Feuille 2

Exercice 1. Donner l'ensemble de définition et l'image de $f(x,y) = \frac{x}{x^2 - y^2}$.

Exercice 2. Dessiner le graphe de $f(x,y) = \sqrt{x^2 + y^2 - 1}$.

Exercice 3. Dessiner le graphe de $f(x,y) = x^2 + y^2 - 4x - 6y + 13$.

Exercice 4. Dessiner la surface $S = \{(x, y, z) | z = -y^2\} \subset \mathbb{R}^3$.

Exercice 5. Tracer les courbes de niveau pour les fonctions suivantes :

- (a) $f(x,y) = \frac{xy}{x^2 + y^2}$ (on pourra utiliser les coordonnées polaires)
- (b) $f(x,y) = x^2 y^2$
- (c) $f(x,y) = e^{xy}$

Exercice 6. Montrer que la fonction f définie par $f(x,y) = \frac{xy^2}{x^2+y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0 est continue en (0,0).

Exercice 7. Si $f, g : \mathbb{R}^n \to \mathbb{R}$ sont continues, montrer que f + g est continue.

Exercice 8. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction ayant la propriété : " $f^{-1}(I)$ est ouvert pour tout intervalle ouvert I dans \mathbb{R} ".

Montrer que f est continue.

Exercice 9. Soient $X \subset \mathbb{R}^n$ compact, $f: X \to \mathbb{R}$ continue. Montrer que $f(X) \subset \mathbb{R}$ est compact.

Exercice 10. Soit f la fonction définie sur $\{(x, y) / y \neq 0\}$ par :

$$f(x, y) = \frac{1 + x^2 + y^2}{y} \sin y.$$

Pourquoi cette fonction est-elle continue? Étudier ses prolongements continus possibles.

Exercice 11. Même question pour la fonction définie sur $\{(x, y) / x^2 \neq y^2\}$ par

$$g(x, y) = \frac{1+x+y}{x^2-y^2}.$$

Exercice 12. Même question pour $h(x, y) = \frac{|y|}{x^2} e^{-\frac{|y|}{x^2}}$.

Exercice 13. Soit E l'ensemble des éléments (x, y) de \mathbb{R}^2 vérifiant $1 \leq |x| + |y| \leq 2$. Montrer que E est fermé.

La formule $f(x, y) = \frac{1}{x^2 + y^2}$ définit-elle sur E une fonction continue?

Trouver les points où f atteint sa borne supérieure et sa borne inférieure.

Exercice 14. On considère la fonction de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x, y) = \sup \left\{ \frac{x}{1 + |y|}, \frac{y}{1 + |x|} \right\}.$$

Cette fonction est-elle continue?

Exercice 15. On donne deux fonctions g et h de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} et on suppose que la dérivée de h ne s'annule pas.

Montrer que la fonction f définie de \mathbb{R}^2 dans \mathbb{R} par : $f(x, y) = \frac{g(x) - g(y)}{h(x) - h(y)}$ où $h(x) \neq h(y)$ a un prolongement continu sur \mathbb{R}^2 .

Exercice 16. Pour chacune des applications suivantes de \mathbb{R}^2 dans \mathbb{R} , donner son domaine de définition et dire (en le justifiant) si elle admet un prolongement continu sur \mathbb{R}^2 . (Indication : dans plusieurs cas, on peut utiliser des coordonnées polaires.)

$$f_1(x, y) = \frac{x+y}{x^2+y^2}$$
 $f_2(x, y) = y \sin x$ $f_3(x, y) = (x^2+y^2) \sin \frac{1}{x^2+y^2}$

$$f_4(x, y) = y \sin \frac{1}{x}$$
 $f_5(x, y) = \frac{x^3 + y^3}{x^2 + y^2}$ $f_6(x, y) = \frac{y}{x^2} e^{-\frac{|y|}{x^2}}$

Exercice 17. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} .

On note φ l'application définie sur $\{(x, y) \in \mathbb{R}^2 / y \neq 0\}$ par : $\varphi(x, y) = (x + y)f\left(\frac{x}{y}\right)$.

Montrer que φ est continue.

Trouver une condition nécessaire et suffisante pour que φ puisse être prolongée continuement sur \mathbb{R}^2 .

Exercice 18. Etudier la continuité de la fonction f définie par :

$$f(x, y) = x^2 \text{ si } |x| \le |y|$$

 $f(x, y) = y^2 \text{ si } |x| > |y|$

Exercice 19. Montrer que la fonction f définie par : $f(x, y) = \frac{x+y}{x^2+y^2}$ a une limite lorsque ||(x, y)|| tend vers l'infini.

Exercice 20. Montrer que l'application définie par :

Exercise 26. Monthly que l'application de
$$f(x, y) = \frac{x^4}{y(y - x^2)}$$
 si $y \neq 0$ et $y - x^2 \neq 0$ $f(x, y) = 0$ si $y = 0$ ou si $y - x^2 = 0$

n'est pas continue en (0,0) mais que ses restrictions à toute droite passant par l'origine sont continues en ce point.