d’exécution ([Kocher 96]), sa consommation ([Kocher-Jaffe-Jun 99]) ou son
rayonnement électromagnétique ([Quisquater-Samyde 01]). Contrairement a
ce qu’on pourrait penser, ce type d’information est accessible relativement
facilement et pour un cott modeste (par rapport aux enjeux). Il faut enfin
noter que ces attaques ne sont pas exclusivement orientées vers les systémes
embarqués ; il a par exemple été possible de réaliser une attaque par canaux
cachés en analysant le bruit produit par un ordinateur a travers un mur.

Il existe deux types d’attaques par canaux cachés. D’une part, celles dites
simples qui tirent les informations directement d’une seule opération spécifi-
que et d’autre part celles dites différentielles qui utilisent des méthodes
statistiques sur un grand nombre de réalisations d’une opération. D’apres
[Coron 99], il est toujours possible et relativement peu cotiteux de se prémunir
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contre les attaques différentielles. Je me suis donc plus particulierement
intéressé aux attaques simples.

Supposons par exemple qu’on sache analyser avec un oscilloscope la

consommation d’une carte a puce sur laquelle est implémenté un algorithme
simple de multiplication scalaire sur les courbes elliptiques : le double-and-
add. Cette méthode, aussi appelée méthode du paysan russe ou square-
and-multiply si on I'applique sur un groupe multiplicatif, est une simple
application du schéma de Horner et est a la base de toutes les méthodes de
multiplication scalaire ou d’exponentiation.
La multiplication scalaire d’'un entier k& par un point de la courbe P est
Iopération centrale dans le domaine de la cryptographie basée sur les courbes
elliptiques. Dans la plupart des protocoles cryptographiques k est la clé
secrete.

L’algorithme de double-and-add fonctionne de la fagon suivante : pour
chaque bit de la clé k, il effectue un doublement et si le bit vaut 1 il ajoute
le point P. Une addition et un doublement étant obtenus avec des formules
différentes sur une courbe elliptique, les opérations effectuées par la carte
a puce sont différentes selon que le bit de la clé vaut 0 ou 1. En pratique,
I’image obtenue sur 'oscilloscope ressemble a ceci.

Eﬁ *\ ”\

w WW 'I i 4’ | W \’WM W m i ;‘" M*V Wv* W{

Double Dm]hle Dnuble Add Douhle Double

0 1 1 0 ?

On peut alors lire a I'ceil nu 'enchainement des bits de k et donc la clé
k elle-méme. Ainsi, il est possible de retrouver la clé utilisée sans avoir a
casser un logarithme discret.

Pour parer ces attaques, il est donc nécessaire que les opérations ef-
fectuées sur la courbe elliptique ne dépendent plus des bits de la clé. 11
existe plusieurs types de méthodes pour y parvenir.

— La plus simple est d’ajouter des opérations inutiles dans les calculs. On

peut ainsi, dans I’exemple précédent, décider d’effectuer une addition
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fantéme quand le bit de la clé vaut 0. Cette solution a I’avantage de
la simplicité mais elle est cotliteuse et surtout sensible aux attaques
par injection de faute (si on force la puce & faire une faute au moment
ou elle effectue une opération fantome, cela n’a pas d’incidence sur le
résultat final et on peut alors en déduire qu’au moment de I'injection
de la faute, le bit de la clé valait 0).

— Une autre méthode consiste a utiliser des représentations des courbes
elliptiques telles que le doublement d’un point et ’addition de deux
points utilisent les mémes formules. C’est la méthode des formules
unifiées.

— La derniere possibilité est d’utiliser un algorithme exposé pour la
premiere fois dans [Montgomery 87]. Cet algorithme consiste & ne
considérer que l’abscisse d’un point sur une courbe elliptique. Il a
la particularité d’utiliser a la fois un doublement et une addition pour
chaque bit de la clé ce qui ne laisse donc pas de trace de la clé.

J’ai, pour ma part, apporté des améliorations ou des contributions a ces
méthodes et surtout généralisé la troisieme au cas des courbes hyperellip-
tiques de genre 2.

2.3.1 Formules unifiées : forme de Jacobi d’une courbe elliptique

Des formules unifiées pour ’addition et le doublement peuvent étre obte-
nues de différentes fagons. Elles sont décrites en détail dans [Cohen-et-al 06].
L’une d’entre elles utilise la forme de Jacobi d’une courbe elliptique ayant
un point de 2-torsion ([Liardet-Smart 01]). D’apres [Billet-Joye 03], ces for-
mules nécessitent, pour chaque bit de I'exposant, 16 multiplications sur le
corps de base et 14 sous certaines conditions. Jusqu’a mes améliorations,
ces formules étaient les plus efficaces pour une courbe ayant un point de
2-torsion. J’ai en effet réussi dans [Duquesne 07b] a faire descendre cette
complexité a 14 multiplications et 12 sous certaines conditions, par ailleurs
moins contraignantes que celles de [Billet-Joye 03].

Un courbe elliptique sous forme de Jacobi est donnée par une équation
Y? = eX*-25X27%+ 7% (3)

Un point est représenté par un triplet (X,Y, Z) satisfaisant cette équation
et il est prouvé dans [Billet-Joye 03] que toute courbe elliptique définie
sur un corps premier et ayant un point de 2-torsion peut se mettre sous
cette forme. J’ai réussi a améliorer la complexité des formules fournies dans
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[Billet-Joye 03] en changeant la représentation des points (je les ai représenté
par un quadruplet (X2, XZ, Z2,Y)) et en adaptant les formules. Il faut tou-
tefois noter qu'une transformation d’une représentation a ’autre doit étre
effectuée en début et en fin de calcul de la multiplication scalaire mais son
colt est négligeable.

D’autre part, dans mes formules (comme dans celles de [Billet-Joye 03])
2 multiplications par € interviennent. Il est donc particulierement intéressant
d’essayer de se ramener au cas ou € est petit. Billet et Joye montrent que I'on
peut souvent se ramener a ce cas a condition que la courbe elliptique possede
3 points de 2-torsion. J’ai également amélioré ce résultat en démontrant
que non seulement la présence d’un seul point de 2-torsion était suffisante
mais encore qu’on pouvait négliger les multiplications par € dans de plus
nombreux cas.

2.3.2 Utilisation de la surface de Kummer en genre 2

J’ai déja mentionné le fait que Montgomery utilisait seulement I’abscisse
d’un point sur une courbe elliptique pour décrire un algorithme de multi-
plication scalaire nécessitant, pour chaque bit de la clé, une addition et un
doublement sur la courbe elliptique. Cet algorithme est donc naturellement
protégé contre les attaques par canaux cachés simples et il a beaucoup de
succes chez les développeurs sur carte a puce. Il n’est cependant pas appli-
cable sur toutes les courbes elliptiques (et en particulier sur les courbes four-
nies dans les standards) sans les généralisations apparues plus récemment
dans [Brier-Joye 02].

Dans le cadre des courbes elliptiques, ne conserver que l’abscisse des
points est assez naturel puisque l'ordonnée ne porte que peu d’informa-
tion et n’est méme pas nécessaire dans tous les protocoles cryptographiques.
L’inconvénient est qu’on ne peut plus distinguer un point de son opposé.
Cela n’est bien sur pas sans rappeler la variété de Kummer étudiée dans la
partie 2.2. Les traces de la loi de groupe sur la variété de Kummer d’une
courbe elliptique (doublement, formes biquadratiques) permettent aisément
de retrouver, par un autre moyen que celui employé par Montgomery, les for-
mules d’addition et de doublement données dans [Montgomery 87] et dans
[Brier-Joye 02].

Il n’y a alors qu’un pas a franchir pour généraliser la méthode de Mont-
gomery aux courbes hyperelliptiques de genre 2 puisque la plupart des outils
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nécessaires ont été présentés dans la partie 2.2. Ces outils sont en effet d’une
part le doublement qui reste bien défini sur la surface de Kummer et d’autre
part les formes biquadratiques qui permettent d’additionner deux éléments
si leur différence est connue.

J’ai pu transposer I’algorithme de multiplication scalaire donné par Mont-
gomery au cas des courbes hyperelliptiques sans trop de difficulté. Son but
est le calcul de kA ou A est un élément de la Jacobienne (ou de la surface de
Kummer) et k est un scalaire (dans les cas qui nous intéressent, k est censé
rester secret). Etant donné qu’on ne sait additionner deux éléments que si
leur différence est connue, le principe de base de cet algorithme est de gar-
der a disposition, & chaque étape, le couple (nA, (n+ 1)A) de sorte que leur
différence est connue (et méme constante égale a A). Si le bit de k a cette
étape vaut 0, on calcule (2nA, (2n+1)A) en effectuant un doublement (celui
de nA) et une addition de deux éléments dont on connait la différence (nA
et (n+1)A) et sile bit vaut 1, on calcule ((2n+1)A, (2n+2)A) en effectuant
un doublement (celui de (n+1)A) et une addition de deux éléments dont on
connait la différence (nA et (n+ 1)A). Il est alors facile de voir que lorsque
tous les bits de k ont été décrits, le premier élément du couple est KA. Ainsi,
pour chaque bit de la clé, on a bien effectué a la fois un doublement et une
addition et on n’a utilisé que les traces de la loi de groupe sur la variété de
Kummer.

Cependant les résultats obtenus par une retranscription basique des for-
mules de [Flynn 93] sont décevants en terme d’efficacité. Il m’a donc fallu
chercher a optimiser les formules pour réduire leur complexité globale. Le
résultat, bien que bien meilleur, n’est toutefois toujours pas comparable avec
les complexités obtenues dans [Montgomery 87]. Cela est tout a fait logique
puisque Montgomery utilise des courbes elliptiques d’une forme particuliere.
J’ai donc dii, moi aussi, définir une forme particuliere de courbes hyperellip-
tique de genre 2 bien adaptée a mes formules sans trop perdre en généralité
comme 'avait fait Montgomery.

Finalement les formules que j’ai obtenues dans [Duquesne 05] sont com-
pétitives avec les meilleures formules connues pour les courbes hyperellip-
tiques de genre 2 ([Lange 02]) et apportent en plus une protection contre les
attaques par canaux cachés simples.

Pour finir, je me suis plus récemment intéressé a un autre type de pro-
tection contre les attaques par canaux cachés. La représentation RNS des

22



nombres procure en effet aux opérations sur le corps de base une protection
contre les attaques par fuite. Il était donc intéressant d’essayer de combiner
cette technique avec les techniques de protection au niveau de la courbe
évoquées précédemment.

2.3.3 Représentation des nombres par restes modulaires appliquée
aux courbes elliptiques

Pour finir, je me suis plus récemment intéressé a un autre type de pro-
tection contre les attaques par canaux cachés. La représentation RNS des
nombres procure en effet aux opérations sur le corps de base une protection
contre les attaques par fuite. Il était donc intéressant d’essayer de combiner
cette technique avec les techniques de protection au niveau de la courbe
évoquées précédemment.

Le systéme de représentation des nombres par restes modulaires (RNS) a
été introduit dans [Garner 59] et [Szabo-Tanaka 67] et appliqué a la crypto-
graphie dans [Bajard-Didier-Kornuerup 01]. I présente de nombreux avan-
tages :

— Il est facile a implémenter, notamment en hardware.

I1 est naturellement (et donc efficacement) parallélisable.

Il procure une protection contre les attaques par canaux cachés sur le

corps de base ([Bajard-Imbert-Liardet-Teglia 04]).

— Une méme implémentation peut facilement étre utilisée pour plusieurs
corps de base.

C’est un systeme basé sur le théoreme des restes chinois. Le principe
est de représenter un élément de F), par ses restes modulo suffisamment de
nombres de petite taille. Son intérét réside dans le fait que les opérations sur
des grands nombres sont découpées en des opérations sur des petits nombres
qu’on choisira de la taille d’'un mot machine pour une efficacité optimale.
Ainsi une multiplication de deux nombres de n mots s’effectue en seulement
2n multiplications de mots au lieu des n? habituelles (pour les tailles de
nombres intéressantes en cryptographie elliptique et hyperelliptique). Les
choses ne sont malheureusement pas aussi simples. En effet, pour que cette
technique s’applique, il faudrait que p soit le produit de nombres de la taille
d’un mot machine, or p est premier. Pour contourner cet obstacle on utilise
un analogue de la méthode de réduction tres utilisée de [Montgomery 85].
Cette méthode utilise une représentation spécifique des éléments de IF), pour
transformer une réduction modulo p en une réduction modulo une puissance
de 2 (une simple troncature, donc). Pour le RNS, on construit ainsi un M
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supérieur a p, produit de nombres de la taille d’'un mot machine, et on uti-
lise la méthode de Montgomery en remplacant la puissance de 2 par M. On
remplace ainsi la réduction modulo p par une réduction modulo M.

En utilisant la représentation des nombres par restes modulaires, la mul-
tiplication devient donc de complexité linéaire alors que la réduction reste
quadratique. Ainsi la réduction devient I'opération la plus cotiteuse. Dans
[Bajard-Duquesne-Ercegovac-Meloni 06] nous avons expliqué qu'il était donc
intéressant de regrouper les expressions de la forme AB + CD de fagon a
n’effectuer qu'une seule réduction au lieu de deux. Nous avons appliqué cela
aux formules de [Brier-Joye 02]. Cependant, il est possible de faire mieux en
optimisant les formules habituellement utilisées pour minimiser non pas le
nombre de multiplications mais le nombre de réductions modulaires. Dans
[Bajard-Duquesne-Ercegovac 07], nous avons fait ce travail pour toutes les
formules sur les courbes elliptiques qui sont protégées contre les attaques par
canaux cachés. Les résultats obtenus sont particulierement intéressants dans
le cas des formules de [Brier-Joye 02] utilisant ’algorithme de Montgomery
(celui pour la multiplication scalaire sur les courbes elliptiques). En effet,
en faisant une fois de plus appel aux outils de la surface de Kummer (plus
précisément en n’utilisant pas les mémes formes biquadratiques que celles
qui permettent de retrouver les formules de [Brier-Joye 02]), nous avons ob-
tenu des formules plus adaptées a la représentation RNS, c’est a dire faisant
intervenir moins de réductions modulaires au détriment des multiplications.
Dans ce méme article, nous avons également diminué la complexité de la
réduction en RNS par rapport aux travaux antérieurs en regroupant cer-
taines opérations. Ces deux améliorations mises ensemble nous permettent
d’obtenir des complexités globales compétitives avec les autres systemes de
représentation des nombres (et méme meilleures pour des hauts niveau de
sécurité). Etant donnés les avantages apportés par la représentation RNS
décrits au début de ce paragraphe, 'utilisation du RNS en cryptographie
basée sur les courbes elliptiques devient donc intéressante.

2.3.4 Pistes de futures recherches

Dans cette voie, plus que des pistes, j’ai de nombreux projets de re-
cherche en cours dans la continuité des derniers travaux que j’ai effectués. Je
compte ainsi essayer d’appliquer les formules pour la multiplication scalaire
de Montgomery en genre 2 obtenues dans [Duquesne 05] a la représentation
RNS. La difficulté consistera a réussir & minimiser le nombre de réductions
sur des formules bien plus complexes que dans le cas des courbes ellip-
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tiques. Dans un avenir trés proche, j’ai également l'intention d’utiliser les
résultats de [Duquesne 07b] pour développer une méthode de multiplica-
tion scalaire de Montgomery pour les courbes de genre 2 définies sur un
corps de caractéristique 2. Afin d’améliorer 'efficacité de cet algorithme, je
compte m’appuyer sur [Byramjee-Duquesne 04] afin de faire de bons choix
de courbes sans trop perdre en généralité.

A plus long terme, un premier projet avec J.C. Bajard consisterait a
améliorer la réduction RNS ot les changements de base ont un poids déraisonnable
et un autre projet utiliserait les résultats que j’ai obtenus sur les variétés de
Kummer en genre 3 ainsi que d’éventuelles améliorations pour produire un
algorithme de multiplication scalaire de Montgomery en genre 3.

3 Sujets de these des doctorants codirigés

Je coencadre 2 doctorants sur des sujets de cryptographie a la frontiere
entre les mathématiques et I'informatique. Dans les deux cas, Jean Claude
Bajard est 'autre coencadrant.

3.1 Nicolas Méloni (2004-2007)

Le sujet de these de Nicolas Méloni porte sur I'arithmétique des courbes
elliptiques pour la cryptographie. Nous lui avons plus précisément demandé
de se concentrer sur les différentes représentations possibles autant au niveau
du corps de base qu’au niveau de I’exposant ou de la courbe et d’en déduire
de nouveaux algorithmes de multiplication scalaire ou des améliorations aux
algorithmes existants.

Son travail le plus important a commencé par le développement de nou-
velles formules d’addition sur les courbes elliptiques de deux points ayant la
méme coordonnée Z en coordonnées Jacobiennes. Ces formules ont I'avan-
tage d’étre beaucoup plus efficaces que les formules habituellement utilisées.
En contrepartie, il n’est pas trivial de les mettre en oeuvre dans une multipli-
cation scalaire. Il parait en effet hautement improbable que deux points pris
au hasard aient la méme coordonnée Z et ces formules ne s’appliquent donc
jamais. Il remarque toutefois, qu’en effectuant 'opération P3 = P; + Ps, il
est possible de modifier 1égerement ses formules pour qu’en sortie P; et Pj
(ou Py et P3) aient la méme coordonnée Z. De la sorte, il peut construire une
chaine d’addition ou la coordonnée Z des 2 opérandes est la méme a chaque
étape. Le cas idéal pour une telle chaine d’addition est le cas ou le scalaire

25



utilisé est un nombre de Fibonacci. Ce n’est bien sur pas toujours le cas,
loin de la. Nicolas Méloni a donc du utiliser les représentations de Zeckendorf
(sommes de nombres de Fibonacci). L’algorithme obtenu marche trés bien
mais comprend malheureusement plus d’étapes (44% en plus) qu’une mul-
tiplication scalaire classique ce qui annule le gain d’efficacité obtenu via ses
nouvelles formules. Il a donc du aller plus loin et utiliser les chaines d’addi-
tions euclidiennes. Celles-ci sont une généralisation des chaines obtenues par
la représentation de Zeckendorff et permettent, a chaque étape, de choisir si
on additionne P avec P ou avec P». Il existe plusieurs fagons de représenter
un entier en utilisant de telles chaines et le but est bien stir de trouver celles
qui sont les plus courtes possibles afin de gagner en efficacité. La encore, la
tache n’est pas aisée. En pratique, Nicolas Méloni obtient finalement un algo-
rithme a peu pres compétitif avec les meilleurs algorithmes connus. Il faut en
outre noter que, comme seules des additions sont effectuées, cet algorithme
est naturellement résistant aux attaques par canaux cachés. Il a également
proposé une approche consistant a utiliser des chaines différentielles et a les
adapter a ces nouvelles formules et compte bien continuer dans cette voie
pour améliorer son algorithme. Ce travail a donné lieu a plusieurs exposés
et a deux publications

New Point Addition Formulae for ECC Applications WAIFI, Lecture Notes
in Comput. Sci. 4547 (2007).

SPA resistant Elliptic Curve Cryptosystem using Addition Chains avec A.
Byrne, F. Crowe, W. P. Marnane, A. Tisserand et E. M. Popovici, 4th In-
ternational Conference on Information Technology (2007), pp. 995-1000.

Nicolas Méloni a également effectué plusieurs travaux sur la représenta-
tion des nombres par restes modulaires (RNS). J’ai déja introduit cette
technique dans la partie 2.3.3, je me contente donc ici de décrire brievement
les résultats auxquels il a participé. Il a ainsi participé a déterminer des
bases de modules particulierement bien adaptées au RNS en utilisant, pour
les modules, des nombres inspirés des nombres premiers de Mersenne ou des
pseudo-Mersenne. Il a également pris part a I’élaboration d’un algorithme
d’inverse modulaire en RNS qui n’était jusque la pas satisfaisant. Enfin il
a travaillé avec moi, entre autres, sur 'intérét que peut apporter le RNS
lorsque des expressions de la forme Y A;B; doivent étre calculées. Ces tra-
vaux ont également donné lieu a des exposés et a trois publications.

Residue systems efficiency for modular products summation : Application
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to Elliptic Curves Cryptography, avec J.-C. Bajard, S. Duquesne et M. FEr-
cegovac, proc. SPIE 6313 (2006), 631304.

Study of modular inversion in RNS, avec J.-C. Bajard et T. Plantard, proc.
SPIE 5910 (2005), 59100T.

Efficient RNS Bases for Cryptography avec J.-C. Bajard et T. Plantard,
proc. IMACS’2005 World Congress.

3.2 Nadia El Mrabet (2006-2009)

Le sujet de these de Nadia El Mrabet est plus particulierement orienté
vers I'utilisation de couplages en cryptographie et des modifications qui pour-
raient étre apportées pour améliorer les algorithmes ot ils interviennent. Ces
améliorations peuvent étre de I'ordre de 'efficacité mais aussi de 'ordre de
la robustesse des calculs.

Le couplage de Weil est un outil connu depuis longtemps par les théoriciens
des nombres s’intéressant aux courbes elliptiques. Leur intérét du point de
vue de la cryptographie est qu’ils permettent de ramener le probleme difficile
du logarithme discret sur les courbes elliptiques au probleme un peu moins
difficile du logarithme discret sur le groupe multiplicatif d’un corps fini. Ils
ont ainsi été utilisés pour la premiere fois en cryptographie au début des
années 90 comme moyen d’attaque sur certaines courbes pour lesquelles le
logarithme discret sur le corps fini est résoluble. Ce n’est que plus récemment
(2000) qu’on s’est rendu compte qu’ils pouvaient aussi étre utilisés pour
construire de nouveaux protocoles cryptographiques, comme la cryptogra-
phie basée sur 'identité, impossibles a réaliser auparavant. Depuis, ’engoue-
ment pour ce nouvel outil n’a cessé de croitre.

Les deux principaux couplages sont le couplage de Weil, déja évoqué, et
le couplage de Tate qui ont tous deux connu de nombreuses améliorations.
Le premier (et pour I'instant unique puisqu’elle n’a fait qu’un an de these)
travail de Nadia El Mrabet a consisté & comparer deux articles récents (1'un
de Koblitz et Menezes et Pautre de Granger, Page et Smart) qui annoncent
des résultats contradictoires quant a la supériorité d’un couplage sur 'autre.
Elle a ainsi pu, dans un premier temps, se familiariser avec les améliorations
les plus récentes sur les couplages. Elle a ensuite essayé d’appliquer les
améliorations de I'un aux méthodes de 'autre pour enfin réaliser une com-
paraison la plus objective possible entre les deux. Son résultat est que le
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couplage de Weil est plus intéressant que le couplage de Tate pour les hauts
niveaux de sécurité. Elle fournit bien str des données chiffrées précises dans
son article sur ce sujet.

Pairing in cryptography : an arithmetic point of view, avec J.C. Bajard,
proc. SPIE 6697 (2007), 669724.

Elle connait maintenant donc mieux les subtilités de I'implémentation
des couplages et va pouvoir s’intéresser a des sujets plus pointus et encore
peu explorés comme par exemple la résistance des algorithmes existants
aux attaques par canaux cachés et bien str le développement de nouveaux
algorithmes plus résistants.
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Let f(X) be a cubic polynomial defining a simplest cubic field in
the sense of Shanks. We study integral points on elliptic curves
of the form Y? = f(X). We compute the complete list of integral
points on these curves for the values of the parameter below
1000. We prove that this list is exhaustive by using the methods
of Tzanakis and de Weger, together with bounds on linear forms
in elliptic logarithms due to S. David. Finally, we analyze this
list and we prove in the general case the phenomena that we
have observed. In particular, we find all integral points on the
curve when the rank is equal to 1.

INTRODUCTION

Let m be a positive integer such that
A:=m’>+3m+9

is squarefree. Denote by K,, the cubic field defined
by the polynomial

f(X)=X?+mX? — (m+3)X +1,

which is irreducible over Q. The field K,, is said to
be a simplest cubic field [Shanks 1974].

These fields have often been studied because their
regulator is explicit and as small as possible, hence
their class number is particularly large.

In this work, we are interested in elliptic curves
defined by equation

E,:Y?=X’+mX* - (m+3)X +1 (0-1)

where m is an integer defining a simplest cubic field.
We first want to find all the integral points on these
curves for m below 1000. We then conjecture what
should be true in general and finally we prove these
conjectures. The main results are about the point
[0,1]: we prove that it is a generator of the Mordell-
WEeil group and we find all its integral multiples.
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1. ELLIPTIC CURVES DEFINED BY SIMPLEST CUBIC
FIELDS

The discriminant of the curve E,, defined by (0-1)
is 16A? (recall that A = m?+3m+9 is assumed
squarefree). If m is even, the conductor is 16A?; if
m =1 (mod 4), the conductor is 8A?; and if m = 3
(mod 4), it is 4A2. Since the discriminant is always
positive, the curve E(R) has two connected compo-
nents. Denote by E°(R) the connected component
of the identity and by E,,(R) (as in “egg”) the com-
pact part of E(R).

We first state a theorem of L. Washington.

Let CI be the ideal class group of the simplest
cubic field K,,, and set

Cl,={zreCl:2* =1}

. The 2-rank rk,(Cl,) will denote its dimension as a
7 /2Z-vector space. Note that since K,, is a cyclic
cubic field, rks(Cly) is even. Finally, let I, de-
note the 2-torsion of the Tate-Shafarevitch group of

E,(Q)

Theorem 1.1 [Washington 1987]. The rank rk E,,(Q)
is at most 1 + rky, Cly. In fact, there is an ezact
sequence

1— E°(Q)/2E,,(Q) — Cl, — II, — 1.

From this theorem, Washington deduces the follow-
ing corollary.

Corollary 1.2. Let m be a positive integer such that
m? + 3m + 9 is squarefree, then the rank of the
elliptic curve E,, is odd, assuming that the Tate—
Shafarevitch group s finite.

Theorem 1.1 tells us that the search for such curves
having large rank is equivalent to the search for sim-
plest cubic fields whose class group has a large 2-
rank. Several people have tried to find quadratic
fields with large 3-rank which is the corresponding
problem in degree 2. Moreover, since the class num-
ber of K, is expected to be large, if 111, is small with
respect to Cl,, we can thus also expect the rank of
E,, to be large.

Proposition 1.3. If m is a positive integer such that
m>+3m~+9 is squarefree, the group E,,(Q) is tor-
sionfree.

Proof. Easy, using the well-known fact that E,,(Q)or
can be embedded in E,,(F,) when p is a prime of
good reduction. O

We now give a method using elliptic logarithms for
searching for integral points on elliptic curves. This
method was suggested by Lang [1978, Chapter VI,
§8] and Zagier [1987] and was simultaneous devel-
oped by several researchers [Stroeker and Tzanakis
1994; Gebel et al. 1994; Smart 1994]. The algorithm
requires the knowledge of a basis of the Mordell-
Weil group, as calculated for example by mwrank
[Cremona 1998], and of an explicit lower bound for
linear forms in elliptic logarithms, as given in [David
1995]. For a general point of view and more details,
see [Smart 1998].

2. LINEAR FORMS IN ELLIPTIC LOGARITHMS

Let E be an elliptic curve given by its Weierstrass
equation

Y2 +a1XY+a3Y = X3 —I—a2X2 +a4X+a/6

with a; € Z. This curve is isomorphic over Q to
curve of the form

Y2 = 4X3 —ggX — gs3-

Let A be the lattice associated to E. We call wy
and w, the periods of this lattice and g the associ-
ated Weierstrass function. Note that we can always
choose w; € R and Im(w; /ws) > 0.

We have the map ¢ from C/A to E defined by
P(z) = 00 if z € A and ¢(2) = P = (z(z),y(2))
otherwise, with

1

z(2) = p(2) y(2) = 3(¢'(2) — a1z — a3).

Let 1 be the inverse function of ¢. It is given (mod-
ulo A) by

z+ba /12 dt
o VAL — got — g3

This function is called the elliptic logarithm because
it satisfies

P(P+Q) =4(P)+4(Q)

for all P,Q € E(Q).
damental region

1
- ﬁan

(mod A)

Henceforth, we take the fun-

{aw; +bwy 1 a,beR,0<a<1,0<b< 1}.
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To compute this function, we use the link between
elliptic integrals and the AGM [Cohen 1993].

We now define the canonical height in order to fix
notations.

If P=(z,y) € E(Q) and z = p/q with (p,q) = 1,
we define

h(P) = h(z(P)) = log max{|p|, |q}.
This height can be modified to obtain the canonical
height
h(P) =1 lim 4 (2" P).
N —o00
It is possible to bound the difference between these
heights:

Lemma 2.1 [Silverman 1990]. There exist constants
e; and ey such that

—e; < h(P) — Lh(P) < e,.
In our case, we can choose
log(m?®+3m+9)
4

We now give a simplified version of S. David’s result
[1995] which allows us to give lower bounds for linear
forms in elliptic logarithms.

Let FE be an elliptic curve given by the equation

V?=4X° - g,X — gs

logm

ey = 1.57 + ifm>9.

with invariant j and periods w; and w, such that
w; € R and Im(w; /ws) > 0. Let Py,..., P, denote
n points on E. We define the height

hg = max(l, h2(1ag2ag3)7 h(]))a

of the elliptic curve, where h, denotes the absolute
logarithmic height on ]P’?Q; the constant

J— 37.(. .
|wr |2 Tm(w, /ws)’
the modified height
h(P;) = max{2h(P,), hg, d: [1)(P;) *};
s hon (Pn) }

dy

and constants dy = max{ehg, h,,(P1),...

ds = min {76 fim (1) }
T VA [g(P) S

and

d, = 2,105+ (E)M

(¢
n

« (n+1)4n2+10n(10g d3)—2n—1 Hhm(R)

i=1

Theorem 2.2 [David 1995]. Let L(z) = . | ) (FP;)
with x € Z", and set A = max |z;|. If L(z) # 0 and
A > exp(dsy), then

log |L(z)| >
—dy(log A + log d3)(loglog A + hg + log ds)" .

3. COMPUTATION OF INTEGRAL POINTS

Let E be an elliptic curve associated to a simplest
cubic field. We assume that we have computed a ba-
sis P, Py, ..., P, for the Mordell-Weil group. Since
the sum of two points in E°(R) is still in E°(R),
the sum of two points in E,,(R) is in E°(R) and
[0,1] € E,;(R), we shall assume that P; and only
P, belongs to E 4 (R).

Let P be an integral point. Since E(Q) is tor-
sionfree, we have P = p, P, + --- + p, P, for some
p; € Z. 1t is easy to compute integral points in
E,,(Q). Hence we now assume that the point P
belongs to E°(R). Set

Ql - 2P1 S EO(R),
q1 € Z such that p; =2¢; +r, forr=0or 1,

Qi =P
g =p;fori#1,
Qn1 = P,
so that

P= qul + 4+ QnQn +7‘Qn+1'

The points P, Qy, ..., Q, being in E°(R), their sum
also belongs to E°(R), hence r = 0.

Now set H = max|g;|. Our purpose is to find an
upper bound for H. We first need to link H with
the z-coordinate of P.

Proposition 3.1. If P = (z,y) is an integral point,

1 < cle_csz

m = )
where ¢; = expey (see Lemma 2.1) and c, is the
smallest eigenvalue of the requlator matriz

[B(Qi +Qj) — E(Qi) - B(Qj)]lgi,jgn-

We now need to link the z-coordinate of P with its
elliptic logarithm. As we have seen before, the curve
FE is isomorphic to a curve of the form

Y2 =4X? - g, X — g3 = g(X).
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Let 1, 72, 73 denote the roots of g(X). Set ¢4 =
2 max |-

Proposition 3.2. If P=(z,y)€ E°(R) and |z+by/12|>
cy4, then

[W(P)]” <

Ed
with ¢s = 8 + |w?|/12.

Using the elliptic logarithm property and since 7 Q;
lies in E°(R) for all 4, we have

Y(P) — qp(Q1) — +++ — qntp(Qn) = mwn

with |m| < nH + 1. We have w; = 1(00), hence
a(Q1) + -+ + ¢.¥(Q,) + mw; is a linear form in
elliptic logarithms. David’s result allows us to ob-
tain a lower bound for ¢(P). Comparing this bound
with the upper bound obtained by Propositions 3.1
and 3.2, we deduce a very large upper bound H, for
H. We now seek to reduce this bound. For this,
we consider the following problem: suppose we are
given n real numbers q,...,q,, two positive real
constants ¢ and c¢; and a linear form

L(z) = z": ;04
i=1

where the z; are integers bounded by nHy + 1.
We would like to deduce from the inequality

|L(z)| < cﬁe_”H2

a bound for H. In other words, we would like to
show that the linear form cannot become too small
if its coefficients are bounded.

This problem was studied by Baker and Daven-
port [1969] in the case n = 2. There exist several
ways to generalize their method. We give here the
one most used in recent years.

The basic idea (due to de Weger) is to approx-
imate the linear form by an approximation lattice
and to find a reduced basis for this lattice. The first
vector of this new basis gives an approximation to
the smallest vector in the lattice. So it tells us when
the linear form is small.

Consider the lattice A generated by the columns
of the matrix

1 0
A= 0 ' ) 0 eM,,(Z).
[Ca ] |Ca, 1] |[Ca,]

We choose the constant C approximately equal to
(nHp)™. Thus the determinant of A will be of the
order of (nHy)" and we hope that the first basis
element in an LLL-reduced lattice will be of order
nHy.

Proposition 3.3. Let B = (by,...,b,) be a reduced ba-
sis for the lattice, B* the associated Gram-Schmidt
basis, cs = min{||b}|| : 1 < i < n}, § = 0 X?
and T = 37" X;. If 3 > T*+ S and ¢ =
Hz1y...,Ty) £ 0 then

H< \/(log(CCG) —log (v/3—S —1T))/cs.

Remark. If the bound for H exists, it is of the form
O(\/log Ho). If the method fails (i.e., if the condi-
tion on cg is not satisfied), we increase the constant
C and repeat the algorithm.

Hence, this method allows us to reduce the bound
to O(\/log HO). The new bound is generally small
enough to enumerate all the possibilities for integral
points. However, if this bound seems to large, we
repeat the algorithm.

4. TABLES OF RESULTS

Tables 1-3 show results obtained by this method.
For all m < 1000 such that m?® + 3m + 9 is square-
free, we found the rank rk E,,(Q). Where possible,
the basis of the Mordell-Weil group was computed
using mwrank [Cremona 1998]. In some cases, dis-
tinguished in the tables by an underlined value of
the parameter m, mwrank cannot conclude about the
rank; we then computed the rank using the Birch
and Swinnerton-Dyer conjecture.

The tables are separated by rank. Tables 2 and 3
list the z-coordinate of each integral point in Ey(R).
Examination shows that there are always integral
points in Ey(R) with a positive z-coordinate when
m is odd and never when m is even.

When the rank is 1, the point [0,1] seems to be
a basis for the Mordell-Weil group and there does
not exist any other integral point than [0, 1] and its
double when m is odd. So Table 1 gives only the list
of the values of the parameter m when the rank is 1.
More generally, [0, 1] seems to always be a generator.
(This last remark is valid only if the parameter m
defines a simplest cubic field, as we have assumed;



Duquesne: Integral Points on Elliptic Curves Defined by Simplest Cubic Fields 95

0004+1247810131416 19202228 31 32 34 3537 384043 46 47 49 50 52 53 56 58 61 62 65 68 70 73 74 76 77 79 80 82 86 88 89 91 92 94 97 98
100+46 7910 12 15 16 19 21 22 24 25 28 31 34 40 45 48 55 58 60 61 64 67 70 72 73 75 78 82 84 85 90 93 96 97 99
2004+0235689 11121415 17 21 24 26 32 33 38 39 41 44 45 47 51 53 54 56 57 59 60 62 65 66 68 72 78 80 81 84 89 90 93 95 96 98
300+1241013 1416 17 19 20 22 23 25 26 28 31 32 34 37 38 40 43 44 46 49 52 53 55 61 62 64 67 68 70 73 76 79 80 82 83 85 86 88 92 94
400413910 12 13 15 16 18 21 22 24 25 27 30 31 36 37 43 45 48 49 51 52 54 55 60 63 64 66 67 69 76 78 81 84 85 87 88 90 93 96 97
50042568914 18 20 21 24 26 27 29 30 36 39 41 47 50 51 53 54 56 60 62 63 66 68 69 72 74 81 86 87 89 90 92 95 96 98 99
600414581013 14 20 22 23 28 31 32 34 35 38 40 43 46 47 50 52 56 58 59 61 62 64 65 67 70 73 74 76 77 79 80 82 85 86 88 89 92 94 95 97
7004+0367 13 1518 21 25 28 30 31 33 34 36 39 43 46 48 49 51 52 54 55 57 60 61 63 64 66 67 69 70 72 75 78 79 81 82 85 87 88 90 94 97 99
800+2511121417 18 20 21 23 26 27 29 32 33 36 41 42 47 50 51 53 54 57 59 60 62 63 65 66 68 69 71 72 77 81 83 84 86 89 90 92 93 95 96 98
9004125781013 16 17 19 20 22 25 29 31 32 35 37 40 44 46 47 49 50 52 53 55 62 64 65 67 68 71 73 74 76 79 80 86 88 94 97 98
1000

TABLE 1. Values of m < 1000 such that K,, is a simplest cubic field and for which the rank of E,,(Q) equals 1,
as computed by mwrank [Cremona 1998], or, in the underlined cases, by the use of the Birch-Swinnerton-Dyer
conjecture. Each row represents a range 100k < m < 100(k+1). In all these cases the point [0,1] is a generator,

so the integral points are given by Theorem 5.

it is false for m = 5, for instance.)

The remainder of this paper is devoted to proving
these and other general results for the curves E,,
defined by simplest cubic fields. In particular, we
prove that [0,1] is always a generator (Theorem 5.7
below) and that there are no other integral points on
E,, that are positive multiples of [0,1], apart from
2[0,1] when m is odd (Theorem 5.8).

5. GENERAL RESULTS ABOUT INTEGRAL POINTS ON
THE ELLIPTIC CURVES y? = x*> + mx? — (m+3)x + 1

Several papers have considered the problem of solv-
ing parametrized Diophantine equations. In partic-
ular for Thue equations see [Pethd 1991; Niklasch
and Smart 1998]. In this paper, we obtain some
interesting results on parametrized elliptic curves.
All the curves in our family have the integral point
[0, 1] however, and this is essential in the following.
Hence it should be possible to extend our method to
other parametrized curves having a fixed nontorsion
point.

5A. Arithmetic Study of Integral Points

First we show that when the parameter m is even
there is no integral point in the non-compact part
of the curve F,,.

Lemma 5.1. If m is even and if [z,y] is an integral
point, then x =0 (mod 8).

Proof. Set m = 2k, so that we have y? = 23 + 2kz® —
(2k + 3)z + 1. Then, if z is even then y? is odd. The
only odd square modulo 8 is 1, so (2k + 3)z = 0
(mod 8). Since 2k + 3 is invertible modulo 8, we ob-
tain £ = 0 (mod 8). If z is odd, a similar argument
leads to a contradiction. O

Lemma 5.2. If m is odd and [x,y] is an integral point,
then 4 does not divide |z — 1|.

Proof. Similar to the previous proof. O

Theorem 5.3. Let = be an integer. Set a = ° —x and
b= 12%—3x + 1. There exists m such that am + b
s a square if and only if every odd prime dividing
|z — 1| is congruent to 1 modulo 4 and if in addition
4 does not divide |z — 1|.

Proof. Note that b is coprime to z and to z — 1,
hence to a. Thus, there exists m such that am +b is
a square if and only if b is a square modulo a; that
is, if and only if for all prime divisor p of a, b is a
square modulo p*»(*) (where as usual v,(a) denotes
the p-adic valuation of the nonzero integer a).

Using Hensel’s lemma, if p # 2, we know that b is
a square modulo p” for every integer n if and only
if b is a square modulo p.

143 —144, —124, —105, —81, —64, —33, —28, —4, —1, 0, 2, 6, 30, 90, 114, 182, 290, 846, 854, 4182, 5186, 17342, 414290
347 —345, —292, —225, —84, —64, —12, —4, 0, 6, 26, 98, 1190, 5070, 14930, 30278

419 —420, —280, —225, —196, —64, —33, —1, 0, 2, 6, 14, 366, 482, 594, 44102

439  —408, —276, —105, —9, 0, 42, 54, 222, 270, 966, 30090, 48402

473 —456, —364, —240, —60, —16, —4, 0, 27, 51, 107, 899, 2315, 56171

611 —612, —537, —324, —289, —280, —184, —9, —1, 0, 2, 74, 266, 546, 686, 1650, 8502, 93638, 1313274

TABLE 2. Parameter m and z-coordinate of integral points when the rank is 5, as determined by mwrank.
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11 —12, -9, —4, —1, 0, 2, 6, 26, 30, 308 0 649 0, 105627
38, 3170, 7502 311 —312, —169, —144, —1, 0, 2, 266, | 653 —28, 0, 106931
17 —-12, -4, 0, 3, 35, 83 366, 24338 655 —12, 0, 107586
23 —24, —16, -9, —1, 0, 2, 14, 42, 146 | 329 0, 35, 627, 27227 668 —264, 0
25 —12, 0, 3, 51, 171 341 —28, 0, 11, 29243 671 —364, 0, 1470, 112898
26 —24, -16,0 350 —24,0 683 —684, —361, —324, —1, 0, 2, 614,
29 —28, —4, 0, 11, 227 358 0 762, 116966
44 —40, —16, 0 359 0, 114, 32402 698 —184, 0
55 —12, 0, 6, 126, 786 365 —112, 0, 3, 33491 701 —220, 0, 3, 123203
59 —60, —36, —25, —1, 0, 2, 42, 86, 371 —24, 0, 14, 34598 704 —688, —64, 0
902 377 —12, 0, 35, 35723 709 0, 151, 126027
64 —24, 0 389 —376, —16, 0, 27, 38027 710 0
67 —57, =9, 0, 6, 1158 391 —84, 0, 34146, 38418 712 =24, 0
71 —52, —4, 0, 14, 1298 395 —60, 0, 1890, 39206 719 —633, =9, 0, 74, 129602
83 —84, —49, —36, —1, 0, 2, 62, 114, | 400 —192, 0 722 —304, 0
1766 406 —168, 0 724 —288, 0
85 —24, 0, 3, 1851 407 —385, —25, 0, 18, 41618 737 —72, 0, 11, 136163
95 —84, —4, 0, 30, 2306 428 —24,0 745 —264, 0, 3, 139131
101 —40, 0, 3, 2603 434 0 758 —240, 0
113 -84, —4, 0, 35, 3251 440 —40, 0 773 —348, 0, 149771
118 —96, 0 442 0 784 0
127 —60, 0, 186, 4098 457 —240, 0, 52443 791 0, 156818
130 —72,0 458 —40, 0 793 —156, 0, 3771, 157611
133 —24, 0, 4491 461 —12, 0, 35, 53363 796 —336, 0
136 0 470 0 800 0, —112,0
137 —40, 0, 3, 4763 472 0 803 —744, —16, 0, 54, 161606
142 -72,0 475 =57, 0, 56646 806 —480, 0
146 —40, 0 479 —480, —256, —225, —1, 0, 2, 422, | 808 0
149 —136, —16, 0, 11, 5627 546, 57602 809 —628, —4, 0, 219, 164027
151 0, 66, 5778 491 —465, —25, 0, 18, 60518 815 —145, 0, 6, 166466
157 —84, —60, —12, 0, 3, 6243 494 —456, —16, 0 824 0
163 —156, —36, 0, 6726 499 0, 30, 62502 830 —184, —40, 0
166 —24, 0 500 0 835 —792, 0, 174726
169 —168, —144, 0, 7227 503 —33, 0, 14, 63506 839 —840, —441, —400, 0, —1, 2, 762,
176 —88, 0 511 0, 102, 65538 926, 176402
179 —180, —100, —81, —1, 0, 2, 146, 512 0 845 —72, 0, 11, 178931
222, 8102 517 —12, 0, 67083 848 —280, 0
181 —96, 0, 8283 523 —108, 0, 68646 856 —24, 0
187 —177, —9, 0, 18, 8838 532 —504, 0 875 —52, 0, 18, 10626, 191846
191 —28, 0, 6, 9218 533 —444, —4, 0, 147, 71291 878 —168, 0
194 0 535 0, 66, 71826 880 —240, 0
218 —88, 0 538 0 899 0, 202502
220 0 542 —280, 0 904 0
223 —33, 0, 6, 12546 545 —40, 0, 74531 914 —376, 0
227 —172, —4, 0, 66, 12998 548 0 928 0
229 0, 75, 13227 557 0, 555, 77843 934 0
230 0 559 —33, 0, 78402 938 0
236 0 571 —564, —36, 0, 81798 941 —732, —4, 0, 219, 221843
242 —64, 0 575 —444, —4, 0, 158, 82946 943 —660, —129, —24, 0, 42, 222786
248 —88, 0 578 0 956 0
263 —264, —144, —121, —1, 0, 2, 222, | 583 —105, 0, 6, 85266 958 —264, 0
314, 17426 584 0 959 —73, 0, 14, 230402
274 0 616 —504, 0 961 —12, 0, 75, 291, 231363
275 —12, 0, 26, 3770, 12630, 19046 617 —220, —52, 0, 3, 11, 95483 970 —792, 0
277 —84, 0, 3, 19323 619 —96, 0, 6, 96102 977 0, 203, 10131, 239123
283 0, 174, 20166 625 0, 97971 982 —840, 0
287 —129, 0, 20738 626 —616, 0 983 —33, 0, 242066
292 —240, 0 637 —24, 0, 101763 989 —168, 0, 245027
305 —112, 0, 3, 23411 641 —532, —4, 0, 147, 103043 991 —156, 0, 6, 246018
307 —57, 0, 6, 23718 644 —304, 0 995 —52, 0, 18, 248006

TABLE 3. Parameter m and z-coordinate of integral points when the rank is 3 (as determined by mwrank or, for
underlined values of m, using the Birch-Swinnerton-Dyer conjecture.)
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Thus, let p be an odd prime divisor of a. Then
either p divides z, so

0)-()-

so b is a square modulo p; or p divides z — 1, hence

()= (2220 (2

It follows that b is a square if and only if p = 1
(mod 4).

Assume now that a is even, so that b is odd. Then,
when a = 2 (mod 4), b is always a square modulo 2.
When a = 4 (mod 8), we have z2 — z = 0 (mod 4)
so either z is even, hence b = 1 (mod 4), so b is a
square modulo 4. Or z is odd, hence z = 3 (mod 4),
so 2 —x = 2 (mod 4) which is a contradiction.
When a = 0 (mod 8), b is odd and it is trivial to
prove by induction that for all n, b is a square mod-
ulo 2" if and only if b = 1 (mod 8). Thus, when
=0 (mod 4) then b =1 (mod 8), so b is a square
modulo 2". The case z = 1 (mod 4) is not possible
by hypothesis. Finally, if z =2 or 3 (mod 4), then
a=z*—x =2 (mod 4), which is a contradiction. O

Corollary 5.4. Let P = [z,y] be an integral point
on the curve E,,. Then, if t > 1 we have x = 2
(mod 4) or z = 3 (mod 8), while if z < 1 we have
z=0 (mod 4) or x =7 (mod 8).

Proof. Assume first that = > 1. If [z, y] is an integral
point, z* + mx® — (m + 3)x + 1 is a square. Theo-
rem 5.3 implies that every odd prime dividing z — 1
is congruent to 1 modulo 4. If z is even, we deduce
that  — 1 is congruent to 1 modulo 4. If x is odd,
we know that 4 does not divide |z —1| by Lemma 5.2
and so

r—1=2 H p=2 (mod 8).
plz—1
pF£2

The proof is similar when = < 1. O

Corollary 5.5. If m is even, there is no integral point
on E? (Q) (i.e., with a positive z-coordinate).

Proof. The point [1,y] is never on the curve. If z > 1,
there is a contradiction between the previous corol-
lary and Lemma 5.1. O

These corollaries can be summarized as follows:

Proposition 5.6. There exists m (not necessary defin-
ing a simplest cubic field) such that the point [z,y]
is on E,,(Z) if and only if the following conditions
are satisfied:

1. y = +1 (mod ¢"«®) for every odd prime q divid-
mng T;

2. y = +v/—1 (mod p*®) for every odd prime p
dividing x—1;

3. y is odd;

4. ifx <1 and x =0 (mod 8), then

y==41 (mod 221,

This proposition allows us to do a “faster” system-
atic search for integral points. Before proving the
announced results, we look for some parametrized
solutions of equation (0-1).

5B. Parametrized Solutions of y* = x> + mx? — (Mm+3)x + 1

In this section, we consider the equation (0-1) as an
affine surface in R®. We set = u+1. Since (0,1, m)
is always on the surface, we can set y—1 = (t—1)z.
Thanks to the linearity in m of the equation, we
obtain a rational parametrization of our surface:

r=u+1,

y=tu+t—u, R

t° 41
m=t—2%-u-14+"""
u

In order to find parametrized integral solutions of

our equation, we set

?+1
k:+,

u

and we denote by P(k) the parametrized solution
thus obtained. For example:

z =142,
Pl)=S y=—-t—2t—1*—1,
m=2t—1

The solution obtained is the point 2[0, 1] when m is
odd. This remark has already been made.

The equations for P(—1) give an integral point
when m = 2t2+2t—1. In this case the points
Py = [-1,2t+1], P, = [0,1] and P, = [2, 2t+1]
are independent on E,,(Q(t)) (this can be shown
using the Néron-Tate height pairing [Shioda 1990)).
Moreover 2P, P+ P,, Py— P, P,+ P,, Py+ P, and
P, — P, are integral points. Note that this last one
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is the point given by P(—1). So finally in this case,
we obtain at least 9 integral points on the curve E,,.
The numerical data suggest this phenomenon.

Similar considerations with k& = —5 give (after
replacing t by —gt+2) an integral point for m =
5t? — 3t + 3 and we find on this curve 3 independent
integral points.

We can hope to find some m such that FE,, has
high rank if m satisfy both of the two previous equa-
tions, in other words if

m = 2t] +2t; — 1 = 5t5 — 3ty + 3.

Set T} = 2t, +1 and T, = 10t, — 3, we have to solve
T2 — 1077 = —81 with the conditions T} odd, T, =
—3 (mod 10), T} and T3 not multiples of 3. An easy
argument in the field Q(v/10) shows that the general
solution is

T, + TiV10 = (—=1)"1(3 4+ v10)%+1 (11 + 2V/10).

with k € Z. If k = 0, we obtain m = 11 which is the
smallest value of m for rank 3. If K = —1, we obtain
m = 143 which is the smallest value for rank 5. If
k = 1, we obtain m = 14963 and E,, is of rank at
least 7 (the points [0,1], [—1,173], [2,173], [—4, 547],
[—11884,659563] are given by our parametrization
and the additional generators

[—64,7873]  and [90, 10981]

are found by a systematic search. All these points
are independent). Note that this is not the smallest
rank 7 curve in our family, since FE,, is of rank 7 also
for m = 12563, which may well be the smallest m.

We now prove results concerning the point [0, 1].
For this purpose, we must find approximations for
the height of a point on E,,. For this, we need in
particular to know the asymptotic behavior of the
periods associated to the curve F,, in terms of the
parameter m.

5C. Approximating the periods w; and w,

The curve E,, defined by (0-1) is isomorphic to the
curve

with

f@)=2—(Em*+m+3)z+ Zm* +im* + m+ 1.

Let e; < ey < e3 be the real roots of f (the dis-
criminant is always positive). The periods w; and

wy are given by
€3 d
and wy = — / w .
€2 f(z)

“:EQﬁ@

A straightforward study of the function f gives the
inequalities:

LIPS I
37 "7 3 m
P tl<e< T 41+—
3 3
We start with an approximation for w, given by
wy = z/ dz € iR.
ez \/(37—61)(55—62)(63—33)

If x € [es, €3], then m+1+1/m<z—e <m+2+
3/m, so

1 1 1
< <
Vm+2+3/m T Vr—er T /m+1+1/m

and

I Wo I
vVm+2+3/m "~ 1 vVm+1+1/m

with

I:/: \/(x—ig)g(eg—a:) :/;11\/1(ji—t2:7r

Finally, we have

T <w2 < T
Vm+2+43/m” i T /m+1+1/m

So wy ~ im/\/m and wy/i > 3.13/\/m if m > 500.
We now consider the case of wy.
We split the integral into two parts: w; = wi +wy,

with
_ O dr B 2 dx
%‘L ma”d%‘l @

For w;, the roots e; and e; are far from the end-
points of the domain of integration. We thus have,
for = € [e1,0]:

m/3<e;—xz<m+1+3/m,
m/3+1<es—xz<m+2+3/m.
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So
w, > ! —_—
TV m+1+3/m)(m+2+3/m) J., VT —er’
e < 1 /0 dx
LT3 m3 ) Jo VE—e
wy; > 2\/_—61
P /(m+1+3/m)(m+2+3/m)’
2v=ex
RO R CIEES A
> 2\/2m/3+1+1/m
YT/ m+1+3/m)(m+2+3/m)’
2\/2m/3—|-1+2/m

w; <

V(m/3)(m/3+1)
We deduce the inequalities w; < 4.9/y/m and wi >
1.63/y/m if m > 500.

Now consider the case of w;". Here only e, is suf-
ficiently far from the domain of integration. For
z € [0, es],

2m

1 3
—+1+—<z—e <m+1+—,
3 m m

SO

I I
<wf <
V2m/3+14+1/m

vVm+1+3/m

with

_ g Ve tve
Ve —ve

2 dz
I =
/0 \/(1'—@2)(33—63)
and
4m/3 <\/%+\/5<
1+1/m — (Jes—/es ~

We can thus write

4(m/3+1+1/m)
1-1/m )

1 log 4m
Jmt1t3/m °3(1+1/m)’
b o 1 o ’
V2m[3+1+1/m 3(1-1/m)
4
31 +1/m)
Vm+1+3/m

wi >

logm
Vm+1+3/m’

+
1

Y

w

log ————
(o B8O 1/m)

T V2m/3+1+1/m

log (m+3+3/m)
V2m/3+1+1/m

Finally, we have, for m > 500,

0.28 09910gm< <526 1.23logm
v m S v Jm
1.91 09910gm 5.26 12310gm
v Jm SVm Jm
Remark. In fact we can easily prove that
_ logm+4log2+o0(1)
wy = Jm )

but we do not need this.

5D. Approximating the Canonical Height

First, we find an upper bound for the canonical
height of an integral point P on E,,. By Lemma 2.1,

h(P) — Lh(P) < 1.57+ log(m?+3m~+9) + Llogm.

Since P is integral, h(P) = log max{1,|zp|}. So

h(P) < 2logm+ logmax{1,|zp|} if m > 500.

(5-1)
To find a lower bound for the canonical height of a
rational point on E, we write it as the sum of local
contributions.

Let P = [a/d*, B/d®] € E,(Q) with (a,d) =
(8,d) = 1. We first compute the non-Archimedean
contribution. We use the algorithm described in [Sil-
verman 1988; Cohen 1993, Section 7.5.2]. We have
B = & +md?a®— (m+3)d*a+1. So B = a+1
(mod 2) and d cannot be even. A similar argument
shows that d is not a multiple of 3. Set

o A =m?+3m+9;

e A= 3a®+2md*a— (m+3)d* (the numerator of
3a?/d* + 2ma/d? — (m+3));

e B =204 (the numerator of 23/d*);

e C =3a*+4mad®— (6m+18)a?d* +12ad® — Ad®
(the numerator of 3a*/d® +4ma®/d® — (6m+18) x
a?/d* + 12a/d*> — A); and

e D =gcd(A4, B).

We prove that the only prime giving any local con-

tribution is 2. Let p be an odd prime dividing D.

Because
4A% = (9a+3d°m)B* + 4Ad* (o —d’ a+d*),

p? divides 4Ad*(a®*—d*a+d*). On the other hand
p does not divide d (because p divides §) and A
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is squarefree, so p divides (a?—d?a+d*). Next, be-
cause

B? = 4(a+d*(m+1))(a® —d*a+d*) — 4d* (3a+d*m),

p divides 3a + d?m. Moreover the resultant of A
and B is d'?A?, so p divides A and hence p divides
(3a+d*m—3d*A). Because

27B? = 4(3a-+d*m—3d*A) (3a+d>m)+4d° (2m+3) A,

p? divides d®(2m+3)A, so p divides 2m+3. And
since 4A = (2m+3)? + 27, we conclude that p = 3;
but then 3 divides m and A is not squarefree. We
have thus proved 2 is the only prime dividing D.

We now compute the local contribution C, = C
at [ = 2. We have v,(B) = 1 and C = —(2m+2)
(mod 8), so we obtain:

e If mis even, C; = logd.
e If m=1 (mod 4), C, = logd — }log 2.
e If m =3 (mod 4), C, = logd— log 2.
In all cases, Cy > logd — %log 2.
We consider now the Archimedean contribution
Cy of the point P. Denote by z the elliptic log-

arithm of P. Set A = 27/w;, t = ARez, ¢ =
exp (2imwy /wy ) and

H = Z sin((2n+1)t)(—1)"g"+1/2,
n=0
Then the Archimedean contribution is
€. = 2o 168%a] o
2)3 2\2 _ 21
+Log ((a/d )’ +m(a/d ))\ (m+3)a/d* + ) .

The discriminant 16A? of the curve is greater than
16m*. On the other hand,

= 1
9 < /2 < 2
0] < ; q <1
To find a lower bound for C,,, we need an upper
bound for ¢. Using approximations to the periods,

we deduce

. W —-3.13 27 9.47
im— < < -
w; ~ 5.26+1.231logm logm
if m > 500, so
9.47 4.
g<ep(— o) <1
log m logm

if m > 500.

We are now able to minimize each part of C, for
m > 500:

£ log |16A%| > Llogm + Llog 2,

9.47 9.47
L1001 > 1]
3 l0g[1/4| 2 35 log exp logm — 32logm’
1 logm
—11 > —Lllog — > —1i
1 log|0] 2 —glog 7= > —3log g

> 1log 4.86 — loglog m.
As for —1log A = £ log(w:/27), it is greater than or
equal to
1.9140.991og m
vm

—tlog(27) + £ log

1
> ¢ log N tlog(2m) 4 1 log(1.91 + 0.99 log m)
) ) X 1.91
> —=log m — glog(2m) + glog (0.99 + log—m)
+ tloglog m,
Moreover
log 2 log 4.
82 8 08486 - ) 950,
8 log(27) 4

Finally, we obtain the following lower bound for

9.47
1 ll 3
32logm +3log(B/d")

+ 1log (0.99 + 1.91/log m) — zlog log m + 0.252.

Adding the non-Archimedean contribution, we ob-
tain

A > L 1 3
h(P) > iglogm + 32 logm + 3 log(B/d°)

+ £10g (0.99 +1.91/log m)
— tloglogm +log d — tlog 2 + 0.252.

Hence, we obtain a lower bound for h(P):

h(P) > Elogm+ Salog m + 1log(6d)

+1log (0.99 +1.91/log m) — tlog log m+0.02.  (5-2)

5E. About the Special Point [0, 1]

Theorem 5.7. The point [0,1] is always a generator.

Proof. If m < 500, we have computed the Mordell-
Weil group and all the integral points (see Tables
on pages 95 and 96) and the assertion of the the-
orem is satisfied. If m > 500, we use the above
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approximations. Let P be a point (with positive y-
coordinate) on E such that [0,1] = nP. Since the
sum of two points in Eq(Q) is still in Eq(Q), P be-
longs to E,,(Q). We assume first that P is integral
and not equal to [0,1]. The y-coordinate of such a
point is greater than v/2m + 3, so by (5-2)

>

(P) > 1:log m+ log v2m + log 0.99 — tlog log m
10.02,

>

(P) > Zlogm— loglogm+0.1,
h(P) > tlogm.

On the other hand, A([0,1]) < 2 logm by (5-1), so

2 h(O,1)
h(P)

= 25 —

Moreover 2P € Ey(Q) and hence P cannot exist.
We now assume that P = [a/d?, 3/d?] is not inte-

gral. We have seen that d is odd and not a multiple
of 3, so #d > 5. We have by (5-2)

h(P) > +logm + £log 0.99 — tloglog m + log 5,

h(P) > +logm.
As in the previous case, we obtain
2 32
n® <17 52 < 22.

The points 2P and 4P are in E;(Q). By an explicit
computation, it is easy to show that d? divides the
denominator of the z-coordinate of 3P. Hence [0, 1]
is a generator. O

Theorem 5.8. The only integral points on E,, which
are positive multiples of the point [0,1] are:

e [0,1] if m is even.
e [0,1] and 2[0,1] if m is odd.

Proof. If m < 500, the assertion of the theorem is
satisfied (see Section 4). If m > 500 we use the pre-
vious approximations. We first prove three lemmas.
We only consider positive multiples.

Lemma 5.9. The odd multiples of the point [0,1] are
never integral, except of course for [0,1] itself.

Proof. Let P = (2n+1)[0,1] be an integral point.
Since [0,1] € E ,(Q), P € E;,(Q). We then have
|zp| < m+1 and, by (5-1) and (5-2),
h(P) < 2logm+ Llog(m +1),
h(P) < % log m,
h([0,1]) > s=log m+ £log (0.99 + 1.91/log m)
9.47

h([0,1]) > Llogm.
Remark. /([0,1]) is experimentally equal to
Ylogm + Cy + o(1),
where C, is as above with d = 1. This should not
be difficult to prove.
Finally, if m > 500, we have
(2n+1)* < 45.
To complete the proof, we have to look at the points
3[0,1] and 5[0, 1]. We have
B 8m? + 40m? + 120m + 152
m* +4m3 + 22m? + 36m + 81’
|z(3[0,1])| < 1 when m > 8, so 3]0, 1] is not integral.

The same reasoning with m > 29 implies that 5[0, 1]
is not integral. O

z(3[0,1]) =

Lemma 5.10. The point 40, 1] is never integral.
Proof. We have the following expression for (4]0, 1]):

m8+8m”+60m°+280m°+1158m*+3320m°>+7868m>+11368m+12033
(4m3+420m2+60m+76)>

If m is even, the numerator is odd whereas the de-
nominator is even, so that 4[0,1] is not integral in
this case.

If m =1 (mod 4), we set m = 4k + 1 and replace
in z(4]0,1]); the same reasoning then implies that
4[0,1] is not integral.

If m = 3 (mod 4), we set m = 4k + 3, expand,
and eliminate common factors of 2, writing

p(k)

q(k)*

Then p(k) and ¢(k) are coprime for all values of k;
in fact, we have u(k)p(k)+uv(k)q(k) = 1 with u(k) =
16k2+8k—16 and v(k) = —128k" — 640k° — 1408k° —
1584k* — 648k® + 596k2 + 908k + 401. It follows that
4[0, 1] is never integral as claimed. O

1'(4[0’ 1]) =
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Lemma5.11. P ¢ E(Z) = 2P ¢ E(Z).

Proof. Let P = [a/d?, b/d®], with (a,d) = (b,d) = 1.

Using the duplication formula we obtain

a* —2(m+3)a?d* —8ad® + (m? +2m +9)d®
42 d? ’

Since a and d are coprime, d? divides the denomi-

nator of zyp. O

Top =

Remark. In general if P is not integral them [m]P
is not integral for any integer m. This follows from
standard facts about the p-adic filtration of an el-
liptic curve over Q, [Husemoller 1987].

We now complete the proof of the theorem. We have
1\ 2
w20,1) = (M) +2,

so the point 2[0, 1] is integral if and only if m is odd.

Let P = 2Pm[0,1] with m odd and p > 0. If
m = 1, then either p = 0 (and P = [0,1] is inte-
gral), or p = 1 (and P = 2[0,1] is integral if and
only if m is odd), or p > 2 and then P is not inte-
gral by Lemmas 5.10 and 5.11. If m > 1, m[0,1] is
not integral by Lemma 5.9, so P is not integral by
Lemma 5.11. O

Corollary 5.12. When the rank is 1, these theorems
give us all integral points on the curve.
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Abstract. By using the so-called elliptic curve Chabauty method, N. Bruin [1], V. Flynn
and J. Wetherell [6] have extended Chabauty’s method to some cases where the rank of the
Jacobian may not be less than the genus. The main tool in these methods is a theorem of
Strassman on p-adic zeros of power series in one variable, and is applicable only if certain
Jacobians are of rank less than or equal to 1. In the present paper, we give an explicit gen-
eralization of Strassman’s theorem to several variables, enabling us to treat cases where
the rank is greater than 1. We apply this to find all the rational points on a hyperelliptic
curve of rank and genus equal to 4.

1. Introduction

One of the most important problems about curves of genus greater or equal to 2
is the computation of their rational points. It is now well-known that by using a
method of Chabauty ([3], [4], [S]), if the rank of the Jacobian of a hyperelliptic
curve is strictly less than the genus, we can bound the number of rational points on
the curve. In many cases it is thus possible to compute all the rational points on the
curve.

When the rank of the Jacobian is greater than or equal to the genus of the curve,
a few methods are known for computing rational points (see [1], [7], [13]).

One of these methods (the elliptic curve Chabauty method, explained in [1] and
[6]) consists in reducing the problem to finding rational points with a Q -rational
x-coordinate on an elliptic curve over some number field. In all the examples given
in the paper of Flynn and Wetherell, the elliptic curves which occur are of rank at
most equal to 1, hence one only needs to bound the number of p-adic zeros of a
power series in one variable, which is done using Strassman’s theorem.

When the rank of the elliptic curve is larger than 1, it is possible to obtain
systems of power series in several variables. Bruin treated some examples in this
case in [1]. In the general case, Strassman’s theorem does not apply and we need a
generalization of this theorem to power series in several variables.

Flynn and Wetherell suggest to use instead the Weierstrass preparation theorem.
The goal of the present paper is to make this suggestion explicit.

S. Duquesne: Laboratoire A2X, Université Bordeaux I, 351 Cours de la Libération, 33405
Talence Cedex, France. e-mail: duquesne @math.u-bordeaux.fr

Mathematics Subject Classification (2000): 11G30, 11Y50
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As an illustration, we give the following example.

Theorem 1. Let C denote the hyperelliptic curve defined by
y2 =x? —6x® 4+ 31x7 — 81x° + 177x° — 176x* —9x> + 107x> + 19x + 1 .
Then C(Q) = {o0, (1, £8), (0, £1)}.

Remark 1. The curve C is a hyperelliptic curve of genus 4. Using a magma program
of M. Stoll [11] included in magma 2 .7 and above, we compute that the rank of
its Jacobian is equal to 4. Since the rank is greater than or equal to the genus, we
cannot apply Chabauty’s theorem. Hence, we will try to apply the elliptic curve
Chabauty method developed in [1] and [6]. In other words, we will look for an
elliptic curve defined over some number field such that every rational point on C
gives rise to a point on the elliptic curve with a QQ -rational x-coordinate.

Let K denote the number field Q(B), where 8 is a root of x3 + 2x + 1. The
curve C has been chosen so that we can factorize its defining polynomial f over K.
More precisely, we have

fx) = fikx) f2(x),

where

fi) =x3 =202+ (482 — B+ Dx+1.
fr(x) = x8 —4x> + @4B% + B+ 22)x* + (—88% — 28 — 34)x°
+(37B% — 158+ 83)x> + (B> + B+ 18)x + 1.

Let (x, y) be any rational point in C(Q). Since K has class number 1, there exist
¥1, y2, & € K such that

ayt = fikx),
ay; = fr(x).

Note that there is no solution with y = 0, and that solutions with y = oo cor-
respond to x = oo. On the other hand, the resultant of f1(x) and f>(x) is equal
to (—4 4+ 38 — 28%)3(—16 + B + 4B%)3 so that, if y # 0, oo, without loss of
generality we can choose « belonging to a system of representatives of {2, (—4 +
38 —2p2), (=16 + B + 4B%)}-units in K modulo squares. Moreover, these units
are generated by —1, 8, 14+ 8, 1 + B+ B2, —4+38 —2p%,and — 16+ f +4p2. It
follows that up to squares there are 64 {2, (—4+38 —282), (—16+ B +4%)}-units
in K and we can compute them explicitly.

We have now to search for which of these {2, (—4+38—282), (—16+B+4B2)}-
units « there exists an x in Q such that «fj(x) and af>(x) are simultaneously
squares. We can first look for those o which satisfy this property everywhere lo-
cally. Modulo 32, we find that this only happens for o = 1.

We have thus proved that o = 1 is the only value to consider. Thus, if (x, y) €
C(Q), there exist y;, y» € K such that

yi= fikx),
y: = fx).
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In particular, if (x, y) is a rational point on the curve C, then (x, y;) is a K-rational
point on the elliptic curve

E:y=fit)=x> 22+ (=42 - B+ Dx+1,

with a Q -rational x-coordinate.

We are thus interested in the x € Q which are the x-coordinates of points on
the curve £ over K. For this purpose, we want to apply the elliptic curve Chabauty
method explained in [1] and [6].

When the rank of the elliptic curve is one, this method reduces to bounding
the number of p-adic zeros of a power series in one variable, which is done by
using Strassman’s theorem. In our case, the rank of £ over K is equal to 2. Thus, if
we follow the elliptic curve Chabauty method, we will need to bound the number
of p-adic solutions of systems of power series in two variables. In [6], Flynn and
Wetherell suggest to use the Weierstrass preparation theorem in several variables,
since Strassman’s theorem is equivalent to the Weierstrass preparation theorem in
one variable. We now follow this suggestion.

2. The Weierstrass preparation theorem in two variables

In this section we rewrite for the case n = 2 the Weierstrass preparation theorem
in n variables of Sugatani [12].

Asin [12], we denote by Z, {(n1, n2) the set of power series in two variables 7
and ny with coefficients in Z, which can be written in the form

o0
f= 2 fopning,

(6,/)=(0,0)

where the coefficients f; jy are in Z, and |f(i,j)|p — 0asi+ j— oo.

We define a norm on Zj, (n1, nz) by || f|| = max {|f(i,j)|,,}.

Moreover, we define Z, (nz) and Z,, (n2) (n1) in the same way and we iden-
tify Z, (n2) (n1) with Z, (n1, n2) so that each element f of Z, (n1, nz) has an
expression Z?io fin"l, where f; € Z, (n2) and || f;|| — O asi — oo.

Let us first characterize units in Z, (n2) and Z, (n1, nz).

& .
- f=)_ fin} €Zy(ny) is a unit of Z, (ny) if and only if |fy|, = 1 and
=0

|f,'|,,/< 1 for each j # 0.

o0

- f= Z f<,;j)n’.1né € Zp (n1,n3) is a unit of Z, (n1, ny) if and only if
(i,/)=(0,0) o
[ foo,0lp = L and | f; jlp < 1foreach (i, j) # (0, 0).
Finally, we say that f = > f,-n’i € Zp (n2) (n1) is general in ny of order s if f; is
a unit element of Z, (nz) and if || f;|| < 1 forall i > s.
We can now state the following theorem which is a special case of Theorem 3.1
of Sugatani [12]:
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Theorem 2 (Sugatani). Let f € Z), (n1, nz) be general in ny of order s > 0. Then
there exist unique h, go, . .., gs—1 and g satisfying the following conditions:

— h is a unit element of Z,, {n1, n2) and ho(nz) = 1.
- 80,...,8s—1arein Z, (nz) and g, is a unit element of Z,, (n3).

- f(n1,m2) = h(n1, n2)(gs(n2)ns + gs—1(n)nf ™" + - + g1 (m2)ny + go(n2)).

Remark 2. We can recognize the Weierstrass preparation theorem which says the
same thing for power series in one variable (see for example [2] p. 108). In order to
bound the number of zeros of systems of two power series in two variables, we need
to apply explicitly the Weierstrass preparation theorem to one of the power series,
and so we need to know how to compute the functions g; and A; of the theorem.

3. An explicit Weierstrass preparation theorem

In this section, we give a method for computing the functions occurring in the
previous theorem (2).
We have

o0
fni,ny) = Z fa.pniny € Zp (n1,na)
(@ )=0

where f(; j) converges to 0 in Zj as i + j — oo. In order to apply the Weierst-
rass preparation theorem, we consider f as a power series in n] with coefficients
in Zp (n2) denoted by f;(n2). Moreover f is general in ny of order s, hence the
coefficient f;(nz) of n{ is invertible in Z, (n2) and || f; (n2)|| < 1foralli > s+ 1.

Let us denote by g(n1, n2) the polynomial go(n2) + g1 (n2)ny +- - -+ gs(n2)nj
and h(ny,np) = 1 + Zfo hi(ng)ni1 the functions of Theorem 2. Our goal is to
compute these functions. The equation f(n1, ny) = g(ny, n2)h(ny, ny) gives

hpgo+hp1g81+---+hy_s8 =f, foralln>0, (D

with the notation hg(np) = 1 and h,,(ny) =0ifn < 0.

Since hisaunitinZ, (n1, n2), wehave ||h; (n2)|| < 1foralli > 1. Hence, since
fs(n2) is invertible, Equation (1) for n = s implies that gs(n2) is also invertible in
Zp (n2).

Proposition 1. The functions h; can be written in terms of go, g1, - .., &s by the
following formula:
0 k s—1
(=D k ie
h, = Z g]f"'l o Z TR find(n,k,s,i) l_[ 8y > 2)
k=0 o5 foHi1 4 Fig_1=k £=0
where
—i=(o,i1,..-,i5-1)
s—1

—ind(n,k,s, D) =n+s+Y (s = jij,
j=0
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k k! . . . .
—and ( ) ) = ———— is a multinomial coefficient.
0515 -+ s is—1 iolip! -« ig—1!

Proof. Thanks to Theorem 2, we must simply show that these functions satisfy
Equation (1). For this purpose, denote by £, ; the k-th summand occurring in
Equation (2). Thus, we must show that &, = Z,fio hy x satisfy Equation (1) or,
equivalently, that

[’}
Z(hn,k go + hn—l,k g1+--+ hn—s,k gs) = fn .
k=0

Let us consider the first term of this sum (k = 0) :

hn,OgO + hnfl,Ogl +-- 4+ hn7s+1,Ogsfl + hnfs,Ogs ,

the last term, /1,0, is equal to f;, and it is easy to prove that the other terms are
canceled by the last term for k = 1 (h,—s,1 &s). In the same way, for any given
k > 0 it is easy to prove that the term &y, x 0 + An—1k &1 + -+ + Ru—s+1.k 8s—1
is canceled by the term A, x+1 g5, proving the proposition. 0O

In order to obtain an explicit Weierstrass preparation theorem, thanks to this
proposition, we only need to compute the functions gy, ..., gs. Since 7y = 1 and
h, = 0 for all n < 0, Equation (1) allows us to write

i
go=foandgi=ﬁ—2h,-gi_j I<i<s. 3)
j=l1

At this stage, it is possible to obtain formulas for g; by recursive substitution us-
ing Formula (2), but the computation is very costly. We give here a method which
computes the g;’s and the h;’s for any given precision in Q, if the f;’s are given
with this precision.

Assume that we have computed the functions g; and h; modulo pX. We can
then compute the inverse of g; modulo p*. Since by definition, p divides f; for
alli > s + 1, Equations (2) forn = 0, ..., s allow us to compute the functions
ho, ..., hy modulo p’““l (we can even compute the following 4;’s, but we do not
need them to compute the g;’s). In fact, in the formula of Proposition 1, the index
of the functions f; is greater than s + 1.

Hence, using Formula (3) for i = 0,...,s we can compute the functions
80, - .., g modulo p¥*1 In fact, the &;’s are now known modulo p**! and divis-
ible by p. In this way, we can compute the g;’s and even the h;’s with the same
precision as the f;’s.

Our main problem is to solve systems of two formal equations in two variables.
For this purpose, we consider one of the two equations as an element of Z, (n1, n2)
(Flynn and Wetherell show in [6] that these equations are in Z, (n1, n2)). We apply
the Weierstrass preparation theorem to this equation which reduces to a formula of
the form

go+gni+---+gmnj=0.
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In fact, in Theorem 2 the function /& cannot be identically 0 because &0y = 1,
hence the solution of our first equation must be a zero of a polynomial of degree s.
In this way, we can hope to eliminate the variable n; of the equations of our sys-
tem. In order to apply this method to the curve of the introduction, let us compute
the power series associated to it following the “elliptic curve Chabauty” method
described in [6]. For this, we first need to compute the Mordell-Weil group £ (K).

4. Computing £(K)

We first compute the rank of the curve with the program of D. Simon [10]. The curve
E£(K) has rank 2. It is torsion-free and generators for £(K)/2E (K) are G; = (0, 1)
and G, = (1,1 — B2).

We have now to find a basis for the full Mordell-Weill group £ (K). For this we
perform an infinite descent as described by Siksek in [8].

Proposition 2. G| and G, are generators for the full Mordell-Weill group.

Proof. The first step is to bound the difference between the naive height and the
canonical height on £. The method developed by Siksek allows us to prove that for
any point P in £(K), we have

h(P) —h(P) <0217 .

The second step is to prove that there are no point in £(K) with canonical height
less than 0.5. If P is such a point, its naive height must be less than 0.717 thanks to
the first step. We have now to test which elements of K with logarithmic height less
than 0.717 are corresponding to points in £(K) with canonical height less than 0.5.
Such elements are represented by polynomials with integral coefficients of degree
less than 3 and with Mahler mesure less than 8.6. There are only finitely many such
polynomials and we can compute all of them. By this way, we prove that 0 and 1
are the only elements of K which are the x-coordinate of any point in £(K) with
naive height less than 0.717. The canonical height of these points (G and G3) are
respectively 0.8054... and 0.9715.... Hence we proved that there are no point in
£ (K) with canonical height less than 0.5.

For the last step we use the following standard fact:

If £(K) contains no point of infinite order with canonical height less than A and
G, G, generate a sublattice of £(K) of full rank 2, then the index of the span of
G1, G, in £(K) satisfies

n < R(Gy, Gz)l/z% ,

where y» = 2/+/3 and R(G1, G2) < 0.718 is the determinant of the height pairing
matrix.

We proved in the second step that we can choose A = 1/2, so that n < 1.96.
This means that n must be equal to 1 and then that G| and G, are generators for

EKK). O
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5. Elliptic curve Chabauty for C

In this section, we follow the method explain in [6].

We then choose a prime p satisfying the six conditions given in [6]: the prime
3 satisfies these conditions. The order of Gl is 11 and the order of 62 is 33, where
hereafter,” denotes the reduction modulo i If we define Gz = G| —3Ga2, (G3, G3)
is still a basis for £(K) and the order of G3 is 1, so we define:

- my=1andmy =33,
_ Q1=G3andQ2:33GZs
= {00, +iG,, 1 <i <16},

so that every P € &£(K) can be written as P = S + n1Q1 + ny Q> for some
SeS,ni,ny €.

We first want to reduce the size of the set S.

Slnce by construction Q1 and Q> are in the kernel of reduction modulo 3,
P = S. Hence if P has a Q -rational x-coordinate then S must have an F3-rational
x-coordinate. Computing the elements of S mod 3, we find that this is true for
S = 00, £G3, 3G, £14G>, and so these are the only S € S that we need to
consider.

Moreover, since ny and n, are in Z, it is of course not necessary to consider
-Gy, —3G3 and —14G».

Infact, —Go+n1Q1+n202 = —(G2—n1 Q1 —nyQ»). Since we are interested
in the x-coordinate of such a point, we have only to consider the points in £(K)
which can be written as S + n1 Q1 + n,Q» for some S € S, ny,ny € Zif S
denotes the set {oo0, G2, 3G>, 14G5}.

For each point Q; = (x;, y;), define the z-coordinate of Q; as z; = —x;/yi,
andlet g3 =1, = —2,g1 = 1 — B —4p% and gy = 1 be the coefficients of our
elliptic curve.

We will now compute the z-coordinate of an arbitrary P € £(K) in terms of
n1 and ny. For this, we use the formal group law on elliptic curves and the formal
logarithm and exponential (see [9] for details).

Note that, in our cases, it will be sufficient to work mod 3°.

Thanks to the fact that k! times the coefficient of 7¥ in log(?) or exp(t) belongs
to Z[go, g1, &2, &3] and the standard estimate |k!|, > p~*=D/(P=D the terms in
O0(1°) can be ignored in the formulas.

Let 65 (n1, ny) denote the inverse of the x-coordinate of n1 Q; + n» Q> and
Os(n1, ny) denote the x-coordinate of S +n1 Q1 + n2 Q> if S # co. We can split
fs into its components:

Os(n1,n2) = 0 (n1,n2) + 65" (1, n2) B + 6 (n1, n2) g

If the x-coordinate of P is Q -rational, then Qél)(nl, ny) and Héz) (n1, np) must be
equal to 0, giving our system of two power series in two variables. In other words,
we have to determine which (n, ny) satisfies 9;1)(111,112) = 9;2)(n1,n2) =0in
order to obtain a bound for points on £(K) with a Q -rational x-coordinate.
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We first compute the z-coordinate of Q; and its formal logarithm modulo 3°:

71 =240+ 848 4+ 578> (mod 3°) ,
720 = 604998 + 19582  (mod 3°) ,
log(z1) = 42 + 488 + 3982  (mod 3°) ,
log(z2) = 15+ 1178 + 158> (mod 3°) .

‘We now substitute 721 log(z1) + 12 log(z2) in the expression of the formal exponen-

tial and we obtain:

z-coord of n1 Q1 + n2 Q2 = ((162n3 + 18)n3 + (16213 + 216n2)n?
+(81n3 + 81n3 + 39)n; + (63n3 + 132n2)) p*
+(81n3 + (16213 + 198)n3 + (8113 + 189n2)n?
+(162n5+216n5 4+-48)n1 + (16213 +63n3 4+117n2))
+162n3 + 162non7 + 3613 + (81n3 + 162n2)n?
+(162n3 + 42)n; + (4513 4+ 1512)  (mod 3°) .

Hence, we have 6,(n1, ny) as a power series in two variables and:

Ooo(n1, n2) = 270} + 81n3n3 + (8103 + 207)n? + (27n3 + 117n2)ny
+(189n5 + 198n3)) + [54n] + (16213 + 162n2)n3 + 12607
+(189n3 + 144n2)n1 + (189n5 + 126n3)18 + [189n}
+(81n3 + 54nz)ni + (162n3 + 108)n7 + (16213 + 225n2)n;
+(189n5 4 54n3)18%  (mod 3°) .

and s00S) (n1, n2) = 54nt + (16203 + 162n2)n3 + 12607 + (18913 + 144n2)n;
+(189n3 +126n3)  (mod 3°) .
02 (n1, np) = 1897 + (81n3 + 54n2)n3 + (16203 + 108)n3
(16203 + 225n2)n1 + (18905 + 54n3)  (mod 3°) .

In the same way, we show that:

05 (n1.n2) = 162n} + (813 + 16205 + 9n3
+(81n3 + 16213 + 108n; + 234)n7
+(162n5 + 18913 + 19813 4 123)n
+(189n5 + 18n3 + 16203 +237ny)  (mod 3°) .

05 (n1.n3) = 1623 + (16205 + 54)n + (16203 + 108n; + 36)n]
+(81n3 + 153)n7 + (2713 + 16213 + 21605 + 150)n;
+(45n3 +33n2)  (mod 3%) .
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03¢, (n1. n2) = 162n3 + 1350} + (16203 + 81n3 + 81np + 207)n]
+(162n3 + 16203 + 2160, + 225)n3
+(81n3 + 54n3 + 27n3 + 153n; + 105)n;
+(81n5+81n3+54n5+99n3 +18n3+27n,+138)  (mod 3°) .

93%’2 (n1,n2) = 81n8+(81n3+162n2+9)n3 +(81n3 +162n5+108n2 4 234)n7

+(162n5 + 2713 + 81n3 + 22515 + 69)n
+(162n8 + 2715 + 12603 + 21603 4 1212 +93)  (mod 3°) .

0145, (1. n2) = (16205 + 108)nt + (81n3 + 81ny + 135)n]

+(162n3 45412+ 189)n} + (8113 + 16213 +54n3 + 1081, +60)n
+(162n5 + 81n5 + 4503 + 36n3 + 171nz 4 189)  (mod 3°) .

0135, (1. n2) = 16207 + (81ny + 108)n} + (81n3 + 81n3 + 135, + 126)n;
+(162n3 + 81n3 + 81ny + 99)n?
+(189n3 + 54n3 + 18ny + 162)n
+(162n3+54n5+108n3 + 13513 +207n,+150)  (mod 3°) .

In all these cases, we have to solve a system of two power series in two variables.
We already know solutions to these systems, for example (0, 0) for the first one.
Thanks to the Weierstrass preparation theorem, we will now try to bound the num-
ber of solutions and hope that the bound will correspond to the number of known
solutions.

6. Application of the Weierstrass preparation theorem in two variables to
the curve C

We have shown that the only rational points on the curve C which are apt to
have a Q — rational x-coordinate can be written +S + n; Q1 + npQ, with
S = 00, G2,3G, or 14G,. Moreover, for each of these S, n and nj satisfy a
system of two equations. Let us first consider the case § = G».

6.1. The linear Weierstrass preparation theorem (s = 1) and 0,

‘We have
05 (n1.n2) = 162n} + (813 + 1620, + 9n3
+(81n3 + 16213 + 1081, + 234)n?
+(162n3 + 18913 + 198n; + 123)n
+(189n3 + 18n3 + 16203 4 237ny)  (mod 3°) .
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05 (n1.ny) = 16213 + (16205 + 54)n + (16203 + 108n; + 36)n]
+(81n3 + 153)n + (2713 + 162n3 + 21603 + 150)n;
+(45n3 +33n2)  (mod 3°) .
We want to apply the Weierstrass preparation theorem to 6’82) (n1,ny). In our case

p = 3, let us consider

Lo 4 2 3
f(ny,ny) = §9G (n1,n2) = 54n7 + (27n5 + 54ny + 3)n

2
+(27n3 + 54n3 + 36n, + 78)n?
+(54n3 + 63n3 + 661, + 41)n,
+(63n3 + 6n3 4 54n3 4+ 79n2)  (mod 3%) .

Since by construction f{;, j) convergestoOasi+j — oo (see [6]), f € Z3 (ny, na).

Moreover fi(n>) is a unit element of Z3 (n,) (because fi(ny) = 2 (mod 3)) and

3 divides f;(ny) for all i > 2. It follows that f is general in n; of order 1.
Applying the method described in Section 3, we have

e (=DE ¢
W= —fer2 8 - )
k=0 o1
go = fo, )
g1=fi—gohi, (6)

We know fy and f; modulo 3%, hence we know gy modulo 3%, and we want to
compute g; modulo 3*.

Weknow thath; = 0 (mod 3),hence gg = fo =ny (mod 3)andg = f; =2
(mod 3).

Let us follow the method described in Section 3 in order to compute g1 modulo
9. The inverse of g modulo 3 is equal to 2. Since the f;’s are known modulo 9, are
divisible by 3, and known to be 0 (mod 9) for all i greater than 4, we can compute
h1 modulo 9 using Equation (4):

hi(ny) = —-3n,+3 (mod9).
Hence, we can compute g; modulo 9 using Formula (6):
gi(np) = 3n% +5 (mod?9).

All the functions are now known modulo 9 and we can reapply this method. Finally
we compute go and g modulo 3* and obtain

g0(n2) = 63n3 4 6n3 + 54n3 4+ 790,  (mod 3%) , @)
g1(n2) = 27n3 + 93 + 3013 + 54n, + 41 (mod 3%) . (8)

Hence we have, using Theorem 2

6D (n1. 1) N |
GZTIZ = (go(n2) + g1(no)n)(1 + Zhi(nz)n‘l) 7

i=1

with ||k (n2)|| < 1 foralli > 0.
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It follows that the condition 982) (n1,n2) = 0 implies that go(n2) + g1(n2)ny
must be 0, and so for any given n; there is at most one solution in n; to our
equation, and moreover the above theorem gives us an explicit solution ¢ (ny) =
—go(n2)/g1(n2) in Z3 (n2), so that

n1 = ¢(n2) = 54n3 + 4505 + 7203 + 2703 +4ny  (mod 3%) .

‘We can now compute ng) (¢ (ny), ny). Since 9&22) € Z3 {n1, ny), we obtain a power
series ¥ € Zs3 (n) and we have

¥ (n2) = 54n3 + 27n3 + 72n3 + 66n,  (mod 3%) .

We can now apply Strassman’s theorem (i.e., the Weierstrass preparation theorem
in one variable) to this power series and we obtain at most one solution for n,. We
know that n, = 0 is a solution, so this is the only one.

Finally, we have shown that (0, 0) is the unique solution to

1 2
05 (n1.n2) =05 (n1.n2) =0,

as required.

Of course it was not really necessary to work modulo 3%, but we did this in
order to explain the computations. We note that this method can always be applied
when s = 1.

Let us now consider the case S = oo.

6.2. The quadratic weierstrass preparation theorem (s = 2) and 0

We have

05D (n1, np) = 54nt + (16203 + 162n2)n3 + 12607 + (18913 + 144n2)n;
+(189n5 + 126n3)  (mod 3°) .

02 (n1, ny) = 18901 + (81n3 + 54nz)n3 + (16203 4 108)n?
+(162n3 + 225n2)n1 + (18915 + 54n3)  (mod 3%) .

We want to apply the Weierstrass preparation theorem to Géé) (n1,n3). In our case
p is equal to 3, and let us consider the function f of Z, (n1, nz) given by

Ly

= 6n] + (1813 + 18n2)n} + 14n3 +
Q21n3 4 16n2)ny + (21n5 + 14n3)  (mod 3%) .

f2(n2) is a unit of Z3 (n,) (because is it equal to 2 modulo 3) and 3 divides f; (n2)
for all i > 3. Hence f is general in n; of order 2.
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Using our method, we can compute go, g1 and g» modulo 33. We obtain:

go(n2) = 21n3 4 14n3  (mod 3°) ,
g1(n2) = 18n3 + 6n3 + 160, (mod 3°) ,
g2(n2) =14 (mod 3%) .

Hence we have

05 (n1, ny)

5 = (80(m) + g1(2)n1 + g2(m)n]) (1 + Y _hi(n2)ni)

i=0

with ||h; (n2)]| < 1 foralli > 0.

Thus, the condition %) (11, n2) = 0 implies that g (n2) + g1 (n2)n 1 + g2 (n2)n’
= 0. Hence, for any given n, there are at most two solutions in | to our equation.
Moreover, g»(n>) is invertible in Z3 (n7), hence there exist power series ¢ and ¢
in Z3 (ny) such that

nt = ¢o(n2) + ¢1(n2)n; .
Let us substitute recursively n% by ¢o(n2) + ¢1(n2)n in the equation

o)
w = 0. We deduce that there exist power series v and v in Z3 (n3) such

that

Yo(na) +¥i(n2)n; =0. 9
In our case, we have
Yo(n2) = 9nS + 24n3 4+ 21n3  (mod 3°) ,
Y1(n2) = 1803 +24n3 + 1915 (mod 3°%) .

Thanks to the fact that 19 is invertible modulo 33, we deduce from (9) that there
exists a power series W = —% in Z3 (ny) such that ny = W(ny). In our case, we
have

W(ny) =21n3 +6ny  (mod 3°) .

We can now compute f(W(n3),n2) € Zs3(nz) and we can apply Strassman’s
theorem to this power series. In our case, we have

F(¥(n2)) = 1515 +20n3  (mod 3%) .

Applying Strassman’s theorem to W allows us to conclude that ny = 0 is

2
the only solution to f (W (n2),n2) = 0 and finally that n; = n, = 0 is the only
solution to our problem.
Finally, we have shown that (0, 0) is the only solution to

00 (n1,n2) =6 (n1,m) =0,

as required.
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7. Conclusion

As for 0,, we can show that n; = 1, np = 0 is the unique solution to 93(82 (n1,n2)
2 1 2
= 9;6)2 (n1,ny) = 0. In order to prove that 91(4)(;2 (ny,n) = 91(4)Gz (n1,n2) = 0 has

no solution, we only need to apply Strassman’s theorem to 01(? (n1, ny) withrespect
to one of the variables (the term having largest 3-adic norm is the constant term).

This shows that the only K-rational points on the curve £ with Q -rational x-co-
ordinates are oo, G, and £(3G, + Q1) = £G . It follows that the only possible
x-coordinates for a QQ -rational point on C are {oco, 0, 1}, thus proving Theorem 1.

There is a more general method to apply the Weierstrass preparation theorem:
we can compute the functions g; for each of the power series. By this way we
obtain 2 polynomials Py and P, in nj with coefficients in Z, < nz >. Our goal
is to bound the number of solutions (n1, ny) of P; = P, = 0. It is then natural to
compute the resultant of P; and P, which is a power series in Z, < ny >. Then
applying Strassman’s theorem allows to bound the number of solutions.

I write a Maple program which compute the function g; and h; as explained in
section 3 and apply this method in order to bound the number of p-adics solutions
of systems of two power series in two variables. This program is available by ftp:
ftp://megrez.math.u-bordeaux. fr/pub/duquesne
or on my home page on the web:
http://www.math.u-bordeaux. fr/“dugquesne/programs.

To conclude, we see that the use of the Weierstrass preparation theorem in two
variables allows us to extend the elliptic curve Chabauty method to elliptic curves
of rank 2 over number fields. In the same way, by writing explicitly the Weierstrass
preparation theorem in n variables it is easy to extend the method to elliptic curves
of rank n over number fields of degree strictly larger than n.
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Abstract

In [Zagier and Kramarz 1987], the authors computed the critical value
of the L-series of the family of elliptic curves 2> +y® = m and they pointed
out some numerical phenomena concerning the frequency of curves with
a positive rank and the frequency of occurrences of the Tate-Shafarevitch
groups IIT in the rank O case (assuming the Birch and Swinnerton-Dyer
conjecture). In this paper, we give a similar study for the family of elliptic
curves associated to simplest cubic fields. These curves have a nonzero
rank and we discuss about the density of curves of rank 3 that occurs.
We also remark a possible positive density of nontrivial Tate-Shafarevitch
groups in the rank 1 case. Finally, we give examples of curves of rank 3
and 5 for which the group III is nontrivial.

1 Introduction and Motivations

Let E be an elliptic curve defined over Q. From the work of [Wiles 1995],
[Taylor and Wiles 1995] and [Breuil et al. 2001], E is known to be modular.
This implies that its L-function L(E,s) can be analytically continued to the
whole complex plane. Furthermore, if N is the conductor of F, then the follow-
ing functional equation holds:

A(E,2—s)=cA(E,s) , (1)
where € = %1 is the sign of the functional equation and:

N S
AE,s) = <£> T(s)L(E,s) .

21
In this paper, we are interested in computing the analytic order of the Tate—
Shafarevich group III of certain elliptic curves F defined over Q using the Birch

and Swinnerton-Dyer (BSD) conjecture:

Conjecture 1 (Birch and Swinnerton-Dyer) Let r denote the rank of the
Mordell-Weil group E(Q). We have:
L(FE Q
tig ZE) QR gy )
s=1 (s =17 |E@)orsl
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where ¢ denotes the product of the Tamagawa numbers, ) the real period and R
the regulator of E.

In [Zagier and Kramarz 1987], Kramarz and Zagier carried out some numer-
ical computations related to the family of elliptic curves given by equations
23 + y3 = m (the so-called Sylvester cubics). They computed the critical value
of the L-functions of the curves having an even functional equation (i.e. € = 1)
for m < 70000 and they pointed out some numerical phenomena concerning the
frequency of curves with a positive rank and the frequencies of occurrences of
|III| in the rank 0 case (with formula (2)). More precisely, concerning the rank,
their numerical data suggest a possible positive density of curves with positive
rank. In [Watkins], Watkins extended the computations to m = 107, the re-
sults being that the density of positive rank is finally decreasing and probably
tends to zero like 2%/61log(z)¢ (with some constant C' ~ 3/5). The behaviour
25/¢ was already mentioned in [Zagier and Kramarz 1987], and stronger models
using random matrix theory as in [Conrey et al. 2000] should give x5/6 log(z)¢
for some constant C.

Watkins computations confirm the remark on Kramarz and Zagier that the fre-
quency of occurrences of |III] = 1, |III|] = 4, etc. among rank 0 curves is
decreasing. Heuristics in [Delaunay 2001] predict that these frequencies should
be 0 (but note that these heuristics predict a general behaviour for all elliptic
curves and that we are only concerned here with very specific families). Further-
more, the numerical results of Watkins about the question of how often a given
prime p divides |III] seem to be not too much discordant with the predictions in
[Delaunay 2001] (at least for p # 3).

In this paper, we make a similar experimental study but in the case of a family
of elliptic curves with positive rank. It is quite natural and interesting to wonder
if the same phenomena will occur or not and, in fact, as far as we know there
is no such study in the literature. In the case of positive rank, heuristics in
[Delaunay 2001] predict that there is a positive density of curves with nontrivial
Tate—Shafarevich group but, in practice, they are quite sparsely observed. For
example, the tables of Cremona ([Cremona data]) found only 196 such curves
among all elliptic curves of conductor less than 20000, furthermore all these 196
curves have rank one and most of them have III = 4. Indeed, there are infinitely
many rational points on such curves, so that it is more difficult to find p-adic
points not corresponding to rational points. In fact, nontrivial Tate—Shafarevich
groups appear for large conductors.

The problem of computing |III| using formula (2) when the rank is positive is
much more complicated because on the one hand we have to determine the reg-
ulator R (in the rank-zero case, the regulator is simply R = 1) and on the other
hand we have to deal with quite large conductors to be able to detect nontriv-
ial IIT.

Here, we are concerned with the family of elliptic curves associated to the sim-
plest cubic fields (see below) which were introduced by Shanks in [Shanks 1974]
and were studied by Washington ([Washington 1987]) and more recently in
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[Duquesne 2001]. This family has properties interesting for our purpose. Each
of these curves has an odd rank and an explicit generator so that the regulator is
easily computable when the rank is one. The conductor grows fast so that we can
hope finding nontrivial Tate-Shafarevich groups. We compute, using the GP-Pari
software ([PARI]), values of L'(E,1) for many of these curves and deduce from
them and from formula (2) analytic orders of Tate-Shafarevich groups for the
rank-one case. The method we used are well known since we have to evaluate a
rapidly converging series (see formula (6)), and are explained in [Cohen 1993] and
in [Cremona 1997]. Furthermore, several GP-programs are available, for example
a program by Cremona and Womack ([Cremona and Womack], which computes
the derivatives of L-functions of elliptic curves) or by Dokchitser ([Dokchitser],
this program deals with general L-function having a classical functional equa-
tion).

According to our numerical data, we first observe an experimental positive-
like density of curves with high ranks. In regard to the above Zagier-Kramarz
extension by Watkins, we must be careful; indeed, the fact that the growth of
the regulator can be well estimate allows to use the same argument-principle
as in the case of the Sylvester cubics and it suggests the density of curves with
ranks > 3 may tend to 0. We also discuss about the density of occurrences of
|IIT| when the rank is one (with the same reticence as above). Finally, we find
example of nontrivial Tate-Shafarevich groups for some curves of rank 3 and 5
by computing L) (E, 1) and LO)(E, 1).

2 Elliptic curves associated to simplest cubic fields

In the sequel, m will always denotes a positive integer such that the number
A =m? +3m +9 is squarefree. Let E be the elliptic curve:

E:Y’=X34+mX>-(m+3)X+1 . (3)

The field defined by the polynomial of the right hand side of (3) is said to be a
simplest cubic field. These fields were introduced by Shanks in [Shanks 1974].

In [Washington 1987], Washington studied these fields and deduced some prop-
erties of the related elliptic curves (3) including the following result:

Theorem 2 (Washington) The rank of the elliptic curve E is odd, assuming
that the Tate—Shafarevitch group is finite.

In [Duquesne 2001], the second author studies the structure of the Mordell-Weil
group of these curves, and in particular proves:

Theorem 3 The Mordell-Weil group E(Q) is torsion-free and the point (0,1)
can always be taken as an element of a system of generators for E(Q). In
particular, if the rank of E is one, the point (0,1) generates E(Q).
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Let us now write down the classical invariants attached to these curves. The
discriminant of F is 16A2, its j-invariant is 256A. Note that 16A? is the dis-
criminant of (3) and is the minimal discriminant of E' whereas equation (3) does
not give the minimal Weierstrass model. In fact, the minimal model is given by
a slightly more complicated equation:

V2= X34eX?— (3(k* + k+ 1)+ (2k + 1)e) X+ (2k+1)(K*+k+1)+k(k+1)e |

where m = 3k 4+ ¢ with e = £1 (if e = 0, m does not define a simplest cubic
field). Moreover, Tate’s algorithm also allows us to compute the conductor and
the Tamagawa numbers :

m=0 (mod 2) | m=1 (mod 4) | m=3 (mod 4)
N 16A2 SA? 4A2
c 1 2 3

The table above gives NN is about m* and grows sufficiently quickly as mentioned
in the introduction.
In our case, the BSD conjecture predicts that:

L'(E,1)=cQh((0,1) S , (4)

where % is the canonical height on E and is computed using GP-Pari, € is the
real period of E (which is easily computable using the AGM method) and:

g 0 if rank(FE)>1,
T if  rank(E) = 1.

From the work of [Duquesne 2001], one can see that 1 ((0,1)) behaves like log(m)
and that Q ~ m~/2log(m). Since, under GRH, L'(E,1) = O(m*®), using for-
mula (4), we obtain :

S =0(m!/?+e) . (5)

Furthermore, the value of L'(E, 1) is computed by:

n [ _dt
L’(E,l):2z%/m e (6)
ol

n>1

where L(E,s) =3, 5 ann™?.

Thus, we compute S using (4). From the well-known work of Gross and Zagier
([Gross and Zagier 1986]) S is known to be a rational number. All the values
that we find in our numerical calculations are near to perfect squares of inte-
gers as required by the BSD conjecture. This gives a check of our numerical
computations.
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3 Numerical results

We computed S for all integers m less than 14000 defining simplest cubic fields.
For this, we need about O(\/N ) coefficients in the right hand side of formula
(6) to obtain a reasonable accuracy for L'(E,1). Since the conductor grows as
m*, we were led to consider sums with about m? terms (and so sums with about
2 x 108 terms for the largest values of m we considered). For this, the strategy
that we use to get a sufficiently good approximation for L'(F, 1) is the following

(the same sort of strategy is used in [Zagier and Kramarz 1987)) :

e We compute and store the values of the coefficients a,, for n less than some
bound B of the order of v/N (B = 1.67 x 107 for large values of m).

e We compute the partial sum in (6) using these first coefficients.

e Beyond B, we compute on the fly the coefficients a,, (if n = nins with
n1,ne < B, we can deduce a,, from a,, and a,,) and add their contri-
butions to the sum. At each step, we add 10° new terms in the partial
sum.

e We repeat the last step until two successive sums 7 and Yo satisfy:
X1 — X2] < 0.02 and |Xo — 82| < 0.02 for some s € Z.

Note that for each prime p dividing the conductor we have p?|N. Thus from
Atkin-Lehner theory ([Atkin and Lehner 1970]), (n, N) # 1 = a, = 0, and in
particular a,, = 0 if n is even. This remark is helpful for computations.

For large values of the parameter (say m > 8000), the computation of L'(F,1)
requires a lot of time and memory. We needed several months of CPU on a
Pentium IIT @ 1GHz to deal with the values of m less than 14000.

In order to give the numerical data that we obtained, we set:

N(r) = ﬁ{m§$|m2+3m+915 squarefree} )
Ns(z) = Ij{m <z | m? 4 3m + 9 is squarefree and S,, = s} .

The results are summarized in the following table:

[ = ] 2000 [ 4000 | 6000 | 8000 | 10000 | 12000 | 14000 |
() | 1246 | 2492 [ 3739 | 4986 | 6234 | 7477 | 8722

2

No(z) | 363 | 700 | 1031 | 1347 | 1681 | 2026 | 2328
Ny(z) | 728 | 1384 | 2025 | 2677 | 3267 | 3828 | 4402
Ny(z) | 101 | 235 | 389 | 522 | 703 868 | 1035
No(z) | 45 | 141 | 227 | 326 | 427 | 540 674
Nig(z) | 5 19 42 67 91 116 150
Nos(z) | 3 11 17 32 46 72 97
Nag(z) | 1 2 7 13 13 15 21
N4g (:E) 1 1 3 7 9
N64 (.13) 1 2 3
N31 (:E) 1 2 3 3
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3.1 Density of high rank curves

The discussion we give here is founded on the experimental data and several in-
terpretations are possible so we must be careful all the more that the behaviour
of the curves for m < 14000 may not mirror the general one when m tends
to oo (as it is the case for the Zagier-Kramarz computations). A first approach
concerning the frequency of occurrences of curves with L'(E;1) = 0 (and so of
curves with rank > 3) suggests that there is a positive density of such curves.
Indeed, as it can be seen on figure (1), the ratio No(x)/N(z) is fairly nearly
constant (the constant being ~ 0.27).

No(z) = 2328

N

¥

A~

)= 8722

~—

Figure 1: The points (N(z), No(x)) (and joined)

Such an observation should provide, as asked in [Zagier and Kramarz 1987] an
example of a family of curves with an expected positive density of curves with
high rank. Note that in the case of the simplest cubic fields, and contrary to
the Fermat cubics, the curves are not isomorphic over any number field (their j-
invariant is not constant). We should compare this 27% of extra-rank curves we
obtained with the large table of Stein and Watkins in [Stein and Watkins 2002]
extending the Brumer-McGuiness one ([Brumer and McGuinness 1990]) and for
which 92.5% of their curves with odd functional equation have rank one (their
database contains million of curves, and their conductors do not exceed 101°). In
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fact, one of the current opinion about the rank of elliptic curves is that asymp-
totically, the rank is the lowest one compatible with the sign of the functional
equation ([Brumer and McGuinness 1990]). So, it would be very surprising if a
positive density really occurs for our family.

Thanks to the estimate of formula (5), we can adapt the argument of Zagier
and Kramarz : assuming S is, in fact, a random perfect square between 0 and
\/m for each value of m, then the number of curves with m < x that have rank
greater than 1 should be about z3/4. Moreover a naive extension of the conjec-
ture [Conrey et al. 2000] to our case should provide the more precise estimate
23/*log(2)¢ for some constant C. However, it does not seem obvious how to
extend the work of [Conrey et al. 2000] to the derivatives of L-functions even if,
as in our case, the regulator can be well estimated. The interpretation above is
corroborated by taking the best linear fit to a log-log graph of figure (1). We
obtain by this way that the number of curves with m < x that have rank greater
than 1 appear to grow like 2997 which is enough close to z3/4 log(2)%°! when
x < 14000.

3.2 Frequency of occurrences of S

We also compute the frequency of occurrences of each analytic order of Tate—
Shafarevich groups among curves of (analytic) rank 1. The figure 2 illustrates
the results that we obtain.

Figure 2: Frequencies of occurrence of S



4 NONTRIVIAL TATE-SHAFAREVICH GROUPS OF CURVES WITH RANK 3 AND 58

Although we cannot produce sufficient data, we seem to have a positive den-
sity for each order. This is in accordance with the heuristics in [Delaunay 2001].
However the densities could differ from the predicted ones since we only consider
a specific family of elliptic curves. For instance, 68.8% (resp. 18.9%, 10.9%) of
rank 1 curves with m < 14000 have trivial III (resp. have 2 dividing S, have
3 dividing S) whereas [Delaunay 2001] would predict 54.9% (resp. 31.1%, resp.
12.3%).

Furthermore, the same heuristic argument as for S = 0 could be also used here
and predicts that Ng(z)/(N(z) — No(x)) should tend to zero like 2%/ and so
clashes with the heuristics and seems to be discordant with our numerical data.

Arithmetic effects on m could also modify the frequencies we considered. In
view of the invariants of F, it is natural to fit m into three cases : m even,
m =1 mod 4 and m = 3 mod 4 (in fact, other cases were considered as A
prime for example, but gave the nearly the same results as in the general case).
We sum up the results for all curves with m < 14000 in the following table :

| [ H{s=0} [ i{S=1} [¢{S=4} [#{S =9} | {{S > 16} |

m =0 mod 2 964 2040 628 490 239
m=1 mod 4 649 1133 256 110 32
m =3 mod 4 715 1229 151 74 12

It follows from the data that the densities are, as in the general case, nearly
constant for m < 14000 but depend on the class of m.

For m =0 mod 2 (resp. m =1 mod 4, m =3 mod 4), there are about 22.1%
(resp. 29.7%, 32.7%) of elliptic curves with S = 0. This difference could be
explained by the fact that formula (4) and the invariant ¢ force S to be smaller
when m is odd, and so S is more often equal to 0 or 1 in this case. We also remark
that all parametrization of [Duquesne 2001] in order to have elliptic curves with
large rank give odd values of m.

4 Nontrivial Tate—Shafarevich groups of curves
with rank 3 and 5

Among the 27% of our curves of rank 3 or more, we find some curves of ana-
lytic rank 3 with nontrivial Tate—Shafarevich group. For this, we use conjec-
ture (2) and we compute L'’(E, 1) by the method of Buhler, Gross and Zagier
([Buhler, Gross and Zagier 1985]).

The first example of rank greater than 1 for which the program mwrank of Cre-
mona ([Cremona]) is not able to determine the rank completely is obtained with
m = 157. As mwrank uses a 2-descent, this suggests a non trivial 2-part in the
Tate—Shafarevich group. In order to compute the regulator, we check that the
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points
P, =[-12,151], P, =10,1] and P5; = [3,31]

form a basis for E(Q) using Siksek’s method ([Siksek 1995]). Finally, we get
|II| = 4, thus providing a nontrivial Tate—Shafarevich group for an elliptic
curve of rank 3 (assuming BSD). Other such examples are given for examples
by m = 617, 830, 856, 943, 961.

We can also obtain similar results for rank 5. In this case, the first value for
which the mwrank program does not seem to determine the rank completely is
m = 3461. Thus, this suggests a nontrivial 2-part. Indeed, we can check that
the points:

—12 3572
[0, 1], [—4, 263], [~40, 2369], [124, 7193] and { 357 5}

1697 2197

give a basis for F(Q) and so that |[III| = 4 (under BSD).
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Abstract

To obtain efficient cryptosystems based on hyperelliptic curves, we
studied genus 2 isomorphism classes of hyperelliptic curves in charac-
teristic 2. We found general and optimal form for these curves, just as
the short Weierstrass form for elliptic curves. We studied the security
and the arithmetic on their jacobian. We also rewrote and optimized
the formulas of Lange in characteristic 2, and we introduced a new
system of coordinate. Therefore, we deduced the best form of hyper-
elliptic curves of genus 2 in characteristic 2 to use in cryptography.

Key words. hyperelliptic curve cryptography, genus 2, characteristic
2, explicit formulas, security, isomorphism classes, standardization of
curves.

1 Introduction

There is no sub-exponential time algorithm to solve the discrete problem
based on abelian generic group. Elliptic curves provide the simplest example
with no better algorithm than for generic group. In 1985, Elliptic curves
cryptosystems were introduced independently by Miller [13] and Koblitz
[6]. In 1989, Koblitz [7] suggested using the jacobian of hyperelliptic curves
as a source of finite abelian groups. The main advantage is to use smaller
ground field for the same level of security. For example, a hyperelliptic curve



of genus 2 over Fgso can be used in order to have the same level of security
as an elliptic curve defined over Fyis0.

This paper deals with hyperelliptic curves of genus 2 in characteristic
2. It is organized as follows. In section 2, we recall the basic notions of
hyperelliptic curves. We refer the reader to [8] for further details and in
section 3 we proceed as in [2] and [16] to classify hyperelliptic curves. In the
case of elliptic curves (¢ = 1), one can prove that every non supersingular
curve can be transformed into a curve of the type:

y? + 2y = 2° + asa® + ae.

At this point, there is no analogous in higher genus. Such a representa-
tion is very important to define a standard for hyperelliptic curves. Some
work has already been done in this field, at least in genus 2 in [2]. Nev-
ertheless we can improve it. We suggest two types of curves suitable for
cryptography which are general and optimal in a sense that we will precise
later.

In section 4, we analyze the security of the different classes of curves
defined in the previous section. In section 5, we rewrite and optimize char-
acteristic 2 formulas of Lange, but we count multiplications of all the co-
efficients. Moreover we suggest a new system of coordinates which allows
faster scalar multiplications on jacobians. All these formulas are given in
appendix. Thanks to the results of the last two sections, we suggest a form
for equations for hyperelliptic curves of genus 2 in characteristic 2 for future
standards in cryptography.

2 Background on Hyperelliptic curves

Let Fon be an algebraic closure of the field Fon. A hyperelliptic curve C of
genus g > 1 on Fon is given by the general equation :

C:y’ + h(z)y = f(2) Q)

where h € Fan[X], is a polynomial of degree at most g, f € Fon[X] is a
monic polynomial of degree 2g + 1 and there is no singular points (z,y) €
Fon x Fan. These are the solutions satisfying simultaneously equation (G)
and the partial derivative equations h(z) = 0 and h/(x)y + f'(z) = 0.

Now, we concentrate in the genus 2 case. Let us define some objects on
these curves.
A divisor D is a formal sum of points on the hyperelliptic curve C. The



jacobian J is the group of degree 0 divisors modulo principal divisors. In
practice, we use the Mumford representation : each divisor is represented
by a pair of polynomials [u, v] such that u is a monic polynomial of degree 2,
deg v < deg u and u|f — hv —v? (these types of divisors are called reduced).

Cantor described a general algorithm (working in every genera) to add
divisors on J, see [1] for more definitions on hyperelliptic curves and details
on this algorithm. Nevertheless, his algorithm is too slow, mainly because
using ged algorithms, and uses up too much memory for restricted environ-
ments like smart cards.

To improve it in the genus 2 case, Lange following Harley [5], suggests
several explicit formulas in affine, projective and weighted projective, in [9],
[10] & [11]. Nevertheless she doesn’t count multiplications by the coefficients
of h, as with the Koblitz curves. Therefore her formulas are not general.
That’s why we suggest here to rewrite her formulas in the general case and
in the different types we define in section 2. In so doing, we optimize these
formulas. The best optimizations we obtained, are in the doubling case
which is the most important in scalar multiplication.

3 Classification of genus 2 hyperelliptic curves over Fs.
For the genus 2 case, we use the following equation

Y2 + (hox® + hyx + ho)y = 2° + faat + faa® + fox® + frz + fo.

We divide the hyperelliptic curves into three types depending on the leading
coefficient of h, following the notation of [2]:

o type I: ho # 0.
e type II: ho =0, hy # 0.
o type III: ho = hy =0, hg # 0.

Moreover, Choie and Yun prove in [2] that type I has asymptotically
between 2¢% and 4¢3 isomorphism classes (¢ = 2"), type II about 2¢? and
type III between 2q and 32¢g. Nevertheless, from these 3 types, only 2 are
interesting for a cryptosystem based on the Discrete Logarithm problem, as
Galbraith proves in [4] the following result.

Proposition 1. A characteristic 2 hyperelliptic curve is of type III if and
only if it is supersingular.



Let us first give results concerning the resolution of some simple equation
in ]FQn .

Proposition 2. Let a,b € Fon,

1. The equation 22" = b has always a solution in Fon for k > 1.
2. The equation 3 = b has always a solution in Fan if n is odd.
3. Fora# 0, 22 +ax + b= 0 has a solution in Fon iff Tr(a=2b) = 0.

4. If Tr(a=2b) = 1, the equation x> + ax + b = ta® has a solution in Fan
where t is an element of trace 1.

Remark:

e Here the Trace function is defined by Tr(x) = Z?:_ol 2%

e In 4, if n is odd, t can be chosen equal to 1 and if n is even, t is a
power of 7 in polynomial basis representation (i.e. Fan ~ Fa[r]). In
all cases, multiplication by ¢ is free.

Sketch of the proof:
1. 22 = b has always the solution z = b2""". This proves the first point.

2. &3 = b has a solution in Fon iff b° 7 = 1 where d = ged(2” — 1,3). If
nis odd, d = 1 so 22 = b has a solution.

3. This is an application of the additive form of Hilbert’s ”Satz 90”.
4. Please note that Tr(a=2(b + ta?)) = 0. O

We will now write equation for type I and type II in a minimal form, in
the sense that if the coeflicients of the equation describe the base field, the
expected number of curves is obtained (say 2¢ for type I and 2¢? for type
IT). In the following, ¢ denotes an element of trace 1 (¢t = 1 if n is odd) as
explained in the previous proposition and € an element of Fs.

Theorem 1. A characteristic 2 hyperelliptic curve of type I can always be
transformed into one of the following equations:

type Ia = y? + (2 + hyx 4+ th)y = 2° + tex + frx + fo,
type Ib = y* +x(x+ hy)y = 2° + tex* + frz + fo.



Remark:

It is possible to define only one type, but we chose to separate the case
where the polynomial h is irreducible (type Ia) and the case where it
can be factorized (type Ib) because they are mathematically different.
For example, the order of the jacobian of a type la curve will always
be divisible by two, (since there exists a divisor of order 2) whereas it
is divisible by 4 (since there exists two divisors of order 2) in type Ib
case.

This kind of observation is of course very important in cryptography
and must be taken into account if one wants to construct good curves
for future standards.

In both cases, we obtain in this way at most 2¢> isomorphism classes
of curves of type I, which was the expected number as proved in [2].

Sketch of the proof: specializing Lockhart’s formula (see [12] for details),

with

r = hiz+ A\
— B 4.2 | 12
y = hyy+ hyax® + hyBx + v

A a root of hoX? 4+ X + hy, if Tr(hohghl_2) = 0 and we obtain a
curve of type Ib.

A a root of hoX? 4 hi X + ho + th?hy ', if Tr(hohahy?) = 1 and we
obtain a curve of type Ia.

a atoot of X2+ hoX + f4 + X+ eth3 with e =Tr((f4 + A\)h3).
B=(fs+ hla)hgl.
v = (B2 + hif + a(haX> + b + ho) + fsA + fo)hy ' O

Theorem 2. If n is odd, a hyperelliptic curve of type II defined over Faon
can be transformed into the following equation :

y2 +ay = z° +f3:1:3 +ex? + fo.

Sketch of the proof: with Lockhart’s formula:

with

{ r = plr4+ A
y = ply+ptar® + pPBr +



p such as p3 = hy,

A = hohy!,

a= A+ fi,

B is a oot of X2 + hy X + fo + eh? with ¢ =Tr(f2h]?),
v=((ho+MN)B+Nfs+ X+ f1) byt O

Theorem 2°. If n is even, a hyperelliptic curve of type II defined over Fon
can be transformed into the following equation :

y? 4+ hiwy = x° + /a3 + tehia® + fo.

Remark:

To prove theorem 27, one just have to choose pu so that u* = f3 4 hia.

In theorem 2, we could have erased f3 instead of hg, choosing A before
« and so would have had the following form:

y? + (x+ ho)y = 0 +ex? + f.

This form can be useful if someone wants to implement a general form
of a hyperelliptic curve as there is no fs term in type I or type II.
Nevertheless we didn’t choose this form as we lose performance by
keeping hg in the explicit formulas.

To avoid the Weil-descent attack, n must be chosen prime, which
means that only the theorem 2 is of interest for cryptographic pur-
poses.

If n is odd (resp. even), we obtain in this way at the most 2¢? (resp.
4¢?) isomorphism classes of curves of type II, which was the expected
number as proved in [2].

If one wants to use pairings, we provide the following result for the last

type of hyperelliptic curves.

Theorem 3. A characteristic 2 hyperelliptic curve of type III can be trans-
formed into the following equation :

Y2 +y ="+ fa2® + fro +te.



Sketch of the proof: with Lockhart’s formula:

{ r = plx
y = ply+ptax® + p?fr + vy
with
e /i such as pu® = hg,
.« o= VT
o 3=+ /i
e v is aroot of X2+ hoX + fo +eh with e :'I‘r(foh52). O

Remark:

This is not the optimal form as there are between 2q and 32¢q curves of type
ITI. Nevertheless, we believe that the correct choice is to take f; = 0, but
we can’t prove it in a general way.

4 Analysis of the security of different types of curves

In the previous section, we have classified the curves of genus 2 define over
Fon. In order to use these curves in cryptography, it is very interesting
to check the security of each type of curve and to compare them. For
example, in proposition 1, we have already seen that all curves of type III
are supersingular, which means that they are weak for cryptographic use.

To compare the behavior of different curves, we computed the cardinality
of at least 10 000 curves of each type and each value of €. We use the
implementation of Kedlaya’s algorithm to compute the cardinality of the
jacobian of a curve of genus 2 [15]. We thank F. Vercauteren for allowing
us to use his implementation and for answering kindly all our questions.

We have chosen Fqys0 as ground field so that all the curves are resistant
to Weil descent attacks, see Riick in [14] for details.

We call good curves those suitable for cryptography, i.e. where there is a
divisor of prime order greater than 260
cofactor. In characteristic 2, as in the case of elliptic curves, the cardinality
cannot be prime, but we want the cofactor to be minimal (we denote it by
f). For example a nice curve with cofactor 2 means that the cardinality of
the jacobian is two times a prime.

and nice curves those with minimal



For each type of curve, we computed the rate of good curves and the
rate of nice curves. Moreover, proposition 1 states that curves of type III
are the only supersingular curves. However, this didn’t prove that curves
of type I or II are resistant to Frey-Riick attack [3] (using transfer via the
Tate-Lichtenbaum pairing) but it seems to be true in practice. In fact all
the curves we tested are resistant.

‘ H good curves ‘ nice curves ‘ minimal f ‘ curves tested ‘

Type Ia, € = 0 104 % 0.56 % 2 10 000
e=1 10 % 0.53 % 2 11 446
Type Ib, £ = 0 89 % 0.33 % 4 10 000
e=1 9.6 % 0.6 % 4 11 445
Type 1L, =0 9.6 % 0.6 % 1 20 917
e=1 109 % 1.23% 2 16 724

We note with these computations, that there are some differences be-
tween different types of curves. We already stated that the order of the
jacobian is always divisible by 2 for type Ia and by 4 for type Ib, therefore
one could hope to find more good curves of type Ia than Ib. This is in fact
the case. We can conclude that if one wants to use curves of type I, it is
better to choose type Ia because there are more good curves and moreover
the minimal cofactor is 2 instead of 4. Nevertheless, we will see in the next
section that formulas for doubling and adding in the jacobian are slightly
faster in the case of type Ib.

Concerning curves of type II, even if it was not obvious at first sight, we
have the following properties on the cardinality of the jacobian:

Proposition 3. Let C be a type II hyperelliptic curve of genus 2 defined
over Fon by the equation

y? +xy =2° + f32° + ez’ + fo
The minimal cofactor is 4 ife =0 and 2 if e = 1.
Sketch of the proof:
The divisor (0, \/%) + oo is the only one divisor of order 2 and it exists a
divisor D such that 2D = (0,1/f) 4+ oo (i.e. a divisor of order 4) if and

only if € = 0. This proves that the cardinality of the jacobian is congruent
to zero modulo 4 if e =0 and to 2 if e =1. O

In this last case, we find many of both good curves and nice curves.
From these results, it appears that, among hyperelliptic curves of genus 2 in



characteristic 2, the curves of type Il with € = 1 are the best from a security
point of view.

5 Application to jacobian scalar multiplication

We use this classification of hyperelliptic curve of genus 2, to rewrite and
even optimize formulas of Lange for mixed addition and doubling on their
jacobian. Lange uses three types of coordinates, affine [9], projective [10]
and weighted projective [11]. In these papers Lange chose the coefficients of
h in . In the last sections, we proved that we can’t always assume that.
That is why contrary to Lange we count multiplications by hg and h;.

These formulas can be found in the appendix for curves of type II which
is the most efficient. In fact the mixed addition formulas are just those
of Lange rewritten in characteristic 2. We did not rewrite formulas for
classical addition as they are also the same as Lange one’s. Nevertheless,
for doubling, our formulas are slightly different and optimized for each type
of curve. Formulas for general cases and curves of type I can be found on
the web page of the author.

Besides, we also introduced a new system of coordinates called Modified
Projective Coordinates. Based on Projective representation, we add two
coordinates Zy, Z1. So the septuple [Uy, Uy, V4, Vo, Zo, Z1, Z] stand for [2? +
Ur)Z+Uy/Z, 2>+ V1) Z+Vy/Z] and Zy = hoZ, Z1 = h1Z. The formulas for
addition are the same as for projective one’s but we gain some multiplications
in doubling. The complexities we obtained are listed in the following table.

‘ H General case ‘ type 1 ‘ type 11 ‘

Affine

Addition 256M + 1 26M + 1 | 24M +1
Doubling 2T™ + 1 26M + 1 | 18M +1
Projective (Ia) | (Ib)

Mixed Addition 45M 45M | 44M 42M
Doubling 45M 44M | 41M 31M
Modified Projective

Mixed Addition 45M 45M | 44M 42M
Doubling 43M 42M | 40M 31M
Weighted Projective

Mixed Addition 42M 42M | 41M 40M
Doubling 46M 45M | 42M 27TM




We see we gain at least one multiplication in each system of coordi-
nates for doubling, and of course more for each type of curve. The best
performance was produced using type II.

We also noticed the weighted projective coordinates are only interesting
for additions in the general case and type I. Thus, the use of projective and
modified projective coordinates is more interesting if we use scalar multipli-
cation methods such as sliding window (since it uses much more doubling
than adding). Nevertheless, weighted projective coordinates are still com-
petitive in type II or if one has to use doubling and adding at each step,
for instance to resist against power analysis in restricted environments like
smart cards. It can also be used with algorithms like BGMW, where dou-
blings are pre-computed.

For example in type I, what we gain in addition by using weighted projective
coordinates instead of modified projective, we lose in doubling.

Besides, one has to keep in mind that weighted projective coordinates
uses up more memory, which has to be taken into account by anyone who
wants to implement in restricted environments.

6 Conclusion

We studied genus 2 isomorphism classes of curves in characteristic 2. They
are classified in three types. Type III curves are supersingular. We focused
our effort on type I and type II and found optimal forms for these curves,
just as the short Weierstrass form. For these types of curves we studied the
security and the arithmetic on their jacobian.

In addition, we rewrote and optimized formulas of Lange in characteristic
2, and we introduced a new system of coordinate.

We noticed that both from the arithmetic and the security point of view,
curves of the form

Y2 +ay =2’ + fz2® + 22 + fo

are the best for cryptographic use.
Hence we recommend this type for future standards.
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Appendix: formulas for hyperelliptic curves over
Fon of type II: y? + 2y = 2° + f3a® +ca® + f

Affine case

Affine Doubling with type II:
v 4+ay=a°+ f2a® +ex®+ fo withe € Fy

Input D = ['Uq,’lLo,Ul,UO]
Output 2D = [uf, ug, v1, v0)
Step Operations Cost
1 resultant r:
T = Uo
2 compute almost inverse:

1 =1nv1, u1 = invo

3 compute k: 2S, 1M
ki =uf+ fs
ko = urks + o3 +v1 4 ¢

4 compute s = kinv mod u: Karatsuba is useless now 1M
s1 = ko +uik:
So = kluo
for s1 #0
5 precomputation 11, 1S, 5M
to = (uos1)71, t1 = uoto, tz = S%to, t3 = u0t1, So = Sotl

6 compute [ 2M
lo = u1 + S0, l1 = w150 + uo, lo = uoso

7 compute u’ 25
uh = 52+ ts
up =32
8 compute v’ 4AM

to =ui(l2 +ui) +up+ 1
’Ui = totg +v1 +1

to = ué(lg + u’l) + o

’U(/) = tato + vo

| total | | 11, 5S, 13M
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Projective case

Projective Doubling with type II:
v 4ay=a5+ fax® +ex® + fo withe € Fy
Input D= [U1,U0,V1,V0,Z]
Output 2D = U1, U, Vi, Vi, Z']
Step Operations Cost

1 precomputation and resultant r: 2S, IM
to= 22, t, = U}
r = U()Z

2 compute almost inverse: useless
invg =U1Z, invy = Z

3 compute k: 1M
ki1 = fato + t1,
ko = Urk1 + Z(eto + Vi(Z + V1))

4 compute s = kinv mod u: Karatsuba is useless now 3M
t2 = kol
S1 = lf()Z
so = kir + to
for s1 #0

5 precomputation and compute I ™
to = to?"7 T = toSl, t1 = 51]{:0, t3 = U()k’()
lo = sita, lo = sot3, 11 = (t2 +¢3)(so + s1) + 12+ lo

6 compute U’ 25
Uy=st+r
Ul =143

7 precomputation: 1S, 6M
lo = 1ls + sps1 + U{, S1 = S%, to =1t
to = Ubla + los1, t1 = Uila + s1(Us +11)

8 adjust: 3M
7' = s1r, Uy = Uir, U) = Ur

9 compute V' 2M
Vo =to+t2Vo
Vi=ti+tVi+ 2

| total | | 5S, 26M

Modified projective coordinates, are obviously useless in this case.
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Weighted projective case

Weighted projective Mixed Addition with type II:
v 4ay=a5+ fax® +ex® + fo  withe € Fa

Input D1 = [u11, w10, V11, V10], Dy = [Ua1, Uso, Va1, Voo, Z2o, Za1, 220, 221, 222, Z23]
Output D1+ Do = [U1,Up, VI, Vg, Zb, Z1, 24, 21, 75, 23]
Step Operations Cost

1 precomputation and resultant r: 18, ™™
t1 = ui1220 + Ua1, t2 = u10220 + Uz0, to = u11t1 + t2
T = uiot] + tato, t3 = rzeo, Zi = t3Za0

2 compute almost inverse: nothing to do
t1 = ’L‘TL’U1, t() = ’in’l)o

3 compute almost s: ™
ta = Viozas + Vao, t5 = Vii1za3 + Vo,
s0 = (tato) + u1o(tst1)
51 = (to 4 t1)(ta + t5) + (t2to) + (tat1)(1 + u11)
for s1 #0

4 precomputation: 4S, 6M
Z = 81720, to = 181, t3 = 13, ta = s0Z20, 50 = 5051, 51 = 51,
2h= 26, A =27, b = 247, 2 = Zh2h

5 compute [ 3M
la = s1u21, lo = sou20, l1 = (so + s1)(u21 + u20) + lo + l2

6 compute U’ 18, 3M
ts = t151
Ul =13 +uaits + site + 25 + tits
Ul=ts+2

7 compute V' SM
t1 =1+ Z(l)t4 + U{, to = t1U(/), ts = tlU{
Vi =ts+ zp(l1 + toVar + Up + 25)
Vo =ta+ 20(l1 + toVao)

total 6S, 34M
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Weighted projective Doubling with type II:
v 4+ay=a°+ f2a® +ex?+ fo  withe € Fy

Input D:[U1,Uo,Vl,Vo,ZQ,Z1,Z(),Z172272’3]
Output 2D = UL, Uy, VI, Vi, Z4, Z1, 20, 21, 25, 23]
Step Operations Cost
1 resultant r: 3M

/
T = Z()U()7 to =Tz2, Z1 = t()ZQ

2 compute almost inverse: useless

zo = tnw1, 2oU1 = inwvg

3 compute k: 2S, 4M
to = (v/fzzo + U1)? with precomputation of /f3
k1 = toZl

ko =Uik1 + Vl(Vl +23) +€Z§

4 compute s = kinv mod u: Karatsuba is useless now 2M
S1 = /ﬂo
so = s1U1 + kir
for s1 #0

5 precomputation 3S, 4M

7 / 2 ’
Z() = S1, t() = tlZo, T = S0, So = S()ZO

/ 12 ’ 12 s 1zl ’ 1
20 =20, 21 =21, 20 = ZoZ, 23 = 20%2

6 compute [ 3M
lo = Uiz, lo = Upso, l1 = (so + 20)(Ur + Uo) + 1o + l2
lo =12+ so
7 compute U’
Ul=r+ 2,
Uil =2
8 compute V' 6M

t1 = (l2 + U1)Up

Vo = t1 4+ zp(lo + toVo)

t1 = (Io + Up)U;

Vi =t1+ z(li + toVi + Up) + 23
| total | | 5S, 22M |

Remark: for the general case we choose the following form:
Y2+ (haa® + haz + ho)y = &° + fax’ + f32® + fox® + frx + fo with he, fa, f3, fo € Fa

as for type I, there is no f2 or f3 and fi € Fo, and for type II fa € Fa, there is no fi and
following the remark of theorem 2 we can also erase f3.

The formulas are mostly the same of T. Lange [9], [10], [11], but can be found in the web
page of the author.
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Abstract. Using powerful tools on genus 2 curves like the Kummer
variety, we generalize the Montgomery method for scalar multiplication
to the jacobian of these curves. Previously this method was only known
for elliptic curves. We obtain an algorithm that is competitive compared
to the usual methods of scalar multiplication and that has additional
properties such as resistance to timings attacks. This algorithm has very
important applications in cryptography using hyperelliptic curves and
more particularly for people interested in cryptography on smart cards.

1 Introduction

In this paper we are dealing with the scalar multiplication on the jacobian of
curves defined over a field of large characteristic. One of the motivations is that
this operation is the main part in cryptography based on the jacobian of curves
which is becoming more and more popular. For elliptic curves, Montgomery [24]
developed a method for certain curves (which are said to be in the Montgomery
form) which allows faster scalar multiplication than the usual methods of expo-
nentiation for groups. This method has the extra advantage that it is resistant to
side-channel attacks which is very interesting for people who want to use elliptic
curves in cryptography on smart cards. The aim of this paper is the general-
ization of this method to genus 2 curves. In the following, K will denote a field
of characteristic k > 7. For cryptographic application, the base field we have in
mind is IF',, where p is prime.

2 The Montgomery Method for Scalar Multiplication on
Elliptic Curves

Let E be an elliptic curve defined over K by the equation

y2 :m3+a4x+a6 .

Every elliptic curve defined over K is isomorphic to a curve given by such an
equation which is called the short Weierstrass form. The set E(K) of the points
P = (z,y) verifying this equation with z and y in K, forms (together with the
point at infinity) a group which will be denoted additively. The problem we are
interested in is the following :



Scalar multiplication
Given a point P € E(K) and an integer n, compute nP as fast as possible.

Of course there are a lot of very old methods to do this, such as the classical
double and add algorithm and its variants (like the sliding window method). To
improve these algorithms one can choose other systems of coordinates (i.e. other
means to represent points on the curve) [4]. For example, the best-known coor-
dinates are projective ones. They are obtained by introducing a new coordinate,
usually called Z, which is the lem of the denominators of x and y. Of course, z
and y are replaced by X and Y such that x = X/Z and y = Y/Z. This choice
of coordinates allows to avoid inversions, which are very costly operations. In
the following, we will work with projective coordinates for reasons of efficiency.
Nevertheless, the same work can be done with other systems of coordinates. The
algorithm we will present here is slightly different from the usual exponentia-
tion algorithms in the sense that the purpose is not to minimize the number of
operations but rather the cost of each operation.

2.1 The Algorithm

The original idea of Montgomery [24] was to avoid the computation of the y-
coordinate, so that one can hope that basic operations (doubling and adding)
are easier to compute. Since for any z-coordinate, there are two corresponding
points on the curve (z,y) and (z, —y), this restriction is equivalent to identifying
a point on the curve and its opposite. When trying to add two points +P and
+@, one cannot decide if the result obtained is =(P + @) as required or +(P —
Q). Nevertheless, some operations remain possible like doubling since it is not
difficult to decide if the result is 2P or the point at infinity. Unfortunately,
doubling is not sufficient for a complete scalar multiplication: one really needs
to perform some additions. In fact additions are possible if the difference P — Q
is known. The principle of the computation of nP is to use pairs of consecutive
powers of P, so that the difference between the two components of the pair is
always known and equals to P. The algorithm for scalar multiplication is as
follows:

Algorithm 1. Montgomery scalar multiplication algorithm on elliptic curves
Input : Pe E(K) andn € Z.
Output : x© and z-coordinate of nP.
Step 1. Initialize Q = (Q1,Q2) = (O, P) where O is the point at infinity.
Step 2. If the bit of n is 0, Q = (2Q1,Q1 + Q2).
Step 3. If the bit of n is 1, Q = (Q1 + Q2,2Q2).
Step 4. After doing that for each bit of n, return Q1.
In fact, at each step, @ = (kP,(k + 1)P) for some k and we compute either
(2kP, (2k + 1)P) or ((2k 4+ 1)P, (2k + 2)P) in the following step, so that we

always have Q3 — Q1 = P.
Let us note that contrary to double and add or sliding window methods, both



an addition and a doubling are done for each bit of the exponent. It is the price
to be paid to avoid the computation of the y-coordinate but we hope that the
gain obtained thanks to this restriction will be sufficient to compensate for the
large number of operations. That is the reason why the Montgomery form for
elliptic curves has been introduced. The interested reader will find more details
for this section in [24] or [26].

2.2 The Montgomery Form

An elliptic curve E is transformable into the Montgomery form if it is isomorphic
to a curve given by an equation of the type

E,:By?> =2+ A2’ +x .

It is easy to prove ([26]) that E is transformable in the Montgomery form if and
only if

— the polynomial 22 + a4z + ag has at least one root « in K,
— the number 302 + a4 is a square in K.

Thus all elliptic curves are not transformable into the Montgomery form. Nev-
ertheless, since the two coefficients can be chosen arbitrarily in K, the number
of curves in such a form is of the same order as for general elliptic curves (for
example O(p?) if K = IF)).

Please note that the first condition means that there is at least one 2-torsion
point on the curve F, so that the cardinality of the curve is even.

2.3 Formulas for Doubling and Adding

Let us now describe the arithmetic of curves in the Montgomery form.

Proposition 1. Let K be a field of characteristic k # 2,3 and let E,, be an
elliptic curve defined over K in the Montgomery form. Let P = (X, Y}, Zp) and
Q = (X, Yy, Z,) € Ep(K) be given in projective coordinates. Assume that the
difference P — Q = (x,y) is known in affine coordinates. Then we obtain the X
and Z-coordinates for P+ Q and 2P by the following formulas :

Xptq = ((Xp - Zp)(Xq + Zq) + (Xp + Zp)(Xq - Zq))2 )

Zprqg =2 ((Xp — Zp)(Xq + Zg) — (Xp + Zp)(Xg — Zq))2 )

4XpZy = (Xp + Zp)2 - (Xp - Zp)2 )
Xop = (Xp + Zp)2(Xp - Zp)2 )

A+2
Zop = 4XpZyp <(Xp - Zp)2 + T4XPZP>



In this way, both an addition and a doubling take 3 multiplications and 2 squares
each so that the cost of this algorithm is about 10|n|2 multiplications where |n|2
denotes the number of bits of n.

In the best case with usual scalar multiplication, one needs 4 multiplications
and 4 squaring just for doubling and more for adding. Thus, for curves in the
Montgomery form, this method is interesting. In practice, the gain obtained is
about 10 percent (compared in [6] for 192 bits with a sliding window method of
size 4 after a Koyama-Tsuruoka recoding [18] and using mixed jacobian modified
coordinates [4]).

2.4 General Case

We are now interested in a Montgomery method for scalar multiplication for
elliptic curves which cannot be transformed into the Montgomery form. In fact
the method for scalar multiplication is the same, we just need to have formulas
for doubling and adding. These formulas can be found in [1], [10] or [13]. Let us
recall them.

Proposition 2. Let K be a field of characteristic k # 2,3 and let E be an
elliptic curve defined over K as described in Sect. 2. Let P = (X,,Y,, Z,) and
Q = (X,,Y,,Z,) € E(K) be given in projective coordinates. Assume that the
difference P — Q = (x,y) is known in affine coordinates. Then we obtain the X
and Z-coordinates for P+ Q and 2P by the following formulas :

Xptq = —4aZpZoy(XpZg + XqZp) + (XpXq — a4Zqu)2 ’
Zprqg =2(XpZg — XqZp)

Xop = (X2 — as22)" — 846X, 22

Zop =4Zy (X} + asXpZ] + a6 Z;)

Addition can be evaluated in 10 multiplications and doubling in 9. Thus, in this
way, the scalar multiplication can be performed in about 19|n|2 multiplications
in the base field. This method can even be optimized in most cases to 17|n|y mul-
tiplications [7]. Of course, in this case, the algorithm is not interesting any more
compared with the usual methods. However, it can be useful in some situations
as we will see in the next section.

2.5 Use and Interest in Cryptography

In this section, we are dealing with elliptic curve cryptography. Elliptic curve
cryptosystems were simultaneously introduced by Koblitz [14] and Miller [23].
They are becoming more and more popular because the key length can be
chosen smaller than with RSA cryptosystems for the same level of security.
This small key size is especially attractive for small cryptographic devices like
smart cards. In all schemes (such as encryption/decryption or signature gener-
ation/verification) the dominant operation is the scalar multiplication of some



point on the elliptic curve. Hence, the efficiency of this scalar multiplication
is central in elliptic curve cryptography, and more generally in cryptography
based on the discrete logarithm problem. In the case where the curve is in the
Montgomery form, we saw in the previous sections that the Montgomery scalar
multiplication method allows to compute the multiple of any given point on the
curve faster than with the usual scalar multiplication algorithms. Unfortunately,
we also saw that some elliptic curves cannot be transformed into the Mont-
gomery form. This is for example the case for most of the standards. The reason
is really simple: any curve which can be transformed in the Montgomery form
has a 2-torsion point so that its cardinality is divisible by 2 and this is not ideal
for cryptographic use since we prefer to use curves with prime order.

In the general case, the Montgomery method can also be applied but is much
more time-consuming. Indeed, we need to perform both an addition and a dou-
bling for each bit of the exponent. This is not the case for example in the classical
double and add algorithm where we only have to perform an addition every two
bits on average (and even fewer with the sliding window method). Nevertheless,
this particularity allows to resist to side-channel attacks on smart cards which
is not the case with other algorithms.

This kind of attacks uses observations like timings [16], power consumption [17]
or electromagnetic radiation [28]. They are based on the fact that addition and
doubling are two different operations. In this situation, it is easy to decide, for
each bit of the exponent, if the algorithm (double and add for example) is per-
forming either a doubling (if the bit is 0) or a doubling and an addition (if the
bit is 1). Hence, it is easy to recover the whole exponent (which was the secret
key). Of course, various countermeasures have been proposed to secure the el-
liptic curve scalar multiplication against side-channel attacks [5]. For example,
if one wants to protect a double and add algorithm, one can perform extra, use-
less, additions when the bit of the exponent is 0. In this way, for each bit of
the exponent we perform both an addition and a doubling so that bits of the
exponent are indistinguishable, but this is of course time consuming.

With the Montgomery scalar multiplication method, we always have to perform
both an addition and a doubling for each bit of the exponent, so that this method
is resistant against side-channel attacks. Therefore it is always interesting even
with 19 multiplications at each step for general curves.

Of course elliptic curves in the Montgomery form are very attractive for people
interested in elliptic curve cryptosystems on smart cards since, on the one hand,
the scalar multiplication method is the most efficient one known to date and, on
the other hand, it is resistant to side-channel attacks. That is one of the reasons
why we want to generalize this method to hyperelliptic curves of genus 2.
Finally, for some cryptosystems, the z-coordinate of nP is sufficient but others,
like the elliptic curve signature scheme ECDSA, require the y-coordinates. To
recover it, we use the following result from [27] in the case of a curve in the
Montgomery form.



Proposition 3. Suppose that R = P + Q with P = (x1,y1), Q = (2',y') and
R = (z%,yT). Then, if y1 # 0, one has
(2’1 + 1) (2" + 21 + 24) — 2A — (2/ — 21)%2x™

2By,

erf

For general curves, it is also possible to recover the y-coordinate ([1]).

In order to generalize this method to genus 2 curves, let us first recall some
lowbrow background on these curves.

3 Background on Genus 2 Curves

First, let us note that every genus 2 curve is hyperelliptic, so that, in the follow-
ing we will not state that the curves we are interested in are hyperelliptic.
Moreover, we will concentrate on imaginary hyperelliptic curves. Since the char-
acteristic of the field K has been chosen different from 2 and 5, the hyperelliptic
curves we are interested in are given by an equation of the form

C : y2 = f(.’L‘) = 3?5 + f3l‘3 + f2$2 + fl.%' + fo with fo, fl,fg,f3 cK . (1)

Contrary to elliptic curves, the set of points on genus 2 curves does not form
a group. Thus, one can define the jacobian of C, denoted J(C) which is the
quotient of the group of divisors of degree 0 by the principal divisors. In the case
of elliptic curves, this jacobian is isomorphic to the curve itself. More details on
the definition of the jacobian can be found in [15]. Our purpose in this paper is
to give an algorithm for scalar multiplication in this jacobian. There are mainly
two means to represent elements in the jacobian. The first one is a consequence
of the Riemann-Roch theorem and says that a divisor class can be represented
by a couple of points (P; = (z1,y1) and P> = (x2,y2)) on the curve which are
conjugated over some quadratic extension of the base field K. The second one
makes explicit the correspondence of ideal classes and divisor classes and was
introduced by Mumford [25]:

Theorem 1. Let the function field be given via the irreducible polynomial y? =
f(z) where f € K[z] and deg(f)=5. Fach non trivial ideal class over K can be
represented via a unique ideal generated by u(x) and y—v(x), u,v € K[z| , where
u is monic, deg(v) <deg(u) <2 and u|(v? — f).

The correspondence between these representations is that u(x) = (z—2x1)(z—x2)
and v(x;) = y; with appropriate multiplicities. This Mumford representation was
used by Cantor to develop his algorithm to compute the group law on jacobians
of curves [2]. Several researchers such as Harley [12], or more recently Lange [19],
[20], [21] made explicit the steps of Cantor’s Algorithm and list the operations
one really needs to perform. They obtained explicit formulas for the group law
on the jacobian.

The basic objects are now defined and we can give an analog for genus 2 curves
of the Montgomery form for elliptic curves.



4 A Montgomery-like Form for Genus 2 Curves

4.1 Definition

In the following, we will say that a curve C is transformable into Montgomery-like
form if it is isomorphic to a curve given by an equation of the type

By? =2° + faz* + f32° + foa® +x . (2)

It is easy to prove that a curve C as defined in Sect. 3 is transformable into
Montgomery-like form if and only if

— the polynomial f(z) has at least one root a in K.
— the number f'(a) is a fourth power in K.

Thus, as in the case of elliptic curves, not all the curves are transformable into
the Montgomery-like form. Nevertheless, since the four coefficients can be chosen
arbitrarily in K, the number of such curves is about the same as for general genus
2 curves (O(p?) if K =1F),).

Please note that the first condition means that there is at least one 2-torsion
element in the jacobian variety of the curve C, so that the cardinality of the
jacobian is even.

4.2 The Kummer Surface

With elliptic curves, the main idea of the Montgomery method was to avoid the
computation of the y-coordinate. At first sight an analog for genus 2 curves would
be to avoid the computation of the polynomial v in the Mumford representation
and keep only w. But this is not satisfying since it has no mathematical sense.
In fact, with elliptic curves, working only with the z-coordinate means that we
identify a point and its opposite. The analog for genus 2 curves is called the
Kummer surface, where a divisor and its opposite are identified. The Kummer
surface is a quartic surface in IP®. We give here the definition of the Kummer
surface and its properties without demonstrations for curves in Montgomery-like
form. They were obtained using the same method as that in the book of Cassels
and Flynn on genus 2 curves ([3] or [8]). The Kummer surface is the image of
the map

ko J(K) — P3(K)

FQ(.Z‘l, .1‘2) — 2By1y2)

{($1,y1)7 (x27y2)} = (1,.1‘1 + %2, 2122, (;L'l — 1'2)2

with
Fo(z1,22) = (21 + 22) + 2for122 + f3(21 + 22) 7172 + 222323 + (21 + 22) 2323 .

In the following, for any divisor A € J(C)), we will denote
K(A) = (k1(A), k2(A), k3 (A), ka(A)) -



More precisely, the Kummer surface is the projective locus given by an equation
K of degree four in the first three variables and of degree two in the last one.
The exact equation can be found online [9]. In passing from the jacobian to the
Kummer surface, we have lost the group structure (as was already the case with
elliptic curves) but traces of it remain. For example, it is possible to double on
the Kummer surface.

Nevertheless, for general divisors A and B, we cannot determine the values of
the k;(A + B) from the values of the k;(A) and k;(B) since the latter do not
distinguish between £.A4 and £5, and so not between A+ 5. However the values
of the k;(A+ B)k; (A — B) + ki (A — B)k;(A+ B) are well determined. We have

Theorem 2. There are explicit polynomials p;; biquadratic in the k;(A), ki(B)
such that projectively

ki(A+ B)k;(A—B)+ ki(A—B)kj(A+ B) = vi;(A,B) . (3)

Using these biquadratic forms, we can easily compute the k;(A+ B) if the k;(A—
B) are known. We can also compute the k;(2.4) by puting A = B.

4.3 Formulas for Adding

Proposition 4. Let K be a field of characteristic k # 2,3 and let C be a curve
of genus 2 defined over K in the Montgomery form as defined in Sect. 4. Let KC
denote the Kummer surface of C. Let A and B be two divisors on the jacobian of
C, R(A) = (kl (A)7 kQ(A)v k3(~A)7 k4(-’4)) and ’%(B) = (kl(B)a kQ(B)v k3(B)a k4(8))
their images in the Kummer surface. Assume that the difference A— B is known
and that the last coordinate of its image in the Kummer surface is one (remember
we are in IP*(K)). Then we obtain the Kummer coordinates for A + B by the
following formulas :

ki(A+ B) = p11(A,B) ,

ko(A+ B) = 2 (p12(A, B) — ki1 (A + B)kz(A - B))
k3(A+ B) = ki(A - B)pss (A, B) ,

ka(A+ B) = 2(p14(A, B) — k1 (A + B)ky(A — B))

where the y;; are the biquadratic forms described in Sect. 4.2.

The expressions of the ¢;;(A+B) are available by anonymous ftp [9] but require a
large number of operations in the base field to be computed. The main difficulty
is to find expressions which require the least possible multiplications in K. We
now give more precisely these expressions for the ¢;; we are interested in. For
clarity we will denote x(A) = (k1, k2, ks, ka) and (B) = (11, 12,13, 14).

011 (A, B) = ((kaly — k1ls) + (kals — ksla))?
©12(A, B) = ((kals + k3l2) + (kila + kalh))(f3(kils + ksly) + (kals + kalo)) +
2(k1ls + k3ly)(fo(k1ls 4 ksly) + (kila + koly) — (ksls + kals)) +



2fa(k1ly + kaly) (kals + ksla)
©33(A, B) = ((ksls — kals) + (kily — k2l1))?
14(A, B) = (k1ly — kals)(f3((k1ls + kalr) — (k2ls + ksla)) +
2((knls + kaly) — (kala + kals)) +
falkaly + kolo) + 2f4(kily — ksl3)) +
(kaly — kaly)((kols + kala) — (kils + kaly) — fa(kily + ksls)) -

4.4 Formulas for Doubling

Proposition 5. Let K be a field of characteristic k # 2,3 and let C be a curve
of genus 2 defined over K in the Montgomery form as defined in Sect. 4. Let K
denote the Kummer surface of C. Let also A be a divisor on the jacobian of C
and k(A) = (k1, ke, k3, kq) its image in the Kummer surface. Then we obtain the
Kummer coordinates for 2A (k(2A) = 01, 62,03, d4) by the following formulas :

61 =2¢p14(A,A) ,

d2 = 2924 (A, A) +2f3 K(A)
03 = 2p34(A, A)

01 = paa(A, A) +2K(A) ,

where the @;; are the biquadratic forms described in Sect. 4.2 and K is the
equation of the Kummer surface also described in Sect. 4.2 and such that K (A) =
0.

This is just a consequence of Theorem 2. Let us note that in do and d4 we
added a multiple of the equation of the Kummer surface in order to simplify the
expressions as much as possible. We give now more precisely these expressions
for the §;.

8(ki — k3)(fa(kT — k3) + 2(ki1ks — kaka)) +
8(k1ka — koks) (k3 — k3 + fa(kika — koks) + fa(kf — k3))
6o = 8(k? + k2 — fakiks — 3koky)(k3 + k2 — fa(k? + k2) + 4k1ks) +
16(koky 4 fak1kls)(fa(kika + kaks) 4+ 2(k3 4+ k2) + fo(kiks + koks)) +
32k1k3(4koka + fo(kika + kska) + (f3 + f2)kiks + 8fa(kiks + koks))
03 = 8(ki — k3)(fa (kT — k3) + 2(k1ka — koks) + fa(kiks — kska)) +
8(ksky — kiko) (k2 — k3 + fa(kskq — kiks)) |
04 = (k5 + k3)((k3 + ki) — 2f3(ki + k3) — 8kiks) +
(k7 + k3)(fakiks + fa(kiky + koks) + 2kaka + fo(kiks + kska) +
(f3 = 4fofa) (KT + k3)) — 8 fafalkiks)?



5 The Montgomery Scalar Multiplication on Genus 2
Curves in Montgomery-like Form

5.1 Algorithm

We give here an analog for genus 2 curves of the Montgomery method for scalar
multiplication on elliptic curves described in Sect. 2.1. In the case of elliptic
curves, Montgomery’s method [24] avoids the computation of the y-coordinate.
We saw that an equivalent method in genus 2 was to work on the Kummer
surface. Of course we have the same restriction in the case of genus 2 curves,
namely that it is not possible to add two divisors except if their difference is
known. If D is some divisor, recalling that our goal is the computation of nD
for some integer n, the principle is, as it was already the case for elliptic curves,
to use pairs of consecutive powers of D, so that the difference between the two
components of the pair is always known and equal to D. The algorithm for scalar
multiplication is as follows:

Algorithm 2. Montgomery scalar multiplication algorithm for genus 2 curves
Input : D e J(K) andn € Z.
Output : k(nD), the image in the Kummer surface of nD.

Step 1. Initialize (A, B) = ((0,0,0,1), (D)) where (0,0,0,1) is the image
in the Kummer surface of the neutral element on J(C).

Step 2. If the bit of n is 0, (A,B) = (24, A+ B).
Step 3. If the bit of n is 1, (A, B) = (A+ B, 2B).
Step 4. After doing that for each bit of n, return A.

Note that, at each step, we always have B — A = k(D) so that the addition of
A and B is possible.

5.2 Number of Operations

At each step of the algorithm, we perform both an addition and a doubling,
hence we just have to count the number of operations required for each of them.
In the following, M will denote a multiplication in K and S a squaring.

Table 1. Addition of A and B in K(C) if A — B is known

expressions operations
precomputations
{kilj}i,j:I.A 16M
®11 (.A, B) S
P12 (.A, B) 6M
¥33 (.A, B) S
¢14(A, B) 6M
k(A + B) 3M
total 31M + 25




Remark 1. The 31 multiplications include 7 multiplications by coefficients of the

curve.

Table 2. Doubling of A in K(C)

expressions operations
precomputations
{kik;}, =14 6M + 4S5
3.(A, B) 50
02(A, B) 11M
d3(A, B) SM
04(A, B) SM
total 31M + 55

Remark 2. The 31 multiplications include 16 multiplications by coefficients of
the curve. Moreover the multiplications fskiks, f3(k? +k3), fa(k1ks + koks) and
fa(k1ka + kskyq) are not counted in d4 since they were already computed in ds.
Finally, we of course assumed that fof, f3—4f2f4 and f3+ f7 were precomputed.

Hence, on a curve in the Montgomery form as in (2), the scalar multiplication us-
ing the Montgomery method requires 69|n|2 base field multiplications (assuming
that a squaring is a multiplication), where |n|2 is the number of bits of n.

5.3 Comparison with Usual Algorithms for Scalar Multiplication

To date, the best algorithms for scalar multiplication on genus 2 curves defined
over a field of odd characteristic are obtained by using mixed weighted projective
coordinates [21]. In this case, Lange needs 41 multiplications both for a mixed
addition and for a doubling. Hence our formulas requires fewer base field oper-
ations. But, in the Montgomery algorithm, we must perform both an addition
and a doubling for each bit of the exponent whereas one can use efficient algo-
rithms (like the sliding window method) with Lange’s formulas. Nevertheless,
this algorithm is still interesting for many reasons.

— As was the case for elliptic curves and as explained in Sect. 2.5, the Mont-
gomery algorithm is resistant to side-channel attacks, contrary to other al-
gorithms for scalar multiplications. For this reason it will be of interest to
people who need to implement hyperelliptic curves protocols on smart cards
or systems sensitive to side-channel attacks. For example, if one wants to
make safe algorithms using mixed weighted projective coordinates, one needs
to perform an extra addition when the bit of the exponent is one. In this
case, for each bit of the exponent, 82 base field operations are required and
with only 69, our algorithm allows a gain of 16 percent, which is significant.

— This algorithm is very easy to implement, there are no precomputations
(as in the sliding window method) and an element on the Kummer surface
requires only 4 base field elements whereas weighted projective coordinates
require 8 of them so that it is also interesting in terms of memory usage.



This last remark will be an advantage for constrained environments like
smart cards.

— It is very dependent of the coefficients of the curve. Indeed there are 23
multiplications by these coefficients but only 2 in Lange’s formulas. Hence a
good choice of the coefficients of the curve certainly allows better timings.
This is the subject of the following section.

5.4 Some Special Cases

In order to decrease the number of base field operations for our algorithm, certain
choices of coefficients of the curve are better to use. For example there are 6
multiplications by f3 in the formulas given in Sects. 4.3 and 4.4 so that, if one
chooses f3 = 0 or 1, the total amount of multiplications necessary for each bit of
the exponent is 63 instead of 69. In the following table, we summarize the gain
obtained in each operation. Let us note that there is no gain for the calculation
of 11, ¢33 and precomputations.

Table 3. Gain obtained if ...

fo=0] fy small| f3 = 0 or small | f = 0] f4 small
P12 1 1 1 2 1
P14 2 2 1 1 1
01 1 1 1 1 1
02 2 2 2 2 2
03 1 1 1 1 1
04 2 1 0 2 1
total| 9 8 6 9 7

Remark 3. If two of these conditions on the coeflicients are satisfied the gain
obtained is just the sum of the gains.

Of course this kind of restriction implies that fewer curves are taken into account.
For example, if K = I, and f3 = 0, one can only choose three coefficients in IF,,
(namely f2, f4 and B) so that the number of such curves is O(p?). Thus we lose
in generality. However, in cryptography, one only needs to find a curve such that
the order of its jacobian is divisible by a huge prime number. For this, one needs
enough choices of curves in order to be able to find a curve with this property
and O(p®) choices are of course widely sufficient.

Let us now examine more precisely a particular case and compare our algorithm
to usual ones. Let C be a genus 2 curve defined over K by an equation of the
form

By? =2° + fzx® +ex? +xwithe =0or +1and Band fs c K . (4)

There are O(p?) curves in this form (which is sufficient to find one of these
with nice properties for use in cryptography). Here, our algorithm of scalar
multiplication requires 52 multiplications for each bit of the exponent whereas
with mixed weighted projective coordinates,



— a sliding window method with window size equal to 4 requires in average 48
multiplications,

— a classical double and add requires 61 multiplications on average,

— a side-channel attack resistant double and add requires 81 multiplications.

Thus, our algorithm is 15 percent faster than a double and add, not so far from
the sliding window method (around 7 percent) and much more efficient if one
wants the operation to be resistant to side-channel attacks. Indeed, in this case,
we obtain a gain of 36 percent. Of course one can even be faster than the sliding
window method by choosing a small coefficient f3 but the number of such curves
becomes small.

Remark 4. Another means to accelerate this algorithm would be to choose fs,
f3 and f4 one word long. For example, on a 32 bits processor, if we are working
on some finite field of cryptographic size for genus 2 curves, a multiplication
of a coefficient of the curve and an element of the base field is about three
times faster than the usual multiplication in the base field. Hence, as there are
23 multiplications by coefficients of the curve, our algorithm will require the
equivalent of 53 multiplications, which is not so bad.

5.5 Examples

In this section, the base field is the prime field Fgso 13 (so that cryptosystems
based on genus 2 curves defined over this field have the same security level than
those based on elliptic curves defined over some 160 bits prime field). Let Cy, Co
and C3 be the genus 2 curves respectively defined by the equations
44294637780422381596577 y* = 2° + 27193747657561668783534

+ 29755922098575219239037 3

+ 76047862040141126737826 22 + = |
10377931047456722522292 % = 2° 4 77304198867988157865677 2> + 2% + = |
69418837068442493864220 2 = 2° + 2° +z .

We compared our algorithm on these curves with a sliding window of size 4, a
classical double and add and a double and always add (used to resist against
side-channel attacks). For these three algorithms, we of course always used the
weighted projective coordinates as in [21] which are the more efficient ones.
In the following table, we provide the timings obtained using GMP 4.1.2 on a
Pentium IV 3.06 GHz. We carried out 1000 scalar multiplications in each case
with various divisors and 160 bits exponents.

Table 4. Timings

C1 Ca Cs
Sliding window 134 ms | 13.3 ms | 12.9 ms
Double and add 16 ms 16 ms | 15.5 ms

Double and always add | 21.5 ms | 21.5 ms | 21 ms
Montgomery method | 18.3 ms | 13.6 ms | 11.9 ms




6 Conclusion and Prospects

Thanks to the theory of the Kummer surface of a hyperelliptic curve of genus
2, we have generalized to genus 2 curves the method of Montgomery for scalar
multiplication on elliptic curves. As Montgomery does for elliptic curves, we re-
strict to curves transformable into Montgomery-like form. However, there are no
theoretical obstructions to generalize this method to all genus 2 curves. Indeed
Propositions 4.3 and 4.4 remain valid but the total amount of multiplications to
compute the biquadratic forms is really huge so that this method is not com-
petitive with the classical ones. This is not so surprising since it was already the
case for elliptic curves.

In fact, for people interested in cryptography, this restriction is not very impor-
tant since the number of choices of curves remains largely the same. The only
significant restriction is that the order of the jacobian of such curves is even and
then cannot be prime. But working with a jacobian whose order is twice a prime
is not less efficient than working with a prime order.

For elliptic curves, the standards are not transformable into the Montgomery
form because of this restriction and it’s really a shame because the Montgomery
method for scalar multiplication is the most interesting one (the fastest, easy to
implement, resistant to side-channel attacks). Up to now, there are no standards
for genus 2 curves. If such standards exist one day, it would be useful to take
the method that we developed into account.

Moreover, we have seen that, with some restrictions, we obtain very interesting
timings for the scalar multiplication on the jacobian of genus 2 curves. It would
be nice to verify (even if there is no reason for this) that these restrictions are
not awkward for finding jacobians suitable for cryptography (i.e. with a large
prime dividing the order). Unfortunately, algorithms for finding the order of the
jacobian over IF,, are still under development ([11], [22]).

Finally, it would be very interesting to study the case of the characteristic 2,
since it is in that case that this method is the most efficient for elliptic curves.
For this, all the necessary mathematical objects, such as the Kummer surface,
remain to be defined.
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Elliptic curves associated with simplest
quartic fields

par SYLVAIN DUQUESNE

RESUME. Nous étudions la famille infinie des courbes elliptiques
associées aux “simplest quartic fields”. Si le rang de telles courbes
vaut 1, nous déterminons la structure complete du groupe de
Mordell-Weil et nous trouvons tous les points entiers sur le modele
original de la courbe. Notons toutefois que nous ne sommes pas
capables de les trouver sur le modele de Weierstrass quand le
parametre est pair. Nous obtenons également des résultats simi-
laires pour une sous-famille infinie de courbes de rang 2. A notre
connaissance, c’est la premiere fois que 1’on a autant d’information
sur la structure du groupe de Mordell-Weil et sur les points entiers
pour une famille infinie de courbes de rang 2. Le principal outils
que nous avons utilisé pour cette étude est la hauteur canonique.

ABSTRACT. We are studying the infinite family of elliptic curves
associated with simplest cubic fields. If the rank of such curves
is 1, we determine the whole structure of the Mordell-Weil group
and find all integral points on the original model of the curve.
Note however, that we are not able to find them on the Weier-
strass model if the parameter is even. We have also obtained
similar results for an infinite subfamily of curves of rank 2. To
our knowledge, this is the first time that so much information has
been obtained both on the structure of the Mordell-Weil group
and on integral points for an infinite family of curves of rank 2.
The canonical height is the main tool we used for that study.

1. Introduction

In [4], we studied elliptic curves associated with simplest cubic fields.
In the case of curves of rank 1, we determined both the structure of the
Mordell-Weil group and all integral points. Several questions remained
unanswered at the end of this study. Is it possible to do the same work
with other families of rank 1 curves? Is it possible to generalize to families
of curves of higher ranks? Xavier Roblot and Franck Leprevost suggested

Manuscrit regu le 28 décembre 2005.
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that I should work on elliptic curves associated with simplest quartic fields.
This family has several interesting properties.

e There is an explicit point on every curve of the family, which is a
necessary condition for the kind of study we are interested in.

e Contrary to simplest cubic fields, the curves are not torsion-free.
Hence we can check if the method used in [4] is also valid when
there are torsion points.

e It is possible to extract a subfamily of curves of rank at least 2 with
two explicit points.

In this paper, we will first see that the method used for simplest cubic
fields to determine the structure of the Mordell-Weil group can also be used
for simplest quartic fields. It can also be generalized to higher ranks and
probably to other families. However, we will see that this is not the case
for integral points, even though a technical trick enabled us to conclude in
our case.

Finally recent papers ([2], [3]), not known when this paper was written,
would be helpful in simplifying some of the calculations. They provide bet-
ter bounds than those used in this paper and then will probably eliminate
some cases which are done by hand in the following.

2. Simplest quartic fields

The term “simplest” has been used to describe certain number fields
defined by a one-parameter family of polynomials. The regulator of these
simplest fields is small in an asymptotic sense, so their class number tends
to be large. This is why they have generated so much interest. In de-
gree 4, simplest quartic fields are defined by adjoining to Q a root of the
polynomials

X4 tX% - 6X%2+tX +1,

where 1642 is not divisible by an odd square (which ensures the irreducibil-
ity of the polynomial). These fields were studied, among other things, by
Gras, who proved that this family is infinite [5]. Later, Lazarus studied
their class number [8, 9]. More recently, they were studied by Louboutin
[10], Kim [7] and Olajos [11].

3. Elliptic curves associated with simplest quartic fields

In the following, we are interested in the infinite family of elliptic curves
Q¢ given by the equation

Y2 =X* X3 —6X2+tX +1,

where 16 + ¢2 is not divisible by an odd square. The discriminant is A; =
26(16 + t2)3.
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Let us first put the curve into the Weierstrass form
Ci: y* =23 - (16 + %)z
by sending the point [0, 1] to infinity using the transformation ¢
_2Y —2X? +iX +2

T = 2 )
(Y +X24+1) (2Y —2X2 +tX +2)
Yy = X3 .
Such curves are special cases of curves defined by equations of the form
y?> = 23 + Dz which often appear in the literature. For instance they

are studied in the book of Silverman [14] where several general results are
proved, one of which is given below

Proposition 3.1. Let D be a fourth-power-free integer. Let Ep be the
elliptic curve defined over Q by the equation

y? =2 + Dz
If D # 4 and —D is not a perfect square, then
Ep(Q)ors = Z/27.
This result can be applied to our family.

Corollary 3.2. Let t be an integer defining a simplest quartic field. The
only torsion points on Cy(Q) are the point at infinity and the 2-torsion point
[0,0]. The torsion points on Q:(Q) can be obtained using the inverse map

of .

As usual with elliptic curves, we are interested in the following two Dio-
phantine problems.

(1) Determination of the structure of the Mordell-Weil group Q:(Q) (or
equivalently C;(Q)). This means that we want to compute the torsion
subgroup (already done thanks to Proposition 3.1), the rank and a
set of generators for the free part.

(2) Determination of all integral points on both @; and C}, since a famous
theorem of Siegel states that there are only finitely many such points.

Concerning the second problem, it is important to note that the integral
points are dependent on the model. In the case of elliptic curves associ-
ated with simplest quartic fields, both models (@Q; and C}) given above are
interesting. Nevertheless they are linked thanks to the following property.

Proposition 3.3. Let t be an integer defining a simplest quartic field and
[X,Y] be an integral point on the quartic model. Then ¢([X,Y]) +[0,0] is
an integral point on the cubic model.
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Proof. Tt is easy to formally compute ¢([X,Y])+ [0, 0] using the group law
on C¢(Q) :

O([X,Y])+1[0,0] = 2Y +2X2 —tX -2, (Y + X2 +1)(2Y +2X2 —t X —2)]
which proves the proposition. Il

This means that it is sufficient to find all integral points on C} in order
to find those of ;. On the other hand, the structure of the Mordell-Weil
group does not depend on the model, so we will work on C} in the following.

4. Experimental approach

Using the magma algebra system, we performed a large number of compu-
tations both of the structure of the Mordell-Weil group and of the integral
points. Here we do not present the results we obtained, but we give the
most important observations we deduced from these computations.

(1) The rank is never 0.

(2) The rank parity only depends on the congruence class of ¢ modulo

16.

(3) The point [—4, 2t] can always be in a system of generators of C;(Q).

(4) In the case of rank 1, the only integral points on C} are [0, 0], [—4, +-2¢]

and [% +4,+ (% + 2t>] if ¢t is even.

(5) In the case of rank 1, [0,+1] are the only integral points on Q.

(6) In higher ranks, there are very few integral points on @; apart from

a point with a z-coordinate equal to —3.

The first observation is trivial to prove. Indeed, [—4, 2t] is always a point
on Cy(Q). Moreover, we already proved that [0,0] and the point at infinity
are the only torsion points. So [—4, 2¢] has an infinite order and Cy(Q) has
a rank of at least one.

5. The sign of the functional equation

We will now prove the second observation assuming the conjecture of
Birch and Swinnerton-Dyer.

Theorem 5.1. Let t be an integer defining a simplest quartic field. As-
suming the Birch and Swinnerton-Dyer conjecture, the Mordell-Weil rank
of Ct(Q) is even if and only if

t=0,£1,4+7 mod 16.

Proof. We use the sign of the functional equation which is 1 if and only if
the rank is even assuming the conjecture of Birch and Swinnerton-Dyer.
This sign can be computed as a product of local signs :

£ =€xo H Ep-

p prime
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The value of the sign at the Archimedean place is always e,, = —1. Con-
cerning finite places, the local sign depends on the type of curve reduction.
It can be computed using the tables given by Rizzo in [12]. The places 2
and 3 must be treated separately. The first remark is that 16 + ¢ is never
divisible by 3, so 3 is always a prime of good reduction and €3 = 1. Now let
p be a prime number greater than or equal to 5. Hereafter in this paper,
vp(x) will denote the p-adic valuation of x.

If p{ Ay, then g, = 1.

If p|As, we have that v,(A;) = 3 since 16 + ¢2 is not divisible by an odd

square. In this case, Rizzo’s tables give ¢, = (*72>, SO

(—1)17%1 if p=1mod4
€p = ptl
—(-1)* if p=-1mod4.

We want now to compute the product of all these local signs.

Let ; = 16 + ¢ and &, = ijﬁ' Since ¢ defines a simplest quartic
field, there are k different prime numbers pi,...,pr which are congruent
to 1 modulo 4 and r different prime numbers pgi1,..., Pk, which are
congruent to -1 modulo 4, such that

8; = D1 DkPk+1- - - Ditr-
Moreover, it is easy to prove that d; equals 1 modulo 4, so r must be even.
Let ¢; = 271 if ¢ < k and ¢; = 25 if ¢ > k + 1. We have
5 = (L+4q1) . (1+4g0) (=1 + dgs) . (~1 + i)

=1+4+4q; + -+ 4qx+,r mod 8.
On the other hand,

[Teo= (1% o (D)% (1)~ (-1

p#2

= (—1)ntt

So

-1

5
H gp=(-1)"1
pF#2
It is easy to deduce that

H&‘p:l <=t odd or t = 0 mod 16 or ¢t = 4 mod 32.
p#2
We will now compute the local sign 5. For this, we again use the tables

of Rizzo. For each value of ¢t modulo 32, the 2-adic valuations of both A
and the usual invariant c¢; = 3.2%(16 + t?) give the value of e5. We have

€9 =1<«=t==x3mod8 or ¢t ==+4 mod 32.
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We just have to multiply e, Hp?é2 ep and €2 to achieve the proof of the
theorem. g

Remark. We chose to use the tables of Rizzo instead of those of Halber-
stadt [6] because the minimality of the model is not required. In fact, the
model is minimal if ¢ is not divisible by 4. When ¢ is divisible by 4, the
minimal model is y? = 2% — (1 + t?)x.

We now want to prove the observations 3, 4 and 5. For this, we use a
method similar to that we used for elliptic curves associated with simplest
cubic fields in [4]. The central part of this method is a good estimate of
the canonical height. Let us briefly review this canonical height.

6. Canonical height on elliptic curves

Even though it is possible to work on number fields, we will restrict our
study to Q since this is the case we are interested in. Let E be an elliptic
curve defined over Q and P = [z,y| be a point on F(Q). If z = n/d with
ged(n, d) = 1 the naive height of point P is defined as

h(P) = max(log |n|,log|d|).

This height function is the main tool for the proof of the Mordell-Weil
theorem which states that E(Q) is finitely generated. The naive height has
some nice properties but we need a more regular function. This function is
the canonical height and is defined as follows
h(kP h(2™P

(kP) = lim ( )

2 00 qn

h(P) = lim

k—o0

Remark. The canonical height is sometimes defined as half of this value,
so one must be very careful which definition is used for results from different
origins.

The canonical height has a lot of interesting properties. We will just
mention here those that we will use later in this work.

(1) We have

h(P) =0 <= P € E(Q)w-

(2) Function h is a quadratic form on E(Q).

(3) Let
h(P + Q) — h(P) — h(Q
(p.q) = M+ Q=) =@
denote the scalar product associated with h. If P, ..., P, are n points
in the free part of E(Q), let us define the elliptic regulator of points
Pi by

R(Pl, . ,Pn) = det((B, Pj))lgi,jgn'
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Then, points Py, ..., P, are linearly independent if and only if their
elliptic regulator is not equal to zero.

The naive height is much easier to compute than the canonical height,
so it is interesting to have explicit bounds for the difference between both
of them. Such bounds are given by Silverman in [16].

Theorem 6.1 (Silverman). Let E be an elliptic curve defined over Q. Let
A be the discriminant of E and j its j-invariant. Then for any P in E(Q)
we have
h(j) — hA) ;
1 5 1.946 < h(P) — h(P) < 6 + 5 +2.14.
However, better bounds on the canonical heights are required for our
purpose. For instance, if the naive height of P is small, the lower bound
given by Silverman does not give any information since iL(P) is always non-
negative. We will now briefly recall two ways to compute the canonical
height. Both will be used hereafter in this work to improve Silverman’s
bounds for the curves we are interested in.

hg) . hA)

7. Computation of the canonical height

The two ways of computation we will present here consist of expressing
the canonical height as a sum of local functions. The finite part of the
height equals 0 for all primes of good reduction. For primes of bad reduc-
tion, it can be computed using a technical but simple algorithm given in [1].
The main part of the computation is focused on the Archimedean contri-
bution which we will denote . This can be done by two ways. The first
one uses g-expansions and consists of evaluation of the following formula

Al 1 y(P)? 1
—|+ =1 — =1
q‘—|—40g< 3 2ogﬁ,

- 1

where, if w; and we denote the periods of the curve, and z(P) is the elliptic
logarithm of the point P

=3 (=1)"g"% sin((2n + 1)ARe(2(P)).

n=0

If the curve is explicitly given, this method is very efficient since the
series 6 converges rapidly. However, we are dealing with a family of elliptic
curves and, in this context, computation of the terms of the series 6 seems
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difficult. We can still give an upper bound for this series. It is indeed trivial
that
1
0] < —
1—lal’

This will provide a lower bound for the canonical height which is more
useful than that given by Theorem 6.1. Such a lower bound combined with
Silverman’s upper bound was successfully used for simplest cubic fields in
[4]. Concerning simplest quartic fields, these bounds can also be used when
the rank of C;(Q) is 1. However, they are not sharp enough when the rank is
2. The second way of computing the Archimedean contribution will provide
these better bounds. This other way is slower but more appropriate for
specific cases we are studying. It was developed by Tate and was improved
by Silverman in [15]. It consists of computing the simple series

- 1 Cp,
hoo(P) =1 P — —
(P) =log[a(P)| + 3 3 5

where ¢; are easily computable and bounded. The main advantage is that
the computation of the ¢; of a specific point can be done even for our family
whereas computation of the terms of the series 6 seems difficult for a family.
Moreover, Silverman gives bounds for the error term if only N terms are
used in the series. Let H = max(4, 2|al, 4|b|, a?), then

hoo(P) = log |z(P)| + Z—+R
with

1 A? 1 1
(1) W log <260H8> < R(N) < W log (2 H)

Thus, Tate’s method will provide better bounds for the canonical height
of specific points, such as [—4,2t]. However, we first need bounds which
are valid for any point in C;(Q), so we use Silverman’s theorem and g¢-
expansions.

8. Approximation of the canonical height of any point on C:(Q)

As explained above, an upper bound of the canonical height is given by
Silverman’s theorem:

Applying this bound to our family gives the following proposition.
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Proposition 8.1. Let t be an integer defining a simplest quartic field. Let
P be a point in Ci(Q), then

- 1
h(P) < h(P) + ; log(16 + t%) + 4.08.

We will now use the decomposition of the canonical height as a sum of
local functions to obtain a lower bound.

The first step involves the computation of the finite part of the canonical
height of a point P = [ ot d3} For this, we follow the algorithm given in [1].
If p is an odd prime number, it is easy to prove that the local contribution
at p is 2log (p“P(d)) - %log(p) if p divides a, b and 16 + t? and 0 otherwise.
The contribution at 2 is more difficult to find since there are several cases
depending on the 2-adic valuation of ¢ and a. We summarize the result in
the following table.

condition contribution at 2
d even 2log (2”2(d))
t odd and a odd —1log(2)
t even and a odd or a even and ¢t odd 0

va(a) =1 and vy(t) =1 —3log(2)

va(a) =1 and va(t) > 2 or va(t) =1 and va(a) > 2 —log(2)
va2(a) = 2 and va(t) = 2 or va(a) > 3 and va(t) > 3 —2log(2)
va(a) = 2 and va(t) > 3 or va(t) = 2 and va(a) > 3 —21og(2)

Finally, the local contribution at non-Archimedean places to the canonical
height of any point P is given by

7 _ L [1p: 7
® ey =2 - grog (T Y i)

where hy(P) is equal to zero if d is even and to the contribution at 2, given
in the previous table, if d is odd. The second step is the computation of the

Archimedean contribution. As explained above, we will use g-expansions
since we want a lower bound that is valid for any point on the curve. We
first need approximations for the periods w; and ws.

Lemma 8.2. Lett be an integer defining a simplest quartic field and Cy be
the associated elliptic curve. Let wy and wo be the periods of Cy such that
w1 and wo are positive, then

T T
w =wy and ——— < w

e N
V2(16 + 2)1 (16 + £2)3
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Proof. Let § = /16 + t2. The C} equation is
y? =2° — (16 + *) v = z(x — 0)(z + 9).

Thus, with the convention we chose for the periods, wi and wy are given by
the integrals

0 1
“”:/—wx(xé)(:cw)’

o 1
LL}2:/0 \/:c(x—é)(x%—é).

A trivial change of variable shows that wy = ws. Concerning wy, within
the integration range, we have —20 < x — § < —94, so that

\f16+t2 /\/ (z +0) 16+t2 /\/ (z+9)

The result follows thanks to an easy change of variables. O

So, thanks to this lemma, we can give a lower bound for the Archimedean
contribution to the canonical height of any point P = [J%, d%] in the free

Thus, combining this lower bound with the non-Archimedean contributions,
we have

b
sz‘

pi#2,pila,b,16+t2

. 5 1 1 1
h(P) > 0.38—3 1og(2)+g log(16+t2)+§ log(d)+3 log

The last two terms are always positive, so this provides an explicit lower
bound. However, these terms can be used to reduce the constant 0.38 —
glog(Q). Let g be the ged of a,b and 16 + t2 divided by its higher power
of 2. Let A = % and B = g. With these notations, the sum of the last
two terms of the lower bound equals 3 1log(Bd), so a lower bound for Bd
will improve the lower bound for A(P). Based on the fact that [%, dg] is a
point on the curve, we prove that g must satisfy the equation
A’g? — B?g — A(16 +t*)d* = 0.

Since g is an integer, the discriminant of this degree 2 polynomial must be
the square of an integer, say C, such that

B+ 64A%d* = (C — 2A%td?) (C + 24%d?) .
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It is easy to deduce that, if such a C' exists, then
B +64A4%* -1
t <
- 4A2d?

Let us assume that the local contribution at 2 is negative, i. e. d is odd and
t and a are together even or odd. In this case, we have 4|B and A < B2. If
B =4 and d = 1, the above condition becomes ¢t < 4160. For all ¢ < 4160
and A < 16, we can check if the discriminant of the degree 2 polynomial is
a square. This never occurs if ¢ > 256. Thus, if t > 256, it is not possible
to have B=4and d =1, so either B>4andd>3or B>8andd=1.
In any case, Bd > 8. We can now give a lower bound for the canonical
height.

Proposition 8.3. Let t be an integer greater than 256 defining a simplest
quartic field. Let P be any point in the free part of Ci(Q). We have

~

1
h(P) > 0.38 + 2 log(16 + t%) if t is odd,

~

1
h(P) > 0.38 + 3 log(16 + t2) — log(2) in any case.

Proof. If t is odd and hg(P) = 0 then Bd > 1 is sufficient to give the
required lower bound for h(P). If t is odd and ha(P) < 0, this contribution
is —2log(2) and we proved that Bd > 8. This provides a better lower

bound than required. Finally, if ¢ is even and hy(P) < 0, this contribution
is greater than or equal to —% log(2) and we proved that Bd > 8. Again,
this is sufficient to conclude. g

9. Estimates of the canonical height of a specific point: [—4, 2¢]

The previous bounds are valid for any non-torsion point on C(Q), so
they provide bounds for the points G1 = [—4, 2t]. However, we need a more
precise approximation for h(G1). So we will use Tate’s series to compute
B(Gl) in terms of t. For our purpose, it is sufficient to compute the first
four terms of the series:

j — 1 a,2 ., s
hoo(G1) = log(4) + 7 (e + 5 + 12 + 25 ) + R(4).

We are using the algorithm given in [15] to formally compute cg, ¢1, co and
cs. In fact, the only significant contribution comes from cg. Thus we only
give approximations for the others.

co = 2log (16 + %) — 8log(2) and 0 < ¢y, c2, c3 < log(4).

Let us now estimate the error term R(4). In the case of elliptic curves
defined by simplest quartic fields, the constant H involved in the approxi-

mation of the rest (1) equals (16 + t2)2 S0)
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1 212 (16 + 2)° " )
i G ) =700 gl (2 0065,

481og(2) 4 101log (16 + t2) 111og(2) + 21log (16 + t2)
- 768 768 '
Concerning non-Archimedean contributions, the only non-zero one comes
from 2. The previous table can be used to estimate the contribution at 2
ha(G1) =0 if ¢ is odd,
—210g(2) < ha(G1) < —log(2)  otherwise.

<R@4) <

Finally, combining these estimates we obtain an estimate for the canon-
ical height of the point [—4, 2t]

h([—4,2t]) > égz log (16 +t?) — L log(2)  if t is odd,
h([—4,2t]) > Bl log (16 +t2) — Jtlog(2)  in any case,
h([—4,2t]) < :1322 log (16 + t2) + %37 log(2) in any case.
We now have sufficiently good estimates to prove some of our observa-
tions when the rank is 1
10. Solving Diophantine problems in rank 1

In this section, we will prove most of our observations concerning the
structure of Cy(Q) and the integral points both on Cy and Q.

Theorem 10.1. Let t be an integer defining a simplest quartic field, and
Cy be the associated elliptic curve. Then the point [—4,2t] can always be in
a system of generators. In particular, if the rank of Cy is one,

Ct(@) = <[03 0]7 [_47 2t]>'

Proof. Assume that G7 = [—4, 2t] cannot be in a system of generators. This
means that there exist P € C¢(Q), € € {0,1} and n € Z such that

G1 =nP +¢[0,0].
So the canonical height of G; equals the canonical height of nP and

n2 h(Gh)
h(P)

The estimates obtained above can now be used to bound n2. If ¢ > 257
. Blog (16+) + B iog(d)
~ Llog (16 + 2) +0.38 — log(2)
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Since this function decreases with t, it is easy to prove that
n* < 5.31if t > 257.

The remaining cases, namely n = 2 or t < 256, can be computed by
hand. O

Let us now concentrate on integral points. When the rank is one, the
structure of the Mordell-Weil group is known, so we are using it to find
integral points on Cy. If P is an integral point then there exist e € {0,1}
and n € Z such that

P =nG; +¢[0,0].

The strategy is the same as above, namely we are using the bounds on
canonical heights to deduce an upper bound on n. But, in this case, we
need an upper bound for the canonical height of any integral point. Using
Silverman’s bounds, this means that we need an upper bound for the naive
height of any integral point. This is of course not possible unless we have an
explicit version of Siegel’s theorem. In the case of simplest cubic fields, we
proved by an other means that there are no integral points in the connected
component of the point at inifinity of the curve. This cannot be done for
simplest quartic fields for any ¢t. However, it can be done if ¢ is odd. For
this, we will use the following lemma.

Lemma 10.2. Let E be an elliptic curve defined over Q and P be a point
on E(Q) which is not integral. Then none of the multiples of P are integral.

Proof. We just give the idea of the proof. Let p be a prime number dividing
the denominator of the coordinates of P. The reduction of P modulo p is
the point at infinity on the reduced curve. So all multiples of P are also
the point at infinity on the reduced curve. Thus their denominators are
also divisible by p. O

Theorem 10.3. Let t be an odd number defining a simplest quartic field.
Assume that the elliptic curve Cy has rank 1, then the only integral points
on Cy are [0,0] and [—4, £2t].

Proof. Let P be an integral point on C;. Then, there exist ¢ € {0,1} and
n € Z such that
P =nG1 +€[0,0].

Three cases can occur

e n is even and € = 0. In this case, P is a multiple of 2[—4, 2¢] which
is never an integral point if ¢ # 4,8. Lemma 10.2 then ensures that
P is not an integral point.

e nis odd and € = 1. Again P is a multiple of [—4, 2¢] + [0, 0] which is
not an integral point and we use Lemma 10.2.
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e nis odd and € = 0 or n is even and € = 1. In this case, P is not
in the connected component of the point at infinity of C¢(R) so its
z-coordinate is bounded

—V16 +12 < z(P) < 0.

The method using canonical heights can then be applied. Thanks to
Proposition 8.1, the canonical height of such a point is bounded as
follows

1
h(P) < h(P) + 5 log(16 + t2) 4+ 4.08 < log(16 + %) + 4.08.
Using the lower bound for the canonical height of [—4,2¢] obtained
in section 9, we deduce that

2 log(16 + t?) + 4.08 '

- %Z log (16 + t2) — % log(2)

Again, the function is decreasing and
n? < 3.9 if t > 10.

So only n = 0,1 or —1 can provide integral points. O

Remark. The second case cannot be treated if ¢ is even because [—4, 2t] +
[0,0] is an integral point.

We deduce the following corollary from this theorem and Proposition 3.3

Corollary 10.4. Let t be an odd number defining a simplest quartic field
such that Q¢ has rank 1, then the only integral points on Qy are [0,+1].

In fact, we can prove this also when ¢ is even thanks to the following
lemma.

Lemma 10.5. Lett be an odd number defining a simplest quartic field. Let
P = [X,Y] be an integral point on Q¢ such that Y < 0. Then @(P) + [0,0]
is an integral point on Cy whose x-coordinate is bounded by t2.

Proof. The z-coordinate of ¢(P) + [0,0] equals 2Y + 2X? — tX — 2 and
Y = —vVX4—tX3-6X2+tX + 1. Thus, it is sufficient to prove that
(2X2 —tX —2—#2) — 4 (X* —tX? —6X2 + X +1) <0.

This polynomial is a degree 2 polynomial and it is easy to prove that it is
negative outside of ] -5 —1n+1 [ Within this range, 2X? —tX — 2 — 2
is always negative which achieves the proof. U

We can now prove the following theorem

Theorem 10.6. Let t be an integer defining a simplest quartic field such
that Q¢ has rank 1, then the only integral points on Qy are [0, £1].
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Proof. Thanks to Lemma 10.5, it is sufficient to find all integral points on
C; whose naive height is less than or equal to t2. Let P be such an integral
point. Proposition 8.1 provides an upper bound for its canonical height.

. 1 3
h(P) < h(P) + 5 log(16 + %) +4.08 < 5 log(16 + t%) + 4.08.

If P =n[—4,2t] +€[0,0], then
2 _ 3 log(16 + t2) + 4.08 ‘
~ BTlog (16 4 t2) — 1t log(2)
As in the previous cases, the function is decreasing and we deduce that

n? < 8.92 if t > 33.

n

The remaining cases, namely n = 2 or ¢ < 32, can easily be done by
hand. O

We are now interested in the last observation in section 4 which will
provide a subfamily with a rank of at least 2.

11. A subfamily with a rank at least 2

During our numerical experiments, we noticed that —3 is sometimes the
z-coordinate of an integral point on ();. It is in fact not difficult to prove
that

[=3,...] € QuZ) <=t = 6k? + 2k — 1 with k € Z.
In this case, there are new integral points on C¢(Q). One of them is of
course given by ¢([—3,2+12k]) 4 [0, 0]. These new points are the following
and their opposites.

Go = [-2k% + 2k — 1,4(k + 1) (2k* — 2k +1)],
G +[0,0] = [18K* + 30k + 17, 4(k + 1) (18%k* + 30k + 17)] ,
Gi+ Gy = [9(2k* — 2k + 1) ,12(3k — 2) (2k* — 2k + 1)] .

Since t is odd and G+ is an integral point, Theorem 10.3 ensures that the
rank is at least 2. The aim of the rest of this paper is to generalize the
results obtained in rank 1 to the case of rank 2 using this subfamily. Let
us first consider the structure of the Mordell-Weil group.

12. Case of rank 2: generators

The infinite descent generalizes to higher ranks the method we used to
prove that (G; can always be in a system of generators. Let us first recall
the principle of this method.

Suppose that P; ... P, generate a subgroup of the free part of the Mordell-
WEeil group of full rank and denote by n the index of this subgroup. If n =1,
this provides a basis. Let R be the regulator of the curve (i. e. the elliptic
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regulator of a basis B of the free part of the Mordell-Weil group), then we
have

n*R=R(P;...P,).
Since the regulator is roughly of the same order of magnitude as the product
of the canonical heights of the basis B, it can be bounded using Proposition
8.3. So that n can be bounded. In [13], Siksek specifies this idea by the
following theorem (written here only in the case of rank 2 and base field

Q).

Theorem 12.1 (Siksek). Let E be an elliptic curve defined over Q of rank
2. Suppose that E(Q) contains no point of infinite order with a canonical
height less than some positive real number X. Suppose that P and P
generate a subgroup of the free part of the Mordell-Weil group of full rank
and denote by n the index of this subgroup. Then we have

1
< 2 R(G1,Gy)?
V3 A
As explained above, the infinite descent is based on canonical heights.

Thus, we need to approximate the canonical heights of the points involved
in our problem.

Proposition 12.2. Let k be an integer such that t = 6k? + 2k — 1 defines
a simplest quartic field and such that |k| > 27, then we have

~

0.96log(t) < h(G1) < 1.02log(t)
0.47log(t) < h(G2) < 0.56log(t)
0.4710g(t) < h(Gl + GQ) < 0.5410g(t).

Proof. The first estimate is a direct consequence of the estimates given in
section 9. Estimates for the canonical height of G and GG1+G+9 are obtained
in the same way, namely using the first four terms of the Tate series for
the Archimedean contribution. Non-Archimedean contributions are given
by formula (2), knowing that ¢ is odd and that the gcd of a,b and 16 + ¢2
is exactly 2k? — 2k + 1 both for G5 and G + Gb. O

We can now prove the following theorem

Theorem 12.3. Let k be an integer such that t = 6k> + 2k — 1 de-
fines a simplest quartic field. Then the points G1 = [—4,2t] and Gy =
[—2]4:2 +2k—1,4(k+1) (2k2 — 2k + 1)] can always be in a system of gen-
erators. In particular, if the rank of C; is exactly 2, we have

Ct(@) = <G17 G27 [Oa 0]>
Proof. In order to apply Siksek’s theorem, we need an estimate of

R(Gy1,Gs) = h(G1)h(Gs) — (G1, G3)?
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with (G1,Gs) = % (H(Gl + Gy) — h(Gy) — h(Gg)). Proposition 12.2 pro-
vides these estimates
—0.5610g(t) < <G1,G2> < —0.4410g(t)
R(G1,Gs) < 0.39 (log(t))?

Siksek’s theorem then ensures that if G; and G2 generate a subgroup of
index n of the free part of the Mordell-Weil group, then

1
n < 2 R(G1,Ga)2 ;
V3 A
with H(P) > X for any point P in the free part of the Mordell-Weil group.

The estimates obtained in Propositions 12.2 and 8.3 imply that, for any &
such that |k| > 27,

2 J039log(t)  _ 2 v039log(t)
V30.38 4+ $log(16 +t2) ~ /3 1log(t)

The case n = 2 must be treated by hand. For this, it is sufficient to
prove that there are no point @ € C;(Q) and integers €1 and e in {0,1}
such that

n < <29

e1G1 + e9Go = 2Q.

This is not difficult because G1, G and G + G5 are integral points, so @
must be an integral point because of Lemma 10.2. Looking at the numerator
and denominator of the double of any integral point modulo 8 shows that
such a double is not an integral point. Finally, the cases with £ < 26 can
be treated by hand (i. e. using magma). O

The structure of the Mordell-Weil rank is now completely determined
and can be used to find integral points.

13. Case of rank 2: integral points

The situation is the same as in rank one, namely we do not have any
bound for the naive height for integral points on C;(Q), so it is not possible,
with our method, to determine all integral points on C;. However, we can
use the same trick to determine all integral points on Q.

Theorem 13.1. Let k be an integer such that t = 6k* + 2k — 1 defines a
simplest quartic field. Suppose that Q¢ has rank 2, then the only integral
points on Q¢ are [0,+1] and [—3,£(2 + 12k)].

Proof. Thanks to Lemma 10.5, it is sufficient to find all integral points
on Cy whose naive height is less than or equal to t2. Let P be such an
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integral point. We have an upper bound for its canonical height provided
by Proposition 8.1.

3
h(P) < 5 log(16 + t) + 4.08.

Theorem 12.3 implies that there are integers n; and ng and ¢ € {0,1} such
that

P =n1G1 +n2Gy + 8[0, O].
Using the properties of the canonical height, we deduce that
iL(P) = n%iL(Gl) + n%iL(Gz) + 2n1n2(G1, G2>

We know, thanks to Proposition 12.2, that (G, G2) is negative and that
h(G1) > h(G2). Hence it is easy to conclude if n1n9 is non-positive. Indeed,
we have

~

h(P) > (n? + n2)h(Gs).
So, if |k| > 27, we have
3log(16 + t2) +4.08
2 2 < 2
mtng = 0.47log(t)

<75

This proves that both |n;| and |ng| are less than or equal to 2, but not at
the same time.If nino is positive, it is more subtle. In this case we especially

need precise approximations of Proposition 12.2. If |k| > 27, we have
h(P) > 0.96log(t)n? + 0.47 log(t)n? — 1.11log(t)n1ns
> 0.47(2.04n? + n3 + 2.38n1n2) log(t)
> 0.47 (0.62n7 + (1.19n1 — n2)?) log(t) .

Using the upper bound on iL(P) given by Silverman, we deduce

3 log(16 + t2) + 4.08
0.47log(t)

(0.62n% + (1.19n7 — ny)?) <
<75

We assume, without loss of generality, that n; and no are both positive. It
is easy to deduce that n; must be less than or equal to 3 and that

n=1 = noy <3

n=2 — ng <4

n =3 — ng=3or4.

The remaining cases must be done by hand; for |k| < 27 we used magna.
For small values of n; and ne, we are again using canonical heights. Let
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us treat, for instance, the case ny = 2 and ng = —1. The bounds given in
Proposition 12.2 ensure that

h(G1 — 2G2) > 4.34 10g(t).

If G1 — 2G> is an integral point, its naive height equals the logarithm of its
z-coordinate, so, using Proposition 8.1, we have

~

h(G1 — 2G3) <log(z(P)) + %log(16 +1%) +4.08

with

o(P) = —4 (24k5 + 60K + 24k3 — 48k — 54k — 13)2
20k* 4 56k3 + 88k?2 + 76k + 29
These two bounds are incompatible so G; — 2G5 is never an integral point.
In some cases, Silverman’s bounds are not precise enough and thus we used
bounds obtained by Tate’s series.Finally, this proves that the only integral

points having their x-coordinate less than or equal to > on C; are [0, 0],
G1, G, G1 + Ga, Gy + [0,0] and G1 + 2G5 if K = —1 mod 5 and their
opposites. Using the reciprocal map of ¢, it is easy to find all integral
points on Q. O

14. Conclusion

As in the case of simplest cubic fields, we succeeded in proving that the
point [—4,2t] can always be in a system of generators of C¢(Q). We also
succeeded in generalizing this to the rank 2 case. This is not surprising
since it is based on the infinite descent method. Moreover, it is almost sure
that it will also work with other families or with higher ranks assuming, of
course, that explicit generators exist and are known.

On the contrary, we encountered difficulties in solving the problem of
integral points on Cy, even in rank 1. This is due to the fact that we do
not know any bound on the naive height of integral points. This difficulty
can be overcome in some specific situations, as in the case of simplest cubic
fields or of simplest quartic fields when the parameter is odd. In fact, we
noticed that the method used for simplest cubic fields in rank 1 will be
successful for any family of torsion-free curves of rank 1.

However, we were able to give exactly all integral points on the original
model of the curve both in the case of rank 1 and in the case of a subfamily
of curves of rank 2.
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Abstract

The use of elliptic curve cryptosystems on embedded systems has been becoming widespread for some years. Therefore the
resistance of such cryptosystems to side-channel attacks is becoming crucial. Several techniques have recently been developed.
One of these consists in finding a representation of the elliptic curve such that formulae for doubling and addition are the same.
Until now, one of the best results has been obtained by using the Jacobi model. In this Letter, we improve the arithmetic of elliptic
curves in the Jacobi model and we relax some conditions required to work efficiently on this model. We thus obtained the fastest
unified addition formulae for elliptic curve cryptography (assuming that the curve has a 2-torsion point).

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Because of their short key length and their long-
term strength, elliptic curve cryptosystems have become
very popular. They have recently been recommended by
NSA. This small key size is especially attractive for de-
vices with limited capacities, like smart cards. However,
such devices are sensitive to side-channel attacks. In the
following, we focus on simple attacks since it is always
possible to introduce countermeasures against differen-
tial attacks [6]. Such simple attacks are based on the
difference of complexity between doubling and addition
operations on an elliptic curve. They can be achieved by
analysing information like timing [8], power consump-
tion [9], electromagnetic radiation [11] or any other
side-channel information.

E-mail address: duquesne @math.univ-montp2.fr.

0020-0190/$ — see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ipl.2007.05.012

Several methods have been developed to obtain an
arithmetic which is resistant to side-channel attacks, and
most of them can be found in [5]. Some of these meth-
ods consist in rewriting the addition formulae so that it
can be used for doubling a point. In this way, the dou-
bling of a point and the addition of two distinct points
become indistinguishable and simple side-channel at-
tacks are staved off. The most efficient unified formulae
have been obtained with the Hessian model (12 field
multiplications) for curves having a 3-torsion point [7].
Until now, the most efficient unified addition formulae
for elliptic curves with a 2-torsion point have been ob-
tained by using the Jacobi form [2]. Based on curve
representation, the authors present formulae requiring
14 field multiplications if some additional conditions
are satisfied, and 16 unconditionally.

In this Letter, we will improve these formulae. The
result of this enhancement is that the unified addition
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requires only 12 field multiplications under conditions
and 14 unconditionally. Moreover, we relax the condi-
tions evoked above. Thus, we obtain the most efficient
unified addition for an elliptic curve containing a 2-tor-
sion point (which means that the order of the curve is
even).

The paper is organized as follows. In Section 2 we
review the Jacobi form of an elliptic curve and the un-
conditional unified addition formulae obtained in [2]. In
Section 3, we give our improved unconditional formu-
lae and discuss the differences with the previous ones.
Then, in Section 4, we explain how these formulae can
again be improved under some conditions and how we
are relaxing the conditions given in [2]. Finally, we con-
clude in Section 5.

2. Elliptic curves in Jacobi form

In this Letter, the base field is a finite prime field I,
where p is a large prime number. In fact, it is easy to
generalize the results to any finite field of characteristic
greater than or equal to 5, but this is of no interest for
cryptography in real life.

Let E be an elliptic curve defined over such a field.
It is well known that E can be represented by the set of
points (x, y) in F% satisfying an equation of the form

E:y2=x3+a4x+a6,

together with a point at infinity (denoted O in the fol-
lowing) [12]. Constants a4 and ae are elements of I,
such that 4a2 + 27a§ # 0. Following [4], Liardet and
Smart explain in [10] how the embedding of an elliptic
curve as the intersection of two quadrics in P3 can be
used to produce unified addition formulae. In [2], Billet
and Joye generalize and improve this idea by consider-
ing the (extended) Jacobi quartics given by equations of
the form

Y2 =eXx*—28X%27% + 7% (1)

With this equation, a point is represented by a triplet
(X, 7Y, Z) satistfying Eq. (1). Let us note that two triplets
(X1,7Y1,Z1) and (X», Y», Z») represent the same point
if and only if there is an element k in F, such that X; =
kXa, Y1 =k*Y, and Z, = kZ,.

It is proved in [2] that any elliptic curve defined over
[F, having a 2-torsion point is birationally equivalent to
such a quartic.

Let (8, 0) be such a 2-torsion point (i.e., 6 is a root
of the polynomial x> + a4x + ag), then constants & and
§ are defined by

3602 + 4, 3
_J, 5=20.
16 4

and the birational transformations are given by
6,0)— (0,—-1,1),

v:{O0—(0,1,1),
(X, ) = (2(x =0), 2x +0)(x = 0)* =y, ),

and
0,1,0) > O,
I//'_l: (09_170)_> (970)7

2 ) ’
(X.¥.2)— (M2 _ g 730420y

Of course, this means that all the curves cannot be trans-
formed into an extended Jacobi quartic. In particular, the
cardinality of a curve transformable into such a form is
even. However, this is more general than the intersec-
tion of two quadrics [10] or the Montgomery form [5]
whose cardinality is a multiple of 4. Let us now give the
formulae for the addition

X1, Y1, Z1) + (X2, Ya, Z7) = (X3, Y3, Z3).

We have
X3=X1Z1Y2+ Y1X2Z,,
Y3 =(Z3Z3 4+ eX7X3ht)(Y1Y2 — 28X 1 X271 Z))
+26X1X2Z1Z>(X3Z5 + Z3X3),
Z3=27373 —eX1X3.
2

The main interest of these formulae is that they remain
valid if (X1, Y1, Z1) = (X2, Y», Z>). They are also valid
if one of the points is the neutral element. According
to [2], these formulae require 13 multiplications and
3 multiplications by constants, which has provided the
best unified formulae until now for curves of even order.
They also require 14 modular reductions and 8 tempo-
rary variables. Note that we give both the number of
multiplications (which is standard) and the number of
modular reductions because the latter is the most im-
portant operation in RNS representation, which can be
used for performing a safe arithmetic on elliptic curves,
as explained in [1]. This complexity can be reduced by
eliminating 2 multiplications by constants if ¢ is small,
which is possible under some conditions. Before ex-
plaining these conditions and relaxing them in compar-
ison with [2], let us explain how to reduce the number
of multiplications and modular reductions.

3. Improved addition formulae

Let ¢ be the map
(p:IE'jf7 — ]F?),
(X,Y,Z)~ (X*,XZ,2%Y)
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Let (X, Y, Z) be a point on the extended Jacobi quartic.
To reduce the number of field multiplications, we will
use ¢(X, Y, Z) instead of (X, Y, Z). Of course this in-
creases the memory required compared to [2]. This is a
drawback for small devices, but we will see that in prac-
tice only 9 temporary variables are necessary instead of
8 in [2], so the memory extra cost is not very high (we
do not count the registers for storing ¢ and § in the mem-
ory requirements).

We thus use the formulae (2) and give, in Table 1, the
operations necessary to add two points (X1, Y1, Z1) and
(X2, Y2, Zy) represented by ¢ (X1, Y1, Z1) = (Uy, Vq,
Wi, Y1) and ¢(X», Y2, Z2) = (U, Vo, W3, Y5). If the
sum of these points is (X3, Y3, Z3), the operations de-
scribed can either return (X3, Y3, Z3) or return ¢(X3,
Y3, Z3) = (U3, V3, W3, Y3).

Assuming that the input and output are represented
using ¢, executing operations of Table 1 requires only
11 multiplications and 3 multiplications by constants.
They also require 12 modular reductions and 9 tempo-
rary variables. Compared to [2], this is a gain of 14%
and even 17% if ¢ is assumed to be small (as discussed
in the next section). Thus, this provides the best unified
addition for an elliptic curve with a 2-torsion point. Let
us now describe in detail how this new system of coor-
dinates can be used to perform a scalar multiplication
which is resistant to side-channel attacks.

Let E be an elliptic curve defined over [, contain-
ing a 2-torsion point and let P be a pointin E(IF,) and n
an integer. The computation of n P is crucial in elliptic
curve cryptography since this operation is used in al-
most all cryptosystems and is the most time-consuming
operation. We can proceed as follows:

(1) Compute constants 8, € and § to obtain the equation
of the (extended) Jacobi quartic (of the form (1)).

(2) Send the point P to the (extended) Jacobi quartic
model using the rational transformation .

(3) Compute the new coordinates (U,V,W,Y) of
Y (P) using the map ¢.

(4) Use the full Table 1 and your favorite exponentia-
tion algorithm to compute n(U, V, W, Y).

(5) Remember to use only the first part of Table 1 for
the last operation of the exponentiation, so that the
result of the exponentiation is a point on the (ex-
tended) Jacobi quartic with standard coordinates
(X,Y,2).

(6) Send this point back to the original elliptic curve via
the reverse rational transformation v .

Of course, steps (1), (2) and (6) are not necessary if the
curve is originally given in (extended) Jacobi quartic

Table 1

Unified addition on a Jacobi quartic using ¢
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Operation Value of the variable

T) < U X3

Ty < Uy X3

T3 < Vi X2,

Ty < Vo X279

Ts < W, z?

Ty < Ws 73

T; <Y Y

Tg < Yr Y,

T9 <~ T7T8 Yl Y2

T« T+ T3 X\ Z1 + 71

Tg < Tg + Ty Xo0Zo+Y>

T3 <~ 13Ty X1X2212,

T7 < T713 (X1Z1+Y1)(X2Z2+ Y2)
T7<T7—-Ty X121\ Yo+ XoZoY1 +X121X22Z,
T < T7 - T3 X3

Ty« TiTh X3x3

Ty <« Ts5Tg 7373

Ty« T +Ts X3+22

Ty« Th + Tg X3+23

Ts < T\ Ty (X2 +23(X3 +22)

Ts < Ts — Ty X272+ X372+ 7273
Ts < T5 — Ty X372+ X372

Ty < eTy eX3X3

Ty« Ty —Ty Z;

Ty« T3 +1Ty 7373 +eX{X3

Te < 2873 26X1X2Z12Zy

Tg < To — Tg V1Y, —20X1X0Z1Z>

To < TsTh (Z375 +eX2X)(Y1 Y2 — 28X\ X221 Z2)
T3 < 2eT3 2eX1X2Z12»

T3 < T5T; 2eX1 X221 Zy(X3 25 + X3Z3)
Ty« To+ T3 Y3

Ty < T? Us (=X3)

Iy < N1y Vi3 (=X3Z3)

To < T} W3 (=23)

form. Moreover, note that, since addition and doubling
are indistinguishable, any of the many exponentiation
algorithms (double-and-add, w-NAF, addition chains,
fixed base point methods) can be used without jeopar-
dizing the security against simple side-channel attacks.

4. The case of small coefficients

In formulae (2), there are two multiplications by ¢, so
it is very interesting to assume that ¢ is small. In [2], the
authors explained that this is possible for most elliptic
curves with three points of order 2. More precisely they



104 S. Duquesne / Information Processing Letters 104 (2007) 101-105

prove that & can always be rescaled to 1 if p =3 mod 4
and with a probability 7/8 if p =1 mod 4. In this part,
we explain how to relax the condition on the number
of 2-torsion points. Indeed, it is not necessary to make
additional assumptions to obtain this result and it is even
possible to conclude in more cases.

Thus, we only assume in the following that the ellip-
tic curve E has one 2-torsion point (which is a necessary
condition to transform the curve into a Jacobi quar-
tic). Let (8, 0) be this 2-torsion point on E, and recall
that

3602 + 4day
16

Let o € F; We will consider the change of vari-
ables

X Y
X = -, = —

o YT
which makes the elliptic curve E isomorphic to the el-
liptic curve
E:Y?=X 4 a,X +a,
with a) = ase® and ag = ba®. This curve has, of course,
a 2-torsion point (6’,0) with 8’ = 6«2, so if one wants
to transforms E’ into a Jacobi quartic, the new value of
e is
¢ =ea’.

We therefore have to find an « such that sa® is a

small number. For this, let © denote the smallest in-
teger (greater than or equal to —1) which is not a square
modulo p. Using the multiplicativity of the Legendre
symbol, one can prove that four cases can occur (with
the same probability):

(i) eisafourth powerin[F, and we can choose o such
that ¢/ = 1.
(ii) € is not a square in F,, and /¢/u is a square. In
this case, ¢/u is a fourth power and we can choose
a such that &/ = .
(iii) e is a square in [F,, but not /¢. In this case, e/u?
is a fourth power and we can choose « such that
r_ 2
e =pu’.
(iv) Neither ¢ nor «/¢/u are squares in [f',. In this case,
e/u is a fourth power and we can choose « such
that &' = u>.

The simplest case to treat is p = 3 mod 4. Indeed, we
can choose u = —1 so that we can always rescale ¢
to 1 or —1. Note that this is the most current case in
cryptographic applications (pseudo-Mersenne primes or
generalized Mersenne primes). If p = 1 mod 4, we have

to check that u is sufficiently small. It is easy to prove
(again using the properties of the Legendre symbol) that
the proportion of prime fields such that the n first prime
numbers are squares is only 1/2". Thus, in most cases
it is possible to rescale ¢ to a small number.

Anyway, if p is too large to assume that the multipli-
cation by &’ can be neglected (for instance, if we are in
cases (iii) or (iv)), there is another way to rescale ¢ to a
small value. This method is explained in [3]. The prin-
ciple is to find an isogeny of small degree between the
elliptic curve E and a new elliptic curve, say E”, having
the same cardinality. One can then hope that the method
explained above (i.e. via isomorphisms) will give a bet-
ter result on E” than on E (for instance, if we are in
cases (1) or (i1)).

Basically, this is the same idea as the previous iso-
morphism between E and E’ (an isomorphism is an
isogeny of degree 1), but the composition of the isogeny
and its dual is not the identity on E, so the scalar mul-
tiplication must be modified to give a good result. This
operation is of negligible cost compared to full scalar
multiplication, as explained in detail in [3].

5. Conclusion

In this Letter, we provide better unified addition for-
mulae for elliptic curves having a 2-torsion point by in-
troducing a new system of coordinates on the (extended)
Jacobi quartic model. Moreover, we prove that, in most
cases, it is not necessary to assume that the elliptic curve
has three 2-torsion points to further improve the perfor-
mance. In particular, we prove that, if p =3 mod 4, ¢
can be rescaled to 1 or —1 without any additional as-
sumption on the curve.

Finally, we obtain unified addition formulae (on el-
liptic curves with a 2-torsion point) requiring only 12
multiplications on the base field in most cases, which
represents a gain of 17% compared to the best known
formulae until now [2]. This formulae will allow more
efficient scalar multiplication, which is resistant to side-
channel attacks, on elliptic curves whose order is even.
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Abstract

In this paper we combine the RNS representation and the leak-resistant
arithmetic on elliptic curves. These two techniques are relevant for imple-
mentation of elliptic curve cryptography on embedded devices since they
have leak-resistance properties. We improve the reduction step of the
RNS modular product and we optimize formulae for the basic operations



arising in leak-resistant arithmetic on elliptic curves (unified addition,
Montgomery ladder) in order to minimize the number of modular reduc-
tion. Finally, we obtain a competitive and secure implementation. We also
explain the advantages of the RNS representation, especially in hardware
and for embedded devices, and show that, contrary to other approaches,
ours takes optimal advantage of a dedicated parallel architecture.

Keywords: Elliptic curves, Montgomery, Leak-resistance, RNS, Modular
multiplication.

1 Introduction

Elliptic curve cryptosystems, because of their small key length, has become pop-
ular to such a point that they have recently been recommended by the NSA.
Their small key size is especially attractive for small cryptographic devices like
smart cards. However, such devices are sensitive to side channel attacks. These
attacks consist in analyzing side channel informations like timings [22], power
consumptions [23] or electromagnetic radiations [30] of a device. They have
become such a threat that protecting ECC against them has become itself a
whole research area giving rise to various countermeasures [14].

The weakness comes from the difference of complexity between the addition
and the doubling on elliptic curves. There are two ways to resolve this. The
first one is to use representations of the curve for which the two operations are
obtained with the same formulae as in [24], [20] or [8]. The second one is to use
an algorithm for the scalar multiplication due to Montgomery [26] for a family
of curves defined over F,, and generalized in [16], [8] and [19]. This algorithm has
many advantages for constrained environments: it is leak-resistant, very sim-
ple to implement, careful in memory and does not required precomputations.
On the other hand the RNS representation of numbers in F, has interesting
leak-resistance properties for the arithmetic on the base field, it is easily paral-
lelizable in hardware [4] and it is scalable.

The aim of this paper is to combine these two techniques, especially in the
case of curves in Weierstrass form, to obtain an implementation of ECC which
is leak-resistant, both at the level of the curve and at the level of the field, and
which can be easily and efficiently parallelized in hardware.

In the following, K denotes a field of characteristic # 2,3 (which is a prime field
F, in practice) and |n|o denotes the bit-length of n.



2 Background properties of the different repre-
sentations and algorithms

2.1 Modular multiplication

Elliptic curve arithmetic over IF, mainly involves modular multiplications mod-
ulo p. Such a modular multiplication can be decomposed into one classic mul-
tiplication followed by a modular reduction. Because of the small size of the
numbers used with ECC (192 to 512 bits, i.e., 6 to 16 32-bit words), the multi-
plication is performed by the so called schoolbook method. Let us consider A
and B two n-word integers given in radix representation (i.e., X = > 1 x;3
with 0 < a; < ), then A x B can be computed by a succession of word multi-
plications and additions (which will be considered in the following as basic word
operations). We can summarize it by the equation

A X B="byA+ B(b1A+ B(byA---+ BbyA)...).

We get a complexity of n? word operations.

The reduction of an integer £ modulo another integer p consists in finding
the remainder of the euclidean division of k by p. This operation is costly. It
can be substantially speeded up by using the Montgomery reduction (we will
recall now this method as it is in RNS) or by using special modulo.

Montgomery general reduction algorithm:

In [25] Montgomery proposed to substitute the reduction modulo p by a division
by a power of the radix § (a simple shift). The result is not exactly & mod p
but k67" mod p. Using Montgomery representation allows overcoming of this
problem.

Algorithm 1: Montgomery,(R)

Data: R=AxB<p? and g ! <p< p”

and a precomputed value (—p~! mod 8");
Result: (g,r) such that r = RG™™ (mod p) < 2p;
g+ —Rxp lmodgj";

r— (R+qp)/B" ;

The complexity of this reduction is n? + n word operations [7]. As all the
computations can be done in Montgomery representation, we ignore the cost of
the conversion from Montgomery to classic representation.

Reduction using special modulo:

When using ECC, one can choose the underlying field without restriction. In
this case, the cost of a modular reduction can be reduced to some additions.
Compared to the cost of a general reduction, it can be considered as almost
free. As an example, if the field F, is such that p is a Mersenne number (ie



p = 2F — 1), then the reduction of a 2n-word integer R modulo p requires only
2n word additions. Just write R = R12*F + Ry, then R (mod p) = Ry + R, if
R;+ Ry > pthen R (mod p) = Ry + Ry — p. Prime Mersenne numbers are rare.
This is why the generalized Mersenne number class has been introduced [33, 11]
(integer of the form P(2F) where P(X) = X" — C(X) and C is a polynomial
with coefficients equal to —1,0 or 1 and deg(C) < %) . Modular reduction is
still a question of additions, so it is almost free. However, one can not find
generalized Mersenne numbers for all the number length. Moreover, the main
drawback is that a dedicated architecture to a particular p cannot be used for
other values. Consequently, it is not realistic in either a context of software or
hardware implementation.

2.2 Leak-resistant arithmetic in elliptic curve cryptogra-
phy

In all elliptic curves based schemes (such as encryption/decryption or signature
generation/verification) the dominant operation is the scalar multiplication of
points on the curve. Hence, the efficiency of this operation is central in elliptic
curve cryptography. This is usually done by using standards scalar multiplica-
tion methods such as double and add or sliding window methods combined with
recoding of the exponent.

However, these methods are not leak-resistant because of the difference of
complexity between the addition and the doubling operations. There exists
some methods to protect these algorithms, for example, if one wants to protect
a double and add algorithm against side-channel attacks, one can perform extra
(useless) additions [14]. By this way, for each bit of the exponent we perform
both an addition and a doubling so that bits of the exponent are indistinguish-
able. Unfortunately this protection is not only expensive but vulnerable to fault
attacks too.

Currently there are essentially two means to perform leak-resistant arith-
metic on elliptic curves. The first one is the use of unified addition formulae.
This means that we use a representation of the curve for which the addition
and the doubling can be performed using the same formulae. In the following,
we will present unified formulae for three representations of the curve, namely,
the Hessian form, the Jacobi form (leading to the most efficient formulae but
not applicable to all elliptic curves) and the short Weierstrass form (which is
the general case). The second one is to use the Montgomery ladder where both
an addition and a doubling are necessary to perform at each step of the scalar
multiplication algorithm. Again, in this case, the arithmetic is more efficient on
restrictive models of the curve and we will present both the restrictive and the
general model.

Unified addition formulae

The use of the Hessian form for a leak-resistant arithmetic has been introduce
n [20]. An elliptic curve over F,, is said to be in Hessian form if it is given by



an equation of the form
XP4+Y?+2°=3dXYZ

where d € F,, and is not a third root of unity. Such curves have a point of 3-
torsion (which means that there cardinality is divisible by 3) so that all elliptic
curve cannot be given in this form. In [20], Joye and Quisquater described
the formulae for the addtion of two points (X1,Y1, Z1) and (Xs,Ys, Z3) for the
elliptic curve in such a representation.

Xs = Y2XoZy—YEX1Z1,
Vs = X2YaZy— X1 7y,
7y = Z2XoYs— Z2XiYi.

These formulae require 12 field multiplications and can be used for the addition
and the doubling since we have

2AX,Y,2) = (Z,X,Y) + (Y, Z,X).

At the same time, the use of the Jacobi model was introduced by Liardet and
Smart in [24]. It is improved in [6] and, more recently, in [15]. It is easy to prove
that any elliptic curve containing a 2-torsion point is birationally equivalent to
the Jacobi quartic given by an equation of the form

Y2 =eX*—20X222% 4+ 7°,

where € and § are constants in F,,. In this case, the formulae for the addition of
two points (X1,Y7, Z1) and (Xa,Ya, Z5) are also valid if the two points are the
same.

X3 = XiZ1Yo+ Y1 X275,

Yg == (212222 +€X12X22> (Y]_Yé - 2(5X1XQZ]_Z2>
+2EX1X22122 (X%Z% + Z12X22) s

Zs = 7272 —eX2X2.

In most cases, € can be rescaled to a small value so that it is not too restrictive
to neglect multiplication by €. Thus these formuale are also requiring 12 mul-
tiplication as explained in [15]. However this method cannot be applied to any
elliptic curve since the cardinality of a Jacobi quartic is even.

In [8] Brier and Joye are giving unified formulae for a curve given in short
Weierstrass form (which is not restrictive over F, where p is a large prime
number)

Y?Z = X +aXZ?+bZ°.
Again, the formulae given for the addition of two points (X1, Y1, Z1) and (Xs, Y2, Z2)
are also valid if the two points are the same.

X3 = 2)\g ()\?L — (Xlzz + XQZl)(YlZQ + YQZl))\d) , ,
Ys = A\, (3(X1Z2 + XoZ ) Y122 + YaZh)Aa — 2)\31) — (N2 + Yo Z1)Na)”,
Zy = 2X3,



where

N = (X1Zo+XoZ0)? — X1 X021 29+ aZ} 73,
Ad (Y122 + Y2 Z1) 21 Z.

These formulae are valid for all elliptic curve but are less efficient since they
are requiring 18 field multiplications. Note that, by using an isomorphism or an
isogeny, it is possible, in most cases, to rescale a to a small value. We will explain
this in details in Section 4.3 within the context of Montgomery arithmetic.

The Montgomery scalar multiplication

Montgomery proposed in [26] to work only with the x-coordinate. Of course,
the group law is lost but traces remain. So doubling is still possible and the
addition of two points P and Q@ is possible if P — (@ is known. Montgomery gives
the formulae for those operations when the curve is in Montgomery form, that
is defined by an equation of the type

By? = 23 + A2® + .

Proposition 1 Let E be an elliptic curve defined over F,, in Montgomery form.
Let also P = (X,,Y,, Zp) and Q = (X,,Yy, Z,) € E(K) given in projective
coordinates. Assume that P — Q = (x,y) is known in affine coordinates. Then
the X and Z-coordinates for P + Q) and 2P are given by

Xprq = (Xp—2Zp)(Xg+ Zg) + (Xp + Z)(Xg — Zq))2 )
Zprq = v((Xp—Zp)(Xgq+ Zg) — (Xp + Zp)(Xq — Zq))2 )
4XpZ, = ((Xp + ZP)2 - (Xp — Zp)2) )
Xop = (Xp + Zp)2(Xp - Zp)z»
Zoy = AX,Z, (X, — Z,)* + 424X, 7,) .

By this way, both an addition and a doubling takes only 3 multiplications and
2 squares which is much faster than usual operations ([13]). The fact that the
difference P — @ must be known to compute P+ @ implies that a new algorithm
must be used to compute the scalar multiplication of a point G by an integer k.
The solution is to use pairs of consecutive multiples of P, so that the difference
between the two components of the pair is always known and equal to G. The
algorithm for scalar multiplication is as follows:

Algorithm 2: Montgomery_Scalar()

Data: Ge E(F,) and k € Z
Result: z and z-coordinate of kG
1 Initialize @ = (P, Q) = (O, G) where O is the point at infinity;
2 If the bit of kis 0, @ = (2P, P 4+ Q);
3 If the bitof kis 1, Q@ = (P + @, 2Q);
4 After doing that for each bit of k, return P;




Both an addition and a doubling are done for each bit of the exponent. So
the cost of this algorithm is about 10|k|o multiplications for a curve in Mont-
gomery form which is better than other available algorithms.

Moreover, the operations we have to perform do not depend on the bits of the
exponent so that this method has interesting leak-resistance properties.

Finally, the z-coordinate of kG is usually sufficient but some cryptosystems, like
ECDSA, require the y-coordinates. It can easily be recovered, as explain in [27].

Unfortunately, in odd characteristic, all the elliptic curves cannot be trans-
formed into Montgomery form. This is, for example, the case for most of the
standards. The reason is that any curve which can be transformed into Mont-
gomery form has a 2-torsion point so that its cardinality is not prime (it is
divisible by 2).

In general, namely when the curve is defined by an equation of the form

y? =23 +ax +b, (1)
this method can also be applied but is more time consuming ([8],[16] and [19]).

Proposition 2 Let E be an elliptic curve defined over F, by (1). Let also
P=(X,,Y,,Zy) and Q = (Xy, Yy, Zy) € E(Fp) given in projective coordinates.
Assume that P — Q = (x,y) is known in affine coordinates. Then we obtain the
X and Z-coordinates for P+ @Q and 2P by the following formulae :

Xptqg = —WZ,2((XpZq + XqZp) + (XpXq — aZqu)Q,
Zprq = w(XpZg— XqZp)Qa

Xop = (X2—aZ2)® —8bX,7Z5,

Zy = AZy (X +aXpZ] +0Z)).

Addition can be performed in 10 multiplications and doubling in 9. Hence,
the scalar multiplication can be performed in about 19|n|; multiplications on
F,, which is not interesting in terms of performance but it is interesting in terms
of leak-resistance. Note that the y-coordinate can also be recovered in this case

([8))-

Proposition 3 Suppose that Q = P + G with G = (z,y), P = (zp,yp) and
Q = (xq,yq). Then, if y # 0, one has

2b+ (atawp) (2 + 2p) — g2 — 2p)°
2y

Yp =

With the Montgomery scalar multiplication method, we always have to per-
form both an addition and a doubling for each bit of the exponent, so that this
method is resistant against side-channel attacks and that is the reason why this
method is always interesting even with 19 multiplications int each step.

In this paper, we will use the Residue Number Systems (RNS) for the arith-
metic on the base field. The consequence is that the cost of the multiplication



becomes negligible compared to the cost of the modular reduction. Thus, it is
necessary to rewrite the formulae given above in order to minimize the number
of modular reductions. Let us now briefly review this system of representation.

3 Residue Number Systems

3.1 Presentation

The Residue Number Systems (RNS) are based on the well-known Chinese Re-
mainder Theorem (CRT). It was introduced in computer science in [18] and [34].
A good presentation can be found in [21].

These systems are based on the fact that a number x can be represented by
its residues (x1,xa, . . .,x,) modulo a set of coprime numbers (my,ms, ..., my),
called RNS basis. We generally assume that 0 < x < M = H?Zl m;. The
elements x; are called RNS-digits, or simply digits if there is no ambiguity.
The biggest interest of a such system, is to distribute integer operations on the
residues values. Large integer operations are made on the residues, in other
words on small numbers independently. We consider in this part a RNS base
(mq, ..., my) with elements such that, m; = 8 — ¢; where ¢; is small (with few
non null digits). This property ensure that the reduction part on each m; can
be neglected [5]. We assume that M = ]!, m; is such that p < M. In this
system two numbers a, and b can be represented by their remainders modulo
themi,i: 1,...,n.

a=(ay,...,a,) and b= (by,...,by)

A multiplication is reduced to n digit modular digit-products. A modular digit-
product is equivalent to a classical digit product following by few additions
(which are due to the number of ones in the binary representation of ¢;, see [5]).
Thus this modular digit-operation can be done in one clock cycle on an hard-
ware composed of n arithmetic cells. This operation is done in n independent
products on words.

r=(a; xby (modmy),...,an xb, (modmy,)) (2)

It is clear that if a product is followed by an addition, the cost is just increased
of one addition on each modulo, and so, can be done in the same cycle.

r = (a1 X bl—|—d1 (mod ml),...,an X bn+dn (InOd mn)) (3)

We now focus our attention on the multiplication modulo p using the algo-
rithm presented in [1]. This algorithm for two numbers a and b given in RNS,
evaluates in fact r = abM ~' mod p. To obtain the right result we need to use
it again with r and M? mod p as operands. To prevent this fact, we convert
the values in a Montgomery representation where a’ = a x M mod p which is
stable for Montgomery product and addition. Thus, this conversion is done one



time at the beginning by calling Montgomery product with a and M? mod p
as operands, and one time at the end of the complete cryptographic computing
with 1, as second operand. Hence, this transformation will be neglected in the
following. Moreover, as the RNS is not redundant, this representation is well
suited for cryptography without any conversion.

3.2 RNS Montgomery reduction

This algorithm is a direct transposition of the classical Montgomery method.
The main difference is due to the representation system. When Montgomery is
applied in a classical radix (3 representation, the value 8™ occurs for reduction,
division and Montgomery factor. In RNS this value is replaced by M. Thus an
auxiliary RNS Bases is need to handle the inverse of M. Hence some operation
as the initial product will be done on the two bases, which will cost 2n words-
products (2n + 1 if we consider the extra modulo ma, 1, but as its value is of
the order of n, the cost due to this modulo can be neglected).

Algorithm 3 presents the RNS Montgomery reduction (¢ can be considered
as the result of an RNS product on the two bases), where all the operations
considered are in RNS. We clarify on which basis (and auxiliary modulo) they
are done.

Algorithm 3: MontgR _RNS(c, p)
Data:

e Two RNS bases B = (m1,...,my), and B = (mp41,...,May,), such that
M=T1",m; <M =T[", mnq; and ged(M,M’') =1 ;

e a redundant modulus mao,1, ged(mapr1,m;) =1Vi=1..2n ;

e a positive integer p represented in RNS in both bases such that
0< (n+2)%p < M and ged(p, M) =1 (p is prime);

e a positive integers ¢ represented in RNS in both bases, with ¢ < Mp.
Result:

e A positive integer r = ¢cM ! (mod p) represented in RNS in both bases,
with 7 < (n + 2)p.

begin
1 q+ (¢) x (=p~ 1) in B;
2 [¢in B] — [¢ in B’ and ma,4+1]  First base extension;
3 r+ (c+qxp)x M~1in B and may,1;
4 [rin B and maoyy1] «— [rin B']  Second base extension;
end

Instructions 1 and 3 of the Algorithm 3 deal with RNS operations as pre-
sented in the previous section, which are made independently one each element



of the basis, so they are very efficient. These two instructions are linear (or
constant number of words-operations on a n cells architecture) Instructions 2
and 4 represent RNS bases extensions which are quadratic (or linear on an n-
cell architecture) are costly. To reduce this cost, we can use two different full
RNS extensions as shown in [1]. The extension to base B’ of ¢ (instruction 2),
obtained in its RNS form (¢1,...,¢,) in the base B, is done by evaluating first:

o = asl M ()

and then,

, Vi=n+1...2n and ma,i1 (5)

mj

n
i =| X |Mil,, o
i=1

we have ¢ = ¢ + aM with a < n.
Then we compute in the base B’ the value

r=(ab+gp)M ™' = (ab+qp)M " +ap < M. (6)

After instruction 3, we get 7 such that r = abM ! (mod p). The conditions
a<n,q< M and ab < Mp gives ¢ < (n+ 1)M and thus r < (n+ 2)p < M’.
In order to use this algorithm within a cryptographic protocol, we must
be able to compute 22 mod p, where z is the output of a former evaluation
verifying x < (n + 2)p. The condition ab < Mp then implies (n + 2)2p? < Mp
which rewrites:
(n+2)*p < M. (7)

The second extension of r from B’ to B is a classical Shenoy-Kumaresan
scheme [31] using the extra modulus ma,11 for the computing of the factor «
(this is depicted in Algorithm 4), which gives a result smaller than (n + 2)p.
This transformation has no consequence on the conditions.

Reduction of the number of operations:

To reduce the number of operations some pre-computing is helpful. For that,
we develop the previous algorithm 3, giving in Algorithm 4 the details of the
bases extensions. Then we introduce a new combination of the operations in
Algorithm 5, which is faster than the previous versions.
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Algorithm 4: MontgR2_RNS(c, p)
Data:

e Two RNS bases B = (m1,...,my), and B = (my41,...,May,), such that
M=1l"ym; <M =] mu4; and ged(M,M') =1 ;

e a redundant modulus may, 11, ged(mapt1,m;) = 1Vi=1..2n;

e a positive integer p represented in RNS in both bases such that
0< (n+2)?p< M and ged(p, M) =1 (p is prime);

e a positive integers ¢ represented in RNS in both bases, with ¢ < Mp.
Result:

e A positive integer » = ¢cM ! (mod p) represented in RNS in both bases,
with r < (n+2)p.

begin
-1 .
1 qi < Cz'><|—p|mi . in B;
’ [¢in B] — [¢ in B’ and ma,11]  First base extension (lines 2 and 3) |;
9 O — qi’M[1|mi in B;
mi
3 (jj — ’ Z?:l |Mz m; ag; s in Bl and mon+1;
j
. -1 .
4 rj — (¢ +d; x pj) X }M|mj _in B’ and map11;
J
’ [rin B and ma,y1] «— [rin B]  Second base extension (lines 5 to 8) ‘;
A 3 /.
s Wi — rj><|Mj|mj’mj,1nB ;
2n
& — ‘ Z i X ‘M]”m‘ ,in B and mapy1 ;
6 j=n+1 mi
—1
. a ’(£2n+1 — T2n41) X ‘M/‘ ;
man411Man41
8 er‘(fifozx‘M’m‘)m» in B;
end

We remark that most of the operations are done with constant values. To
minimize their number, we try to regroup these multiplications by a constant
value. Instruction 1 can be merged with the first step (instruction 2) of the first
extension given equation (4), then we obtain the following transformation :

in B
in B ®)

-1
Ci X ’ _p|7m

(]7"]\4;1|m7

I—. g«

2—. 0«

m;

11



becomes the instruction 1 of Algorithm 5

1—. 0y« |c; X 7 WithTi:“—p‘;’Mi ;1‘ ,in B (9)

m; )

Then we merge the next three instructions (lines 3, 4 and 5 of Algorithm 4)
, for obtaining new expressions where new constants occur.

: /
, in B and may, 41
m;

S| S M

. -1 ,
4—. rj— ‘(cj +§; X pj) X |M’mj) in B and may41 (10)

mj

-1

mj

5—. pj — in B

rj X ’MJI

m;
These three instructions can be rewritten as follow:

X p2n+1) X |]\4’71

Ton41 < 'CZn-i-l + iy 06 x| M|

man+1 Man+1

M2p41
g ‘(Cj +E?:1 o; X |Mi|mj X pj) X |M|r_nl7 X ‘MJ/’;: . in B/
(11)
Thus we obtain the instructions 3 and 4 of Algorithm 5:
3—. v — ¢+ Zpicn , with p; = ‘|Mz|m |p|m/_‘ in B (12)
i=1 i

mj
. -1 -1 -
4-. ujb‘ijyj‘ Wlthl/j:HM‘ <Myt wmm (1)
mj mj M lm

We remark that we can apply this rewriting to the complete evaluation of «
from the last instructions.

2 .
6—. gl — ’ ijn+1 Hi X |Mj,| in B and Man+1

T—. e ‘(€2n+1_r2n+1) X ‘M/ (14)
Mm2an41 1M2n+41
8—.7'j<—‘(§i—a>< M’ )‘ in B

Then we obtain for the evaluation modulo mg,, 11, the instructions 6, 2 and
7 of Algorithm 5:

1
X ‘M’

’ 2n /
6 - £2n+1 — ‘Zj:n-ﬁ,—l /‘LJ X |Mj|m2n+1 Man41

X pant1) X | M

Man+1

—1
-1

! n /
2= Thyyy — |Cont1+ Doty 0 X | M| manis ¥ ’M

M2n41

mMan+1

/ A
T—. ‘§2n+1 - T2n+1‘
man41

(15)
Hence the algorithm becomes:
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Algorithm 5: MontgR_RNSbis(c, p)
Data:

e Two RNS bases B = (mq,...,my), and B = (my41,...,May,), such that
M=T1]"_m; <M = H?ZHnmj and ged(M,M') =1 ;

with M; = M/m; and M} = M'/m;

e a redundant modulus may, 41, coprime to all the m; for i = 1...2n

e a positive integer p represented in RNS in both bases such that
0< (n+2)%p < M and ged(p, M) =1 (p is prime);

, Vi=1..n;

m; lm;

o ==, x|

o pij=||Mil, xlpl,, |, Vi=l.nand¥j=n+1.2n+1,

oy = HM‘A x | M|

- ,in B'.
M lmy;
Input: A positive integer ¢ represented in RNS in in B in B’ and may, 41,
with ¢ < Mp
Result: A positive integer r = abM ~! (mod p) represented in RNS in
both bases, with 7 < (n + 2)p.
1 0 < ’Ci X 7','|mi, in B ;
n

(cant1 + Zﬂi X Pi2n41) X (|M
i=1

n
¢+ g Pij X O
i=1

oy
,in B, ;

m;

2n
1
§i ‘ > mx M,
5 j=n+1

2n
S — | D i x (M)
6 j=n+1

—1

M2n41

, —

!
Ton41 <

Man+1
man+1

o
,in B’

m j

Y5

Hj < |5 X Vj

,in B ;

my

, -1
M ;
Man41

M2n+1 Mani1

! / .
T ¥ ’£2n+1 - TQn—O—l’ ;

mM2an+1
in B;
my

Ty <

fi—ax‘M’

Lz

We summarize now the cost of this algorithm. The evaluations in bases B
and B’ (lines 1, 3, 4, 5 and 8), represent 2n? + 3n products. The evaluations on
the extra modulus ma, 11 (instructions 6, 2 and 7) use 2n + 1 multiplications.
Thus, the total cost of these reduction is 2n? + 5n + 1 words-operations (on a
n+ 1 arithmetic cells, that represents, due to the dependencies, 2n + 3 product-
cycles). Now, we remind that ma,11 is small, it can be chosen as the smaller
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power of two greater than m. So, this part of the calculus can be neglected.
Hence, we can consider that the total cost of the reduction represents 2n2 + 3n
words-products

3.3 Discussion about the advantages

Even if the number of operations needed is somewhat higher than in a classical
representation (2n2 4+ n words products for the classical Montgomery), RNS has
some important advantages. It is easy to implement, particularly in hardware,
and it provides a reduced cost for multiplication and addition and a competitive
modular reduction. Furthermore, RNS allows, due to the independence of the
modular operations, to perform computations in a random way and to parallelize
the architecture.

Moreover, it is shown that RNS can be used as a leak-resistant arithmetic
[12, 4], by selecting randomly B and B’ in a set of 2n coprime numbers. It is
shown that we got (2*) ways to do the same calculus. Hence, DPA attacks are
very difficult to operate. Against SPA it can be possible to exchange the bases
during the evaluation.

The parallelization of the architecture, with n basic operators (the extra
modulus m, can be included inside [3]), gives a time complexity of 2 modular
digit-operation for the multiplication (or multiplication-addition) and 2n+ 3 for
the modular reduction. According to this point we see that if we accumulate
some operations (i.e., sum of products) before reduction we obtain an efficient
implementation ([2]). We develop this approach in the next section with ECC.

Last advantage of the RNS is the natural scalability of the architecture.
With a given structure of n modular digit operators, it is possible to handle
many values of p whose verify (7): (n+2)% x p < M. If we refer to Algorithm
5, we remark that the only values depending of p are: 7; and p; ;. Thus by
reinitializing these pre-computed values the system can be adapted for a new
value of p. If p is relatively smaller than M, we can adjust the RNS basis by
reducing it of some m;. In this case we will use partial RNS bases (my, ..., mz)
and (My41, ...y Mpt7) With 7 < n. In this case, with a control part which takes
into account of n, we can assume that the performances of the system depends
of the size of p.

Hence, the architecture proposed in this paper offer different level of adapt-
ability, scalability and security proper to the RNS.

4 Leak-resistant arithmetic on elliptic curves op-
timized for the RNS representation

The aim of this section is to rewrite or modify the formulae given in section 2.2
in order to minimize the number of modular reduction since this is the most

expensive operation in RNS representation. Thus we have to group together
several multiplications and perform only one reduction.

14



4.1 Unified addition formulae

This can be very well illustrated by the formulae for Hessian elliptic curves.
We give here the steps that must be done to compute the sum of two points
(X1,Y7,771) and (Xo,Ys, Z). The costs are given by the number of modular
reductions.

step operations cost
Computation of A= X2Y1, B = Y1Z2, C = X1Y2 3
intermediate products | D =Y22,, E=X17Z5, F=Xs7; 3
computation of X3 AB - CD 1
computation of Y3 EC—-FA 1
computation of Z3 EB—FD 1

Thus the total cost in RNS representation is 9 modular reductions which has to
be compared to the 12 base field multiplication in standard representation.

Concerning the Jacobi quartic the cost in term of modular reductions (and
the formulae) is given in [15] and is equal to 10 whereas 12 multiplications are
necessary.

Finally, we give the details of the steps for computing the sum of two points
using unified addition formulae for a curve given in short Weierstrass form

step operations cost
computation of A, A=X07,, B=X 2>, 2
C = Zl ZQ, D= aC’ 2
M=(A+B)?—-AB+CD | 1
computation of Ay E=Y12+Y7, 1
Aa=EC 1
intermediary F=FE\, G=)\ 2
computations H=F(A+B) 1
computation of X3 2Xq4(G — H) 1
computation of Y3 A (3H —2G) — F? 1
computation of Z3 2)5 2

In this case, the total cost in RNS is 14 modular reduction whereas 18 multipli-
cation must be performed.

Thus, for all known unified formulae, the computation of the addition re-
quires less reductions than multiplications. This means that, even if the cost of
the RNS modular multiplication is higher than the cost of the standard mod-
ular multiplication (as shown in Section 3.2), using the RNS representation of
numbers can become interesting in term of performance. In addition, it has
all the advantages described in Section 3.3. We give in Section 5 a detailled
comparison.
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4.2 Montgomery formulae

The situation is even more exciting in this case. In fact it is not exciting at
all for curves which can be transformed into Montgomery form since both 10
multiplications and modular reduction are required. Moreover, because of the
degree of the formulae, it is easy to see that it is not possible to have a better
result. The case of Montgomery formulae in the general Weierstrass form is
much more interesting. Indeed one can do better than re-using the formulae
described in Section 2.2. Following the strategy used for the unified addition
formulae leads to 16 modular reductions and 19 multiplications. Slightly rewrit-
ing the formulae given in Section 2.2 already allows to perform only 15 modular
reductions. These formulae are given in [2]. It is in fact possible to reduce again
this complexity by resuming from the beginning the Montomery ladder with a
more theoretical point of view.

The Montgomery ladder is based on the fact that the y-coordinate brings
only minor information. Indeed, it only allows to distinguish a point and its op-
posite (or equivalently a point and its image under the hyperelliptic involution).
Thus the Montgomery ladder is only dealing with the z-coordinate. From a
theoretical point of view, this means that we are working on the quotient of the
curve by the hyperelliptic involution : the Kummer surface. Of course, taking
such a quotient implies that it is not possible to add two different points (since
P+ @ and P — @ are not equal in the Kummer surface. However the doubling
is still possible (it is easy to discern P+ P and P — P) and if P — Q is known it
will be possible to discern P+ Q and P — Q. More precisely, it is proved in [17]
that there exists biquadratic forms M,, M, and M, such that for any points
P = (X,,Z,) and Q = (X4, Zy) on the Kummer surface

2Xp+qXp—g = M,
XptaZp—q+ Xp—qZptq = M
2Zp+qZp—q = M.
with
M, = (XpXq—aZyZ,)* — 462, 24(Z,Xq + Xy Zy),
My, = XpXo(ZpXq+ XpZy) + ZpZe(a(ZpXq + XpZy) + 202, Z,)
M. = (Z,X,— Xqu)2

If P— @ is known, one can easily deduce from these biquadratic forms the
formulae to compute X, and Z,4,. In fact, only two of the biquadratic forms
are necessary. For instance, the formulae obtained (by an other way) by Brier
and Joye in [8] and given in Proposition 2 can be easily deduced from M, and
M,. Here, in order to minimize the number of modular reductions, we will
use M,, and M,. In the context of the Montgomery ladder (Algorithm 2),
the difference between the two points we want to add is always the base point
G = (x,y) which is given in affine coordinate so that Z,_, =1 and X1, = .
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Thus we obtain

Xprq = 2(Mar —xZpyq)
Zprq = M.

Let us note that the theory of Kummer surfaces also provides formulae for the
doubling but there are always leading to the same formulae than in Proposition
2. Therefore, we have the following theorem.

Theorem 1 Let p be a prime number and E be an elliptic curve defined over
F, by (1). Let also P = (X,,Yp, Zp,) and Q = (X4,Yy, Zy) € E(Fp) given in
projective coordinates. Assume that P — Q = (x,y) is known in affine coordi-
nates. Then we obtain the X and Z-coordinates for P + @Q and 2P in terms of
the X and Z-coordinates for P and @Q by the following formulae :

Xprq = 2(XpX(ZpXq + XpZy) + ZpZo(a(Zp X g + XpZg) + 202y Zg) — 2 Zp4q) ,
Zptq = (Xqu + XqZp)2 —4X, X2y 2,

Xop = (X2—aZ2)® —8bX,7Z2,

Zoy = 4X,7Z, (X} +aZ}) +4bZ,.

Finally, we give the details of the steps for computing the sum of two points
and the doubling of a point

step operations cost
preliminary A=2,X,+XpZ, 1
computations B=2X,X,, C=22,7, 2
computation of 7, A? — BC 1
computation of X, D =aA+bC 1
BA+CD+2xZ,44 1
preliminary A=2X,2, 1
computations B=X}, C=2 2
D= —4bA, E =aA p
computation of X5, BD +(C — E)? 1
computation of Z, 2B(C+ FE)—AD 1

In this case, the total cost in RNS representation is 13 modular reduction (and
20 almost for free multiplications) whereas 19 base field multiplications must be
performed in a standard representation.

It is interesting to notice that, contrary to the case of the standard represen-
tation, the extra cost for curves in short Weierstrass form compared to (more
specific) curves in Montgomery form is not too large (33% in RNS representa-
tion compared to 90% in standard representation).

Lastly, if a (or b) is a small number, the cost becomes 12 modular reductions
whereas 17 base field multiplications must be performed in a standard repre-
sentation. Let us now show that we can almost always assume that either a or
b is small.

17



4.3 Rescaling the constant to a small value

This section is not specific to the RNS representation and can be applied in
other contexts. It takes source in the fact that there are 2 multiplications by a
in the general formulae for the Montgomery ladder. Thus if a can be rescaled
to a small value, the gain will be attractive.

The standard way to perform such a rescaling is the use of an isomorphism

Vv:El,) — E'(F,)
(z,y) (a7 y)

u?’ ud
where u € Fy and E’ is the elliptic curve given by the equation

a b

y2 = (ES =+ El’ =+ ﬁ

Thus if we want to rescale a to a small value, say k, we have to find an element
w such that u* = %- In other words, rescaling a to the smallest possible value
is equivalent to find the smallest k such that ¢ is a fourth power in FF,. For
instance a can be rescaled to 1 if it is a fourth power. The probability for
an element of F), to be a fourth power is %. In fact, one can obtain a better
result in the context of the Montgomery ladder. Indeed y is not used in this
representation so that only u? will be used and it is in fact sufficient that ¢ is
a square in F,. This allows to relax the constraints. Of course it is not possible
to use an isomorphism over [F, anymore. We can use an isomorphism defined

over IF,, but it is easier to use a change of variables.

Theorem 2 Let E be an elliptic curve defined over F,, by (1) and k be a small
integer such that & is a square in F,. Let also P = (X,,Yy,Z,) and Q =
(X4,Yy, Z,) € E(F,) given in projective coordinates. Assume that P—Q = (z,y)
is known in affine coordinates. Put Z' = \/%Z. Then we obtain the X and Z'-
coordinates for P+ @Q and 2P in terms of the X and Z'-coordinates for P and
Q by the following formulae :

Xprg = —4%\17/%2;23()(]92; + X, Z) + (X, Xy — kZ})Z))?,
Zle-q = \:/r%(XpZ!; - XqZ;I))7
o 2 2\ 2 b 3
Xop = (X2—-kZP) - gi%ﬁxpz; ,
zy, = AZ) (X;’ + kX, 2 + e Z;,3) :
e

Of course, # and % must be precomputed. In this case, addition can be
performed in 9 multiplications and doubling in 8. The same idea can be applied
to formulae optimized for the RNS representation given in Section 4.2.
However, is it always possible to find such a small k& 7

The first remark is that a is a square with probability % (which is better than
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the probabilty of i that a is a fourth power). In this case, we can choose k = 1.
Otherwise, if a is not a square, the simplest case to treat is the case p = 3 mod 4.
Indeed, in this case, —1 is not a square in F,, so that —a is a square (thanks
to the multiplicativity of the Legendre symbol) and we can choose k = —1. If
p = 1 mod 4, we have to check that k is sufficiently small. It is easy to prove
(using again the properties of the Legendre symbol) that the proportion of prime
fields such that the n first prime numbers are squares is only 2% Thus, in most
cases, it is possible to rescale a to a small number.

Anyway, if k is too large to assume that the multiplication by k& can be ne-
glected, there is another way to rescale a to a small value. This method is
explained in [9]. The principle is to find an isogeny of small degree between the
elliptic curve E and an new elliptic curve, say E” having the same cardinality.
One can then hope that the method explained above will give a better result on
E” than on E.

Basically, it is the same idea that the previous isomorphism between E and E’
(an isomorphism is an isogeny of degree 1) but the composition of the isogeny
and its dual is not the identity on E so that the scalar multiplication must be
modified to give the right result. This operation has a negligible cost compared
to the full scalar multiplication and is explained in detail in [9].

Finally, the method explained for rescaling a to a small value can also be applied
to b if there exists a small k& such that %’ is a cube in [F, which leads to the

same gain (2 multiplications).

As a conclusion, the probability that neither a nor b can be rescaled (by us-
ing Z’ or isogenies) to a small value is very low in the Montgomery ladder
context.

5 Comparisons of performance

In this section, we will compare the complexity of our approach to those using
Montgomery modular multiplication or Mersenne numbers.
First we summarize the complexities in Table 1: obtained for the base field

Operation RNS Montgomery | Mersenne
Multiplication 2n n? n?
Reduction 2n2 + 3n n?+n 0

Table 1: Number of word operations in RNS, Montgomery and Mersenne ap-
proach for two n-word integers

operations. Table 2 shows the number of operations required for each bit of the
exponent and for the different representations of the curve we chose to deal with
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in this paper.

’ Curve representation \ RNS representation \ Standard representation ‘
Hessian form 9 red. and 12 mul. 12 mul. and 9 red.
Jacobi form 10 red. and 12 mul. 12 mul. and 10 red.
unified Weierstrass form 14 red. and 18 mul. 18 mul. and 14 red.
Montgomery ladder 13 red. and 20 mul. 19 mul. and 16 red.
Montgomery ladder (a small) | 12 red. and 18 mul. 17 mul. and 14 red.

Table 2: Optimal number of operations in RNS and standard representation for
a basic step of the scalar multiplication

It is then easy to deduce the global complexity in each case. For instance,
one step of Montgomery exponentiation algorithm using the formulae given in
Section 2.2 (for Montgomery and Mersenne approach) or section 4.2 (for our ap-
proach) when a is small requires 17n? 4+ 14(n? +n) operations with Montgomery
modular multiplication, 17n? with Mersenne numbers and 18(2n)+12(2n?+3n)
in RNS. We summarize inTable 3 the word complexity for each representa-
tion of the curve we considered in this paper (i.e., those having leak-resistance
properties). We also give these complexities for usual ECC sizes for a 32-bit
architecture. All these complexities are given for one basic step of the scalar
multiplication.

As expected, Mersenne numbers based arithmetic is unbeatable in term of
performance. Nevertheless, we have seen that RNS arithmetic has other ad-
vantages such as leak-resistance properties and scalable architecture. On the
other hand, it is interesting to remark that the complexities we obtain in RNS
are assymptotically always better than in Montgommery representation despite
the fact that Montgomery arithmetic on the base field has a better complexity.
This is due to the fact that we optimised formulae on elliptic curves in order to
minimize the number of reduction. Unfortunately, such a better complexity is
not sufficient when n is small as it is the case for 192 or 256 bits elliptic curves.
Our method becomes competitive for larger sizes such as 512 bits elliptic curves
(or equivalently 256 bits elliptic curves on a 16 bits architecture) when unified
formulae are used. Concerning the Montgomery ladder, the results are better
since our method is competitive for 256 bits elliptic curves. This is because
we discovered new formulae which are well adapted to the RNS representation
of numbers. Anyway, RNS arithmetic shows all its advantages when a parallel
architecture is used.

Indeed, if we assume that we dispose of an architecture equivalent to n
word-operators on a single word-bus, we get in table 4 the complexities of the
different approaches in number of word operations. Note that we only give
these complexities in the case of the Montgomery ladder with a small in order
to simplify the paper. The complexities for the other curves representations can
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Curve representation size in bit RNS Montgomery | Mersenne
Hessian form 32n 18n% + 51n 21n% + 9n 12n?
192 954 810 432
256 1560 1416 768
512 5424 5520 3072
Jacobi form 32n 20n% +54n | 22n2 + 10n 12n2
192 1044 852 432
256 1712 1488 768
512 5984 5792 3072
unified Weierstrass form 32n 28n% +78n | 32n° + 14n 18n?
192 1476 1236 648
256 2416 2160 1152
512 8416 8416 4608
Montgomery ladder 32n 26n2 4+ 79n | 351> + 16n 19n?
192 1410 1356 684
256 2296 2368 1216
512 7920 9216 4864
Montg. ladder (a small) 32n 24n° +72n | 31n® + 14n 17n?
192 1296 1200 612
256 2112 2096 1088
512 7296 8160 4352
Table 3: Cost of one iteration of scalar multiplication
be easily deduced from Table 3.
Operation RNS Montgomery | Mersenne
Multiplication 2 n...2n n...2n
Reduction 2n+3 2n...3n

’ One iteration of algorithm 2 \ 24n + 72 \ 44n....75n \ 17n...34n ‘

Table 4: Number of cycles with parallel implementations on a n word-operators
structure (18M+12R for RNS and Montgomery and 17M+14R, for Mersenne).

The estimation of the cost for the multiplication and for Montgomery parallel
product are based on systolic implementations [28] or on parallel implementa-
tions [10, 32] where the given architecture are respectively in O(n?/log(n)?) and
O(n?) for the area and O(log(n)) for the time. As we did not find an explicit
complexity for multiplication using a O(n) area architecture, we give two values
for the complexity. The first one is minimal but certainly not realistic. The

second one, which is not necessarily optimal, takes into account that

e cach product of a number by a digit will produce two numbers (the high

and the low part),




e a carry-save adder will need an extra register for storing the carry and a
final adder for absorbing those carries,

e 32-bit words look-up tables are not reasonable.

Then, to get an idea with ECC key size, we compare three different implemen-
tations in table 5 for the number of operations required for one step of the
Montgomery scalar multiplication on an elliptic curve in Weierstrass form with
a small.

Ip|, | word | RNS | Montgomery | Mersenne
192 6 216 264 ...450 | 102...204
256 8 264 352...600 136...272
512 16 456 704...1200 | 272...544

Table 5: Comparison of parallel implementations

In this configuration, the RNS becomes very interesting compared to Mont-
gomery arithmetic in terms of efficiency for a leak-resistant implementation of
elliptic curve cryptosystems even if we use the non-realistic lower bound for the
comparison.

Implementations based on generalized Mersenne primes are still slighlty bet-
ter in term of efficiency but one has to keep in mind that an architecture using
such prime numbers has some disadvantages compared to RNS. In particular,
it is not highly scalable.

6 Conclusion

We combined two leak-resistance techniques to obtain an efficient and secure
implementation of elliptic curves cryptosystems on embedded devices.

Since the expensive operation in RNS is the reduction, we had to rewrite formu-
lae for elliptic curve leak-resistant arithmetic in order to minimize the number
of reductions even if the number of multiplications is increasing. In the case
of the Montgomery ladder on elliptic curves in Weierstrass form, we obtained
new formulae which are better adapted to RNS representation of numbers and
we explain why multiplications by one of the coefficients of the curve can be
neglected in most cases.

We also give a deep analysis of the complexity of the Montgomery reduction.
Doing this, we realize that some improvements could be done leading to a final
complexity of 2n? + 3n for a n-word number.

Combining this improvement of the RNS reduction and the revisited formulae
for elliptic curves leads to a competitive leak-resistant arithmetic for high secu-
rity levels in particular in the case of the Montgomery ladder on elliptic curves
in Weierstrass form.
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Our approach is particularly interesting from the hardware point of view

since the RNS representation of numbers has many advantages (leak-resistance,
easy to implement and to parallelize, scalability). It is also very attractive in
the case of a dedicated parallel architecture.
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Abstract

In the beginning of the 90’s, Flynn gave an explicit description
of the Jacobian of a genus 2 hyperelliptic curve allowing to perform
efficient arithmetic on these objects. In this paper, we give a general-
ization of the work done by Flynn when the ground field has charac-
teristic 2. More precisely we give an explicit description of both the
Jacobian and the Kummer surface. We also give (and explain how we
found them) explicit formulas for the structure of the group law on the
Jacobian that is preserved on the Kummer surface.
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Introduction

During the 90’s, Victor Flynn provides many tools for the explicit arith-
metic on Jacobians of genus 2 hyperelliptic curves which are gathered in
[Cas-Fly 96]. He first gave in [Fly 90] an explicit description of such Jaco-
bians as a P15 embedding and therefore brings to the community a new tool
to perform computations on such curves. However, this explicit description
was heavy to manipulate in practice. Flynn solved this problem in [Fly 93]
by introducing the Kummer surface as an embedding in P3. This descrip-
tion is, of course, simpler but the group structure is lost in passing from
the Jacobian to the Kummer surface. Fortunately, traces of this group law
remain and Flynn computed them. He deduced several applications of this
work as in [Fly 95], [Fly-Sma 97] or [Fly 97]. All this applications were on
fields of characteristic 0 (and even on @ or number fields) so that he never
needs to consider the case of characteristic 2. In [Sma-Sik 99] and [Duq 05],
applications of this Kummer surface to cryptography are given. As the char-
acteristic 2 is often used in cryptography, it is interesting to generalize the
work of Flynn to characteristic 2. Of course other applications could be find,
but this one was our first motivation.

All the formulas obtained in this paper are available in Maple or Magma
format on my web site http://www.math.univ-montp2.fr/ duquesne.



1 The Kummer surface in genus 2 and odd char-
acteristic

In this section, we suppose that the characteristic of the ground field k is
not 2 and consider curves C of genus 2 in the form

C:y* = f(a),
where
f(@) = fex® + fs2° + faz* + f32° + fox® + frz + fo € k[7]

has no multiple factors. Every curve of genus 2 defined over k is birationally
equivalent over k to such a curve.

1.1 Description of the Jacobian

The Jacobian, denoted by J in the following, is an algebraic variety whose
points correspond to the elements of Pic?, the group of the divisor classes of
degree 2 divisors modulo principal divisors. This means that an element of
the Jacobian can be identified with a pair of points on the curve. Such an
element is defined over k if the two points are in k or if they are conjugate
over a quadratic extension of k.

In [Fly 90] and [Cas-Fly 96|, Flynn explains how to realize an embed-
ding of the Jacobian in P!%(k). He uses a theorem of Lefschetz ([Lan 82],
p. 105) setting up that a basis of £ (2(0F + ©7))! gives such a projective
embedding of the Jacobian. £ (2(0" + ©7)) is equivalent to the space of
symmetric functions on C x C which have at most a double pole at infinity, a
pole of any order at the neutral element O, and are regular elsewhere. Such
functions form a vector space of dimension 16 thanks to the Riemman-Roch
theorem. Therefore, Flynn describes the Jacobian by exhibiting 16 indepen-
dent functions in £ (2(©" + ©7)) that we will not reproduce here.

Afterward, Flynn studies the behaviour of these 16 basis element in the
neighbourhood of O. He deduces from this study a basis for the quadratic
relations between the 16 functions. There are 72 such relations (available
on the ftp site of Flynn) and they form a set of defining equations for the
Jacobian.

1©% and ©~ are the images of the curve C in the Jacobian via the embedding P
P—o0o" and P+ P — o0, where co™ and oo™ are the two branches of the singularity of
C at infinity.



1.2 Description of the Kummer surface

Among the 16 functions defining the Jacobian in P'?, 10 are even, in the
sense that the negation on the Jacobian leaves them unchanged.

Of these 10 even functions, there are 4 functions which give a basis for the
vector space £ ((©F 4+ ©7)). These functions are providing a basis in P?
for the Kummer surface. More precisely, if an element of the Jacobian is
represented by the two points on the curve (z1,y1) and (x2,y2), these 4
functions are

ko= 1
ky = z1+x
ks = x112
1
ky = (21 — 22)2 [2f6(z122)° + f5(z1 + 22) (T172)* + 2fa(T122)° +

fa(x1 + z2)x1m0 + 2 fow10 + f1(21 + 22) + 2f0 — 2Y1Y2]

We let k the projection from the Jacobian to P? defined by the choice of
these 4 functions among the 16 defining the Jacobian. The image of this
projection is the Kummer surface K. The map « identifies +. Elements of
order 2 are injected into K and all other elements «(A) have precisely +A
as pre-images. Moreover, Flynn proves that these 4 functions are satisfying
an explicit homogeneous quartic equation of total degree 4 and of degree
at most 2 in k4. This quartic is defined over Z[fo,..., f¢] and is given in
[Fly 93] and on the ftp site of Flynn.

It is of course preferable to work with the simpler Kummer surface in
P3 rather than with the Jacobian in P'®. It is however not always possible
because the group law on the Jacobian is not preserved in the Kummer sur-
faces. Fortunately, traces of this group law remain on the Kummer surface.

1.3 Traces of the group law

The obstruction for the group law to be preserved on the Kummer surface
is that one cannot distinguish an element B and its opposite —B. Hence, if
we want to add an element A and B, there are 4 possibilities for the result
namely A+ B, —A— B, A— B or —A + B. There is no ambiguity between
A+ B and —A — B (and between A — B and —A + B) because they map to
the same element in the Kummer surface. On the contrary, there is an am-
biguity between A+ B and A— B which are not equal in the Kummer surface.



The simplest case to treat is the addition of an element B of order 2.
Indeed, in this case, A+ B = A — B so that this operation is well defined
on the Kummer surface. It is in fact a linear map on P3 and is given by a
4 x 4 matrix. Flynn computes this matrix in [Fly 93] by formally adding an
arbitrary element and an element of order 2.

A second useful piece of structure on the Kummer surface is the addition
of two elements if their difference is known. Indeed, there is no ambiguity
between A+ B and A — B if A— B is already known. More precisely, Flynn
proves that there exist biquadratic forms ¢;; defined over Z[fy, ..., fs] such
that projectively

Moreover, he gives these biquadratic forms explicitly in [Fly 93]. The way
Flynn computes them is very clever. Instead of performing a direct alge-
braic manipulation with 2 generic elements of the Jacobian, he first assumes
that B is an element of order 2 but keep its coordinates in the generic form.
Thus, he can use the matrix of the addition of an element of order 2 to
compute the biquadratic forms ¢;;. Of course, these forms are only valid, a
priori, if B is an element of order 2, but Flynn proves that the formulas he
obtains are in fact valid for any element B.

Finally, Flynn deduces formulas for the multiplication-by-2 map from
these biquadratic forms. This map is of course well defined on the Kummer
surface as there is no ambiguity between A+ A and A— A = O.

Using an easy induction argument, it follows that the multiplication-by-n
map can also be defined on the Kummer surface and is explicit.

1.4 Applications

Flynn provides several applications of these traces of the group law. In
[Fly 95], he determines explicit height constants for Jacobians of hyperel-
liptic curves. These constants are necessary to perform the last step of the
computation of the generators of the Jacobian (which is finitely generated
if the base field is a number field). This step is called the infinite descent
and is detailed in [Fly-Sma 97].

Last but not least, he deduces in [Fly 97] an explicit and efficient algorithm
to compute the rational points on the curve when the rank of the Jacobian
is 1 (i.e. when the condition of application of the Chabauty’s theorem is



satisfied).

More recently, I used the Kummer surface and the traces of the group
for cryptographic purposes. The multiplication-by-n map is the central tool
in cryptography based on algebraic curves. Flynn already noticed that this
map was well defined on the Kummer surface but gave an inefficient algo-
rithm for its computation. I give in [Duq 05] a new algorithm which is on
the one hand more efficient and on the other hand well adapted for crypto-
graphic applications in the real life.

All the applications given by Flynn are on a ground field of characteristic
0 (and even on @Q or on a number field). Thus Flynn did not need to
complicate its computations by considering the case of the characteristic
2. However, in cryptography, fields of characteristic 2 are often used, so
that a generalization of the work done by Flynn to the characteristic 2 is
interesting. Of course, this does not exclude other applications in the future.

2 Description of the Jacobian as a P! embedding
in characteristic 2
The situation in characteristic 2 is very different of the odd characteristic.

In fact a genus 2 hyperelliptic curve in characteristic 2 is not defined by an
equation of the form

C:y* = f(a),
but by an equation of the form
Co:y” + )y = f(x),
where
h(z) = hex?® + hyx + ho and
fx) = fex + fsa® + faz* + fsa® + for® + fre + fo

are polynomials in k[z] satisfying some conditions ensuring the regularity of
the curve. That is one of the reason why Flynn preferred to exclude this case.

An element of the Jacobian can still be represented by two points on
the curve and we will always use this representation in the following. The
opposite of an element is given by

—{ (@1 01), (w2,92)} = {(z1, 91 + hl(@1)), (22,92 + h(22))}



The methodology used by Flynn in [Fly 90] and [Cas-Fly 96] to realize an
embedding of the Jacobian in P!5(k) is valid for any ground field k. Thus,
a projective embedding of the Jacobian is given by the vector space of sym-
metric functions on C x C which have at most a double pole at infinity (ie
large at worst like 2323 at infinity), a pole of any order at the neutral ele-
ment O, and are regular elsewhere. The dimension of this vector space is 16
(by the Riemann-Roch theorem) and we exhibit 16 independent functions.
These 16 functions form a basis so that they entirely describe the Jacobian
as a P embedding.

As in odd characteristic, it is easy to find functions which are regular at
O and those which have a simple pole. The situation is more complicated
for functions having a pole of higher order. Indeed, the derivation cannot
be used in characteristic 2 to find such order.

All the functions we will construct have (x1 + x2)™ as a denominator.
Thus, remembering that the neutral element is represented by a pair of
points on the curve of the form {(z1,y1), (x1,y1 + h(z1))}, it is sufficient
(and easy) to prove that their numerator does not vanish on such pairs
of points to prove that they have a pole of order n at O. However, we
have to prove that they have no other pole. Because the denominators
are a power of (z; + w2), we just have to prove that {(z1,v1),(z1,91)}
is not a pole. Then, we have to prove that the numerators have a zero
of order n at {(x1,y1),(x1,y1)}. For this, we introduce the ideal M of
k[z1,y1,22,9y2]/(P1, P2) (where P; = y? + h(x;)y; + f(xi)) generated by
(1 + x2) and (y1 + y2). By this way, a polynomial has a zero of order
n at {(z1,y1), (x1,y1)} if and only if it lies in M™. The ideal M is in fact
principal, generated by (x1 + x2). Moreover, (y1 + y2) can be written as a
multiple of (1 +x2) in any M™ (by induction) thanks to a relation deduced
from the defining equation of the curve and given here :

h(z2)(y1 +y2) = (y1 +y2)* + fo(z1 + 22)° + fs(x1 + 22)° + fa(z) +
z2)* 4 (f3 + fsrrwa) (w1 + 2)° + (f2 + fortas + hayr)(z1 + 22)° + (%)
(fr + fsmiwo + fswlas + hiyr) (@1 + 22)

Using these tools, we can find all the symmetric functions on Co x Cy
which are large at worst like 273 at infinity, have a pole of any order at the
neutral element O, and are regular elsewhere. We use for this a computer
algebra package such as Maple or Magma and we obtain the following theorem

Theorem 1. The vector space of symmetric functions on Co X Co which have



at most a double pole at infinity, a pole of any order at the neutral element
O, and are regular elsewhere is generated by the following 16 independent
functions :

Double zero at O
s3 = (z1+22)

Simple zero at O
s = T1+ X2

Regular non-zero at O

= TI1X2
2,2

Simple pole at O

Y1+ Y2
T+ T2
Tay1 + T1Y2
T + X9
T3y + 21y
r1 + T2
z3y1 + 2y
T + X2

oy =
a1 =
Ay =

a3 =

Double pole at O

(z1 + z2) (fg,x%a:% + fyx120 + f1) + h(z2)yr + h(x1)yo

Bo =
(.731 + :L‘Q)2
ﬁ . (Il+I2)(fswg’ﬂﬁngfM%96%+f2961962+f0+yly2)+I1h(961)y2+962h(962)y1
L= (z14x2)?
fBo = w1200

Triple pole at O

T = aofo+ fo(x1 + x2) (hewiad + hzixa(z1 + m2) + ho(z1 + 22)?) +

f51:1x2a1



Yo = aofr + (2% + 23 + z122) (fsaa + foas) + (fa+ f5(z1 + 2)) 120+
fer1T2 (hgx‘%l‘% + hy (3;‘1 + xg)xlxg + ho(l‘l + xQ)Z)

Quadruple pole at O

The most complicated cases are vg and ;. We notice that even if a term
of degree 3 in x; appears in the expressions given above, these functions are
not larger than z3x3 at infinity because some simplifications hold when we
expand formulas. However, we prefer to give them in this form because it is
much more simple than the expanded form.

These functions are difficult to find because we have to describe all the
possibilities for symmetric functions on Cy x Cy which have (z1 + 22)? as a
denominator and are large at worst like 223 at infinity. Then we have to
use that they have a pole of order 3 at O, and are regular elsewhere to get
sufficiently many constraints on the functions. It is however much more easy
to verify that the functions we provide are satisfying the required conditions.
Indeed, one just have to check that their numerator is in M?3.

Of course, it is also easy to check that the 14 other functions given are
satisfying the required conditions. Afterwards, we verify by algebraic com-
putation that these 16 functions are independent to complete the proof of
the theorem.

Finally, these 16 functions are defining an embedding of the Jacobian in
P'5 (k). Moreover, using the same method than Flynn (the local behaviour
of these functions in the neighbourhood of O), it is possible to determine a
basis for the quadratic relations between these 16 functions and the Jacobian
is given by these quadratic relations.

3 Description of the Kummer surface as a P? em-
bedding in characteristic 2

By analogy with the terminology used by Flynn, we call “even” a function
which is invariant under the map

klx1,y1, 22, 92]/(P1, P2) — klz1,y1, z2,y2]/(P1, P2)
(1,91, %2,Y2) — (z1,y1 + h(21), 22, y2 + h(z2))



Among the 16 functions describing the Jacobian and given in Theorem 1, 9
are even and only 4 of them are large at worst like x1x9 at infinity, (namely
u, s, p and ) and then provide a basis in P? for the Kummer surface. For
convenience, we introduce a new labelling so that

kk =1

ko = x1+x9

ks = z1x9

I (z1 + x2) (f5l‘%$% + f3r120 + f1) + h(z2)y1 + h(x1)yo

(z1 + x2)?

The Kummer surface ICo(k) is then the image of the projection from the
Jacobian to P3(k) defined by the choice of these 4 functions among the 16
defining the Jacobian.

Proposition 1. Let the map

Ko jg(kj) — ’CQ(]C)
{(@1,y1), (T2, y2)} [k, k2, ks, kal

o This map identifies an element and its opposite.

o The elements of order 2 are injected into Ko and all other elements
ka(A) in Ko have precisely A and —A as pre-images.

o The functions ki, ko, ks and k4 satisfy an explicit homogeneous quartic
K of total degree 4 and of degree at most 2 in ky. The Kummer surface
is defined by K(k1, ko, ks, ky) = 0.

The first assumption is trivial, because the 4 functions k1, ko, k3 and k4
have been chosen among even functions.

Concerning the second assumption, it is trivial that ko and k3 are com-
pletely determining x1 and x9. Thus, there are only 4 possibilities for the
pre-images namely

o A={(z1,11), (z2,92)} itself,

o {(z1, 51 + h(@1)), (22, 92)},

o {(z1,11), (x2,y2 + h(z2))} and

o —A={(z1,y1 +h(z1)), (2,52 + h(z2))}.

10



If {(x1,y1+h(z1)), (z2,y2)} is a pre-image, it must have the same k4 than A.
This implies that either h(z;) or h(x2) equals 0. The situation is of course
the same if {(z1,y1), (z2,y2 + h(z2))} is a pre-image. Hence, if h(z;) and
h(z9) are both non-zero, the only possibilities for pre-images are A and —A.
If either h(z;) or h(z2) equals 0, then only 2 of the 4 possibilities for the
pre-images are different and this yields again to A and — A as pre-images. Fi-
nally, the elements of order 2 are exactly those such that h(z1) = h(z2) =0
and there is, in this case, only one pre-image.

The third assumption is proved using a formal computation of k3. We
obtain an equation of the form

Kok? + K1ks + Ko = 0.
where Ky, K1 and K9 are symmetric expressions in x1 and x2

K2 = (.731 + :132)2

K1 = h($1)h($2)

Ko — h(z1)h(z2)(w14x2)(fsz323+ fazima+f1)+h(z2) f (1) +h(z1) f(z2)
U (z14x2)?

_l’_
(fs2223 + fsriaa + f1)?

Despite the appearance, the term Ky is a symmetric polynomial. Thus, we
can write Ky, K1 and Ko as polynomials in terms of ki, ko and k3.

Ky = k3
K, = h%k‘% + h%k‘gk‘% + hohlk‘gk‘% + h%k‘gk‘l + hohikoksky + hohgk‘%k‘l
Ko = (ff +hifo+h3fo+ hihofr) ki+(Bg fa+haho f1)kak§ + (hah fi+

hiho f3)ksk? + (h3 fo+h§ f4) k3 kT + (haho f3+h§ 5+ hi f1) ko ksks +
(f24-h2 fo+-h? fa+hohy fs+h1ha f3+h3 fo) k3 k2 +h3 fsk3ki+(h fs+
haho f5)k3koki + hohy fsk§ki + h§ foks + b3 fek3ks + (f2 + h3 fe)ks

4 Traces of the group law in characteristic 2

We will now consider the structure of the Jacobian which is preserved by
the map k9 into the Kummer surface.

4.1 Addition of an element of order 2

Let B be an element of order 2 on the Jacobian represented by the couple
of points {(z1,y1), (x2,y2)}. Such an element is invariant under the map
which send an element to its opposite so that both x; and x9 are roots of

11



h. We have already seen that the addition of B with an arbitrary element
A was defined on the Kummer surface because A + B = A — B. As this
operation is linear, it can be represented by a 4 x 4 matrix. To compute this
matrix, we use the same method than Flynn, namely we performe a direct
algebraic manipulation using the geometric description of the group law on
the Jacobian. We do not give details of this computation here because we
will give them in the next section in a more general case. Anyway, it is easy
to obtain the 3 first lines of the matrix. To obtain the fourth, we use the
fact that the addition by an element of order 2 is an involution so that the
square of the matrix must be the identity of P3. Finally, we have that

4
ki(A+ B) =Y wik;(A)  (i=1,2,34)
j=1

where the w;; are given in Appendix A. Let us note that they are given in
term of the coefficients of the curve and in term of z1,xs,y; and ys. It is
possible, as Flynn, to give them only in terms of the coefficients of the curve
but this involves square roots of these coefficients. The expressions obtained
are more complicated so that we do not give them.

4.2 Biquadratic forms

In odd characteristic, Flynn deduced the biquadratic forms ¢;; such that
projectively

from the matrix of the addition of an element of order 2. This cannot be
applied in characteristic 2. Indeed, if B is an element of order 2, these expres-
sions are all zero. This is a good illustration of the difficulties we encounter
for the generalization of Flynn’s works to characteristic 2. Therefore, we
have to find the biquadratic forms by using a direct algebraic manipulation
which is much more demanding in term of computing resources. We notice
at this step, that these expressions are also zero if ¢ = j, so that, in this
case, we will be interested by k;(A + B)k;(A — B) only.

Let us first describe generically the group law on the Jacobian. Let A
and B be two generic elements defined over k of the Jacobian represented by
the couples of points {(z1,y1), (x2,y2)} and {(x3,y3), (x4,y4)}. Then, there
is a unique polynomial m(z) defined over k of degree 3 such that y = m(x)

12



passes through the four points (xz1,y1), (z2,92), (r3,y3) and (z4,y4). The
complete intersection of this cubic with Cs is given by

{ m(z)” + m(z)h(z) = f(z)

y = m(x)
This intersection provide two new points (x5, y5) and (z¢, yg) representing a
new element C' on J2(k) such that

A+B+C=0.
Thus, the opposite of C' is the sum of A and B.

To compute the biquadratic forms, we will first formally compute the
coordinates of A+ B in the Kummer, and then express the k;(A+ B)k;(A—
B) + ki(A — B)kj(A + B) in terms of the coordinates of A and B in the
Kummer.

The first step is to compute the cubic m and does not pose any particular
problem. The second step is the computation of m(z)? 4+ m(z)h(z) + f(x)
which must vanish. This leads to the vanishing of a polynomial of degree 6
having (x +z1)(z + z2)(z + x3)(x + x4) as a factor because (z1,y1), (z2,¥2),
(x3,y3) and (z4,y4) are satisfying m(z)? + m(z)h(z) + f(z) = 0. After
performing this exact division, it remains a polynomial of degree 2 whose
coefficients are giving x5+ x¢ and x5x¢. Putting their common denominator
in k1 (A + B), the corresponding numerators are then giving ko(A + B) and
k3(A 4+ B). So it is not so difficult to obtain projectively the 3 first coor-
dinates in the Kummer surface of the sum of A and B. These are given as
polynomials symmetric in the (x;,y;)i=1.4 of degree 5 in x; and 1 in y;.

It is much more difficult to obtain a simple expression for the fourth
coordinate. For convenience, we will use in the following [k;(A + B)];,_; ,
to denote the projective coordinates of A + B in the Kummer surface and
[1,s,p,Bo] to specify the affine case so that we have

e —_

_ ks(A+B o
P = %@Aaye T T5%6

_ ka(A+B) _ (ws+tae)(fsxiad+ fzmsaet f1)+h(we)ys+h(zs)ys
/80 - ki(A+B) (z5+76)2

The numerator of §y can be obtained as a symmetric expression of degree 3
in x5 and xg using the relations

ys = m(zs) and yg = m(xg).

13



Then we can write this numerator as a function in k1 (A+ B), ko(A+ B) and
k3(A + B). This function is not a polynomial because x5 + z¢ (resp. z5z¢)
must be replaced by ko(A + B)/ki1(A + B) (resp. k3(A+ B)/ki(A+ B))
so that k(A + B)? appears as a denominator. On the other hand, the de-
nominator of By is (x5 + x¢)? so that, the denominator of By (written as a
function of k1 (A + B), ko(A + B) and k3(A + B)) is ko(A + B)?k1(A + B).
Thus, we have to multiply the original k1 (A + B), k2(A+ B) and k3(A+ B)
by k2 (A+ B)? if we want a result without denominators. This leads to very
large expressions of degree 15 in the x;. This is not reasonable (remember
that there are 18 variables, namely the x;, the y; and the coefficients of the
curve and that we want to compute k;(A + B)k;(A — B)).

As ys = m(z5), y¢ = m(we) and [y is regular at {(2s,y5), (z5,95)}, So
must in fact be a polynomial. This will eliminate the term (x5 + x¢)? in
the denominator so that we can hope a simpler result. Indeed, using the
relation (*), we have

Bo = fo(ws +x6)* + f5(xs + 6)° + fa(zs + z6)” + (f3 + foweas)(zs + z6) +
hg(m(:vg)) —i—m(x@)) -+ (f2 + fﬁ.l‘%.l‘%) + (mg((x5 +3;‘6)2 +3;‘5$6) +meo (3;‘5 —|—336) +
m1)? + hi(ms((x5 + x6)? + x576) + Ma(z5 + 26) + M)

where m(z) = mzz3 + mox? + myz + my is the cubic polynomial introduced
in the beginning of this section. This is the most natural way to eliminate
denominators in k4(A + B). Unfortunately, this is worst than the previous
situation because this symmetric polynomial has degree 4 so that the denom-
inator of By (written as a function of k(A + B), k2(A + B) and k3(A+ B))
is k1(A + B)* and we have to multiply the original k1 (A + B), k2(A + B)
and k3(A + B) by k1(A + B)? if we want a result without denominators.

We choose an intermediate solution which consists in only simplifying
Bo by x5 + xg. This is simpler than the previous case since we do not need
the relation (*). We have that

By = B> with

T5+2T6

By = fgl‘%l‘% + fsxsxe + f1+ mg(hgx‘%l‘% + h1x5x6(9@5 + 336) + hg (JS% + 56 +
x%)) + mg(hll‘g,xﬁ + ho(l‘g, + ZL‘6)) + ml(hgl‘g,l‘(, + ho) + mo(hg(l‘g, + :L‘6) + hl)

In this case, the symmetric polynomials in x5 and xg appear only in de-
gree 2 in By so that the denominator of Gy (written as a function of k(A +
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B),ky(A+ B) and k3(A+ B)) is k1(A + B)ky(A + B) and we have only to
multiply the original k(A + B), k2(A + B) and k3(A + B) by ko(A + B) if
we want a result without denominators. This is better than the two previ-
ous cases but still not satisfying. Indeed, for the reasons explained above,
the expression obtained by this way for By must be divisible by ky(A + B).
However this property of divisibility holds only in

Fopflz1, 22, 3, 24, Y1, Y2, Y3, Y4/ (P1, P, P3, Py)

where Fopp = Falho, hi, ha, fo, f1, f2, [3, fa, [5. f6] and Pi = y2 + h(z;)y; +
f(x;). A direct computation of the quotient of By by ko(A + B) in this
ring is not possible even with modern computer algebra package as Magma.
Thus, We choose to compute it by myself using a specific way. The idea is to
discover and use specific properties of the quotient to reduce the complexity
of the computation.

In order to be able to exploit such specific properties, we have to proceed
by identification. The general strategy of the identification method is as
follows :

e the polynomials By and k(A + B) have degree 10 and 5 in each z;
(and of course 1 in each y;) so that we construct a formal polynomial
@ of degree 5 in each z; (and of course 1 in each y;),

e we then formally compute Qko(A + B) and identify the coefficients
with those of By,

e this provides a (sparse) linear system of equations whose variables are
the coefficients of @,

e finally, the coefficients of the quotient are recovered by linear algebra.

Of course there exist much better algorithms for computing a quotient but
they cannot conclude with By and ko(A + B) as input and we cannot speed
them up if we have specific properties for the quotient. On the contrary, if we
proceed by identification, it is easy to take such new properties into account.

Let us now find those specific properties. First, we can exploit the fact
that our polynomials are symmetrical in the couples (z;,y;) so that

e the term in degree 0 in the y; is a symmetric polynomial in the x;,

e the term in y; is a symmetric polynomial in xo, x3 and x4,
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e the term in y; can be deduced from the term in y; by exchanging z;
and z1,

e the term in y;ys is a symmetric polynomial in z3 and x4,

e the term in y;y; can be deduced from the term in y;y2 by exchanging
x; and x1 on the one hand and x; and 2 on the other hand,

e the same properties holds for products of 3 and 4 y; but we do not
need them.

These properties allow to reduce the number of variables but more than
600 variables are necessary to formally describe ) and is it always too com-
plicated to perform linear algebra in this case (remember that the matrix
obtained has its coefficients in Falhg, h1, he, fo, f1, f2, f3, f4, f5, fs]). Fortu-
nately, we can do better using an experimental approach. Our idea, in order
to find specific properties of the quotient, is to compute this quotient in var-
ious simpler cases. For example, evaluating most of the 18 variables yields
to a simpler ring where the computation of the quotient can be performed.
Putting together the results obtained, we deduce properties which hold in all
examples and then assume that they hold in the general case. The properties
we obtain by this way are

e the term in degree 0 in the y; is divisible by [, .;(z; + 2;),

e the term in y; is divisible by (o + x3) (22 +x4)(x3 + z4) and its degree
in 21 is bounded by 2 (instead of 5),

e the term in y192 equals h(z3)h(z4)(z1 + 22)? (23 + 24)2,
e there are no terms of total degree greater than or equal to 3 in the y;.

These properties are in fact very constraining for the quotient so that, fi-
nally, only 75 variables are required to formally describe ). The linear
algebra step can now be performed in some seconds on Magma. Of course,
this computation is done under assumptions, but it is very easy to verify
that the result obtained multiplied by k(A + B) equals By.

Finally, we put this quotient in k4(A + B) so that [k (A + B), k(A +
B),k3(A + B),k4(A + B)] are the coordinates in the Kummer of A + B.
These are given as polynomials symmetric in the (z;,y;)i=1.4 of degree only
5in z; and 1 in y;.
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Of course, the addition is not defined on the Kummer surface so that we
cannot write k;(A+ B) in terms of the k;(A) and the k;(B) but we can do it
for the expressions of the form k;(A+ B)k;j(A— B) +¢€;jki(A— B)k;(A+ B)
(where €;; = 1if i # j and 0 if ¢ = j). This is not difficult to do so that we
do not give the details. However, at first glance, the formulas obtained are
not biquadratic in the k;(A) and the k;(B). They are, in fact, all divisible
by ka(A)?ko(B)? when i # j and the quotients are biquadratic which is
encouraging. This is not the case if ¢ = j but we succeed in bypassing this
problem using a trick. Indeed, for each i, it is possible to found an appro-
priate linear combination of K(A) and K(B) (K is the defining equation
of the Kummer surface so that such a linear combination is in fact equal
to zero) such that adding this linear combination to the formula for i = j
ensure that the modified formula is also divisible by ko (A)?ko(B)2.

We notice that this approach is close of the approach used by Flynn in
odd characteristic since he also used a particular case to deduce the general
case.

The above discussion and the computations we have done with Maple
and Magma may be summarized by the following theorem

Theorem 2. Let A, B in Ja(k) and k2(A), ko(B) their image in Ka(k).
Then, fori,j € {1,...,4}, there exist explicit biquadratic forms ¢;; defined
over Folhg, h1, ha, fo, f1, f2, f3, fa, f5, f6] such that the 4x 4 symmetric matriz
(pij(k2(A), ka(B))) is projectively equal to

(/ﬂZ(A + B)kJ(A — B) + 62'3‘]{32'(14 — B)kj(A + B))

where €;5 =1 if i # j and 0 if i = j. These biquadratic forms are explicitly
given in Appendiz B.

4.3 Multiplication-by-2 map

The last trace of the group law we are interested in is the multiplication-by-
2 map and more generally, the multiplication-by-n map. We have already
seen that the multiplication-by-2 map was well defined on the Kummer
surface. Of course, we can compute formulas by using a direct algebraic
manipulation, but they can in fact be deduced from the biquadratic forms.
Indeed, as the coordinates of O in the Kummer are [0, 0, 0, 1], we have that,
projectively

pia(k2(A), k2(A)) = ki(24)
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The explicit formulas are given in Appendix B.

As in the case of odd characteristic, using an easy induction argument,
we prove that the multiplication-by-n map can be defined on the Kummer
surface and is explicit. This argument gives an algorithm that computes the
multiplication-by-n map with a complexity in O(n) whereas algorithms in
O(log(n)) exist as explained in [Duq 05].

Conclusion

Despite many technical problems due to the passing from the odd charac-
teristic to the characteristic 2, we succeed in giving a generalization of the
work done by Victor Flynn in the beginning of the 90’s. Indeed, we give
an explicit description of Jacobians of genus 2 hyperelliptic curves in char-
acteristic 2 as a P! embedding. We also describe the Kummer surface as
a P? embedding (more suitable for computations) and provide the traces of
the group law on the Kummer surface (addition of an element of order 2,
biquadratic forms enabling the addition of 2 elements if their difference is
known, multiplication-by-2 map). In this way, we bring new tools to people
interested in the explicit arithmetic of curves of genus 2 in characteritic 2. In
particular, the formulas we provide can be used to perform a multiplication-
by-n map for cryptographic applications. However a detailed study of these
formulas is necessary to obtain a competitive algorithm in this domain, but
we are sure that it can be done.

Appendix A

Let B be an element of order 2 on the Jacobian represented by the couple
of points {(z1,y1), (z2,y2)}. The addition by B in the Kummer surface is
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given by the matrix W whose coefficients are

wir = fih3 + fshohs + f5h§

w2 = fshihg

wiz = fshi

wig = hihy

wor = ha(y125 + 23y2) + hoha f3

wyy = ha(y1za + 21y2) + f1h3 + fshoha + fsh{
woz = ha(yr +y2) + hahif3

woq4 = h%

wz1 = hao(y1zh + 23y0) + A f1

w32 = ho(y123 + x3y2) + hohi f1

wss = ha(yiza + 2192) + f1h3 + fshoha + fsh{
w3zg = hihg

wy = hafi(yr + y2) + haf3(y123 + 23y2) + h f3frhe
way = hofs(yizs + x3y2) + K3 fsf1

wyz = hafs(y123 + xTya) + fshohi f3

wyy = fih3+ fshohs + f5hd
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Appendix B

We give here the formulas for the biquadratic forms and for the multiplication-
by-2 map on the Kummer surface. For clarity we change the notations and
use

[/ﬁ, k‘g, /63, k‘4] instead of [k‘l (A), k’g (A), k’3 (A), k’4 (A)],

[ll,lg,l37l4] instead of [kl(B),kQ(B),kg(B),k4(B)],

Pij instead of (pij(lig(A), K,Q(B)),

[51, 52, 53, 54] instead of [k1(2A), k2(2A), kg(QA), k4(2A)].
All these formulas are available on my web site at

http://www.math.univ-montp2.fr/~duquesne.

11 = feh3kil3 + fehikil5 + k315 + feh3k313 + (f2 4 feh3)k313 + fehik3l3 +
(f2 + feh3) k315 + k313

o2 = fshBk22 + hohok?laly + fsh2K22 + hyhok2lsly + hohokikalily +
[shohakikalals + fshihoky kol + h3kikalsly + hihokikslily + fshohokiksl3 +
fshihokikslols + h%k1k3l2l4 4+ hohokikalils + hihokikslyls + f5h%k:%l% +
f5h0h2k‘%lll3 + fshohokakslilo 4+ fshihokokslils + hohgk‘gk‘d% + h%k2k4l1l3 +
Fsh2K20E + fshihok2lyly + by hokskal? + h3kskal Iy

o135 = (frhohe + f3h3)killa + (fihahe + fshohi)kilils + hEkilily +
f5h(2)k%lgl3 + f5h0h1]€%l§ + hohgk%lglz; + (flhohg + fgh%)klkgl% + (flh% +
[3hoha)k1kalils+hohikikalila+ fsh3kikal3+ fshohi k1 kalals+hohok kaloly+
(fuhuhs + fahohy)kiksl + (fuh2 + fshohe)kikslils + (hohs + h2)kkslyly +
fshohikiksl3 + (fshohe + fshi)kikslals + hihokikslaly + fshihokiksls +
h%k1k313l4 + h%k1k4l% + hohi1ki1kglils + (hohg + h%)kllﬂllllg + f5hgk%l1l2 +
fshohik3lils + fsh3kaksl? + fshohikakslily + (fshoha + fshi)kokslils +
hohokaokalils + hihokokalils + f5h0h1k:§l% + f5h1h2k§l1l3 + h0h2k3k4l% +
h%k‘3k‘4l1l3

(flhlhg + f3h0h1)/€%lll4 + fﬁhghgk‘%l% + fﬁh%hlhgk‘%lglg + f5h(2)k‘%lgl4
(f2h3 + feh2h3)K213 + fehdhikikol? + foh3h3kikalile + (fifshihe
f3fshoht + fehohi)kikalils + fshikikolils + fehdhihokikals + (f2hE
fohohiha)kikalals + fshohikikalaly + fshohih3kikal3 + fshohokikalsls+

+ o+t
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feh3h3kiksl? + (fifshiha + fsfshoh1 + fehohd)kikslily + fehikikslils +
(f2h3 + fehohthe)kiksls + fehihokikslals + (fshoha + fsh?)kikslaly +
Foh2h2kiksl? + fshhokikslsls + (fhoha + fahohy )kikal? + fsh2kikalils +
R2kikalils + foh3hok2l + foh2hihak2lils + (f2R2 + fohoh2ha)k3Lls +
(f2h3 + fshdh2)k313 + (f2hohy + fehoh1h3)k3lals + (f2hoha + fehohid) k313 +
fehdhihokoksl? + (f2h3 + fehoh3ha)kakslily + fehihokokslils + (f2hohy +
fehoh1h3)kaoksl3 + (f2h3 + fehih3)kokslols + (f2hiha + fehih3)koksl3 +
[shdkaksl3+ fshohikokalilo+(fshoho+ fshi)kakalils+(f2hE+ feh3h3) k313 +
Ffshoh1h3k3hly + feh?h3k3lly + (fZhohs + fohohd)k22 + (f2hihs +
feh1h3)k3lals + (f2h3 + feh3)k313 + fshohokskalily + fshihokskalils

a2 = (frhoha + f3h3)k3lila + (fihiha + fshoh1)k3lils + h3k3lla + (foh3 +
Jah)R1S + (frhs + fshoha + fshd)kilals + hohikilals + (fah3 + f5 +
fshiha + fah? + fshohi + feh2)k313 + h3k3lsly + (frhoha + f3hd)kikal? +
[shdkikal3+(fshoha+ f5h?) ki kel +hihoky kalsla+(fihihe+ fshoh ) k1 ksl3+
hihokikslaly + fshihakiksl2 + h2kikal? + hohokikal2 + hihokikalols +
h%k‘lk‘d% + (f()h% + f4h(2))/€%l% + f5h(2)k‘%l1l2 + h0h2k3l1l4 + th%k‘%l% + ]f%li +
(f1h3 + fshohs + f5h3)koksl} + hihokokslily + hohikokal} + hihokokalils +
(f2h3 + f2 + fshiha + fah? + fshohi + fehd)k3l3 + (fshohe + f5h3)k3l11s +
Fshihok2lyls + R3K301s + fsh2k2E + W2 kskal? + hahokskalily + K203

o3 = (frhoha + f3h3)ki13 + (fihiha + fshoh)kilols + h3kilals + (f1h3 +
f3h0h2+f5h(%)/€%l?2)+(f1h1h2 —|—f3h0h1)k‘1k‘2hl3+h(%k1k2l1l4+f5h(2)k1k‘2l2l3+
hohikikaloly + hohokikalsly + (fihihe + fshohi)kikslila + fshdkiksl3 +
(hohg + h%)k1k3l2l4 + hihokykslgly + h%k1k4lll2 + h0h1k1k4l% + h%k1k4l2l3 +
h1h2k1k4l§ + (flhohg + fgh%)k‘gl% + f5h%k‘%l1l3 + hohlk‘%llh + (f1h1h2 +
fghohl)kgkgl%-l-fg,h%kgk:glllg+h%k2k3l1l4+h%k2k4l%+h0h1]€2k4l1l2+(hohg-l-
h%)/@g]mlllg + (flh% + fshoho + f5h(2))k‘§l% + hlhgk‘%lllzl + hohokskglily +
hihokskalqls

o = (fohthe + fihihe + fihdh3 + fihohihs + fohdhiho + fshghs +
[5h) K213+ (fohoh3+ foh3h3+ fihohih3+ foh3h3+ f3hE+ fahgho+ fshdhi +
feho)kilila+(fohah3+ fihoh3+ f3hgh3 + fahghiho+ fshgha+ fshghi)kilils+
fehgh1k3 13+ fehghikilals+(frhiho+ fshoha ) k3 lola+ (f1 fshiho+ f3 fshohi +
feh3h1ha)k312 + (fohohs + foh3h3 + fihohih3 + fah3h3 + f2h3 + fihdhe +
fshdhy + fehg)kikal3 + (fohahs + fihohs + fsh3h3 + fih3hihe + fsh3ha +
fsh3h)kikalylo+ (fohs + fohohi + f2hoha + fshohih3 + fah3h3 + fihoh3ho +
fshohi + fshiha + fehihi)kikalils+ (fihiho + fshohi)kikalila+ (f1 fshoha +
T3fshd + fehdh?)k1kal3 + (f1fshihe + f3fshoht + fehoh3)kikalals + (f1h3 +
Fshoha)kikalals + fohoh3hakikal3 + (foh1h3 + fihoh3 + f3hghd + fahZhy o+
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fshdha + fsh3h)kiksl? + (fohs + fahoh3 + f2hohs + fshohih3 + fih3h3 +
fahoh?ha + fshoh3 + fehdha + fehih)kikslile + (fih + fahihd +
f3hiho + fshoh3 + fshih + fahihy + fshgh3 + fshohihy + fshi +
feh3hiha)kikslyls + fehoh3kiksl3 + fehikikslals + foh3hokiksl3 + (fihiha +
fahohi)k1kalily + f5h(2)k:1k4l% + (hoho + h%)k1k4lgl4 + hihokikylsly +
feh3ha k33 +(f1fshoho+ f3fshd+ fehghi)kalila+ fohoh3k3lils+ fshdk3lila+
FshZhihok3l2 + (f2h2 + fohoh2ha)k3lols + fshohik2laly + fohohih3k3E2 +
[shohok3lsly + fehdhikaksld + (fifshihe + fafshohi + fehoh?)kakslilo +
Fohkakalils + (f2h2 + fohoh2ho)koksld + foh3hokakslals + (fshoha +
[5h?)koksloly + fehih3koksli + fshihokokslsly + (fihiha + fahoht)kokal? +
(f1h2 + fshoho)kakalils + (hohs + h2)kakalily + fshohakakal2 + (fshohs +
[5h3)kakalols + hihokokalaly + fshihokokald + h3kokalsly + (f1fshihe +
f3fshoh1+ fﬁh%hlhg)k‘gl% + fﬁhoh%hgk‘gllb + fﬁh?hgk‘gllh + fﬁhohlh%k‘gl% +
f6h%h%]€§lgl3 + f5h1h2]€?2)lgl4 + (f52h1h2 + f6h1h%)k§l§ + hihokskalily +

w33 = (fohd + f2 + fihoh1 + fahd)K213 + (fihoha + f3hd)k3lals + (foh3 +
Jah§)R313 + hgkilsly + (fihohe + f3hg)kikalils + hikikaloly + fshikikal3 +
(fihohe + f3hd)kikslilo + h2kikslily + fshdkikslals + hohikikslals +
hohokikslsly + h%k1k4l113 + h%k1k4l% + hohi1ki1kalols + h0h2k1k4l§ + (foh% +
f2 + fihoht + f2h3)k313 + h3k3lils + feh3k315 + (fihoho + f3hd)koksld +
[sh3kakslils+hohikakslily+ h3kokalilo+hohikokalils + (foh3 + f1h3) k313 +
f5h(2)k‘§l112 + h0h2k§l1l4 + fﬁh%kgl% + k‘%li + h%kgkzll% + hohokskylils + kil%

w34 = (fohdh3+ fohoh3ha+ foh]+ fihoha+ f2h3+ fihoh3+ fah3ho+ fah3hi+
f3hdh1 + fah) K212 + (foh3he + f2hihg + fih2h3 + fihoh3ha + foh2hihe +
f3hdha+ fsh)kilila+(fohoh3+ foh2h3+ fihohih3+ f2ah3h3+ f2h3+ fihdha+
f5h8h1 + fﬁhé)k%lll;g + fﬁh%k%l% + fﬁhghlk%lgl3 + (fihoho + f3h(2))/€%l2l4 +
(f1fshohe + f3fshE+ fehdho)kI13 + (foh$ha+ fEhiho+ fih3h3 + fihohiha +
foh3hiha + f3hdha + fshd)kikal? + (fohoh3 + foh?h3 + fEh3 + fihoh1h3 +
f2h3h2 + fahdho + fshdhy + fehd)kikalila + (foh1h3 + fihoh3 + fsh2h2 +
fah3hiha + fsh3he + fsh3hi)kikalils + fehghikikald + feh3h3kikalals +
fehdhihakikal? + (fohoh3 + foh2h3 + fihoh1h3 + foh3h3 + f2h2 + fihdha +
fshdhi + fehd)kiksl? + (fohah3 + fihoh3 + fsh3h3 + fih3hihe + fsh3ha +
fsh3h) k1 kslilo+ (fohs + fohohs + f2hoha + fshoh1h3 + fah3h3+ fihoh3ha +
fshohi + fshiha + fehihi)kikslils+ (fihiho+ fshohi)kikslila+ (f1 fshoha +
f3fshd + fehdhi)kiksls + (fifshihe + fafshohi + fehohi)kikslals + (f1h3 +
Fshoha)kikslaly + fehoh2hakksl2 + (fihiha + fahohy Ve kalyls + h2kykalyly +
fsh3kikalols + hohikikaloly + hohokikalsly + fehgk3l3 + fehdhik3lils +
(f1fshohs + fsfshd + fehdhi)k3lils + fehdhok3l3 + fehdhihok3lols+
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fsh3kalaly + (f2h3
hZ + feh2h3)k3l3
(fifshihe + f 570 chghs)ksls + Feh3hyk 9
hoh oh1kaksli + 272
M%%+»%%%%%ﬁ?m@@%uwﬁm%ﬁ£u+?%??%mg+
fshohakakslsly -I-l (?1505 2l—|3- ;h2{5h0h1k2k3l2l4 + fﬁffOigliiQIjkljkﬁlQ—i_
h0h1k2k4l1l4+f D) 2 31 k2k4l2 + ( 2 Skaksly +
fafshi + fehd 50 2 fshohikakalols + hoh 9)kokalils +
shiho)k212 + feh? vacals T o skakaloly + (fifsh
Fsh2h2)k212+ feh 311 sh3hihok3lily + fehoh3hok3 1fshoha +
h0h2k3k’471§4 -IJ-%fOhh1hh2k3l2l3+(fghohﬂ‘fs?h%+f6h(())h%)z:§;2l1l3 - (f522h(2) -
shohokskalals + fshihokskal3 +h2ki; l3l3+f5h1h2k3l3l4+
oh3h4l30l4

paa = (fihs + fofrhih3 )
fofah? 1h1ih3 + fof2h3h3 + fofsh?
Wi e e i S e Ly -
+fhh3 1J3 131h2+f2fh2
Jrfahighiha +1f6 ’ thohs + fif2hohih + fif3 1Jany +
1f4h0h3 + f 3 2 flfghohl + f f h h2
Faf3H3+ fofsh3hiha + 1fshihs + f1fshght + fifshohihs +
shghiha + fofrh3h? shghi + fifshght + f3hghs
fafshd + F2RA)K212 2fshgh: + fofshihy + fafshi+ f3 9 shohs +
Tho) k1 + (fofshihs ° 2 foho + f3hiha + fafahi
f2fsh? + f ofshdh3 + fofshohih 0 3 fahgh1 +
Lfshoh3 + fifehd shoh2hy + fofsht + f2fsh
fafehg + fafshg o 1fehdha + fafshdha + 54 i fshohe +
5 0)k1l1l2—|—(ffh3 5 072 fafshghi + ffh3h
fifsh3hiha + fafshd ofshihe + fi fshihs + 27,2 3/5Mf +
2 fshohihg + 3 1he + fifshghs + fifsh B2
f32h‘(2])k%l1l4 + (f 012 f3f5h0h2 +f3f h3h 274 1J5740 1h2—|—
f6h2h2 + f 4 674071 +f5h0)k2ll + (f2h2
fafsh3h2+ f g 0T0n2 ofeht + fifeh? + AR (fihs +
sfehdh + fafehd)kil3 tfeht + fifshghiha + fifehoh?
(fofehih3 + 1f6ho)kT13 + (f1fehghs + 3 1fehohy +
2+ fifshohih3 + fofch3h3 2h3 + f3fehdha + f5fehd)k?
fofshohthy + f 5+ fafshghs + f3 fehg + fiho)ki 5J6ho)kilals +
fsht + fifsh 3fehd + fEROKI + (fofshgh3
f2f5h8h2 + f: 02 1 1f5 oho + fo h2 3 0J5 Oh2 +
o fsh2h? + fafshd 2fsh? + fifshohd + fifehd
f2fshiha+ f DL T I35 3hi + fafehg + fafshd 1 1fehohe +
L fshghs + f1fshoh? o + fafshg)kikalf + (fofshi
fafehohi+ f2hg 3+ fifshohiha + fu fehghih oy 0fshihs +
2hi)kikalalo+(fofshoh3 Bhaha + fafshihiha + fs fshi
fofsh2h? + f2fsh? 2+(fofshoh3+ fo fshihi+ 3.fshipha +
2 2fshE + fsfeh3h3 2h2+ f1 fshoh1ha+ f1 fehoh?
(f1feh2n3 + 3 3fehghi + fafshihs + f2h{ 5+ f1fehohiha+
2 + fsfshiha + fsfshg 072 2h3hy + f5fehd)kik
f5f6h8h1)k‘1k‘l 0 5f6h0)]€1k2l2 + (f1fsh 9 o)k1kalils +
22l3—|—(f1fh h 22 1f6 Oh1h2 + ffh2h h
faf3hg + fafehghs shoha + f3 fshg)kikalal 2 3Jenphiha +
6 0h2+f5fh3h k 2 24+(f1f5h0h2_|_ffh 3
f1fshohTho+ f1feh{ shoha)kikals + (fofshih 2 1fehohs +
1 feh2hiho+ fofsh2 shi3hy + f2fshiha + f1fshehs
(fofshoh3 + f ) o+ fafshghiha+ f3 fshgh 3 1f5hihs +
5+ fofshih3 + fifsh 2 shiho+ fs fehghi+ f3hg) k1 ksl}
fafeh3h? + f 312 1fshoh1h3 + f1fshoh3h Sho)k1ksli+
4f5h0h2+f2h3h 6hohihe + f2f5h2h2 + f2 9
fifeh3ho + fafsh? 2hohy + f5 fhg)kiksll oha + f5fshy +
s fsh2h3 + fs fehoh? 0)k1kslila + (fofshahs + f 3
(f1f6h0h1h2 2 3J67°0 1+f4f5h2h ho + 213 2 1f5h0h2—|—
2+ fafehihihs + 32000 1ha + f2h3ha + f2h3Rh3) k1 k
fsfehdh?)kyksl Shihg + fsfehighi)kiksl3 + AL 3l1l3+
slals+ (f1fshih 2+ (fifsh?h3 + fsfshoh?
f3f52h0h1_|—f 571 2+f3f5h0h1)k kalol 9 3J670 1h2 +
s fohohih2+ fs foh2 Vksloly+ (fLf2hiho+ f 2
fahoha )k kalql 34 fs fohdhaho)kyksl3+(f2h3 4 f3h3 o+ fifehihs+
s+ fshdkykaloly+ f2h2 2+ (fER3+ fihd) k1 kal3+(f1h
fifehdhiha + f Sk1kalola+ f2hik1kal3 + (fo fehgh3 1+ (frhihet+
L fohoh? + fafeh2h? 24 (fofsh2h3+ fofehd+ f2 foh?
f3fehiha + fsfehd { o+ fafohghi + fs fehihi + 2y ifehi+
5 fehd) k2l + J6lom Fafshd K22 + (f1 fsh2h2
(hﬁ%+h%@m+fyﬂﬁ§%@%+ﬁﬁ@m@+ﬁfm;@;2+
2 175 +f1f6h2+f1f2h h 60 1) 2l1l3—|—
ghoh + fufshoha} + fo Shi+
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fofeh3h3 + fERG)K3E + (fif2hoha + fifshoh3 + fsf2hd + fafehdh3 +
f5fehgha)k3lals + (fof2Rh3 + fofshs + faf2hE + fafehdhd + fsfehdhihs +
FRERRZE + [2R3R3Isly + (frfshdh3 + fafshiha + fsfohd)kakal} +
(f1fehohih3 + f3fehihihe + f5fehihi)kakslily + (f1fshih3 + fsfehohihs +
[sfehghi)kakslils + (fif2hohe + fifehohd + fsfZhi + fafehdhs +
[5fehiho)koksls + (fif2hihe + fifshahy + fsfzhohi + fsfehohih3 +
[sfehghihe)kakslals + f2hkaksloly + (f1f2h3 + fifehs + fsfihohs +
fafehohs + f2h§ + fsfehgh3)koksld + (fifshohe + fsfshg)kokalily +
(f1fshiho+ fs fshoha)kokalils+ fshEkokalila+ f2REkokalols+ fEhohy kokal}+
fshohokakalsls+ (fofehih3 + fifehoh1h3 + fafehdhd + f3 fohd + fEhE)K31E +
(f1f2hohs + f1fshoh3 + f3f2hE + fsfehdh3 + fsfehdho)k3lils + (f1f2hihe +
fifehihd + fafZhohi + fsfehohih3 + f5fehghiho)k3lils + f2hk3lily +
(fof2h3+ fofehs+ faf2hd+ fafeh3h3+ fs fohdhiho+ fERERT) K315+ (f1 /2R3 +
fufehs + fsf3hoha + fafshohd + f3hg + f5 fohgh3)k3lals + fEhohik3laly +
(f2f 2R3+ fo foha+ f2 2+ f2 foh3+ faf2haho+ f3 foha h3+ fa fEh3+ fafehihi+
F3hohy+ f2 feh2+ f5 fohoh1h3+ fs fohi hao+ f2h3h3+ F2hH K213+ f2h3k31314+
F2R2kskal2 + fshohokskalaly + f2h2kskal2 + fshihokskalsly + K202

Let us give now the formulas for the multiplication-by-2 map.

0v = (fth3 + F3h + feho)ki + fehGhikiks + fohikiks + hikiki + (f3hG +
fehgh3)ks + (313 + fehh3)k3k3 + (f3h3 + fohd)ks

82 = (foh3ha+ fEhiho+ fihEh3+ fihoh3ha + fohEhiho + f3hd3ha + f5hY) kT +
(fohah3 + frhoh3 + fsh3h3 + fah3hiha + fshijha + fsh3h?)kiks + (f1hs +
fghlh% + f§h1h2 + fghohg + fgh%hg + f4h:1')h2 + f5h(2)h§ + f5h0h%h2 + f5hil +
fehghiho)kTk3 + fehdhihoks + fehthok3 k3 +hihok3ki+(f3hiha+ fehih3)ks

63 = (fohgh3 + fohohtha + foht + fEhohs + fEh3 + fihoh} + fahiha +
f2h3h3 + fshdhy + fahd) ki + (fohoh3 + foh3h3 + f2h3 + fihohih3 + f2h3h3 +
fah3ho+ fshdhy + fehd)k3k3a+(foha+ fahoh3 + f2hoha+ fshoh1 b3+ fah2h3+
fahohZhg + fshoh? + fehiha + fehghi)kiks + hikiki + fehihaks + (f3hG +
fehoh3ha)k3k3 + hohok3k3 + (f2hoha + f2h3 + fehoh3)ks + h3k3k3

61 = (fEh3+ fofihah3+ fofahih3+ fo fahi+ fofshohah3+ fo fah3ha+ fo fahi+
fofshoh? + fofsh§hi + fLfah3 + fLf3 + fLfshihe + ffah? + fEfshoht +
fifehd + fihohs + fifahohih3 + fifshoha + fifshohiha + fifih§hihe +
frfahoh$+ f1fsh3ho+ f1fsh3hi+ f1 fehdhi + [3hER5+ fo fahd+ fofshdhiho+
F2fah§h3 + fafsh§hn + fafohg + fEhiha + fafahihn + fafshg + fRhg)kT +
(fofshtha+ fEfshaha+ f1fshgh3 + f1fshohihe + fifehihiho + fafshghiha +
fafshgha + fsfehght + f2R)KIKS + (fofshah3 + fifshoh3 + f1fehiho+
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f3fsh3h3 + fafehohi + fafshihiho + f2h3ha + f2RERT)KIKS + (fihaho +
fahoh1) ki +(fof2hi+ fofehiha+ [ 3+ T feh3+ f1f2hohi+ fifehohih3+
fof2hd + fafsh3h3 + fEhY)ks + (fifihihe + fifehihd + fsfZhoha +
fafehohih3 + f5fehdhiho)k3k3 + (fof2h3 + fofehy + f3f2 + f3feh3 +
[3f2haha+ fsfohihy + faf2h3 + fafehihd + f3hohy + f2 fehd + f5 fehohih3 +
fsfehiha + fEhgh3 + fEh1)ks + fshahak3ki + k)
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