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This provides a new line in the so-called Zimmer program, and character-
izes certain complex tori as compact Kähler manifolds with large automor-
phisms groups.
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dans ce cadre, et caractérise certains tores complexes compacts par des pro-
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1. INTRODUCTION

1.1. Zimmer Program. Let G be an almost simple real Lie group. The real
rank rkR(G) of G is the dimension of a maximal abelian subgroup of G that
acts by R-diagonalizable endomorphisms in the adjoint representation of G
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on its Lie algebra g; for example, the real Lie groups SL n(R) and SL n(C)

have rank n− 1. When rkR(G) is at least 2, we say that G is a higher rank
almost simple Lie group. Let Γ be a lattice in such a higher rank Lie group
G; by definition, Γ is a discrete subgroup of G such that G/Γ has finite Haar
volume. Margulis superrigidity theorem implies that all finite dimensional
linear representations of Γ are built from representations in unitary groups and
representations of the Lie group G itself. In particular, there is no faithful
linear representation of Γ in dimension ≤ rkR(G) (see Remark 3.4 below).

Zimmer’s program predicts a similar picture for actions of Γ by diffeomor-
phims on compact manifolds, at least when the dimension dim(V ) of the man-
ifold V is close to the minimal dimension of non trivial linear representations
of G (see [28]). For instance, a central conjecture asserts that lattices in simple
Lie groups of rank n do not act faithfully on compact manifolds of dimension
less than n (see [64, 63, 65, 32]).

In this article, we pursue the study of Zimmer’s program for holomorphic
actions on compact Kähler manifolds, as initiated in [16] and [19, 20].

1.2. Automorphisms. Let M be a compact complex manifold of dimension n.
By definition, diffeomorphisms of M which are holomorphic are called au-
tomorphisms. According to Bochner and Montgomery [11, 14], the group
Aut(M) of all automorphisms of M is a complex Lie group, its Lie algebra is
the algebra of holomorphic vector fields on M. Let Aut(M)0 be the connected
component of the identity in Aut(M), and

Aut(M)] = Aut(M)/Aut(M)0

be the group of connected components. This group can be infinite, and is
hard to describe: For example, it is not known whether there exists a compact
complex manifold M for which Aut(M)] is not finitely generated.

When M is a Kähler manifold, Lieberman and Fujiki proved that Aut(M)0

has finite index in the kernel of the action of Aut(M) on the cohomology of
M (see [29, 45]). Thus, if a subgroup Γ of Aut(M) embeds into Aut(M)], the
action of Γ on the cohomology of M has finite kernel; in particular, the group
Aut(M)] almost embeds in the group Mod(M) of isotopy classes of smooth
diffeomorphisms of M. When M is simply connected or, more generally, has
nilpotent fundamental group, Mod(M) is naturally described as the group of
integer matrices in a linear algebraic group (see [54]). Thus, Aut(M)] sits
naturally in an arithmetic lattice. Our main result goes in the other direction:
It describe the largest possible lattices contained in Aut(M)].
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1.3. Rigidity and Kummer examples. The main examples that provide large
groups Γ ⊂ Aut(M)] come from linear actions on carefully chosen complex
tori.

Example 1.1. Let E = C/Λ be an elliptic curve and n be a positive inte-
ger. Let T be the torus En = Cn/Λn. The group Aut(T ) is the semi-direct
product of SL(n,End(E)) by T , acting by translations on itself. In particu-
lar, the connected component Aut(T )0 coincides with the group of transla-
tions, and Aut(T ) contains all linear transformations z 7→ B(z) where B is in
SL n(Z). If Λ is the lattice of integers Od in an imaginary quadratic number
field Q(

√
d), where d is a squarefree negative integer, then Aut(T ) contains a

copy of SL n(Od).

Example 1.2. Starting with the previous example, one can change Γ into a
finite index subgroup Γ0, and change T into a quotient T/F where F is a finite
subgroup of Aut(T ) which is normalized by Γ0. In general, T/F is an orbifold
(a compact manifold with quotient singularities), and one needs to resolve the
singularities in order to get an action on a smooth manifold M. The second
operation that can be done is blowing up finite orbits of Γ. This provides infin-
itely many compact Kähler manifolds of dimension n with actions of lattices
Γ⊂ SL n(R) (resp. Γ⊂ SL n(C)).

In these examples, the group Γ is a lattice in a real Lie group of rank (n−
1), namely SL n(R) or SL n(C), and Γ acts on a manifold M of dimension n.
Moreover, the action of Γ on the cohomology of M has finite kernel and a finite
index subgroup of Γ embeds in Aut(M)]. Since this kind of construction is at
the heart of the article, we introduce the following definition, which is taken
from [17, 19].

Definition 1.3. Let Γ be a group, and ρ : Γ→ Aut(M) a morphism into the
group of automorphisms of a compact complex manifold M. This morphism
is a Kummer example (or, equivalently, is of Kummer type) if there exists

• a birational morphism π : M→M0 onto an orbifold M0,
• a finite orbifold cover ε : T →M0 of M0 by a torus T, and
• morphisms η : Γ→ Aut(T ) and η0 : Γ→ Aut(M0)

such that ε◦η(γ) = η0(γ)◦ ε and η0(γ)◦π = π◦ρ(γ) for all γ in Γ.

The notion of orbifold used in this text refers to compact complex analytic
spaces with a finite number of singularities of quotient type; in other words,
M0 is locally the quotient of (Cn,0) by a finite group of linear tranformations
(see Section 2.3).
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Since automorphisms of a torus Cn/Λ are covered by affine transformations
of Cn, all Kummer examples come from actions of affine transformations on
affine spaces.

1.4. Results. The following statement is our main theorem. It confirms Zim-
mer’s program, in its strongest versions, for holomorphic actions on compact
Kähler manifolds: We get a precise description of all possible actions of lat-
tices Γ⊂ G for rkR(G)≥ dimC(M)−1.

Main Theorem. Let G be an almost simple real Lie group and Γ be a lattice
in G. Let M be a compact Kähler manifold of dimension n ≥ 3. Let ρ : Γ→
Aut(M) be a morphism with infinite image.

(0) The real rank rkR(G) is at most equal to the complex dimension of M.

(1) If rkR(G) = dim(M), the group G is locally isomorphic to SL n+1(R)

or SL n+1(C) and M is biholomorphic to the projective space Pn(C).

(2) If rkR(G) = dim(M)−1, there exists a finite index subgroup Γ0 in Γ

such that either

(2-a) ρ(Γ0) is contained in Aut(M)0, and Aut(M)0 contains a subgroup
which is locally isomorphic to G, or

(2-b) G is locally isomorphic to SL n(R) or SL n(C), and the morphism
ρ : Γ0→ Aut(M) is a Kummer example.

Moreover, all examples corresponding to assertion (2-a) are described in
Section 4.6 and all Kummer examples of assertion (2-b) are described in Sec-
tion 7. In particular, for these Kummer examples, the complex torus T associ-
ated to M and the lattice Γ fall in one of the following three possible examples:

• Γ⊂ SL n(R) is commensurable to SL n(Z) and T is isogenous to the prod-
uct of n copies of an elliptic curve C/Λ;

• Γ⊂ SL n(C) is commensurable to SL n(Od) where Od is the ring of integers
in Q(

√
d) for some negative integer d, and T is isogenous to the product of n

copies of the elliptic curve C/Od;

• In the third example, n = 2k is even. There are positive integers a and b
such that the quaternion algebra Ha,b over the rational numbers Q defined by
the basis (1, i, j,k), with

i2 = a, j2 = b, ij = k =−ji

is an indefinite quaternion algebra and the lattice Γ is commensurable to the
lattice SL k(Ha,b(Z)). The torus T is isogenous to the product of k copies
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of an abelian surface Y which contains Ha,b(Q) in its endomorphism algebra
End Q(Y ). Once a and b are fixed, those surfaces Y depend on one complex
parameter, hence T depends also on one parameter; for some parameters Y is
isogenous to the product of 2 copies of the elliptic curve C/Od , and T is isoge-
nous to (C/Od)

n with d =−ab (see §7 for precise definitions and details).

As a consequence, Γ is not cocompact, T is an abelian variety and M is
projective.

Remark 1.4. In dimension 2, [18] shows that all faithful actions of infinite
discrete groups with Kazhdan property (T) by birational transformations on
projective surfaces are birationally conjugate to actions by automorphisms
on the projective plane P2(C) ; thus, part (1) of the Main Theorem holds in
the more general setting of birational actions and groups with Kazhdan prop-
erty (T). Part (2) does not hold in dimension 2 for lattices in the rank 1 Lie
group SO 1,n(R) (see [18, 27] for examples).

1.5. Strategy of the proof and complements. Sections 2 and 3 contain im-
portant preliminary facts, as well as a side result which shows how represen-
tation theory and Hodge theory can be used together in our setting (see §3.4).

The proof of the Main Theorem starts in §4: Assertion (1) is proved, and
a complete list of all possible pairs (M,G) that appear in assertion (2-a) is
obtained. This makes use of a previous result on Zimmer conjectures in the
holomorphic setting (see [16], in which assertion (0) is proved), and classi-
fication of homogeneous or quasi-homogeneous spaces (see [2, 33, 39]). On
our way, we describe Γ-invariant analytic subsets Y ⊂M and show that these
subsets can be blown down to quotient singularities.

The core of the paper is to prove assertion (2-b) when the image ρ(Γ0) is
not contained in Aut(M)0 (for all finite index subgroups of Γ) and rkR(G) is
equal to dim(M)−1.

In that case, Γ acts almost faithfully on the cohomology of M, and this
linear representation extends to a continuous representation of G on H∗(M,R)

(see §3). Section 5 shows that G preserves a non-trivial cone contained in
the closure of the Kähler cone K (M) ⊂ H1,1(M,R); this general fact holds
for all linear representations of semi-simple Lie groups G for which a lattice
Γ⊂G preserves a salient cone (here Γ preserves the Kähler cone in H1,1(M)).
Section 5 can be skipped in a first reading.

Then, in §6, we apply ideas of Dinh and Sibony, of Zhang, and of our
previous manuscripts together with representation theory. We fix a maximal
torus A in G and study the eigenvectors of A in the G-invariant cone: Hodge
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index Theorem constrains the set of weights and eigenvectors; since the Chern
classes are invariant under the action of G, this provides strong constraints
on them. When there is no Γ-invariant analytic subset of positive dimension,
Yau’s Theorem can then be used to prove that M is a torus. To conclude the
proof, we blow down all invariant analytic subsets to quotient singularities (see
§4), and apply Hodge and Yau’s Theorems in the orbifold setting.

Section 7 lists all tori of dimension n with an action of a lattice in a simple
Lie group of rank n−1; it provides also a few consequences that follow easily
from this classification. Since Sections 4.6 and 7 provide complements to the
Main Theorem, we recommend to skip them in a first reading.

1.6. Aknowledgment. Thanks to Sébastien Boucksom, Michel Brion, An-
toine Chambert-Loir, Jean-Pierre Demailly, Igor Dolgachev, Stéphane Druel,
Ludovic Marquis, François Maucourant and Jean-François Quint for nice dis-
cussions, comments, and ideas. Demailly provided the proof of Theorem 2.2,
Brion and Dolgachev helped us clarify Section 4.1, and Chambert-Loir made
several important suggestions, including a better use of complex multiplica-
tion theory in Section 7. The anonymous referee did a wonderful job, which
greatly improved the quality of the exposition; thanks to his careful reading,
several inaccuracies have been corrected.

This paper contains the main results of our manuscripts [19] and [20]; we
thank the editorial board of the Annales Scientifiques for its proposition to
merge these two texts in a new one.

2. COHOMOLOGY, HODGE THEORY, ORBIFOLDS

Let M be a connected, compact, Kähler manifold of complex dimension n.

2.1. Hodge Theory and cohomological automorphisms.

2.1.1. Hodge decomposition. Hodge theory implies that the cohomology groups
Hk(M,C) decompose into direct sums

Hk(M,C) =
⊕

p+q=k

H p,q(M,C),

where cohomology classes in H p,q(M,C) are represented by closed forms of
type (p,q). This bigraded structure is compatible with the cup product. Com-
plex conjugation permutes H p,q(M,C) with Hq,p(M,C). In particular, the co-
homology groups H p,p(M,C) admit a real structure, with real part

H p,p(M,R) = H p,p(M,C)∩H2p(M,R).
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If [κ] is a Kähler class (i.e. the cohomology class of a Kähler form), then
[κ]p ∈ H p,p(M,R) for all p.

2.1.2. Notation. In what follows, the vector space H1,1(M,R) is denoted W .

2.1.3. Cohomological automorphisms.

Definition 2.1. A cohomological automorphism of M is a linear isomor-
phism of the real vector space H∗(M,R) that preserves the Hodge decomposi-
tion, the cup product, and the Poincaré duality.

Note that cohomological automorphisms are not assumed to preserve the
set of Kähler classes or the lattice H∗(M,Z), as automorphisms f ∗ with f ∈
Aut(M) do.

2.1.4. Primitive classes and Hodge index Theorem. Let [κ] ∈W be a Kähler
class (alternatively, Kähler classes are also called ample classes). The set of
primitive classes with respect to [κ] is the vector space of classes [u] in W such
that ∫

M
[κ]n−1∧ [u] = 0.

Hodge index theorem implies that the quadratic form

([u], [v]) 7→
∫

M
[κ]n−2∧ [u]∧ [v]

is negative definite on the space of primitive forms (see [58], §6.3.2). We refer
the reader to [15], [26], [25] and [62] for stronger results and for consequences
of Hodge index Theorem on groups of automorphisms of M.

2.2. Nef cone and big classes. Recall that a convex cone in a real vector
space is salient when its closure does not contain any line. In particular, a
salient cone is strictly contained in a half space.

The Kähler cone of M is the subset K (M)⊂W of Kähler classes. This set
is an open convex cone; its closure K (M) is a salient and closed convex cone,
the interior of which coincides with K (M). We shall say that K (M) is the
cone of nef cohomology classes of type (1,1) (“nef” stands for “numerically
effective” and also for “numerically eventually free”). All these cones are
invariant under the action of Aut(M).

A class w in H1,1(M,R) is big and nef if it is nef and
∫

M wn > 0. The cone of
big and nef classes plays an important role in this paper. The following result
extends a theorem proved by Nakamaye in the case of projective varieties (see
[44], volume II, chapter 10.3, and [48]).
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Theorem 2.2 (Demailly and Paun). Let M be a compact Kähler manifold, and
w ∈ H1,1(M,R) be a big and nef class which is not a Kähler class. Then

(0) for all irreducible analytic subsets X ⊂M,
∫

X wdim(X) ≥ 0;
(1) there exists an irreducible analytic subset Y ⊂M of positive dimension

such that ∫
Y

wdim(Y ) = 0;

(2) the union of all these analytic subsets Y is (contained in) a proper
Zariski closed subset Z ⊂M.

The proof follows from two important results proved by Demailly and Paun,
using closed positive currents with logarithmic singularities. By definition, a
(1,1)-current is positive if∫

M
T ∧ (iu1∧u1)∧ . . .∧ (iun−1∧un−1)≥ 0

for all smooth (1,0)-forms u1, ..., un−1; it is closed if
∫

M T ∧ (dβ) = 0 for all
smooth (n− 2)-forms. Let κ be a Kähler form on M. According to [24], a
Kähler current is a closed (1,1)-current such that T −δκ is a positive current
for some positive real number δ. The cohomology class of a Kähler current
needs not be a Kähler class; for example, on a surface X , the sum T = εκ+{E}
of a Kähler form εκ, ε > 0, and the current of integration on a curve E is a
Kähler current, but if E has negative self-intersection and ε is small, then the
cohomology class of T has negative self-intersection.

Theorem 2.3 (see [23], [24], and [7]). Let M be a compact Kähler manifold.

(1) If w ∈ H1,1(M,R) is a nef and big class (as defined above), then w
contains a Kähler current.

(2) Let T0 be a Kähler current. There exists a Kähler current T1 which
satisfies the following two properties: (i) T1 is cohomologous to T0
and (ii) there is an open cover {U j} of M such that, on each U j, T1 is
equal to ddc(φ j +u j) where u j is a smooth function and

φ j = c j log

(
m

∑
i=1
|g j,i|2

)
for some positive constant c j and holomorphic functions g j,i ∈ O(U j).

Let w be a big and nef class. According to Theorem 2.3, the class w is
represented by a Kähler current T which is locally of the form ddc(φ+u) with
u smooth and φ = c log(∑i |gi|2) on elements U of an open cover of M (we
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drop the index j for simplicity). Let ZT be the analytic subset of M which is
locally defined as the intersection of the zero-locus of the functions gi.

Lemma 2.4. Let Y be an irreducible analytic subset of M which is not con-
tained in ZT . If dimC(Y )> 0 then∫

Y
wdimC(Y ) > 0.

Since Y may be singular, the proof makes use of closed positive currents and
plurisubharmonic functions on singular analytic subsets Y ⊂M; the required
definitions and properties are described in [22], Chapter 1, and [24].

Proof Lemma 2.4. Let κ be a Kähler form on M. Volumes and distances are
defined with respect to the hermitian metric associated to κ.

Since Y is not contained in ZT , the restriction φ|Y of φ to Y is not everywhere
−∞, and defines a plurisubharmonic function on Y . Thus, the restriction S =

T|Y of T to Y can be defined locally as

S = ddc(φ|Y +u|Y ), (2.1)

where u is smooth and φ = c log(∑i |gi|2), as above.

By assumption, T ≥ δκ for some positive number δ. Let us show, first, that
S− (δ/2)κ ≥ 0, so that S is a Kähler current on Y . Let γ = (iu1∧ u1)∧ . . .∧
(iup−1∧up−1) where the ui are (1,0)-forms. We need to prove that∫

Y
S∧ γ≥

∫
Y
(δ/2)κ∧ γ ;

for this, we can restrict the study to an open set U on which S is defined by
Formula 2.1. Let Oε be the intersection of the ε-tubular neighborhood of ZT

with Y . Let { f ,(1− f )} be a partition of 1 on the open set U , with f = 1 near
ZT and f = 0 in the complement of Oε. On U , we have

S− (δ/2)κ = ddc(φ+w), with w = u+ v,

where (−2/δ)v is a smooth local potential of κ. One has∣∣∣∣∫Oε

ddc(w)∧ ( f γ)

∣∣∣∣≤ cste ‖ γ ‖ volκ(Oε),

and this quantity goes to 0 with ε (the constant cste depends on w but does not
depend on ε). Since φ is plurisubharmonic,

∫
Oε

ddc(φ)∧ ( f γ)≥ 0 and thus

lim
ε→0

∫
Oε

(S− (δ/2)κ)∧ ( f γ)≥ 0.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 10

On the support of (1− f ) both functions φ and w are smooth, and ddc(φ+w)≥
(δ/2)κ, by definition of δ. Thus∫

U∩Y
(S− (δ/2)κ)∧ γ =

∫
Oε

(S− (δ/2)κ)∧ ( f γ)+
∫

U
(S− (δ/2)κ)∧ (1− f )γ

≥
∫

Oε

S∧ ( f γ)+
∫

U
(1− f )(δ/2)κ∧ γ.

Since the first term of the right-hand side has a positive limit with ε going to
0, we obtain ∫

U
(S− (δ/2)κ)∧ γ≥

∫
U
(δ/2)κ∧ γ.

We can now prove that
∫

Y wp > 0, where p denotes the dimension of Y .
Since w is nef, T + εκ is cohomologous to a Kähler form κε for all ε > 0. We
then have ∫

Y
(w+ εκ)p =

∫
Y
(w+ εκ)∧ (κε)

p−1

=
∫

Y
(S+ εκ)∧ (κε)

p−1

≥
∫

Y
S∧ (κε)

p−1

≥
∫

Y
(δ/2)κ∧ (κε)

p−1

≥
∫

Y
(δ/2)κ∧ (w+ εκ)∧ (κε)

p−2.

We can then replace (w+ εκ) by S+ εκ and apply the inequality S ≥ (δ/2)κ
again; in p−1 steps we get∫

Y
(w+ εκ)p ≥ (δ/2)p

∫
Y

κ
p = (δ/2)pvolκ(Y ).

The Lemma is proved. �

Proof of Theorem 2.2. Property (0) is a direct consequence of the fact that w
is in the closure of the Kähler cone. The existence of Y in property (1) follows
from Theorem 0.1 in [24]: According to that result, the Kähler cone is a con-
nected component of the set of classes w∈H1,1(M,R) such that

∫
Y wdimC Y > 0

for all irreducible analytic subsets of M.
To prove Property (2) define Z as the intersection of the analytic subsets

ZT ⊂ M, where T describes the set of Kähler currents with logarithmic sin-
gularities and cohomology class equal to w. By Theorem 2.3, this is a proper
analytic subset of M. Lemma 2.4 implies that

∫
Y wdim(Y ) > 0 as soon as Y is not
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contained in Z, is irreducible, and has positive dimension. Thus, all analytic
subsets Y that occur in Property (1) are contained in Z. �

2.3. Orbifolds. In this paper, an orbifold M0 of dimension n is a compact
complex analytic space with a finite number of quotient singularities qi; in
a neighborhood of each qi, M0 is locally isomorphic to the quotient of Cn

near the origin by a finite group of linear transformations. All examples of
orbifolds considered in this paper are locally isomorphic to Cn/ηi where ηi is a
scalar multiplication of finite order ki. Thus, the singularity qi can be resolved
by one blow-up: The point qi is then replaced by a hypersurface Zi which
is isomorphic to Pn−1(C) with normal bundle O(−ki). On our way to the
proof of the Main Theorem, this type of singularities occurs when we contract
hypersurfaces of the smooth manifold M which are invariant under the action
of the lattice Γ (see Theorem 4.5, where we show that these hypersurfaces are
copies of Pn−1(C), with a negative normal bundle).

All classical objects from complex differential geometry are defined on M0
as follows. Usual definitions are applied on the smooth part M0 \ {q1, ...,qk}
and, around each singularity qi, one requires that the objects come locally from
ηi-invariant objects on Cn. Classical facts, like Hodge decomposition, Hodge
index Theorem, Yau’s Theorem, remain valid in the context of orbifolds. The
reader will find more details in [51], [53], [13] and [61].

3. LATTICES, RIGIDITY, AND ACTION ON COHOMOLOGY

In Sections 3.1 and 3.2, we list important facts concerning lattices in Lie
groups. The reader may consult [56] and [4, 6] for two nice introductions
to this subject. Those properties are applied to actions of automorphisms on
cohomology groups in Sections 3.3 and 3.4.

3.1. Classical properties of lattices. One feature of the theory of semi-simple
Lie groups is that we can switch viewpoint from Lie groups to linear algebraic
groups. We shall use this almost permanently.

3.1.1. Borel density theorem (see [56], page 37, or [4]). Let G be a linear
algebraic semi-simple Lie group with no compact normal subgroup of positive
dimension. If Γ is a lattice in G, then Γ is Zariski-dense in G.

3.1.2. Kazhdan property (T ) (see [21, 3]). We shall say that a topological
group F has Kazhdan property (T) if F is locally compact and every contin-
uous action of F by affine unitary motions on a Hilbert space has a fixed point
(see [3] for equivalent definitions). If F has Kazhdan property (T) and Λ is a
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lattice in F, then Λ inherits property (T). If G is a simple real Lie group with
rank rkR(G)≥ 2, then G and all its lattices satisfy Kazhdan property (T ). If F
is a discrete group with property (T), then

• F is finitely generated;
• every morphism from F to GL 2(k), k any field, has finite image (see

[37] and [63]);
• every morphism from Γ to a solvable group has finite image.

Lemma 3.1. Every morphism from a discrete Kazhdan group F to the group
of automorphisms of a compact Riemann surface has finite image.

Proof. The automorphisms group of a connected Riemann surface X is either
finite (when the genus g(X) is > 1), virtually abelian (when g(X) = 1), or
isomorphic to PGL 2(C). �

3.2. Margulis superrigidity.

3.2.1. Superrigidity. Let H be a group. A property is said to hold virtually for
H if a finite index subgroup of H satisfies this property. Similarly, a morphism
h : Γ→ L from a subgroup Γ of H to a group L virtually extends to H if there is
a finite index subgroup Γ0 in Γ and a morphism ĥ : H→ L such that ĥ coincides
with h on the subgroup Γ0.

The following theorem is one version of the superrigidity phenomenon for
linear representations of lattices (see [46] or [56]).

Theorem 3.2 (Margulis). Let G be a semi-simple connected Lie group with
finite center, with rank at least 2, and without non trivial compact factor. Let
Γ⊂G be an irreducible lattice. Let h : Γ→GL k(R) be a linear representation
of Γ.

(1) The Zariski closure H of h(Γ) is a semi-simple Lie group.
(2) Assume H does not have any infinite compact factor; if H is adjoint or

G is simply connected there exists a continuous representation ĥ : G→
GL k(R) which coincides with h on a finite index subgroup of Γ.

When H does not have any infinite compact factor but is not adjoint, one
can always find a finite cover π : Ĝ→ G and a morphism ĥ from Ĝ to H such
that ĥ extends virtually the morphism ρ◦π from π−1(Γ) to GL k(R). We then
say that h virtually extends to a continuous representation of a finite cover Ĝ
of G.

In particular, if G is almost simple, its Lie algebra embeds into the Lie
algebra of H.
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Corollary 3.3. If the representation h takes values into the group GL k(Z) and
has an infinite image, then h extends virtually to a continuous representation
of a finite cover of G with finite kernel.

If G is a semi-simple linear algebraic group, any continuous linear repre-
sentation of G on a finite dimensional vector space is algebraic. As a conse-
quence, up to finite indices and finite covers, representations of Γ into GL k(Z)
with infinite image are restrictions of algebraic linear representations of G.

Remark 3.4. Let G and Γ be as in Theorem 3.2. Assume, moreover, that G is
almost simple. Let ρ0 : Γ→ GL k(R) be an injective morphism. If the image
of Γ is relatively compact, one can find another morphism ρ1 : Γ→ GL k(C)

with unbounded image (see [46], Theorem 6.6, and [16], Section 3.3). We can
therefore assume that Γ embeds into GL k(C) with unbounded image. Thus,
Margulis theorem provides an injective morphism from the Lie algebra of G
to the Lie algebra glk(C); this implies that the rank of G is at most k− 1.
In particular, there is no faithful linear representation of Γ in dimension ≤
rkR(G).

3.2.2. Normal subgroups (see [46] or [56]). According to another result of
Margulis, if Γ is an irreducible higher rank lattice, then Γ is almost simple:
All normal subgroups of Γ are finite or have finite index in Γ.

In particular, if α : Γ→H is a morphism of groups, either α has finite image,
or α is virtually injective, which means that we can change the lattice Γ in a
sublattice Γ0 and assume that α is injective.

3.3. Action on cohomology.

Proposition 3.5. Let G and Γ be as in Theorem 3.2. Let ρ : Γ→ Aut(M) be a
representation into the group of automorphisms of a compact Kähler manifold
M. Let ρ∗ : Γ→ GL(H∗(M,Z)) be the induced action on the cohomology ring
of M.

a.- If the image of ρ∗ is finite, the image of ρ is virtually contained in
Aut(M)0.

b.- If the image of ρ∗ is infinite, then ρ∗ virtually extends to a representa-
tion ρ̂∗ : Ĝ→ GL(H∗(M,R)) by cohomological automorphisms on a
finite cover of G.

Hence, to prove our Main Theorem, we can assume that either (a) the im-
age of ρ is contained in Aut(M)0 or (b) the action of the lattice Γ on the co-
homology of M extends to a linear representation of G (changing G into an
appropriate finite cover).
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Proof. Assertion (a) is a direct consequence of Lieberman-Fujiki Theorem
(see §1.2).

In case (b), Margulis superrigidity implies that the morphism ρ∗ extends
virtually to a linear representation ρ̂∗ of a finite cover Ĝ. Since Γ acts by
holomorphic diffeomorphisms on M, Γ preserves the Hodge decomposition,
the cup product, and Poincaré duality. Since lattices of semi-simple Lie groups
are Zariski dense (see §3.1.1), the same is true for ρ̂∗(Ĝ). �

Let us focus on case (b) in the previous Proposition. Changing G in Ĝ, we
assume that h extends virtually to G. Let A be a maximal torus of G; A is a
connected subgroup of G, its adjoint representation on g is diagonalizable, and
A is maximal for these properties. Since ρ∗ is not trivial, there exist a vector
u 6= 0 in H1,1(M,R) and a surjective morphism χ : A→ R∗ such that

ρ
∗(a)(u) = χ(a)u

for all a in A. By [49], a conjugate b−1Γb of Γ intersects A on a lattice AΓ ⊂ A;
since AΓ is a lattice, it is not contained in a hyperplane of A ' Rn, and there
are pairs (γ,λ) with γ in Γ and λ in the interval (1,∞) such that

ρ
∗(γ)(ρ∗(b)(u)) = λρ

∗(b)(u).

Let us now reformulate this remark in terms of spectral radii and topological
entropy. For f ∈ Aut(M), define λ( f ) as the spectral radius of the linear trans-
formation f ∗ induced by f on H∗(M,R). Then, by results due to Yomdin and
Gromov (see [36]), we know that

(1) the topological entropy of f is the logarithm of λ( f ):

htop( f ) = log(λ( f ));

(2) λ( f )> 1 if and only if f ∗ has an eigenvalue > 1 on W = H1,1(M,R).

Example 3.6. The entropy of a projective linear transformation of a projective
space is equal to 0. This can be seen from Property (1), or can be proved
directly from the definition of topological entropy (all orbits converge or are
contained in tori on which the map is conjugate to a translation).

Examples 1.1 and 1.2 give rise to automorphisms with positive entropy:
The automorphism associated to an element B in SL n(Z) has positive entropy
if and only if the spectral radius of B is positive.

From the properties of entropy and Proposition 3.5, we get the following
statement.
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Corollary 3.7. If the image of ρ∗ is infinite, the group Γ contains elements γ

such that ρ(γ) is an automorphism with positive entropy and γ has an eigen-
value > 1 on W.

3.4. An example in dimension three. In this paragraph, we show how Hodge
index Theorem and representation theory can be used together to provide con-
straints in the spirit of our Main Theorem.

Proposition 3.8. Let M be a compact Kähler manifold of dimension 3. Let
G be a semi-simple connected Lie group with finite center, rank at least 2,
and no non-trivial compact factor. Let Γ be an irreducible lattice in G, and
ρ : Γ→ Aut(M) be an injective morphism. If G is not isogenous to a simple
group, then ρ∗ : Γ→ GL(H∗(M,Z)) has a finite image.

This proposition shows that our Main Theorem can be generalized to semi-
simple Lie groups when dim(M) = 3. We sketch the proof of this proposition
below, and refer to [19] for details and more advanced consequences of this
method, including the following statement, which extends our Main Theorem
to semi-simple Lie groups G when dim(M) = 3

Theorem 3.9. Let G be a connected semi-simple real Lie group. Let K be
the maximal compact, connected, and normal subgroup of G. Let Γ be an
irreducible lattice in G. Let M be a connected compact Kähler manifold of
dimension 3, and ρ : Γ→ Aut(M) be a morphism. If the real rank of G is at
least 2, then one of the following holds

• the image of ρ is virtually contained in the connected component of the
identity Aut(M)0, or
• the morphism ρ is virtually a Kummer example.

In the second case, G/K is locally isomorphic to SL 3(R) or SL 3(C) and Γ is
commensurable to SL 3(Z) or SL 3(Od), where Od is the ring of integers in an
imaginary quadratic number field Q(

√
d) for some negative integer d.

3.4.1. Action on W. Suppose that the action of Γ on the cohomology of M
does not factor through a finite group. Then, changing G in a finite cover,
ρ∗ virtually extends to a non-trivial representation of G; by Corollary 3.7, the
representation ρ̂∗ of G on W = H1,1(M,R) is also non-trivial. The represen-
tation on H2,2(M,R) is the dual representation W ∗, because M has dimension
3. Since this action is by cohomological automorphisms, it preserves the sym-
metric bilinear mapping

∧ : W ×W →W ∗

given by the cup product. By Hodge index Theorem,
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(HIT) the symmetric mapping ∧ does not vanish identically on any subspace
of dimension 2 in W ,

because it does not vanish on hyperplanes made of primitive classes (with
respect to any Kähler class, see §2.1.4). In what follows, we describe the
induced action of the Lie algebra g on W .

3.4.2. Representations of SL 2(R). For all positive integers n, the Lie alge-
bra sl2(R) acts linearly on the space of degree n homogeneous polynomials
in two variables. Up to isomorphism, this representation is the unique irre-
ducible linear representation of sl2(R) in dimension n+1. The weights of this
representation with respect to the Cartan subalgebra of diagonal matrices are

−n,−n+2,−n+4, ...,n−4,n−2,n,

and the highest weight n characterizes this irreducible representation. These
representations are isomorphic to their own dual representations.

Lemma 3.10. Let µ : sl2(R)→ g be an injective morphism of Lie algebras.
Then the highest weights of the representation

sl2(R)→ g→ End(W )

are bounded from above by 4, and the weight 4 appears at most once.

Proof. Let V ⊂W be an irreducible subrepresentation of sl2(R) such that its
highest weight m is the highest possible weight that appears in W. Let um and
um−2 be non-zero elements in V with respective weights m and m− 2. By
Property (HIT), one of the products

um∧um, um∧um−2, um−2∧um−2

is different from 0. The weight of this vector is at least 2(m− 2), and is
bounded from above by the highest weight of W ∗, that is by m; thus, 2(m−
2)≤m, and m≤ 4. If the weight m= 4 appears twice, there are 2 linearly inde-
pendant vectors u4 and v4 of weight 4. Since the highest weight of W ∗ is also
4, all products u4∧u4, u4∧ v4, and v4∧ v4 vanish, contradicting (HIT). �

3.4.3. Conclusion. If G is not almost simple, its Lie algebra g contains a copy
of sl2(R)⊕ sl2(R), because rkR(G)≥ 2 and G does not have compact factors.
Hence, Proposition 3.8 follows from the following Lemma.

Lemma 3.11. The Lie algebra g does not contain any copy of sl2(R)⊕sl2(R).
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Proof. Suppose that g contains g1⊕ g2 with g1 and g2 isomorphic to sl2(R).
Let n1 be the highest weight of g1 and n2 be the highest weight of g2 in W.

Since the representation of g is faithful, both n1 and n2 are positive integers.
After permutation of g1 and g2, we assume that n1 = max(n1,n2).

Let h≤ g1⊕g2 be the diagonal copy of sl2(R); the highest weight of h is n1.

Let ui ∈W be a vector of weight ni for gi. Since g2 commutes to g1, the orbit
of u1 by g2 is made of highest weight vectors for g1. Thus, we can assume that
u1 is not colinear to u2. If ui∧ u j is not zero, its weight for h is ni + n j. This
implies that u1∧ u1 = 0 and u1∧ u2 = 0. Since n2 is a highest weight for g2,

we also know that u2∧u2 = 0 because 2n2 does not appear as a weight for g2
on W ∗. Hence, ∧ should vanish identically on the vector space spanned by u1
and u2, contradicting Property (HIT). This concludes the proof. �

4. LIE GROUP ACTIONS AND INVARIANT ANALYTIC SUBSETS

4.1. Homogeneous manifolds. The following theorem is a simple conse-
quence of the classification of maximal subgroups in simple Lie groups (see
[55], chapter 6, or Section 4.6 below).

Theorem 4.1. Let H be a connected almost simple complex Lie group of
rank rkC(H) = n. If H acts faithfully and holomorphically on a connected
compact complex manifold M of dimension ≤ n then, up to holomorphic dif-
feomorphism, M is the projective space Pn(C), H is locally isomorphic to
PGL n+1(C), and the action of H on M is the standard action by linear projec-
tive transformations.

Following a suggestion by Brion and Dolgachev, we sketch a proof that does
not use the classification of maximal subgroups of Lie groups. In contrast, we
use algebraic geometry: Toric varieties and results of Kushnirenko, Borel and
Remmert, and Tits concerning homogeneous spaces.

Proof: First Step. 1 In this first step, we assume that M is a complex projective
variety, H is an almost simple complex algebraic group, and the action H ×
M→M is algebraic.

1As published, the proof contains a mistake: we do as if every closed connected subgroup
of (C∗)n is given by an algebraic morphism (C∗)→ (C∗)n. For instance, if t has a positive
imaginary part, the image of z ∈ C→ (exp(z),exp(tz)) ∈ (C∗)2 is a closed subgroup such
that the quotient group is the elliptic curve C/(Z+Zt). The proof is correct when M is a
projective variety, H is an almost simple complex algebraic group, and the action H×M→M
is algebraic. We thank Sorin Dumitrescu for pointing out the mistake.
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Let A be a maximal torus in H. Since H has rank n this group is isomorphic
to the multiplicative group Gn

m(C) = (C∗)n. Since H acts faithfully on M, the
action of A is also faithful. If x is a point of M, its stabilizer in A is an algebraic
subgroup Ax of A; denote by A0

x the irreducible component of the identity in
Ax. The set of irreducible algebraic subgroups in a complex multiplicative
group is discrete (characters form a discrete group). There exists an open
subset U of M, on which the stabilizer Ax depends continuously on x ∈ U
and A0

x is therefore a constant subgroup of A on U . Since the action of A
is faithful, we deduce that A0

x is generically trivial, A has an open orbit, and
dim(M) = n. Thus M is a toric variety of dimension n with respect to the
action of the multiplicative group A. In particular, there is no faithful action of
H on compact complex manifolds of dimension less than n. Since H is almost
simple and connected, all actions of H in dimension < n are trivial.

Let us show, as a corollary, that H acts transitively on M. If not, H has a
proper Zariski closed orbit. This orbit has dimension < n and, as such, must be
a point m ∈M. By Kushnirenko’s Theorem (see [42], Theorem 2), the action
of H at m can be linearized. Since the action is analytic, non-trivial, and M is
connected, this implies that the first jet of the action at m gives a non-trivial
morphism from H to GL(TmM)' GL n(C), in contradiction with rkC(H) = n.
Thus M is homogeneous under the action of H, and M = H/L for some closed
analytic subgroup L.

Let L0 be the connected component of the identity of L, and N(L0) be the
normalizer of L0 in H. Then N(L0) is a parabolic subgroup of H, and is the
smallest parabolic subgroup of H containing L; the quotient space H/N(L0) is
a flag manifold, and the fibration π : M = H/L→H/N(L0) is the Tits fibration
of M (see [2], §3.5). Since the dimension of M is the smallest positive dimen-
sion of a H-homogeneous space, N(L0) = L and N(L0) is a maximal parabolic
subgroup. Since N(L0) is maximal, the Picard number (2) of M is equal to 1
(see [2], §4.2).

As a consequence, M is a smooth toric variety with Picard number 1 and, as
such, is isomorphic to Pn(C) (see [30]). Since the group of automorphisms of
Pn(C) is the rank n group PGL n+1(C), the conclusion follows. �

Proof: Second Step. Now, we prove Theorem 4.1 (without assuming the ac-
tion H×M→M to be algebraic).

2The Picard number is the rank of the abelian subgroup of H2(M,Z) generated by the
Chern classes of all holomorphic line bundles on M.
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Let h be the Lie algebra of H; the adjoint representation provides a homo-
morphism Ad : H→ GL(h) with finite kernel. Denote by Sx ⊂H the stabilizer
of x ∈M and by s(x)⊂ h its Lie algebra. The dimension of s(x) varies semi-
continuously on M. Let d be the maximum of dim(s(x)); the subset

F = {x ∈M ; dim(s(x)) = d} ⊂M

is closed and H-invariant. For x in F , denote by [s(x)] the point of the Grass-
man variety Grass(h;d) of d-dimensional subspaces of h. The map x ∈ F 7→
[s(x)] ∈ Grass(h;d) is continuous, and equivariant with respect to (1) the ac-
tion of H on M and (2) the action of H on Grass(h;d) given by the adjoint
representation of H. Thus, the image of this map is a compact, H-invariant
subset V in Grass(h;d).

Note that [s(y)] ∈V is a fixed point of H if and only if Sy is normalized by
H, if and only if s(y) = {0} or h (because H is almost simple). If s(y) = {0},
the orbit of y has dimension dim(H) > n; so s(y) = h and y is fixed by the
connected group H. As in the first step, Kushnirenko’s theorem provides a
contradiction. So V contains no fixed point.

The action on Grass(h;d) factors through the algebraic action of Ad(H), so

(a) by the first step of the proof: every invariant irreducible subvariety
W ⊂ Grass(h;d) has dimension 0 or ≥ n;

(b) the closure of every H-orbit in Grass(h;d) is an algebraic subvariety;
(c) every H-invariant subvariety W of Grass(h;d) contains an orbit which

is smooth, algebraic, and of minimal dimension among orbits in W .

(the second and third properties are consequences of the theorems of Chevalley
on the constructibility of Ad(H)-orbits.)

Now, pick a point v in V and consider its H-orbit Ad(H)(v). Its closure
is contained in V , and by (b) and (c) it contains a closed, algebraic orbit
Ad(H)(w). Since V contains no fixed point, Property (a) implies that the di-
mension of Ad(H)(w) is at least n. Thus, the dimension of any H-orbit in
V is at least n. Since x ∈ F 7→ [s(x)] is continuous, this implies that H-orbit
in M has dimension ≥ n; thus dim(M) ≥ n and every orbit is open. So M is
H-homogeneous and we conlude as in the first step of the proof. �

One consequence of (the beginning of the proof of) Theorem 4.1 is the fol-
lowing: If L is a Zariski closed subgroup of SL n(C) of positive codimension,
then codimC(L)≥ n−1. The following section provides a similar property for
the unitary group U n.
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4.2. Subgroups of the unitary group. Before stating the result of this sec-
tion, recall that the compact real form of the symplectic group Sp 4(C) ⊂
SL 4(C) is the group U 2(H); its Lie algebra u2(H) is isomorphic to so5(R)

(see [31], Lecture 26, and Example 4.7.a. below).

Proposition 4.2. Let K be a closed subgroup in the unitary group U n, and let
k be its Lie algebra. Then

• K has codimension 0 and k= un, or
• K has codimension 1 and then k= sun, or
• codimR(K)≥ 2n−2, or
• n = 4, the Lie algebra k is equal to iR⊕u2(H), where iR is the center

of u4, and then codimR(K) = 5 = 2n−3.

TABLE 1. Minimal dimensions of faithful representations

the its the dimension of its
Lie algebra dimension minimal representation

slk(C), k ≥ 2 k2−1 k

sok(C), k ≥ 7 k(k−1)/2 k

sp2k(C), k ≥ 2 2k2 + k 2k

e6(C) 78 27

e7(C) 133 56

e8(C) 248 248

f4(C) 52 26

g2(C) 14 7

The proof follows again from Dynkin’s classification of maximal subalge-
bras of simple complex Lie algebras. We provide a slightly different argument,
which introduces a few basic facts that are used later on. The main ingredi-
ent is the list of the minimal dimensions of faithful representations of simple
complex Lie algebras (see [55], Table 1 on page 224).

Proof. To prove the proposition, we can, and do, assume that codim(K) ≤
2n−3, i.e. dim(K) ≥ n2−2n+3. We denote by V the natural representation
of K on Cn.
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Since K is compact, the representation V splits into the direct sum of ir-
reducible representations V1⊕ . . .⊕Vl , and K embeds into the product U n1 ×
. . .×U nl , where n j is the dimension of Vj, 1≤ j ≤ l. In particular, the dimen-
sion of K is at most ∑ j n2

j . Since it must be larger than or equal to n2−2n+3
and n = ∑ j n j, we deduce that l = 1 and V is irreducible.

Let k(C) = k+ ik be the complexification of k; it is a complex Lie subalgebra
of gln(C) of complex dimension dimR(k). Since the action of K on Cn is
irreducible two cases can occur:

(1) k(C) is a semi-simple algebra which acts irreducibly on V ;
(2) k(C) is the sum of the center C of gln(C) and a semi-simple algebra h

which acts irreducibly on V .
In the first case, we decompose k(C) as a direct sum of simple algebras

k1(C)⊕ . . .⊕ km(C). The representation V is the tensor product of faithful
irreducible representations Wj of the k j, 1 ≤ j ≤ m. Let w j be the dimension
of Wj. Assume that m≥ 2. Since m≥ 2, w j≥ 2 for all indices j, and n=∏ j w j,
we deduce that ∑

m
j=1 w2

j < n2−2n (this can be proved by induction on m≥ 2,
by studying the function which maps wm to (∏w j)

2− 2∏w j−∑w2
j). As a

consequence,

n2−2n+3≤ dim(k(C))≤
m

∑
j=1

dim(k j(C))≤
m

∑
j=1

w2
j < n2−2n,

a contradiction which implies that m = 1 and k(C) is simple. We can thus
use Table 1 to compare dim(K) (≥ n2−2n+3 by assumption) to the minimal
dimension of its non trivial representations (≤ n since K ⊂ U n). For example,
if k(C) is isomorphic to sp2d(C) for some integer d ≥ 2, then dim(k(C)) =

2d2 +d and n = dim(V )≥ 2d; thus, dim(k)≥ n2−2n+3 implies

2d2 +d ≥ 4d2−4d +3, i.e. 5d ≥ 2d2 +3,

which contradicts d ≥ 2 (note that 2d2+2 = 10 = 5d for d = 2). Similarly, all
other possibilities for k(C) are excluded, except k(C) = sln(C), which corre-
sponds to k= sun.

In case (2), k(C) = C⊕h and we can apply the same argument to h: This
complex Lie algebra is simple, has dimension at least n2−2n+2, and is iso-
morphic to sln(C) or to sp4(C) (with n = 4 in this latter case). Since sp4(C)

has a unique representation in dimension 4, k is conjugate to iR⊕u2(H) when
h' sp4(C). This concludes the proof of Proposition 4.2. �

4.3. First part of the Main Theorem. Let us apply Theorem 4.1. Let Γ be a
lattice in an almost simple real Lie group G. Assume that Γ acts faithfully on
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a connected compact Kähler manifold M, with dimC(M) ≤ rkR(G). By [16],
the dimension of M is equal to the rank of G and, by hypothesis, the image
of Γ in Aut(M) is virtually contained in Aut(M)0. Hence, we can assume that
the action of Γ on M is given by an injective morphism ρ : Γ→ Aut(M)0. As
explained in [16], §3.2, the complex Lie group Aut(M)0 contains a copy of
an almost simple complex Lie group H with rkC(H) ≥ rkR(G). More pre-
cisely, if ρ(Γ) is not relatively compact in Aut(M)0, one applies Theorem 3.2,
change G into a finite cover Ĝ and extend virtually the morphism ρ to a mor-
phism ρ̂ : Ĝ→ Aut(M)0; if the image of ρ is relatively compact, then another
representation ρ′ : Γ→ Aut(M)0 extends virtually to a finite cover of G (see
Remark 3.4); in both cases, the Lie algebra of H is the smallest complex Lie
subalgebra containing dρ̂Id(g).

Theorem 4.1 shows that M is the projective space Pn(C) and Aut(M) co-
incides with PGL n+1(C) (and thus with H). As a consequence, the group G
itself is locally isomorphic to SL n+1(R) or SL n+1(C).

Summing up, the inequality dimC(M) ≥ rkR(G) as well as property (1) in
the Main Theorem have been proved.

4.4. Invariant analytic subsets. Let us now study Γ-invariant analytic sub-
sets Z ⊂ M under the assumption of assertion (2) in the Main Theorem; in
particular dimC(M) = rkR(G)+1.

Lemma 4.3. Let Γ be a lattice in an almost simple Lie group of rank n−1≥
2. If Γ acts faithfully by holomorphic transformations on a compact Kähler
manifold M of dimension n, then:

(1) All irreducible Γ-invariant analytic subsets of positive dimension are
smooth;

(2) the set of fixed points of Γ is finite;
(3) all irreducible Γ-invariant analytic subsets of positive dimension and

codimension are smooth hypersurfaces isomorphic to Pn−1(C), on which
Γ acts as a Zariski dense subgroup of PGL n(C).

Proof. Let Z be a Γ-invariant irreducible analytic subset of positive dimension
and codimension. If Z is not smooth, its singular locus Sing(Z) is Γ-invariant
and has dimension ≤ n− 2. If Sing(Z) is not smooth, we replace it by its
singular locus, and so on: After k steps with k ≤ dim(Z), we get a smooth
Γ-invariant analytic subset Z′ ⊂ Z with dim(Z′) ≤ n− 2. By the first part of
the Main Theorem, the image of Γ in Aut(Z′) is finite, and changing Γ into a
finite index subgroup, we assume that Γ fixes Z′ pointwise. Let q be a point of
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Z′. The image of the morphism δq,1 : Γ→GL(TqM) defined by the differential
at q, i.e. by

δq,1(γ) = dγq,

preserves the tangent cone of Z at q; in particular, the Zariski closure of δq,1(Γ)

in PGL(TqM) is a proper algebraic subgroup of PGL(TqM). Since proper
semi-simple algebraic subgroups of PGL n(C) have rank less than n− 1 =

rkR(G), Margulis superrigidity theorem implies that the image of δq,1 is fi-
nite. Thus, changing Γ into a finite index subgroup, Γ fixes q and is tangent to
the identity at q. Let k≥ 2 be the first positive integer such that some element γ

in Γ has a non trivial k-jet δq,k(γ) at q. Then, the k-jet defines a morphism δq,k
with infinite image from Γ to the group of k-jets of diffeomorphisms which are
tangent to the identity up to order k− 1; this group is abelian because k ≥ 2.
This contradicts property (T) for Γ (see §3.1.2) and shows by contradiction
that Z is smooth.

This argument also shows that the set of fixed points of Γ does not contain
analytic subsets of positive dimension. Since the set of fixed points is analytic,
it must be finite.

To prove the third assertion, let Z be a Γ-invariant irreducible analytic subset
of positive dimension. By assertion (1) of the Lemma, Z is smooth. By the first
part of the Main Theorem (see §4.3), either Z is isomorphic to Pn−1(C) and
the image of Γ in Aut(Pn−1(C)) is Zariski dense, or a finite index subgroup of
Γ acts trivially on Z. Thus, the conclusion follows from assertion (2) applied
to finite index subgroups of Γ. �

Proposition 4.4. Let Γ be a lattice in an almost simple Lie group of rank
n− 1 ≥ 2. If Γ acts faithfully by holomorphic transformations on a compact
Kähler manifold M of dimension n, any Γ-invariant analytic subset Z ⊂ M
is a disjoint union of isolated points and smooth hypersurfaces isomorphic
to Pn−1(C).

Proof. Let Z be a Γ-invariant analytic subset. Lemma 4.3 asserts that all ir-
reducible components of Z of positive dimension are copies of Pn−1(C), on
which a finite index subgroup Γ1 of Γ acts as a Zariski dense subgroup of
PGL n(C). The Zariski density implies that Γ1 does not preserve any proper
analytic subset in Pn−1(C); in particular, all distinct components are disjoint,
and the conclusion follows. �

4.5. Contraction of invariant analytic subsets.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 24

Theorem 4.5. Let Γ be a lattice in an almost simple Lie group G. Assume that
Γ acts faithfully on a connected compact Kähler manifold M,

rkR(G) = dimC(M)−1,

and the image of Γ in Aut(M) is not virtually contained in Aut(M)0.
Let Z be the union of all Γ-invariant analytic subsets Y ⊂M with positive

dimension. Then Z is the union of a finite number of disjoint copies of pro-
jective spaces Zi = Pn−1(C). Moreover there exists a birational morphism
π : M→M0 onto a compact Kähler orbifold M0 such that

(1) π contracts all Zi to points qi ∈M0;
(2) around each point qi, the orbifold M0 is either smooth, or locally iso-

morphic to a quotient of (Cn,0) by a finite order scalar multiplication;
(3) π is an isomorphism from the complement of Z to the complement of

the points qi;
(4) π is equivariant: The group Γ acts on M0 in such a way that π◦γ= γ◦π

for all γ in Γ.

Proof. By Proposition 3.5 and its Corollary 3.7, the group Γ contains auto-
morphisms γ with positive entropy ; in other words, there are elements γ in Γ

with eigenvalues > 1 on the cohomology of M. We shall use this fact to prove
the Theorem.

We already know that Z is made of hypersurfaces isomorphic to Pn−1(C).
Let S be one of these hypersurfaces; changing Γ in a finite index subgroup,
we assume that S is Γ-invariant. Let NS be its normal bundle, and let r be the
integer such that NS ' O(r). Let L be the line bundle on M which is defined
by S. The adjunction formula shows that NS is the restriction L|S of L to S (see
[35], §1.1, p. 146-147).

If r > 0, then S moves in a linear system |S| of positive dimension (see
[38], page 110, Theorem 4.2, and the proof of Theorem 5.1 in chapter I);
more precisely, the space of sections H0(M,L⊗l) has dimension ≥ 2 for large
enough l ≥ 1. Moreover the line bundle L|S ' O(r) is very ample, so that the
base locus of the linear system |lS| is empty. As a consequence, this linear
system determines a well defined morphism

ΦL⊗l : M→ P(H0(M,L⊗l)∗)

where ΦL⊗l(x) is the linear form which maps a section s of L⊗l to its value at x
(this is well defined up to a scalar multiple). The self intersection (L⊗l)n being
positive, the dimension of ΦL(M) is equal to n and ΦL⊗l is generically finite.
Since S is Γ-invariant, Γ permutes linearly the sections of L⊗l . This gives a
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morphism η : Γ→ PGL(H0(M,L⊗l)∗) such that

ΦL⊗l ◦ γ = η(γ)◦ΦL⊗l

for all γ in Γ. Let γ be an element of Γ. The action of η(γ) on ΦL⊗l(M) is
induced by a linear mapping. This implies that the topological entropy of η(γ)

on ΦL⊗l(M) vanishes (see Example 3.6). Since ΦL⊗l is generically finite to
one, the entropy of γ vanishes, contradicting our first remark. (equivalently,
one can prove that (η(γ))∗ and γ∗ have finite order, see [25]).

Assume now that r = 0. From [41], we know that S moves in a pencil of
hypersurfaces. In other words, H0(M,L) has dimension 2 and defines a holo-
morphic fibration ΦL : M→ P1(C). This fibration is Γ-invariant, and replacing
Γ by a finite index subgroup, we can assume that the action on the base P1(C)

is trivial (Lemma 3.1). All fibers of ΦL are Γ-invariant hypersurfaces and,
as such, are smooth projective spaces Pn−1(C). This implies that ΦL is a lo-
cally trivial fibration: There is a covering Ui of P1(C) such that Φ

−1
L (Ui) is

isomorphic to Ui×Pn−1(C). In such coordinates, Γ acts by

γ(u,v) = (u,Au(γ)(v))

where (u,v) ∈Ui×Pn−1(C) and u 7→ Au is a one parameter representation of
Γ into Aut(Pn−1(C)). Once again, this implies that all elements of Γ have zero
entropy, a contradiction.

As a consequence, the normal bundle NS is isomorphic to O(r) with r < 0.
Grauert’s theorem shows that S can be blown down to a quotient singularity of
type (Cn,0)/ξ where ξ is the multiplication by a root of unity of order r (see
[34], Theorem 3.8). �

4.6. Lie group actions in case rkR(G) = dim(M)− 1. In case (2-a) of the
Main Theorem, the group Γ is a lattice in a rank n−1 almost simple Lie group,
and Γ virtually embeds into Aut(M)0. This implies that Aut(M)0 contains
an almost simple complex Lie group H, with rank ≥ n− 1. Since the case
rkR(H)≥ n has already been dealt with in Sections 4.1 and 4.3, our new goal
is to list all examples such that

(i) H is an almost simple complex Lie group, and its rank is equal to n−1;
(ii) M is a connected, compact, complex manifold and dimC(M) = n≥ 3;

(iii) H is contained in Aut(M)0.

We now list all such possible pairs (M,H).

Example 4.6. The following examples work in all dimensions n≥ 3.
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a.- The group SL n(C) acts on Pn−1(C) by linear projective transformations.
In particular, SL n(C) acts on products of type Pn−1(C)×B where B is any
Riemann surface.

b.- The action of SL n(C) on Pn−1(C) lifts to an action on the total space
of the line bundles O(k) for every k ≥ 0; sections of O(k) are in one-to-one
correspondence with homogeneous polynomials of degree k, and the action
of SL n(C) on the space of sections H0(Pn−1(C),O(k)) is the usual action on
homogeneous polynomials in n variables. Let p be a positive integer and E the
vector bundle of rank 2 over Pn−1(C) defined by E = O⊕O(p). Then SL n(C)

acts on E by isomorphisms of vector bundles. From this we get an action on
the projectivized bundle P(E), i.e. on a compact Kähler manifold M which
fibers over Pn−1(C) with rational curves as fibers.

c.- When p = 1, one can blow down the section of P(E) given by the line
bundle O(1) (the normal bundle of this Pn−1(C) is isomorphic to O(−1)).
This provides a new smooth manifold with an action of SL n(C) (for other
values of p, a singularity appears). In that case, SL n(C) has an open orbit Ω,
the complement of which is the union of a point and a smooth hypersurface
Pn−1(C).

d.- A similar example is obtained from the C∗-bundle associated to O(k).
Let λ be a complex number with modulus different from 0 and 1. The quo-
tient of this C∗-bundle by multiplication by λ along the fibers is a compact
manifold, with the structure of a torus principal bundle over Pn−1(C). Since
multiplication by λ commutes with the SL n(C)-action on O(k), we obtain a
(transitive) action of SL n(C) on this manifold. In this case, M is not Kähler; if
k = 1, M is the Hopf manifold, i.e. the quotient of Cn \{0} by the multiplica-
tion by λ.

Example 4.7. In these examples, the dimension of M is equal to 3 or 4.
a.- Let H be the group SO 5(C); its rank is equal to 2. The projective quadric

Q3 ⊂ P4(C) given by the equation ∑x2
i = 0 is H-invariant, and has dimen-

sion 3.
The space of isotropic lines contained in Q3 is parametrized by P3(C), so

that P3(C) is a SO 5(C)-homogeneous space: This comes from the isogeny
between SO 5(C) and Sp 4(C) (see [31], page 278), and provides another ho-
mogeneous space of dimension 3 = rk(SO 5(C))+1.

b.- Let H be the group SO 6(C), a group of rank 3. The quadric Q4 ⊂
P5(C) is H-invariant, and has dimension 4. This provides a new example with
dim(M) = rk(G)+1.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 27

Note that SO 6(C) is isogenous to SL 4(C), and PSO 6(C) acts transitively on
P3(C). However, in this case, the rank of the group is equal to the dimension
of the space (as in Theorem 4.1).

The following result shows that this list of examples exhausts all cases.

Theorem 4.8. Let M be a connected compact complex manifold of dimen-
sion n ≥ 3. Let H be an almost simple complex Lie group with rkC(H) =

n− 1. If there exists an injective morphism H → Aut(M)0, then M is one of
the following:

(1) a projective bundle P(E) for some rank 2 vector bundle E over Pn−1(C),

and then H is isogenous to PGL n(C);
(2) a principal torus bundle over Pn−1(C), and H is isogenous to PGL n(C);
(3) a product of Pn−1(C) with a curve B of genus g(B)≥ 2, and then H is

isogenous to PGL n(C);
(4) the projective space Pn(C), and H is isogenous to PGL n(C) or to

PSO 5(C) when n = 3;
(5) a smooth quadric of dimension 3 or 4 and H is isogenous to SO 5(C)

or to SO 6(C) respectively.

The proof splits into three cases, according to the size of orbits of H in M.

4.6.1. Transitive actions. Let us come back to the rank – dimension inequality
obtained in Theorem 4.1. Let M be a connected compact complex manifold on
which a complex semi-simple Lie group S acts holomorphically and faithfully.
Let K ⊂ S be a maximal compact subgroup and let m be a point of M. Denote
by K(m) the orbit of the point m under the action of K and by Km its stabilizer.
The group Km is compact; as such, it preserves a riemannian metric and fixes
the point m; since M is connected, this implies that the linear part defines an
injective morphism from Km to GL(TmM). Thus

(1) dimC(S) = dimR(K);
(2) dimR(K) = dimR(K(m))+dimR(Km) ;
(3) Km embeds into a maximal compact subgroup of GL(TmM); hence, up

to conjugacy, Km is a closed subgroup of the unitary group U n, with
n = dim(M).

The inequality

dimC(S)≤ dimR(M)+dimR U n = 2n+n2 (4.1)

follows. Moreover, if the rank of S is less than n, then Km has positive codi-
mension in U n; Proposition 4.2 implies that the codimension of Km in U n is
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large: codimR(Km) ≥ 2n− 2, or Km is locally isomorphic to eiRU 2(H) and
n = 4. The inequality (4.1) can therefore be strengthened, and gives

dimC(S)≤ n2 +2, or n = 4 and dimC(S)≤ 19.

We now apply this inequality to the proof of Theorem 4.8 in case H acts tran-
sitively. Thus, the group S is now replaced by the almost simple complex Lie
group H, with rank r = n−1≥ 2 (note that r = 3 if the special case n = 4).

If the Lie algebra of H is of type Br or Cr, i.e. H is locally isomorphic to
SO 2r+1(C) or Sp 2r(C), we have

dimC(H) = 2r2 + r ≤ (r+1)2 +2

(because for r = 3 we have 2r2+r = 21> 19); thus r2≤ r+3. This implies r≤
2, and thus r = 2 because the rank of H is at least 2. Since r = 2, the group H is
locally isomorphic to SO 5(C) and Sp 4(C); there are two examples of compact
quotients of dimension 3: The quadric Q ⊂ P4(C), and the projective space
P3(C) parametrizing the set of lines contained in this quadric (see example
4.7, [55], page 169, [2], page 65).

Let us now assume that H is of type Dr, i.e. H is isogenous to SO 2r(C),
with r≥ 3 (so4(C) is not simple). We get r2 ≤ 3r+3 or n = 4 and r = 3. In all
cases, r = 3 and H is isogenous to SO 6(C). There is a unique homogeneous
space M of dimension 4 for this group, namely the quadric Q⊂ P5(C).

Similarly, the inequality excludes the five exceptional groups E6(C), E7(C),

E8(C), F4(C), and G2(C): None of them acts transitively on a compact com-
plex manifold of dimension rk(H)+1 (see Table 1).

The remaining case concerns the group H = SL n(C), acting transitively on
a compact complex manifold M of dimension n≥ 3. Write M = H/L where L
is a closed subgroup of H. Two cases may occur: Either L is parabolic, or not.

If L is parabolic, then M is a flag manifold of dimension n for SL n(C). Flag
manifolds for SL n(C) are well known, and only two examples satisfy our con-
straints. The first one is given by the incidence variety F ⊂ P2(C)×P2(C)∨ of
pairs (x, l) where x is a point contained in the line l, or equivalently the set of
complete flags of C3: This is a homogeneous space under the natural action of
PGL 3(C) and, at the same time, this is a P1(C)-bundle over P2(C). The sec-
ond example is given by the Grassmannian G(1,3) of lines in P3: This space
has dimension 4 and is homogeneous under the natural action of PGL 4(C).
This example appears for the second time: By Plücker embedding, G(1,3) is
a smooth quadric in P5(C) and, as such, is a homogeneous space for SO 6(C)

(the groups SO 6(C) and SL 4(C) are isogenous, see page 286 of [31]).
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If the group L is not parabolic, we denote by N(L0) the normalizer of its
connected component of the identity, as in the proof of Theorem 4.1. Then
L ⊂ N(L0) and dim(N(L0)) ≥ dim(L)+ 1. This gives rise to a H-equivariant
fibration, the Tits fibration

M→ H/N(L0),

with dim(H/N(L0)) < n. By Theorem 4.1, H/N(L0) is the projective space
Pn−1(C) and dim(N(L0)) = dim(L) + 1. The fibers of the projection M →
H/N(L0) are quotients of a one parameter group by a discrete subgroup and,
as such, are elliptic curves. This implies that M is an elliptic fibre bundle over
Pn−1(C), as in Example 4.6.a, with B of genus 1, and Example 4.6.d.

4.6.2. Almost homogeneous examples. Let us now assume that M is not ho-
mogeneous under the action of H, but that H has an open orbit Ω = H/L; let
Z = M \Ω be its complement; this set is analytic and H-invariant. A theorem
due to Borel ([12]) asserts that the number of connected components of Z is at
most 2. By Proposition 4.4, each component of Z is either a point or a copy of
Pn−1(C); if one component is isomorphic to Pn−1(C) then H is isogenous to
SL n(C) and acts transitively on this component. Assume now that Z contains
an isolated point m. This point is fixed by the action of H, and this action can
be linearized locally around m. Since H has rank n−1 and M has dimension
n, the group H is isogenous to SL n(C). Blowing up the point m, we replace
m by a copy of Pn−1(C). Thus, H is isogenous to SL n(C), and blowing up
the isolated points of Z, we can assume that Z is the union of one or two dis-
joint copies of Pn−1(C) on which H acts transitively. This situation has been
studied in details in [39] and [33]; we now describe the conclusions of these
papers without proof.

Let P be a maximal parabolic subgroup with H/P = Pn−1(C) (P is unique
up to conjugacy).

Suppose, first, that Z is connected. Then L ⊂ P (up to conjugacy), M is a
projective rational manifold and it fibers equivariantly on Pn−1(C) = H/P; the
fibers are isomorphic to P1(C), each of them intersecting Z in one point [39].
The intersection of each fiber with the open orbit Ω is isomorphic to C and,
at the same time, is isomorphic to P/L; this is not possible for n > 2 because
all morphisms from the maximal parabolic group P to the group Aff (C) of
holomorphic diffeomorphisms of C factor through the natural projection P→
C∗, and there is no transitive action of C∗ on C.

Thus, Z has indeed two connected components (as in [33]). This case corre-
sponds to P1-bundles over Pn−1(C), as in example 4.6: M fibers equivariantly
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on Pn−1(C) with fibers F ' P1(C), each of them intersecting Z in two points;
the two connected components of Z are two sections of the projection onto
Pn−1(C), which correspond to the two line bundles O and O(k) from exam-
ple 4.6.

If k = 1, one of the sections can be blown down to a fixed point (this process
inverses the blow up construction described at the beginning of this Section,
i.e. of §4.6.2).

4.6.3. No open orbit. Let us now assume that H does not have any open orbit.
Then, blowing up all fixed points of H, all orbits have dimension n− 1. By
Theorem 4.1, H is isogenous to SL n(C) and its orbits are copies of Pn−1(C).
In that case, the orbits define a locally trivial fibration of M over a curve B.
Let A be the diagonal subgroup of SL n(C). The set of fixed points of A de-
fines n sections si of the fibration M → B; for each point b in B the n-tuple
(s1(b), ...,sn(b)) determines a projective basis of the fiber of M above b. This
shows that the fibration is trivial: M is isomorphic to Pn−1(C)×B. A posteri-
ori, H had no fixed point on M.

5. INVARIANT CONES FOR LATTICES AND LIE GROUPS

This paragraph contains preliminary results towards the proof of the Main
Theorem in case (2-b). Under the assumption of assertion (2-b), Proposition
3.5 applies, and one can extend virtually the action of Γ on W = H1,1(M,R) to
an action of G; a priori, the nef cone K (M) is not G-invariant. In this section,
we find a G-invariant subcone which is contained in K (M). This is proved
in the general context of a linear representation of a semi-simple Lie group G,
for which a lattice Γ ⊂ G preserves a salient cone. The reader may skip this
section in a first reading.

5.1. Proximal elements, proximal groups, and representations.

5.1.1. Proximal elements and proximal groups. Let V be a real vector space
of finite dimension k. Let g be an element of GL(V ). Let λ1(g) ≥ λ2(g) ≥
... ≥ λk(g) be the moduli of the eigenvalues of g, repeated according to their
multiplicities. One says that g is proximal if λ1(g) > λ2(g); in this case,
g has a unique attracting fixed point x+g in P(V ). A subgroup of GL(V ) is
proximal if it contains a proximal element, and a representation G→ GL(V )

is proximal if its image is a proximal subgroup. If Γ is a proximal subgroup
of GL(V ), the limit set ΛP

Γ
of the group Γ in P(V ) is defined as the closure

of the set {x+g | g ∈ Γ, g is proximal}; this set is the unique closed, minimal,
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invariant subset of P(V ): ΛP
Γ

is invariant and closed, and is contained in every
non-empty, closed, invariant subset.

5.1.2. Proximal representations and highest weight vectors. Let G be a real
semi-simple Lie group and A be a maximal torus in G; let g and a be their
respective Lie algebras, and Σ the system of restricted roots: By definition Σ

is the set of non-zero weights for the adjoint action of a on g. A scalar product
〈·|·〉 on a is chosen, which is invariant under the action of the Weyl group. This
scalar product provides an identification between a and its dual.

A linear form l : a→R is fixed, in such a way that its kernel does not contain
any non-zero element of the lattice of roots; this form l determines an ordering
of the root and a system of positive roots Σ+, those with l(λ)> 0.

One denotes by Wt the set of weights of Σ; by definition

Wt =

{
λ ∈ a | ∀α ∈ Σ, 2

〈λ|α〉
〈α|α〉

∈ Z
}
.

The set of dominant weights is Wt+ = {λ ∈Wt | ∀α ∈ Σ+, 〈λ|α〉 ≥ 0}.
Let ρ : G→ GL(V ) be an irreducible representation of G. This provides a

representation of the Lie algebras g and a. By definition, the weights of a in
V are the (restricted) weights of ρ. This finite set has a maximal element λ

for the order defined on Wt; this highest weight λ is contained in Wt+ and is
unique.

The image of G in GL(V ) is proximal if and only if the eigenspace of A
corresponding to the highest weight λ has dimension 1 (see [1]); in that case,
the highest weight determines the representation ρ up to isomorphism.

If one starts with a representation ρ which is not irreducible, one first splits
it as a direct sum of irreducible factors, and then apply the previous description
to each of them; this gives a list of highest weights, one for each irreducible
factor. The maximal element in this list is the highest weight of ρ (see § 5.2.3).

5.2. Invariant cones. In this paragraph we prove the following proposition.

Proposition 5.1. Let Γ be a lattice in a connected semi-simple Lie group G.
Let G→ GL(V ) be a real, finite dimensional, linear representation of G. If
Γ preserves a salient cone Ω ⊂ V which is not reduced to {0}, its closure Ω

contains a subcone ΩG such that:

(1) ΩG is G-invariant, salient, and not reduced to {0};
(2) If the action of Γ on the linear span of Ω is not trivial, the action of G

on the subcone ΩG is also not trivial.
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Remark 5.2. Note that we can find lattices Γ0 in SO 1,2(R) and deformations
Γt of Γ0 in SL 3(R) such that Γt , t 6= 0, is Zariski dense in SL 3(R) and pre-
serves an open, convex and salient cone Ωt ⊂ R3 (see [57]). This shows that
Proposition 5.1 fails to be true for Zariski dense subgroups Γ⊂ G.

Let G be a connected semi-simple Lie group and Γ be a Zariski dense sub-
group of G. Let ρ : G→ GL(V ) be a real, finite dimensional, linear represen-
tation of G. Assume that ρ(Γ) preserves a salient cone Ω with Ω 6= {0}. If
the interior of Ω is empty, then Ω spans a proper Γ-invariant subspace of V ;
since Γ is Zariski dense in G this proper invariant subspace is G-invariant. We
can therefore restrict the study to this invariant subspace and assume that the
interior of Ω is not empty.

5.2.1. Limit sets (see [47], lemma 8.5). Let us recall a useful fact. Let G
be a semi-simple Lie group having no compact normal subgroup of positive
dimension. Let P be a parabolic subgroup of G. If Γ is a lattice in G, the
closure of ΓP coincides with G: ΓP = G. In other words, all orbits of Γ in
G/P are dense. For example, if Γ is a lattice in SL 3(C), all orbits of Γ in
P2(C) are dense.

5.2.2. Irreducible representations. We first assume that ρ is irreducible (and
non trivial). Proposition 3.1, page 164, of [5], implies that ρ(Γ) is a proximal
subgroup of GL(V ), and the limit set ΛP

ρ(Γ) of Γ is contained in P(Ω). From

§5.1, ρ is a proximal representation of the group G and the limit set ΛP
ρ(G) of

ρ(G) coincides with the orbit of the highest weight line of its maximal torus:
This orbit is the unique closed orbit of ρ(G) in P(V ). As such, ΛP

ρ(G) is a
homogeneous space G/P, where P is a parabolic subgroup of G.

Assume now that Γ is a lattice in G. By §5.2.1, all orbits Γ · x of Γ in
G/P are dense, so that ΛP

ρ(G) = G/P coincides with ΛP
ρ(Γ). In particular, ΛP

ρ(G)

is a ρ(G)-invariant subset of P(Ω). Let π : V \ {0} → P(V ) be the natural
projection. The cone π−1(ΛP

ρ(G)) is closed and G-invariant. This cone has
two connected components and only one is contained in the closure of the
salient cone Ω. Denote by ΩG ⊂Ω the convex hull of this component; since G
is connected, both components are G-invariant, and thus ΩG is a G-invariant
convex cone contained in the closure of Ω. This proves Proposition 5.1 for
irreducible representations.

5.2.3. General case. Let us now consider a linear representation ρ : G →
GL(V ) which is not assumed to be irreducible. Prasad and Raghunathan
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proved in [49] that Γ intersects a conjugate A′ of the maximal torus on a co-
compact lattice A′

Γ
⊂ A′. Changing A into A′, we assume that Γ intersects A on

such a lattice AΓ.
Since G is semi-simple, V splits into a direct sum of irreducible factors.

Fix such a splitting, let λ be the highest weight of (ρ,V ), let V1, ..., Vm be the
irreducible factors corresponding to this weight, and let V ′ be the direct sum
of the Vi:

V ′ :=
⊕

1≤i≤m

Vi.

By construction, all representations Vi, 1≤ i≤ m, are isomorphic, and we can
assume that theses representations are not trivial.

Lemma 5.3. Since Γ is a lattice, Ω intersects the sum V ′ of the highest weight
factors on a closed, salient cone Ω′ which is not reduced to zero.

Proof. If u is any element of Ω, one can decompose u as a sum ∑χ uχ where
each uχ is an eigenvector of the maximal torus A corresponding to the weight
χ. Since Ω has non empty interior, we can choose such an element u with a
non zero component uλ for the highest weight λ. Let ‖ · ‖ be a norm on the
real vector space V . Since AΓ is a lattice in A, there is a sequence of elements
γn in AΓ such that

γn(u)
‖γn(u)‖

= ∑
χ

χ(γn)

‖γn(u)‖
uχ

converges to a non zero multiple of uλ. Since Ω is Γ-invariant and all γn are in
Γ, we deduce that Ω intersects V ′. �

The subspace of V ′ which is spanned by Ω′ is a direct sum of highest weight
factors; for simplicity, we can therefore assume that V ′ is spanned by Ω′. In
particular, the interior Int(Ω′) is a non-empty subset of V ′.

Let πi be the projection of V ′=
⊕

Vi onto the factor Vi. The image of Int(Ω′)
by π1 is an open subcone in V1.

If this cone is salient, the previous paragraph shows that the representa-
tion (ρ1,V1) is proximal. Thus, all Vi can be identified to a unique proximal
representation R, with a given highest weight line L = Ru+. We obtain m
copies Li of L, one in each copy Vi of R. Apply Lemma 5.3 and its proof:
Since Ω′ is Γ-invariant, Γ is a lattice, and Ω′ has non empty interior, there is
a point v ∈ L1⊕ ...⊕Lm which is contained in Ω′. Let (a1, ...,am) be the real
numbers such that v = (a1u+, ...,amu+). The diagonal embedding R→ V ′,
w 7→ (a1w, ...,amw) determines an irreducible sub-representation of G into V
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that intersects Ω′, and the previous paragraph shows that G preserves a salient
subcone of Ω′.

If the (closed) cone π1(Ω
′) is not salient, the fiber π

−1
1 (0) intersects Ω′ on

a non-zero Γ-invariant salient subcone; this reduces the number of irreducible
factors from m to m−1, and enables us to prove Proposition 5.1 by induction
on the number m of factors Vi.

6. LINEAR REPRESENTATIONS, AMPLE CLASSES AND TORI

We now prove the Main Theorem. Recall that G is a connected, almost
simple, real Lie group with real rank rkR(G)≥ 2, that A is a maximal torus of
G, and that Γ is a lattice in G acting on a connected compact Kähler manifold
M of dimension n.

From Section 4.3, we know that the rank of G is at most n and, in case
rkR(G) = n, the group G is isogenous to SL n+1(R) or SL n+1(C) and M is iso-
morphic to Pn(C). We now assume that the rank of G satisfies the next critical
equality rkR(G) = n− 1. According to Proposition 3.5, two possibilities can
occur.

• The image of Γ is virtually contained in Aut(M)0; Theorem 4.8 in
Section 4.6 gives the list of possible pairs (M,G). This corresponds to
assertion (2-a) in the Main Theorem.
• The action of Γ on the cohomology of M is almost faithful and virtually

extends to a linear representation (a finite cover) of G on H∗(M,R).

Thus, in order to prove the Main Theorem, we replace Γ by a finite index sub-
group, G by a finite cover, and assume that the action of Γ on the cohomology
of M is faithful and extends to a linear representation of G. Our aim is to prove
that all such examples are Kummer examples when rkR(G) = dimC(M)−1.

We denote by W the space H1,1(M,R). We fix a decomposition of W into
irreducible factors. Then, we denote by λW the highest weight of the represen-
tation G→ GL(W ) and by E the direct sum of the irreducible factors Vi of W
corresponding to the weight λW (all Vi are isomorphic representations).

6.1. Invariant cones in K (M). Since the Kähler cone K (M) is a Γ-invariant,
convex, and salient cone in W with non empty interior, Proposition 5.1 as-
serts that K (M) contains a non-trivial G-invariant subcone. More precisely,
K (M)∩E contains a G-invariant salient subcone K E which is not reduced
to {0}, and the action of G on the linear span of K E is faithful (see §5.2).

From now on, we replace E by the linear span of the cone K E . Doing this,
the cone K E has non empty interior in E, and is a G-invariant subcone of
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K (M). Since G is almost simple, the representation G→ GL(E) is unimodu-
lar: Its image is contained in SL(E). Thus, the action of the maximal torus A
on E is unimodular, faithful and diagonalizable.

6.2. Actions of abelian groups. We now focus on a slightly more general
situation, and use ideas from [26]. Let E be a subspace of W of positive
dimension and K E be a subcone of K (M)∩E with non empty interior. Let A
be the additive abelian group Rm, with m≥ 1; in the next paragraph, A will be
a maximal torus of G, and thus m = rkR(G) will be equal to dim(M)−1. Let
ρ be a continous representation of A into GL(H∗(M,R)) by cohomological
automorphisms; thus, ρ(A) preserves the Hodge structure and the Poincaré
duality, and acts equivariantly with respect to the wedge product (see §2.1).
Assume that

(i) ρ(A) preserves E and K E ;
(ii) the restriction ρE : A→GL(E) is diagonalizable, unimodular, and faith-

ful.
From (ii), there is a basis of E and morphisms λi : A→R, 1≤ i≤ dim(E), such
that the matrix of ρE(a) in this basis is diagonal, with diagonal coefficients
exp(λi(a)). The morphisms λi are the weights of ρE ; the set of weights

Λ = {λi,1≤ i≤ dim(E)}
is a finite subset of A∨ where A∨, the dual of A, is identified with the space
of linear forms on the real vector space A = Rm. The convex hull of Λ is a
polytope C (Λ) ⊂ A∨ and the set of its extremal vertices is a subset Λ+ of Λ;
equivalently, a weight λ is extremal if and only if there is an element a ∈ A
such that

λ(a)> α(a), ∀α ∈ Λ\{λ}.
Since any non-empty convex set is the convex hull of its extremal points, Λ+

is not empty and C (Λ+) coincides with C (Λ).
For all weights α ∈ Λ, we denote by Eα the eigenspace of A of weight α:

Eα =
{

u ∈ E | ∀a ∈ A, ρE(a)(u) = eα(a)u
}
.

We denote by E+ the vector subspace of E which is spanned by the Eλ where
λ describes Λ+.

Lemma 6.1. The following three properties are satisfied.
(1) The morphism ρE+ : A→ GL(E+) is injective.
(2) The convex hull C (Λ) of Λ+ contains the origin in its interior; in par-

ticular the cardinality of Λ+ satisfies |Λ+| ≥ dim(A)+1.
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(3) For all λ ∈ Λ+ we have Eλ∩K E 6= {0}.

Proof. The three properties are well known.

Property (1).— The kernel of ρE+ is defined by the set of linear equations
λ(a) = 0 where λ describes Λ+. Since all weights α ∈ Λ are barycentric com-
binations of the extremal weights, the kernel of ρE+ is contained in the kernel
of ρE . Property (1) follows from the injectivity of ρE .

Property (2).— Since the sum of all weights λi(a), repeated with multiplic-
ities, is the logarithm of the determinant of ρE(a) and the representation is
unimodular, this sum is 0. If C (Λ) has empty interior, it is contained in a strict
affine subspace of A∨; since it contains the origin, this subspace is a proper
vector subspace of A∨, contradicting Property (1); this contradiction shows
that the interior of C (Λ) is not empty. The origin of A∨ being a barycentric
combination of all extremal weights with strictly positive masses, it is con-
tained in the interior of C (Λ). As a consequence, the cardinality of Λ+ satifies
|Λ+| ≥ dim(A)+1.

Property (3).— The proof is similar to the proof of Lemma 5.3. Let λ be an
extremal weight and let a ∈ A satisfy λ(a) > α(a) for all α ∈ Λ \ {λ}. Let u
be any element of K E ; write u as a linear combination u = ∑α∈Λ uα where
uα ∈ Eα for all α in Λ. Since K E has non empty interior, we can choose u in
such a way that uλ 6= 0. Then the sequence

ρE(na)(u)
exp(nλ(a))

is a sequence of elements of K E that converges towards uλ when n goes to +∞.
Since K E is closed, property (3) is proved. �

Lemma 6.2. Let k be an integer with 1≤ k ≤ dim(M). Let λi ∈ Λ, 1≤ i≤ k,
be distinct weights, and wi be non zero elements in Eλi∩K E . Then, the wedge
product

w1∧ . . .∧wk

is different from 0.

The proof makes use of the following proposition which is due to Dinh and
Sibony (see [26], Corollary 3.3 and Lemma 4.4). Lemma 4.4 of [26] is stated
for cohomological automorphisms that are induced by automorphisms of M,
but the proof given in [26] extends to all cohomological automorphisms.

Proposition 6.3 (Dinh and Sibony). Let M be a connected compact Kähler
manifold of dimension n. Let u and v be elements of the nef cone K (M).
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(1) If u and v are not colinear, then u∧ v 6= 0.
(2) Let v1, . . . ,vl , l ≤ n−2, be elements of K (M). If v1∧ . . . ∧ vl ∧u and

v1∧ . . . ∧ vl ∧ v are non zero eigenvectors with distinct eigenvalues for
a cohomological automorphism, then (v1∧ . . . ∧ vl)∧ (u∧ v) 6= 0.

Proof of Lemma 6.2. The proof is an induction on k. Since all wi are assumed
to be different from 0, the property is established for k = 1. Suppose that the
property holds for all integers l ≤ k. Assume k+1≤ dim(M) and choose w1,
..., wk+1 as in the Lemma. Let v1, . . . ,vk−1 denote the vectors w1, . . . ,wk−1,
let u be equal to wk and v be equal to wk+1. Since the property is proved for
length k, we apply it to the vectors v j and get that

v1∧ . . . ∧ vk−1∧u and v1∧ . . . ∧ vk−1∧ v

are two non zero eigenvectors of A with respective weights

λk +
j=k−1

∑
j=1

λ j and λk+1 +
j=k−1

∑
j=1

λ j.

These two weights are different because λk 6= λk+1. Thus, property (2) of
proposition 6.3 can be applied, and it implies that the wedge product w1 ∧
. . .∧wk∧wk+1 is different from zero. The Lemma follows by induction. �

Let us now assume that dimR(A) = dimC(M)−1, i.e. m = n−1. According
to property (2) in Lemma 6.1, we can find

(weights)

 n = dim(A)+1 extremal weights λi such that all linear maps
a 7→ (λ1(a), . . . ,λi−1(a),λi+1(a), . . . ,λn(a)), 1≤ i≤ n,

are bijections from A to Rn−1.

By property (3) in Lemma 6.1, there exist elements wi in Eλi∩K E \{0} for
all 1 ≤ i ≤ dim(A)+ 1. Once such a choice of vectors wi is made, we define
wA as the sum

(wA) wA = w1 +w2 + . . .+wn.

This class is nef and

w∧n
A = wA∧wA∧ . . .∧wA > 0

because wn
A is a sum of products of nef classes, and as such is a sum of non-

negative (n,n)-classes, and Lemma 6.2 implies that at least one term in the
sum is different from zero. According to the definitions in Section 2.2, this
proves the following corollary.

Corollary 6.4. If dimR(A) = dimC(M)−1, the class wA is nef and big.
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Note that the class wA depends on the choice for wi, 1≤ i≤ n; the statement
holds for all choices that satisfy (weights) and (wA).

6.3. A characterization of torus examples. Let us apply the previous para-
graph to the maximal torus A of G; by assumption, G has rank n−1 and thus

dimR(A) = dimC(M)−1 = n−1.

The groups G and A act on W and preserve E; we denote by ρE(g) the en-
domorphism of E obtained by the action of g ∈ G on E (thus, ρE(g) is the
restriction of g∗ to E if g is in Γ).

We keep the notation used in Sections 6.1 and 6.2; in particular, we pick
classes wi in E ∩K (M) that correspond to distinct extremal eigenweights λi

as in Equation (weights), and we define wA as in formula (wA). This con-
struction involves choices for the wi; according to Corollary 6.4, the class wA

is nef and big for all choices of wi.

Proposition 6.5. If, for some choice of the classes wi as above, the class wA is
a Kähler class then, up to a finite cover, M is a torus.

Remark 6.6. In Section 6.4, this result is applied in the slightly more general
context where M is an orbifold with isolated singularities.

Proof. Let c1(M) ∈ H1,1(M,R) and c2(M) ∈ H2,2(M,R) be the first and sec-
ond Chern classes of M. Both of them are invariant under the action of Γ, and
therefore also under the action of G.

Let u ∈W be a G-invariant cohomology class. Let I = (i1, ..., in−1) be a
multi-index of length n− 1, and wI be the product wi1 ∧ . . .∧win−1 . Let v be
the class of type (n,n) defined by v = wI ∧u. Since u is A-invariant we have

ρE(a)(v) = exp

(
n−1

∑
j=1

λi j(a)

)
v.

Since v is an element of Hn,n(M,R) and the action of G is trivial on Hn,n(M,R),
we get the alternative: Either v = 0 or ∑

j=n−1
j=1 λi j(a) = 0 for all a ∈ A. Thus,

according to the choice of the extremal weights λi (see Equation (weights)),
the class v is equal to 0 for all choices of multi-indices I of length n−1. As a
consequence, u is a primitive element with respect to the Kähler class wA:∫

M
wn−1

A ∧u = 0.

In the same way, one proves that wn−2
A ∧u = 0 for all G-invariant cohomology

classes u in H2,2(M,R).
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Let us apply this remark to the first Chern class c1(M). Since this class is
invariant, it is primitive with respect to wA. Since c1(M)2 is also G-invariant,

wn−2
A ∧ c1(M)2 = 0;

From Hodge index theorem we deduce that c1(M) = 0. Yau’s Theorem (see
[60]) provides a Ricci flat Kähler metric on M with Kähler form wA, and Yau’s
Formula reads ∫

M
wn−2

A ∧ c2(M) = κ

∫
M
‖Rm‖2wn

A

where Rm is the Riemannian tensor and κ is a universal positive constant (see
[8], page 80, and [40], §IV.4 page 112–118). From the invariance of c2(M) we
get wn−2

A ∧ c2(M) = 0 and then Rm = 0. This means that M is flat and thus M
is finitely covered by a torus T . �

Using this proposition, we now need to change the big and nef class wA into
an ample class by a modification of M; this modification will change M into
an orbifold M0. This is done in the following paragraph.

6.4. Obstruction to ampleness, invariant subsets, and Kummer examples.

6.4.1. Let us start with the following simple fact.

Proposition 6.7. Let B be an irreducible real analytic subset of the vector
space H1,1(M,R). Assume that

(i) all classes w in B are big and nef classes but
(ii) none of them is ample.

Then there exists an integer d with 0 < d < n and a complex analytic subset
Y0 ⊂M of dimension d such that

∫
Y0

wd = 0 for all classes w in B.

Proof. The set of classes [Y ] of irreducible analytic subsets Y ⊂X is countable.
For all such cohomology classes [Y ], let Z[Y ] be the closed, analytic subset of
B which is defined by

Z[Y ] =

{
w ∈ B |

∫
Y

wdim(Y ) = 0
}
.

Apply Theorem 2.2 in Section 2.2. Since all elements of B are nef and big
but none of them is ample, the family of closed subsets Z[Y ] with dim(Y ) ≥ 1
covers B. By Baire’s theorem, one of the subsets Z[Y ] has non empty interior.
Let Z[Y0] be such a subset, with dim(Y0)≥ 1. The map

w 7→
∫

Y0

wdim(Y0)
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is algebraic and vanishes identically on an open subset of B. Since B is an
irreducible analytic subset of H1,1(M,R), this map vanishes identically. �

6.4.2. We now conclude the proof of assertion (2-b) in the Main Theorem; for
this, we assume that wA is not ample for all choices of the maximal torus A
in G and the eigenvectors wi of A as in §6.2, equations (weights) and (wA).
Consider the orbit of the class wA under the action of G. This orbit B = G.wA

satisfies the following properties:

(1) B is made of big and nef classes, but none of them is ample;
(2) B is a connected Zariski open subset in an irreducible algebraic subset

of E.

We can thus apply Proposition 6.7 to the set B. Let Z be the Zariski closure of
the union of analytic subsets Y ⊂M such that 0 < dim(Y )< dim(M) and∫

Y
wdim(Y ) = 0, ∀w ∈ B.

Proposition 6.7 and Section 2.2 show that Z is a non empty proper analytic
subset of M. Since B is the orbit of wA under the action of G, this set is Γ-
invariant.

6.4.3. Applying Theorem 4.5, all proper invariant analytic subsets, and in par-
ticular the subset Z ⊂ M, can be contracted. We get a birational morphism
π : M→ M0 and conclude that the image of wA in M0 is ample. Let us now
explain how Section 6.3 and Proposition 6.5 can be applied in this orbifold
context to deduce that M0 is covered by a torus T .

Here, M0 is a connected orbifold with trivial Chern classes c1(M0) and
c2(M0). This implies that there is a flat Kähler metric on M0 (see [40], and
the end of the proof of Proposition 6.5). The universal cover of M0 (in the
orbifold sense) is then isomorphic to Cn and the (orbifold) fundamental group
πorb

1 (M0) acts by affine isometries on Cn for the standard euclidean metric. In
other words, πorb

1 (M0) is identified to a cristallographic group ∆ of affine mo-
tions of Cn. Let ∆∗ be the group of translations contained in ∆. Bieberbach’s
theorem shows that (see [59], chapter 3, theorem 3.2.9).

a.- ∆∗ is a lattice in Cn;
b.- ∆∗ is the unique maximal and normal free abelian subgroup of ∆ of

rank 2n.

The torus T is the quotient of Cn by this group of translations. By construction,
T covers M0. Let F be the quotient group ∆/∆∗; we identify it to the group of
deck transformations of the covering ε : T →M0. To conlude the proof of the
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Main Theorem, all we need to do is to lift virtually the action of Γ on M0 to an
action on T . This is done in the following lemma.

Lemma 6.8.

(1) Some finite index subgroup of Γ lifts to Aut(T ).
(2) Either M0 is singular, or M0 is a torus.
(3) M0 is a quotient of the torus T by a homothety

(x1,x2, . . .xn) 7→ (ηx1,ηx2, . . . ,ηxn),

where η is a root of 1.

Proof. By property (b.) all automorphisms of M0 lift to T. Let Γ⊂ Aut(T ) be
the group of automorphisms of T made of all possible lifts of elements of Γ.

So, Γ is an extension of Γ by the group F :

1→ F → Γ→ Γ→ 1.

Let L : Aut(T )→ GL n(C) be the morphism which maps each automorphism
f of T to its linear part L( f ). Since T is obtained as the quotient of Cn by
all translations contained in ∆, the restriction of L to F is injective. Let
N ⊂ GL n(C) be the normalizer of L(F). The group L(Γ) normalizes L(F).

Hence we have a well defined morphism Γ→ N, and an induced morphism
δ : Γ→N/L(F). Changing Γ into a finite index subgroup, δ is injective. Since
Γ is a lattice in an almost simple Lie group of rank n− 1, the Lie algebra
of N/L(F) contains a simple subalgebra of rank n− 1. Since sln(C) is the
unique complex simple subalgebra of rank n− 1 in gln(C), we conclude that
N contains SL n(C). It follows that L(F) is contained in the center C∗Id of
GL n(C).

Either F is trivial, and then M0 coincides with the torus T, or F is a cyclic
subgroup of C∗Id. In the first case, there is no need to lift Γ to Aut(T ). In
the second case, we fix a generator g of F, and denote by η the root of unity
such that L(g) is the multiplication by η. The automorphism g has at least one
(isolated) fixed point x0 in T . Changing Γ into a finite index subgroup Γ1,

we can assume that Γ1 fixes x0. The linear part L embeds Γ1 into GL n(C).
Selberg’s lemma assures that a finite index subgroup of Γ1 has no torsion.
This subgroup does not intersect F, hence projects bijectively onto a finite
index subgroup of Γ1. This proves that a finite index subgroup Γ1 of Γ lifts
to Aut(T ). �
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7. CLASSIFICATION OF KUMMER EXAMPLES

In this section, we list all Kummer examples of dimension n ≥ 3 with an
action of a lattice Γ in a rank n−1 simple Lie group G, up to commensurability
and isogenies.

Let G be an almost simple Lie group of rank n− 1 and Γ be a lattice in G.
Let T = Cn/Λ be a torus such that Aut(T ) contains a copy of Γ. As seen in the
proof of Lemma 6.8, a finite index subgroup of Γ lifts to a linear representation
ρΓ into SL n(C) that preserves the lattice Λ. Changing G in an appropriate
finite index cover, Margulis theorem implies that ρΓ virtually extends to a
representation ρG of G itself. Thus, we have to list triples (G,Γ,Λ) where G is
a rank n−1, real, and almost simple Lie group represented in SL n(C), Γ is a
lattice in G, Λ is a lattice in Cn, and Γ preserves Λ. This is done in paragraphs
7.1 to 7.3: The list is up to commensurability for Γ, and up to isogeny for the
torus Cn/Λ.

Since G has rank n− 1 and almost embeds into SL n(C), G is locally iso-
morphic to SL n(R) or SL n(C). This justifies why we restrict to these two
possibilities in the following statement of the results.

Theorem 7.1. Let T be a complex torus of complex dimension n≥ 3. If Aut(T )
contains a lattice Γ of SL n(C), then

• Γ is commensurable to SL n(Od) where Od is the ring of integers in
Q(
√

d) for some negative integer d, and T is isogenous to the product
of n copies of the elliptic curve C/Od .

If Aut(T ) contains a lattice Γ of SL n(R). Then

• either Γ is commensurable to SL n(Z) and T is isogenous to the product
of n copies of an elliptic curve C/Λ0;
• or n= 2k is even and there exists an indefinite quaternion algebra Ha,b

over Q such that Γ is commensurable to the group SL k(Ha,b(Z)) and
T is isogenous to the product of k copies of an abelian surface Y such
that End Q(Y ) contains Ha,b(Q).

In particular, Γ is not cocompact and T is an abelian variety

We discuss Kummer examples in paragraph 7.5; this amounts to list all
possible quotients T/F where F is a finite group which is normalized by the
action of the lattice Γ.

7.1. Endomorphisms of complex tori. Let us summarize the results we need
concerning the endomorphism algebra of complex tori. These results are well
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know for abelian varieties; in the case of arbitrary complex tori, proofs can be
found in [9].

Let T be a complex torus of dimension n. By definition, T is simple if it
does not contain any proper subtorus of positive dimension; it is indecompos-
able if it is not isogenous to a product T1×T2 of nonzero complex tori. Thus,
all simple tori are indecomposable but there are indecomposable complex tori
which are not simple (a phenomenon which does not arise for abelian vari-
eties, see [9], chapters I.5 and I.6). Given a complex torus T 6= 0, there is an
isogeny

T → T n1
1 × . . .×T nk

k

with indecomposable pairwise nonisogenous nonzero tori Ti and positive in-
tegers ni; the complex tori Ti and integers ni are uniquely determined up to
isogenies and permutations.

Let End(T ) denote the endomorphism algebra of T , and let End Q(T ) be
defined by

End Q(T ) = End(T )⊗Z Q;

it is a finite dimensional Q-algebra. Its radical Nil Q(T ) can be defined as
the intersection of all maximal left ideals of End Q(T ); this radical Nil Q(T ) is
two sided, contains all nilpotent two sided ideals, and is itself nilpotent: There
exists a positive integer r such that Nil Q(T )r = 0 (cf. [43], XVII-6, Thm. 6.1).
The quotient End Q(T )ss of End Q(T ) by Nil Q(T ) is a semi-simple algebra; it
is a division algebra if and only if T is indecomposable. Moreover

End Q(T )ss 'Mat n1(End Q(T1)ss)× . . .×Mat nk(End Q(Tk)ss)

where the Ti and ni are given by the decomposition of T as a product of inde-
composable factors.

Let us now embed End Q(T ) in Mat n(C) as an algebra of linear transfor-
mations of Cn preserving Λ⊗Z Q. If T is indecomposable, End Q(T )ss is a
division algebra and thus det(u) 6= 0 for all u in End Q(T )ss. Let x 6= 0 be an
element of the lattice Λ, then

u 7→ u(x)

is a morphism from the Q-module End Q(T )ss to Λ⊗Z Q with trivial kernel
if T is indecomposable. Thus, we get the fundamental simple fact: If T is
indecomposable, then

dimQ(End Q(T )ss)≤ 2dimC(T ). (7.1)
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7.2. Lattices in endomorphism algebras of complex tori. Let G be an al-
most simple, connected, real Lie group of rank n−1. Let Γ be a lattice in G,
and assume that Γ embeds into the group of automorphisms of a complex torus
T = Cn/Λ. As explained in the introduction of this Section, up to finite index
and finite cover, we can assume that Γ lifts to a group of linear transformations
of Cn preserving Λ and that the linear representation ρΓ of Γ in Cn extends to
a linear representation ρG of G. This implies that G is locally isomorphic to
SL n(R) or SL n(C) and that ρΓ(Γ) is Zariski dense in the complex algebraic
group SL n(C).

Lemma 7.2. The radical Nil Q(T ) is reduced to zero.

Proof. Since Nil Q(T ) is a nilpotent subalgebra of Mat n(C), its kernel

Ker(Nil Q(T )) := {x ∈ Cn | u(x) = 0 ∀u ∈ Nil Q(T )}
has positive dimension. Since Nil Q(T ) is a two-sided ideal and End Q(T ) con-
tains Γ, Ker(Nil Q(T )) is Γ-invariant. Since Γ is Zariski dense, Ker(Nil Q(T ))
coincides with Cn and Nil Q(T ) = {0}. �

As a consequence, decomposing T as a product

T n1
1 × . . .×T nk

k

of indecomposable tori Ti, all endomorphism algebra End Q(Ti) are semi-simple.

Lemma 7.3. The torus T has a unique indecomposable factor T n1
1 and the

dimension of T1 is equal to 1 or 2; moreover, dimC(T1) = 1 if the Lie group G
is locally isomorphic to SL n(C).

Proof. If T has distinct indecomposable factors, its decomposition induces a
End Q(T )-invariant splitting of Cn as a direct sum of two non-trivial complex
linear subspaces. In particular, End Q(T ) cannot contain the Zariski dense
subgroup Γ. Thus, there is an indecomposable torus T1 and a positive integer
n1 such that T is (isogenous to) T n1

1 . The endomorphism algebra of T1 is a
division algebra and End Q(T ) is isomorphic to Mat n1(End Q(T1)). We have
n = dimC(T ) = n1×dimC(T1), and the fundamental inequality (7.1) gives

dimQ(End Q(T1))≤ 2dimC(T1).

Since the action of Γ on Cn extends to a linear representation of G, the real
dimension of End Q(T )⊗Q R is at least aG n2 where aG = 1 (resp. 2) if G is
locally isomorphic to SL n(R) (resp. SL n(C)). Thus, we have

aG n2
1 dimC(T1)

2 = aG n2 ≤ dimR(Mat n1(End Q(T1)))⊗Q R)≤ 2dimC(T1)n2
1.

As a consequence, aG dimC(T1)≤ 2 and the conclusion follows. �
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7.3. Complex tori of dimension 2. Lemma 7.3 shows that T is isogenous to
En where E is an elliptic curve, or that n = 2m is even and T is isogenous
to Y m for some two-dimensional torus Y . We first study the case when T is
isogenous to Y m for some indecomposable complex torus of dimension 2; for
this purpose we need the concept of quaternion algebra.

7.3.1. Quaternion algebras and complex tori. Let a and b be two integers.
Let Ha,b (or Ha,b(Q)) be the quaternion algebra over the rational numbers Q
defined by its basis (1, i, j,k), with

i2 = a, j2 = b, ij = k =−ji.

This algebra embeds into the space of 2×2 matrices over Q(
√

a) by mapping
i and j to the matrices ( √

a 0
0 −

√
a

)
,

(
0 1
b 0

)
.

In what follows, Ha,b(Z) denotes the set of quaternions with coefficients in Z,
and Ha,b(R) denotes the tensor product Ha,b⊗Q R. The determinant of the
matrix which is associated to a quaternion q = x+ yi+ zj+ tk is equal to its
reduced norm

Nrd(q) = x2−ay2−bz2 +abt2.

The algebra Ha,b is a division algebra if and only if Nrd(q) 6= 0 for all elements
q 6= 0 in Ha,b(Q). One says that Ha,b is definite if Ha,b⊗Q R is isomorphic to
the usual quaternion algebra H = H−1,−1, and indefinite otherwise; indefinite
quaternion algebras are isomorphic to Mat 2(R) over R.

Note that Ha,b(Q) is isomorphic to Hb,a(Q) (permuting i and j), to Hµ2a,b
for µ in Q (changing i in µi), and to Ha,−ab(Q) (permuting j and k). When
Ha,b(Q) is indefinite, at least one of the parameters a and b is positive; thus,
permuting a and b, and then changing b into−ab if necessary, one can assume
that a and b are positive.

Assume Ha,b(Q) is indefinite. The embedding of Ha,b(Q) into Mat 2(R)

extends to an isomorphism between Ha,b(R) and Mat 2(R). The group

GL k(Ha,b(Z))

acts by left multiplication on Ha,b(R)k, preserving the lattice Ha,b(Z)k. This
action commutes with right multiplication by elements of Ha,b(R), i.e. by ele-
ments of Mat 2(R); in particular, if J is an element of SL 2(R) with J2 =−Id,
then J determines a GL k(Ha,b(Z))-invariant complex structure on Ha,b(R)k

and on the quotient (Ha,b(R)/Ha,b(Z))k.
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Remark 7.4. These complex structures depend on one complex parameter,
because the set of such operators J ∈ SL 2(R) depends on such a parameter. We
thus get a one parameter family of tori Y = Ha,b(R)/Ha,b(Z), with complex
structure J. For a generic J, the complex torus Y is indecomposable (see [10],
§9), but we shall see in Section 7.3.3 that specific choices of J lead to surfaces
Y that can be isogenous to a product E×E of the same elliptic curve.

7.3.2. Complex tori of dimension 2. Let us now assume that n = 2m is even,
and T =Y m for some indecomposable complex torus Y of dimension 2. From
Lemma 7.3, we know that the Lie group G is (locally isomorphic to) SL n(R).
Since G has dimension n2−1 we deduce that

n2 ≤ (n/2)2 dim(End Q(Y )⊗Q R))

and thus End Q(Y ) is a division algebra of dimension at least 4; since Y is a
surface, the dimension of End Q(Y ) is equal to 4. This implies (see [10, 50])
that End Q(Y ) is a quaternion algebra or a complex multiplication field k of
degree 4 over Q.

In the latter case, Γ embeds virtually in SL m(Ok) where Ok is the ring of
integers in the quartic field k. This contradicts Margulis Theorem, i.e. Theo-
rem 3.2, because Γ is a lattice in SL n(R) and n = 2m > m; as a consequence,
End Q(Y ) is a quaternion algebra. If this quaternion algebra is definite, then
End Q(Y )⊗Q R is isomorphic to the quaternion algebra H and Γ embeds into
GL m(H), which is a real Lie group of rank m. This contradicts Theorem 3.2
and shows that End Q(Y ) is an indefinite quaternion algebra. In particular, Y
is an abelian surface and T is an abelian variety (see [52, 50]). Thus, we have
proved the following proposition.

Proposition 7.5. Let Y be an indecomposable complex torus of dimension 2.
Let m be a positive integer and T be the complex torus Y m. Let Γ be a lattice
in SL n(R). If Γ embeds into Aut(T ), then Y is isogenous to an abelian surface
such that End Q(Y ) contains Ha,b(Q) for some indefinite quaternion algebra,
and Γ is commensurable to the group SL m(Ha,b(Z)).

7.3.3. An example. Let L be the lattice Ha,b(Z)⊂Mat 2(R)'Ha,b(R), where
Ha,b(Q) is an indefinite quaternion algebra, with a and b positive integers.
The group GL 1(Ha,b(Z)) acts by left multiplication on Ha,b(R), preserves the
lattice L, and the one parameter family of complex structures defined at the
end of Section 7.3.1. As a complex structure on Ha,b(R), take

J(w) = w · (ck)
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where c is the real number 1/
√

ab. Let Y be the torus Ha,b(R)/L, with com-
plex structure J. The planes R+Rk and Ri+Rj are J-invariant and intersect
the lattice L on cocompact lattices. Moreover, the elliptic curves (R+Rk)/L
and (Ri+R j)/L are isogenous to C/Z[i

√
ab]. This shows that Y is isoge-

nous to (C/Od)
2 where d = −ab, and that GL 1(Ha,b(Z)) embeds virtually

into GL 2(Od).
A similar construction works for the lattice Lm and the group SL m(Ha,b(Z))

when m > 1. This example should be kept in mind when reading the proof of
Proposition 7.6 below.

7.4. Elliptic curves.

Proposition 7.6. Let E be an elliptic curve. Let n be a positive integer and T
the abelian variety En.

(1) The automorphisms group Aut(T ) contains a copy of SL n(Z).
(2) If End(T ) contains a lattice Γ in SL n(C) then Γ is commensurable to

SL n(Od) where Od is the ring of integers in Q(
√

d) for some negative
integer d, and E is isogenous to the elliptic curve C/Od .

(3) If Aut(T ) contains a copy of a lattice Γ of SL n(R), either this lattice
is commensurable to SL n(Z) or n = 2m is even, the lattice is commen-
surable to SL m(Ha,b(Z)) for some indefinite quaternion algebra, and
E is isogenous to the elliptic curve C/Od for d =−ab.

Proof. Let E be an elliptic curve. If E has complex multiplication, it is isoge-
nous to C/Od for some imaginary quadratic extension Q(

√
d). If E does not

have complex multiplication, then End Q(E) is isomorphic to Q. In all cases,
Mat n(End(E)) contains SL n(Z); this proves the first assertion.

Let Γ be a lattice in SL n(R) or SL n(C), and assume that Γ embeds into
Aut(T )⊂Mat n(End(E)). If E does not have complex multiplication, End(E)
is equal to Z and the image of Γ in Mat n(Z) is commensurable to SL n(Z); in
particular, Γ is a lattice in SL n(R). We can therefore assume that E is iso-
morphic to C/Od for some square free negative integer d. Then, Γ embeds
virtually into SL n(Od). If Γ is a lattice in SL n(C), this implies that Γ is com-
mensurable to SL n(Od).

Assume now that E = C/Od and G = SL n(R); we want to show that Γ is
commensurable to SL n(Z), or n= 2m and Γ is commensurable to SL m(Ha,b(Z))
for an indefinite quaternion algebra.

The action of G on Cn preserves the complex structure; therefore, after
conjugacy by an element B of GL n(C), we can assume that ρG is the standard
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embedding of G = SL n(R) in SL n(C) as the subgroup of matrices with real
coefficients. In particular, G and Γ preserve the decomposition Cn = Rn+ iRn.
Let Λ be the Γ-invariant lattice B(O n

d ).
Let W be the vector space Cn, viewed as a real vector space, and V be the

subspace Rn, so that W = V + J(V ) where J denotes the complex structure
(multiplication by i =

√
−1). Let H be the subgroup of SL(W ) preserving J

(i.e. H = SL n(C)).
Let C be the image of SL 2(R) into SL(W ) given by the representation which

maps a 2 by 2 matrix (
a b
c d

)
to the transformation

x+ Jy ∈V + J(V ) 7→ ax+by+ J(cx+dy).

The group C has finite index in the centralizer of Γ in SL(W ). Let J be the sub-
set of C given by elements K in SL 2(R) with K2 = −Id; each element K ∈ J
define a complex structure on W which is invariant by the actions of G and Γ.
The complex structure J is an element of J and is the unique element which is
invariant by H (resp. by a lattice in H). Choose K ∈ J different from J. Let TK

be the complex torus given by the complex structure K on W/Λ. The group
Aut(TK) contains Γ and does not contain any lattice in SL n(C). As a conse-
quence, either TK is isogenous to a product En for some elliptic curve without
complex multiplication, and thus Γ is commensurable to SL n(Z), or n = 2m is
even and TK is isogenous to a product Y m for some indecomposable torus Y of
dimension 2, and then Proposition 7.5 shows that Y and Γ are derived from a
quaternion algebra. This concludes the proof of the proposition. �

Theorem 7.1 is now a direct consequence of Lemma 7.3, Proposition 7.6
and Proposition 7.5.

7.5. Kummer examples and singularities. Once we have the list of possible
tori and lattices, Kummer examples are obtained by a quotient with respect to
a finite group of automorphisms of the torus.

Let T = Cn/Λ be a torus and Γ be a lattice in SL n(R) or SL n(C) acting
faithfully on T . Let F be a finite group of automorphisms of T which is nor-
malized by the action of Γ. From Lemma 6.8, we can assume that F is a finite
cyclic group of homotheties.

If T is isogenous to (C/Λ0)
n, with Λ0 a lattice in C and Λ = Λn

0, the order
of F is 1, 2, 3, 4 or 6 (see [19]). If n = 2k is even and T is isogenous to
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(C2/Ha,b(Z))k, the same conclusion holds: The finite group F is contained in
the centralizer of Γ and preserves Λ; this group is isomorphic to the lattice of
SL 2(R) given by quaternions of norm 1. Thus, F can be identified to a finite
cyclic subgroup of Ha,b(Z). Viewed as a subgroup of SL 2(R), the traces are
even integers, and thus finite order elements have trace in {−2,0,2}. Thus
the order of the cyclic group F is bounded by 2 in this case. This proves the
following fact.

Proposition 7.7. Let M0 be Kummer orbifold T/F where T = Cn/Λ is a torus
of dimension n and F is a finite group of automorphisms of T . Assume that
there is a faithful action of a lattice in an almost simple Lie group G of a rank
n−1 on M0. Then M0 is the quotient T ′/F ′ of a torus T ′ isogenous to T by a
finite cyclic group F ′ which is generated by a scalar multiplication

(x1, . . . ,xn) 7→ (ηx1, . . . ,ηxn)

where η is a root of unity of order 1, 2, 3, 4 or 6.

7.6. Volume forms. Let us start with an example. Let M0 be the Kummer
orbifold T/F where T is (C/Z[i])n and F is the finite cyclic group gen-
erated by f (x1,x2, . . .xn) = (ix1, ix2, . . . , ixn), where i =

√
−1. Let M be the

smooth manifold obtained by blowing up the singular points of M0. Let Ω =

dx1∧dx2∧ . . .∧dxn be the standard “holomorphic volume form” on T. Then
f ∗Ω = inΩ and Ωq(n) is f -invariant, where q(n) is equal to 1, 2 or 4 according
to the residue of n modulo 4 (Ωq is a section of K⊗q

T , where KT is the canoni-
cal bundle of T ). In order to resolve the singularities of M0, one can proceed
as follows. First one blows up all fixed points of elements in F \ {Id}. For
example, one needs to blow up the origin (0, . . . ,0). This provides a compact
Kähler manifold T̂ together with a birational morphism α : T̂ → T. The au-
tomorphism f lifts to an automorphism f̂ of T̂ ; since the differential D f is a
homothety, f̂ acts trivially on each exceptional divisor, and acts as z 7→ iz in
the normal direction. As a consequence, the quotient T̂/F̂ is smooth.

Denote by E ⊂ T̂ the exceptional divisor corresponding to the blowing up
of the origin, and fix local coordinates (x̂1, x̂2, . . . x̂n) in T̂ such that the local
equation of E is x̂n = 0. In these coordinates, the form α∗Ω is locally given by

α
∗
Ω = x̂n

n−1dx̂1∧dx̂2 . . .∧dx̂n.

The projection ε : T̂ →M = T̂/F̂ is given by (x̂1, x̂2, . . . x̂n) 7→ (u1,u2, . . . ,un)=

(x̂1, x̂2, . . . , x̂n
4), and the projection of α∗Ω on M is

ε∗α
∗
Ω =

1
4

u(n−4)/4
n du1∧du2 . . .∧dun.
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The fourth power of this form is a well defined meromorphic section of K⊗4
M ;

ε∗α
∗Ω has a pole of order 1/2 if n = 2 and of order 1/4 if n = 3; it is smooth

and does not vanish if n = 4, and vanishes along the exceptional divisor ε(E)
when n > 4.

A similar study can be made for all Kummer examples. More precisely, a
local computation shows that

ε∗α
∗
Ω =

1
r

u(n−r)/r
n du1∧du2 . . .∧dun.

where r ∈ {2,3,4,6} is the order of the root η and the ui are local coordinates
on the quotient Ĉn/η. For all pairs (n,r) the real volume form ε∗α

∗(Ω∧Ω)

on M is integrable and Γ-invariant. This form does not have any zeros or
poles if and only if (n,r) ∈ {(2,2),(3,3),(4,4),(6,6)}; in this case, ε∗α

∗Ω
trivializes the canonical bundle of M. Recall that Calabi-Yau manifolds are
simply connected, Kähler manifolds with a trivial canonical bundle. Our study
admits the following corollary.

Corollary 7.8. If M is a Calabi-Yau manifold of dimension n and Aut(M)

contains a lattice of an almost simple Lie group of rank n−1, then dim(M) =

2, 3, 4, or 6. In dimension 3, 4 and 6, all examples are of type T̂/η where
• η is one of the roots e2iπ/3,e−2iπ/3 (for n = 3), i,−i (for n = 4), or

eiπ/3,e−iπ/3 (for n = 6),;
• T = En, with E = C/Z[η].

Another consequence is the existence of invariant volume forms as a byprod-
uct of the classification (while standard conjectures in Zimmer’s program a
priori assume the existence of such an invariant volume).

Corollary 7.9. Let M be a compact Kähler manifold of dimension n≥ 3. Let
Γ be a lattice in a simple Lie group G with rkR(G)≥ n−1. If Γ acts faithfully
on M, then the action of Γ on M

• virtually extends to an action of G, or
• preserves an integrable volume form µ which is locally smooth or the

product of a smooth volume form by |w|−a, where w is a local co-
ordinate and a ∈ {−1/2,−1} for n = 3, or a = −2/3 for n = 4 or
a =−1/3 for n = 5.

Proof. If the action of Γ on the cohomology of M factors through a finite
group, then Γ is virtually contained in Aut(M)0 and two cases may occur. In
the first case, the morphism Γ→Aut(M) virtually extends to a morphism G→
Aut(M). In the second case, Γ is virtually contained in a compact subgroup of
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Aut(M)0, and then Γ preserves a Kähler metric. In particular, it preserves a
smooth volume form. If the action of Γ on the cohomology is almost faithful,
then it is a Kummer example, and the result follows from what has just been
said. �

REFERENCES

[1] H. Abels, G. A. Margulis, and G. A. Soı̌fer. Semigroups containing proximal linear
maps. Israel J. Math., 91(1-3):1–30, 1995.

[2] D. N. Akhiezer. Lie group actions in complex analysis. Aspects of Mathematics, E27.
Friedr. Vieweg & Sohn, Braunschweig, 1995.

[3] B. Bekka, P. de la Harpe, and A. Valette. Kazhdan’s property (T), volume 11 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2008.

[4] Y. Benoist. Sous-groupes discrets des groupes de Lie. European Summer School in
Group Theory, pages 1–72, 1997.

[5] Y. Benoist. Automorphismes des cônes convexes. Invent. Math., 141(1):149–193, 2000.
[6] Y. Benoist. Réseaux des groupes de lie. Cours de Master 2, Paris 6, pages 1–72, 2008.
[7] R. Berman and J.-P. Demailly. Regularity of plurisubharmonic upper envelopes in big

cohomology classes. arXiv:0905.1246, pages 1–27, 2009.
[8] A. L. Besse. Einstein manifolds. Classics in Mathematics. Springer-Verlag, Berlin, 2008.

Reprint of the 1987 edition.
[9] C. Birkenhake and H. Lange. Complex tori, volume 177 of Progress in Mathematics.

Birkhäuser Boston Inc., Boston, MA, 1999.
[10] C. Birkenhake and H. Lange. Complex abelian varieties, volume 302 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, second edition, 2004.

[11] S. Bochner and D. Montgomery. Locally compact groups of differentiable transforma-
tions. Ann. of Math. (2), 47:639–653, 1946.

[12] A. Borel. Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. (2),
58:443–457, 1953.

[13] F. Campana. Orbifoldes à première classe de Chern nulle. In The Fano Conference, pages
339–351. Univ. Torino, Turin, 2004.

[14] F. Campana and T. Peternell. Cycle spaces. In Several complex variables, VII, volume 74
of Encyclopaedia Math. Sci., pages 319–349. Springer, Berlin, 1994.

[15] S. Cantat. Sur la dynamique du groupe d’automorphismes des surfaces K3. Transform.
Groups, 6(3):201–214, 2001.

[16] S. Cantat. Version kählérienne d’une conjecture de Robert J. Zimmer. Ann. Sci. École
Norm. Sup. (4), 37(5):759–768, 2004.

[17] S. Cantat. Caractérisation des exemples de Lattès et de Kummer. Compos. Math.,
144(5):1235–1270, 2008.

[18] S. Cantat. Groupes de transformations birationnelles du plan. Annals of Math.,
174(1):299–340, 2011.

[19] S. Cantat and A. Zeghib. Holomorphic actions of higer rank lattices in dimension three.
preprint, pages 1–58, 2009.

[20] S. Cantat and A. Zeghib. Holomorphic actions, kummer examples, and zimmer program.
preprint, pages 1–35, 2010.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 52

[21] P. de la Harpe and A. Valette. La propriété (T ) de Kazhdan pour les groupes localement
compacts (avec un appendice de Marc Burger). Astérisque, (175):158, 1989. With an
appendix by M. Burger.

[22] J.-P. Demailly. Mesures de Monge-Ampère et caractérisation géométrique des variétés
algébriques affines. Mém. Soc. Math. France (N.S.), (19):124, 1985.

[23] J.-P. Demailly. Regularization of closed positive currents and intersection theory. J. Al-
gebraic Geom., 1(3):361–409, 1992.

[24] J.-P. Demailly and M. Paun. Numerical characterization of the Kähler cone of a compact
Kähler manifold. Ann. of Math. (2), 159(3):1247–1274, 2004.

[25] T.-C. Dinh and V.-A. Nguyen. Comparison of dynamical degrees for semi-conjugate
meromorphic maps. Comment. Math. Helvet., 86(4):817–840, 2011.

[26] T.-C. Dinh and N. Sibony. Groupes commutatifs d’automorphismes d’une variété käh-
lérienne compacte. Duke Math. J., 123(2):311–328, 2004.

[27] I. V. Dolgachev and D.-Q. Zhang. Coble rational surfaces. Amer. J. Math., 123(1):79–
114, 2001.

[28] David Fisher. Groups acting on manifolds: around the Zimmer program. In Geometry,
rigidity, and group actions, Chicago Lectures in Math., pages 72–157. Univ. Chicago
Press, Chicago, IL, 2011.

[29] A. Fujiki. On automorphism groups of compact Kähler manifolds. Invent. Math.,
44(3):225–258, 1978.

[30] W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in
Geometry.

[31] W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

[32] É. Ghys. Actions de réseaux sur le cercle. Invent. Math., 137(1):199–231, 1999.
[33] Bruce Gilligan and Alan T. Huckleberry. Complex homogeneous manifolds with two

ends. Michigan Math. J., 28(2):183–198, 1981.
[34] H. Grauert. Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.,

146:331–368, 1962.
[35] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John

Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.
[36] M. Gromov. On the entropy of holomorphic maps. Enseign. Math. (2), 49(3-4):217–235,

2003.
[37] E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear groups.

Publ. Math. Inst. Hautes Études Sci., (101):243–268, 2005.
[38] R. Hartshorne. Ample subvarieties of algebraic varieties. Notes written in collaboration

with C. Musili. Lecture Notes in Mathematics, Vol. 156. Springer-Verlag, Berlin, 1970.
[39] A. T. Huckleberry and D. M. Snow. Almost-homogeneous Kähler manifolds with hyper-

surface orbits. Osaka J. Math., 19(4):763–786, 1982.
[40] S. Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publica-

tions of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ,
1987. Kanô Memorial Lectures, 5.

[41] K. Kodaira and D. C. Spencer. A theorem of completeness of characteristic systems of
complete continuous systems. Amer. J. Math., 81:477–500, 1959.

[42] A. G. Kušnirenko. An analytic action of a semisimple Lie group in a neighborhood of a
fixed point is equivalent to a linear one. Funkcional. Anal. i Priložen, 1:103–104, 1967.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 53

[43] S. Lang. Algebra. Addison-Wesley Publishing Company Advanced Book Program,
Reading, MA, second edition, 1984.

[44] R. Lazarsfeld. Positivity in algebraic geometry. I and II, volume 48 - 49 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math-
ematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Positivity for vector bundles,
and multiplier ideals.

[45] D. I. Lieberman. Compactness of the Chow scheme: applications to automorphisms and
deformations of Kähler manifolds. In Fonctions de plusieurs variables complexes, III
(Sém. François Norguet, 1975–1977), pages 140–186. Springer, Berlin, 1978.

[46] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)]. Springer-Verlag, Berlin, 1991.

[47] G. D. Mostow. Strong rigidity of locally symmetric spaces. Princeton University Press,
Princeton, N.J., 1973. Annals of Mathematics Studies, No. 78.

[48] M. Nakamaye. Base loci of linear series are numerically determined. Trans. Amer. Math.
Soc., 355(2):551–566 (electronic), 2003.

[49] G. Prasad and M. S. Raghunathan. Cartan subgroups and lattices in semi-simple groups.
Ann. of Math. (2), 96:296–317, 1972.

[50] W. M. Ruppert. Two-dimensional complex tori with multiplication by
√

d. Arch. Math.
(Basel), 72(4):278–281, 1999.

[51] I. Satake. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A.,
42:359–363, 1956.

[52] A. Shimizu. On complex tori with many endomorphisms. Tsukuba J. Math., 8(2):297–
318, 1984.

[53] J. H. M. Steenbrink. Mixed Hodge structure on the vanishing cohomology. In Real and
complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo,
1976), pages 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[54] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math.,
(47):269–331 (1978), 1977.

[55] È. B. Vinberg, editor. Lie groups and Lie algebras, III, volume 41 of Encyclopaedia
of Mathematical Sciences. Springer-Verlag, Berlin, 1994. Structure of Lie groups and
Lie algebras, A translation of ıt Current problems in mathematics. Fundamental di-
rections. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. In-
form., Moscow, 1990 [ MR1056485 (91b:22001)], Translation by V. Minachin [V. V.
Minakhin], Translation edited by A. L. Onishchik and È. B. Vinberg.

[56] È. B. Vinberg, V. V. Gorbatsevich, and O. V. Shvartsman. Discrete subgroups of Lie
groups [MR 90c:22036]. In Lie groups and Lie algebras, II, volume 21 of Encyclopaedia
Math. Sci., pages 1–123, 217–223. Springer, Berlin, 2000.

[57] È. B. Vinberg and V. G. Kac. Quasi-homogeneous cones. Mat. Zametki, 1:347–354,
1967.

[58] C. Voisin. Théorie de Hodge et géométrie algébrique complexe, volume 10 of Cours
Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2002.

[59] J. A. Wolf. Spaces of constant curvature. Publish or Perish Inc., Houston, TX, fifth
edition, 1984.

[60] S. T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-
Ampère equation. I. Comm. Pure Appl. Math., 31(3):339–411, 1978.



HOLOMORPHIC ACTIONS AND ZIMMER PROGRAM 54

[61] D. Zaffran and Z. Z. Wang. A remark for the hard lefschetz theorem for kähler orbifolds.
Proc. Amer. Math. Soc., 137:2497–2501, 2009.

[62] D.-Q. Zhang. A theorem of Tits type for compact Kähler manifolds. Invent. Math.,
176(3):449–459, 2009.

[63] R. J. Zimmer. Kazhdan groups acting on compact manifolds. Invent. Math., 75(3):425–
436, 1984.

[64] R. J. Zimmer. Actions of semisimple groups and discrete subgroups. In Proceedings of
the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages
1247–1258, Providence, RI, 1987. Amer. Math. Soc.

[65] R. J. Zimmer. Lattices in semisimple groups and invariant geometric structures on com-
pact manifolds. In Discrete groups in geometry and analysis (New Haven, Conn., 1984),
volume 67 of Progr. Math., pages 152–210. Birkhäuser Boston, Boston, MA, 1987.

IRMAR (UMR 6625 DU CNRS), UNIVERSITÉ DE RENNES 1, FRANCE
E-mail address: serge.cantat@univ-rennes1.fr

CNRS, UMPA, ÉCOLE NORMALE SUPÉRIEURE DE LYON, FRANCE
E-mail address: zeghib@umpa.ens-lyon.fr


