Une méthode basée sur la représentation d'interaction pour la résolution numérique de la GNSLE

Stéphane Balac stephane.balac@univ-rennes1.fr

Laboratoire Foton, CNRS UMR 6082 ENSSAT - 6 rue de Kérampont, F-22300 Lannion

25/10/2013

<ロト (日下) (日) (日)

Cadre de l'étude : le projet Green-Laser

- Développement de lasers à fibre impulsionnels dans le domaine spectral visible pour des applications liées à la production de cellules photovoltaïques.
 - Intérêt des lasers à fibre : moindre consommation d'énergie

(日) (四) (日) (日)

- Avantage de la gamme spectrale visible
 - faible réflexion du matériau à traiter (silicium)
 - meilleure efficacité du processus d'interaction matière-rayonnement

Cadre de l'étude : le projet Green-Laser

- Développement de lasers à fibre impulsionnels dans le domaine spectral visible pour des applications liées à la production de cellules photovoltaïques.
 - Intérêt des lasers à fibre : moindre consommation d'énergie
 - Avantage de la gamme spectrale visible
 - faible réflexion du matériau à traiter (silicium)
 - meilleure efficacité du processus d'interaction matière-rayonnement
- Partenariat FOTON QUANTEL soutenu par la Région Bretagne (T. Chartier)
- Collaboration FOTON-IRMAR pour l'étude de la méthode basée sur la représentation d'interaction pour résoudre la GNLSE
 - Fabrice Mahé, Florian Méhat, Rozenn Texier-Picard (Irmar)

(日) (四) (日) (日)

Stéphane Balac, Arnaud Fernandez (Foton)

Plan

Introduction

La problématique physique Objectifs de la tâche modélisation mathématique & simulation Le modèle

La méthode de la représentation d'interaction

Une suite de problèmes emboités Changement d'inconnue Nouveau problème à résoudre Résolution des problèmes linéaires et non linéaire Comparaison à une approche Split-Step

Une stratégie de pas adaptatif peu onéreuse

Objectifs Schéma de Runge-Kutta emboité RK4(3) L'algorithme RK4(3)-IP

La problématique physique

 Étudier les effets non-linéaires dans un laser à fibre (effet Kerr, mélange à 4 ondes, effet Raman) en fonction des caractéristiques d'incohérence de la source du laser maître

Objectifs de la tâche modélisation mathématique & simulation numérique

- Prendre en compte le caractère incohérent de la source laser maître (dans notre cas modélisé par un processus aléatoire complexe gaussien)
- Propager le champ électrique dans la fibre en résolvant une EDP (une équation non-linéaire de Schrödinger)
- Analyser statistiquement les caractéristiques du champ électrique en sortie de fibre en fonction des caractéristiques de la source laser et des propriétés non linéaires de la fibre.

イロト イヨト イヨト イ

Le modèle

Le champ électrique est supposé de la forme

$$\mathsf{E}(\mathsf{r}, au) = \mathsf{A}(z,t) \, \mathsf{F}(x,y) \, \mathrm{e}^{-\mathrm{i}(\omega_0 au - kz)} \, \, \mathbf{e_x}$$

où A(z, t) enveloppe lentement variable vérifie la GNLSE

Référence bibliographique

A. Fernandez, S. Balac, A. Mugnier, F. Mahé,
 R. Texier-Picard, T. Chartier and D. Pureur.

Numerical simulation of incoherent optical wave propagation in nonlinear fibres.

A paraitre dans **European Physical Journal - Applied Physics**, 2013.

http://hal.archives-ouvertes.fr/hal-00797641/

Introduction

La problématique physique Objectifs de la tâche modélisation mathématique & simulation Le modèle

(日) (四) (日) (日)

La méthode de la représentation d'interaction

Une suite de problèmes emboités Changement d'inconnue Nouveau problème à résoudre Résolution des problèmes linéaires et non linéaire Comparaison à une approche Split-Step

Une stratégie de pas adaptatif peu onéreuse

Objectifs Schéma de Runge-Kutta emboité RK4(3) L'algorithme RK4(3)-IP On cherche à résoudre le problème : trouver A tel que

$$(\mathcal{P}) \begin{cases} \frac{\partial}{\partial z} A(z,t) = \mathcal{D} A(z,t) + \mathcal{N}(A(z,t)) & \forall z \in [0,L] & \forall t \in \mathbb{R} \\ A(0,t) = a_0(t) & \forall t \in \mathbb{R} \end{cases}$$

où ${\mathcal D}$ est un opérateur linéaire et ${\mathcal N}$ est un opérateur non linéaire.

On cherche à résoudre le problème : trouver A tel que

$$(\mathcal{P}) \begin{cases} \frac{\partial}{\partial z} A(z,t) = \mathcal{D} A(z,t) + \mathcal{N}(A(z,t)) \quad \forall z \in [0,L] \quad \forall t \in \mathbb{R} \\ A(0,t) = a_0(t) \quad \forall t \in \mathbb{R} \end{cases}$$

où ${\mathcal D}$ est un opérateur linéaire et ${\mathcal N}$ est un opérateur non linéaire.

Une suite de problèmes emboités

Résoudre le problème (\mathcal{P}) équivaut à résoudre la succession de problèmes emboités (\mathcal{P}_k), $k = 0, \dots, K - 1$ où

$$(\mathcal{P}_0) egin{array}{cc} \left\{ egin{array}{cc} rac{\partial}{\partial z} A_0(z) &= \mathcal{D} \, A_0(z) + \mathcal{N}(A_0(z)) & orall z \in [0,z_1] \ A_0(0) &= a_0 \end{array}
ight.$$

et pour $k = 1, \ldots, K - 1$

$$(\mathcal{P}_k) \quad \begin{cases} \frac{\partial}{\partial z} A_k(z) &= \mathcal{D} A_k(z) + \mathcal{N}(A_k(z)) \quad \forall z \in [z_k, z_{k+1}] \\ A_k(z_k) &= A_{k-1}(z_k) \end{cases}$$

On a

$$A|_{[z_k, z_{k+1}]} = A_k.$$

Un changement d'inconnue

Pour $k \in \{0, \dots, K-1\}$, on considère un des problèmes (\mathcal{P}_k) sous la forme

$$\begin{cases} \frac{\partial}{\partial z} A_k(z) = \mathcal{D} A_k(z) + \mathcal{N}(A_k)(z) & \forall z \in [z_k, z_{k+1}] \\ A_k(z_k) = a_k \end{cases}$$

Un changement d'inconnue

Pour $k \in \{0, \ldots, K-1\}$, on considère un des problèmes (\mathcal{P}_k) sous la forme

$$\left\{egin{array}{l} rac{\partial}{\partial z} A_k(z) = \mathcal{D} \, A_k(z) + \mathcal{N}(A_k)(z) & orall z \in [z_k, z_{k+1}] \ A_k(z_k) = a_k \end{array}
ight.$$

et on introduit le changement d'inconnue

 $A_k^{\mathrm{ip}}: (z,t) \in [z_k, z_{k+1}] imes \mathbb{R} \longmapsto \exp(-(z - z_{k+\frac{1}{2}})\mathcal{D}) A_k(z,t)$

où le terme exponentiel doit être compris comme le semi-groupe associé à l'opérateur linéaire \mathcal{D} , i.e. pour $z \in [z_k, z_{k+1}]$ fixé, $(\zeta, t) \in [z_k, z_{k+1}] \times \mathbb{R} \mapsto \exp(-(\zeta - z_{k+\frac{1}{2}})\mathcal{D}) A_k(z, t)$ est la solution du problème

$$\begin{cases} \frac{\partial}{\partial \zeta} A(\zeta) = -\mathcal{D}A(\zeta) \qquad \forall \zeta \in [z_k, z_{k+1}] \\ A(z_{k+\frac{1}{2}}) = A_k(z) \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Nouveau problème à résoudre

On montre que A_k^{ip} est solution du problème

$$(\mathcal{Q}_k) \begin{cases} \frac{\partial}{\partial z} A_k^{\mathrm{ip}}(z) = \mathcal{G}_k(z, A_k^{\mathrm{ip}}(z)) \quad \forall z \in [z_k, z_{k+1}] \\ A_k^{\mathrm{ip}}(z_k) = \exp(-(z_k - z_{k+\frac{1}{2}})\mathcal{D}) a_k \end{cases}$$

où

$$\mathcal{G}_k(z,\cdot) = \exp(-(z-z_{k+\frac{1}{2}})\mathcal{D}) \circ \mathcal{N} \circ \exp((z-z_{k+\frac{1}{2}})\mathcal{D})$$

Intérêt :

- la dérivation en temps n'intervient plus explicitement;
- on a une EDO (avec t comme paramètre) à résoudre.

Outre le fait de devoir calculer $\mathcal{G}_k(z, \cdot)$, il faut

- obtenir la condition initiale $\exp(-(z_k z_{k+\frac{1}{2}})\mathcal{D})a_k$
- effectuer le changement de variable inverse pour calculer $A_k(z_{k+1}) = \exp(-(z_{k+1} - z_{k+\frac{1}{2}})\mathcal{D}) A_k^{ip}(z_{k+1})$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Outre le fait de devoir calculer $\mathcal{G}_k(z, \cdot)$, il faut

- obtenir la condition initiale $\exp(-(z_k z_{k+\frac{1}{2}})\mathcal{D})a_k$
- effectuer le changement de variable inverse pour calculer $A_k(z_{k+1}) = \exp(-(z_{k+1} - z_{k+\frac{1}{2}})\mathcal{D}) A_k^{ip}(z_{k+1})$

L'étape k consiste donc à résoudre les 3 problèmes imbriqués :

$$(\mathcal{L}_{k}^{+}) \begin{cases} \frac{\partial}{\partial z} A_{k}^{+}(z) = \mathcal{D} A_{k}^{+}(z) & \forall z \in [z_{k}, z_{k+\frac{1}{2}}] \\ A_{k}^{+}(z_{k}) = A_{k}(z_{k}) \end{cases}$$

$$(\mathcal{Q}_{k}) \begin{cases} \frac{\partial}{\partial z} A_{k}^{\mathrm{ip}}(z) = \frac{\mathcal{G}_{k}(z, A_{k}^{\mathrm{ip}}(z))}{A_{k}^{\mathrm{ip}}(z_{k})} & \forall z \in [z_{k}, z_{k+1}] \\ A_{k}^{\mathrm{ip}}(z_{k}) = A_{k}^{+}(z_{k+\frac{1}{2}}) \end{cases}$$

$$(\mathcal{L}_{k}^{-}) \begin{cases} \frac{\partial}{\partial z} A_{k}^{-}(z) = \mathcal{D} A_{k}^{-}(z) & \forall z \in [z_{k+\frac{1}{2}}, z_{k+1}] \\ A_{k}^{-}(z_{k}) = A_{k}^{\mathrm{ip}}(z_{k+1}) \end{cases}$$
et $A_{k}(z_{k+1}) = A_{k}^{-}(z_{k+1})$

Résolution des problèmes linéaires et du problème non linéaire

Les 2 problèmes linéaires (\mathcal{L}_k^+) et (\mathcal{L}_k^-) admettent une solution explicite calculable par TF.

• La solution du problème (\mathcal{L}_k^+) au point $z_{k+\frac{1}{2}}$ est

$$A_k^+(z_{k+rac{1}{2}}) = \mathcal{F}^{-1}ig[
u \mapsto \widehat{A}_k(z_k,
u) \, \mathrm{e}^{\widehat{d}(
u)rac{h_k}{2}} ig]$$

où $\widehat{d}: \nu \mapsto -\frac{1}{2}\alpha + i \sum_{n=2}^{n_{\max}} \frac{\beta_n}{n!} (2\pi\nu)^n$ • La solution du problème (\mathcal{L}_k^-) au point z_{k+1} est

$$\mathcal{A}_k^-(z_{k+1}) = \mathcal{F}^{-1}ig[
u \mapsto \widehat{\mathcal{A}}_k^{ ext{ip}}(z_{k+1},
u) \,\,\mathrm{e}^{\widehat{d}(
u)rac{h_k}{2}}ig]$$

Résolution des problèmes linéaires et du problème non linéaire

Les 2 problèmes linéaires (\mathcal{L}_k^+) et (\mathcal{L}_k^-) admettent une solution explicite calculable par TF.

• La solution du problème (\mathcal{L}_k^+) au point $z_{k+\frac{1}{2}}$ est

$$A_k^+(z_{k+\frac{1}{2}}) = \mathcal{F}^{-1}\big[\nu \mapsto \widehat{A}_k(z_k,\nu) \, \mathrm{e}^{\widehat{d}(\nu)\frac{h_k}{2}}\big]$$

où
$$\widehat{d}: \nu \mapsto -\frac{1}{2}\alpha + i \sum_{n=2}^{n_{\max}} \frac{\beta_n}{n!} (2\pi\nu)^n$$

• La solution du problème (\mathcal{L}_k^-) au point z_{k+1} est

$$A_k^-(z_{k+1}) = \mathcal{F}^{-1}\big[\nu \mapsto \widehat{A}_k^{\mathrm{ip}}(z_{k+1},\nu) \,\,\mathrm{e}^{\widehat{d}(\nu)\frac{h_k}{2}}\big]$$

• On résout le problème non linéaire (Q_k) par un schéma numérique (RK).

Comparaison à une approche Split-Step (I)

Le problème (\mathcal{P}) peut également être résolu par un schéma de Split-Step Symétrique. On résout alors à l'étape k les 3 problèmes imbriqués :

$$\begin{cases} \frac{\partial}{\partial z} A_k^+(z) = \mathcal{D} A_k^+(z) & \forall z \in [z_k, z_{k+\frac{1}{2}}] \\ A_k^+(z_k) = A_k(z_k) & \\ \begin{cases} \frac{\partial}{\partial z} B_k(z) = \mathcal{N}(B_k(z)) & \forall z \in [z_k, z_{k+1}] \\ A_k^{\text{ip}}(z_k) = A_k^+(z_{k+\frac{1}{2}}) & \\ \end{cases} \\ \begin{cases} \frac{\partial}{\partial z} A_k^-(z) = \mathcal{D} A_k^-(z) & \forall z \in [z_{k+\frac{1}{2}}, z_{k+1}] \\ A_k^-(z_k) = B_k(z_{k+1}) & \end{cases} \end{cases}$$

C'est exactement la même chose, seul l'opérateur non linéaire est différent! ...

・ロト ・ 戸 ・ ・ ヨ ・ ・

Comparaison à une approche Split-Step (II)

Mais

- le schéma de Split-Step est obtenu par une approximation (d'ordre 2 pour le SS Symétrique)
- alors que le schéma IP est exact (changement d'inconnue)

Par ailleurs,

Comparaison à une approche Split-Step (II)

Mais

- le schéma de Split-Step est obtenu par une approximation (d'ordre 2 pour le SS Symétrique)
- alors que le schéma IP est exact (changement d'inconnue)

Par ailleurs,

- l'analogie indique que la méthode IP est simple à implémenter en modifiant très peu un code SS Symétrique
- l'utilisation du schéma RK d'ordre 4 pour résoudre le problème (Q_k) rend l'évaluation de l'opérateur G_k pas plus coûteuse que celle de N (dû aux symétries des coefficients RK4)

Comparaison à une approche Split-Step (III)

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Historique de la méthode IP

La méthode RK4-IP a été inventée au Bose-Einstein condensate theory group, Jack Dodd Centre, University of Otago (Nouvelle-Zélande) dans les années 90 pour résoudre numériquement l'équation de Gross-Pitaevskii servant à décrire les condensats de Bose-Einstein.

イロト イポト イヨト イ

Historique de la méthode IP

- La méthode RK4-IP a été inventée au Bose-Einstein condensate theory group, Jack Dodd Centre, University of Otago (Nouvelle-Zélande) dans les années 90 pour résoudre numériquement l'équation de Gross-Pitaevskii servant à décrire les condensats de Bose-Einstein.
- Elle est décrite dans les 2 thèses suivantes :
 - B.M. Caradoc-Davies. Vortex dynamics in Bose-Einstein condensate. PhD thesis, University of Otago (NZ), 2000.
 - M.J. Davis. Dynamics in Bose-Einstein condensate. PhD thesis, University of Oxford (UK), 2001.

Historique de la méthode IP

La méthode RK4-IP a été inventée au Bose-Einstein condensate theory group, Jack Dodd Centre, University of Otago (Nouvelle-Zélande) dans les années 90 pour résoudre numériquement l'équation de Gross-Pitaevskii servant à décrire les condensats de Bose-Einstein.

• Elle est décrite dans les 2 thèses suivantes :

- B.M. Caradoc-Davies. Vortex dynamics in Bose-Einstein condensate. PhD thesis, University of Otago (NZ), 2000.
- M.J. Davis. Dynamics in Bose-Einstein condensate. PhD thesis, University of Oxford (UK), 2001.
- Puis en 2007 a été utilisée pour la GNLSE
 - J. Hult. A fourth-order Runge-Kutta in the Interaction Picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol., 25(12):3770–3775, 2007.

(日) (同) (日) (日)

Référence bibliographique

 S. Balac, A. Fernandez, F. Mahé, F. Méhat and R. Texier-Picard.

The Interaction Picture method for solving the Generalized nonlinear Schrödinger equation in optics. Soumis à SIAM Journal of Numerical Analysis, 2013. http://hal.archives-ouvertes.fr/hal-00850518/

Introduction

La problématique physique Objectifs de la tâche modélisation mathématique & simulation Le modèle

La méthode de la représentation d'interaction

Une suite de problèmes emboités Changement d'inconnue Nouveau problème à résoudre Résolution des problèmes linéaires et non linéaire Comparaison à une approche Split-Step

Une stratégie de pas adaptatif peu onéreuse

Objectifs Schéma de Runge-Kutta emboité RK4(3) L'algorithme RK4(3)-IP

Objectifs

Le schéma de Runge-Kutta d'ordre 4 classique est bien adapté à la résolution de la GNLSE par la méthode IP car la valeur des noeuds de quadrature (0, 1/2, 1/2, 1) induit des simplifications au niveau de l'algorithme.

(日) (四) (日) (日)

э

Objectifs

- Le schéma de Runge-Kutta d'ordre 4 classique est bien adapté à la résolution de la GNLSE par la méthode IP car la valeur des noeuds de quadrature (0, 1/2, 1/2, 1) induit des simplifications au niveau de l'algorithme.
- On souhaite : estimer l'erreur locale pour mettre en œuvre une stratégie de pas adaptatif :
 - peu onéreuse (comparé au "step-doubling")
 - qui préserve les simplifications induites par la valeur des noeuds de quadrature RK4.

A □ > A □ > A □ > A □ >

Objectifs

- Le schéma de Runge-Kutta d'ordre 4 classique est bien adapté à la résolution de la GNLSE par la méthode IP car la valeur des noeuds de quadrature (0, 1/2, 1/2, 1) induit des simplifications au niveau de l'algorithme.
- On souhaite : estimer l'erreur locale pour mettre en œuvre une stratégie de pas adaptatif :
 - peu onéreuse (comparé au "step-doubling")
 - qui préserve les simplifications induites par la valeur des noeuds de quadrature RK4.
- Q Recherche d'un schéma de Runge-Kutta emboité...
 - i.e. 2 schémas de RK d'ordre 3 et 4,
 - ayant en commun la plus grande partie des étapes de calcul.

A □ > A □ > A □ > A □ >

Schéma de Runge-Kutta emboité RK4(3)

Un peu de travail conduit au schéma ERK4(3) suivant :

イロト イヨト イヨト イ

Qui s'avère être le schéma de Runge-Kutta 4(3) T de Dormand et Prince (la valeur $\lambda = \frac{1}{10}$ est suggérée).

L'algorithme RK4(3)-IP

A l'étape k, les solutions approchées $u_{k+1}^{[4]}$ (RK4) et $u_{k+1}^{[3]}$ (RK3) au point z_{k+1} sont obtenues ainsi (dépendance en t omise)

$$\begin{aligned} u_k^{ip} &= \exp\left(\frac{h_k}{2}\mathcal{D}\right) u_k^{[4]} \quad (\text{changement d'inconnue}) \\ \alpha_1 &= \exp\left(\frac{h_k}{2}\mathcal{D}\right) \alpha_{5,k}' \qquad \alpha_2 = \mathcal{N}(u_k^{ip}(z_k, t) + \frac{h_k}{2}\alpha_1) \\ \alpha_3 &= \mathcal{N}(u_k^{ip}(z_k, t) + \frac{h_k}{2}\alpha_2) \quad \alpha_4' = \mathcal{N}\left(\exp\left(\frac{h_k}{2}\mathcal{D}\right)\left[u_k^{ip}(z_k, t) + h_k\alpha_3\right]\right) \\ r &= \exp\left(\frac{h_k}{2}\mathcal{D}\right)\left[u_k^{ip} + \frac{h_k}{6}\left(\alpha_1 + 2\alpha_2 + 2\alpha_3\right)\right] \\ u_{k+1}^{[4]} &= r + \frac{h_k}{6}\alpha_4' \\ \alpha_{5,k+1}' &= \mathcal{N}(u_{k+1}^{[4]}) \qquad (FSAL) \\ u_{k+1}^{[3]} &= r + \frac{h_k}{30}(2\alpha_4' + 3\alpha_{5,k+1}') \qquad (\text{surcoût} = 2+\text{ et } 3\times) \\ erreur_{locale} &= \|u_{k+1}^{[4]} - u_{k+1}^{[3]}\| \end{aligned}$$

(日) (四) (日) (日)

Comparaison au "Step-doubling"

Évolution du pas lors de la propagation d'un soliton d'ordre 3 $(tol = 10^{-6})$. CPU time · RK4(3) = 69 s / SD = 148 s

Référence bibliographique

Q. S. Balac and F. Mahé.

Embedded Runge-Kutta scheme for step-size control in the Interaction Picture method.

Computer Physics Communications, 184(4): 1211-1219, 2013

http://hal.archives-ouvertes.fr/hal-00797190/

Conclusion

 Une alternative intéressante à la méthode S3F pour résoudre la GNSLE (pas d'approx. liée à un schema de split-step).

・ロト ・ 戸 ・ ・ ヨ ・ ・

- Facile à mettre en œuvre à partir d'un code S3F.
- Stratégie de pas adaptatif sans surcoût.
- Peut-être utilisée pour la résolution de toute EDP où s'applique la méthode de Split-Step Symétrique.

Et en plus cela fonctionne!

