
INVARIANT HYPERSURFACES IN HOLOMORPHIC DYNAMICS

SERGE CANTAT

To Thierry Vust for his 65th birthday

ABSTRACT. We prove the following result, which is analogous to two the-
orems, one due to Kodaira and Krasnov and another one due to Jouanolou
and Ghys. Let M be a compact complex manifold and f a dominant endo-
morphism of M. If there exist k totally invariant irreducible hypersurfaces
Wi ⊂ M, with k > dim(M)+ h1,1(M) then f preserves a nontrivial mero-
morphic fibration. We then study the case where f is a meromorphic map.

1. INTRODUCTION

1.1. Let M be a connected compact complex manifold of dimension n, and
f : M→ M be a surjective endomorphism of M. Let W ⊂ M be a hypersur-
face. By definition, W is totally invariant if f−1(W ) = W. This property im-
plies, and is stronger than, the forward invariance f (W ) = W. These notions
coincide when f is an automorphism.

Locally, in a small open set U, the hypersurface W is defined by an equation
ϕ = 0 ; when W is irreducible, the hypersurface is totally invariant if there is a
positive integer m such that ϕ◦ f is locally the m-th power of an equation of W.
More precisely, if V is any small open subset of M such that f (V )⊂U, and
if ψ is an equation for W in V , then there exists a non vanishing holomorphic
function ξ ∈ O∗(V ) such that

ϕ◦ f = ξψ
m, onV .

The topological degree of f is then equal to the product of the multiplicity m
and the topological degree of f|W :W→W ; the divisor defined by the jacobian
determinant of f contains W with multiplicity m−1.

Theorem A. Let M be a compact complex manifold, and f be a dominant
endomorphism of M. If there are k totally invariant hypersurfaces Wi ⊂ M,
with

(∗) k > dim(M)+dim(H1(M,Ω1
M)),

then there is a non constant meromorphic function Φ and a non zero complex
number α such that Φ◦ f = αΦ.
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This result has already been used, and proved, by the author and by Kawa-
guchi when M is a surface (see [6, 4, 14]), and by Zhang when f is an au-
tomorphism of a compact Kähler manifold with positive entropy (see [18]).
We shall extend (a weak form of) Theorem A to the case of meromorphic
transformations in section 3, Theorem B.

1.2. Remarks.

1.2.1. The sheaf Ω1
M is the sheaf of holomorphic 1-forms, and H i(M,Ω1

M)
denotes the i-th Cech cohomology group of this sheaf. By Hodge theory,
these cohomology groups are finite dimensional complex vector spaces (see
[12], chapter 0, section 6, page 100).

1.2.2. The proof of Theorem A provides a slightly stronger statement: The
number k in inequality (∗) can be replaced by the total number of irreducible
components of the Wi.

1.2.3. If g is an endomorphism of the complex projective space Pn(C) with
two totally invariant hypersurfaces, then there is a constant α 6= 0 and a non
constant meromorphic function Ψ such that ψ◦g = αΨdeg(g). This conclusion
is different from the invariance property Φ◦ f = αΦ.

The coordinate axis of the plane P2(C) are totally invariant under the action
of the endomorphism g[x : y : z] = [x2 : y2 : z2]. In this case,

dim(P2(C))+dim(H1(P2(C),Ω1
P2(C))) = 2+1 = 3

is equal to the number of totally invariant lines, and all meromorphic func-
tions Φ such that Φ◦g = αΦ for some α ∈ C are indeed constant. The same
example, but in dimension n, shows that Theorem A is sharp for M = Pn(C).

1.2.4. Theorem A is analogous, in a dynamical setting, to the following state-
ment: If a compact complex manifold M has k irreducible hypersurfaces, with

k > dim(M)+dim(H1(M,Ω1
M)),

then there is a non constant meromorphic function on M (see [1], section IV.6,
page 129, or [10, 15] and [3, 16]).

Another similar statement has been obtained by Jouanolou and Ghys for
foliated manifolds: If a codimension one (singular) holomorphic foliation F
of a compact complex manifold M has an infinite number of compact leaves,
then F has a meromorphic first integral (Ghys-Jouanolou theorem, see [11,
13, 7]). The "infinite number" of compact leaves can be replaced by a large
enough number of such leaves, k > k(M,F ), where k(M,F ) depends on M
and on the degree of the meromorphic forms defining F .
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2. ENDOMORPHISMS

This section is devoted to the proof of Theorem A; the results of this sec-
tion will also be used in section 3 when we study dominant meromorphic
transformations.

2.1. Meromorphic forms. Let M be a compact complex manifold. Let Ω1
M

(resp. M 1
M) be the sheaf of holomorphic (resp. meromorphic) 1-forms on M;

we have a short exact sequence of sheaves

0→Ω
1
M→M 1

M→ Q1
M→ 0,

where Q1
M denotes the quotient sheaf; this sequence gives rise to a long exact

sequence of Cech cohomology groups (see [12], chapter 0, and [1], §IV.6))

0→ Γ(Ω1
M)→ Γ(M 1

M)→ Γ(Q1
M)→ H1(M,Ω1

M)→ ...

where Γ(·) stands for H0(M, ·), i.e. for the complex vector space of global
sections. By Dolbeault isomorphism, the first cohomology group H1(M,Ω1

M)
is isomorphic to H1,1

∂
(M). Both Γ(Ω1

M) and H1(M,Ω1
M) have finite dimen-

sion, while Γ(M 1
M) and Γ(Q1

M) can be infinite dimensional.

2.2. Hypersurfaces and logarithmic forms. Let W be a (reduced) hyper-
surface of a compact complex manifold. Let U be an open set on which W is
defined by an equation ϕ ∈ O(U). The meromorphic form

σW = dlog(ϕ) =
dϕ

ϕ

depends on the choice of an equation, but does not depend on this choice
modulo holomorphic 1-forms: If ϕ is replaced by ξϕ with ξ ∈ O∗(U), then
σW changes by the addition of the holomorphic form (dξ)/ξ. Thus, σW is
a well defined global section of Q1

M. If W1, ..., Wl are distinct, reduced, and
irreducible hypersurfaces, the sections σWi ∈ Γ(Q1

M) are linearly independant.
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2.3. Endomorphisms. Let g be a dominant endomorphism of a compact
complex manifold M. Let W ⊂M be a totally invariant hypersurface, and W1,
..., Wl be its irreducible components. There is a map ι : {1, ..., l} → {1, ..., l}
such that g(Wi) = Wι(i) for all i ∈ {1, ..., l}. The map ι is surjective, hence
injective, and g−1(Wi) = Wι−1(i) (as sets, not as divisors). Let mi− 1 be the
ramification index of g along Wι−1(i); then, by definition, we get the following
equality of divisors

g∗Wi = miWι−1(i).

In other words, if ϕi is a local equation of Wi, then ϕi ◦ g is locally equal to
the mi-th power of an equation of Wι−1(i). This implies that

g∗σWi = miσW
ι−1(i)

,

as global sections of Q1
M, hence modulo local holomorphic forms. In other

words, the complex vector space Z ⊂ Γ(Q1
M) which is spanned by the σWi has

dimension l, is g∗-invariant, and the matrix of g∗ in the basis (σWi)1≤i≤l is a
permutation matrix with coefficients multiplied by positive integers mi. Thus,
there is a positive power of this matrix which is diagonal with positive integral
entries. In particular, g∗ is diagonalizable.

In what follows, to prove Theorem A, we use the following notations:
• g has k totally invariant hypersurfaces;
• the union of these hypersurfaces is a totally invariant hypersurface W ;
• the number of irreducible components Wi of W is denoted by l; in

particular, l ≥ k;
• the vector space Z ⊂ Γ(Q1

M) is generated by the σWi; its dimension is
equal to l.

2.4. Invariant global meromorphic forms. The morphism

c : Γ(Q1
M)→ H1(M,Ω1

M),

that appears in the long exact sequence of section 2.1, is g∗-equivariant and its
kernel K1

M is g∗-invariant. The intersection Z0 of Z with K1
M is a g∗-invariant

subspace, and the codimension of Z0 in Z is at most h1,1(M). Since the sub-
space Z0 is in the image of the surjective morphism Γ(M 1

M)→ Γ(Q1
M), one

can find a basis (η j)1≤ j≤m of Z0 such that
(1) m≥ l−h1,1(M) ;
(2) η j is a global meromorphic 1-form (i.e. a section of M 1

M) ;
(3) η j is an eigenvector of g∗ (as an element of Γ(Q1

M)).
The third assertion means that there exists a complex number λ j such that
g∗η j = λ jη j as sections of Q1

M; this property follows from the fact that g∗ is
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diagonalizable on Z and Z0. This implies that the global meromorphic form
η j satisfies

g∗η j = λ jη j +ξ j

where ξ j is a global holomorphic 1-form, i.e. an element of Γ(Ω1
M).

Let Ẑ0 be the preimage of Z0 in Γ(M 1
M). The vector space Γ(Ω1

M) embeds
in Ẑ0 as a g∗-invariant subspace, the dimension of which is equal to h1,0(M).
Take a basis of Γ(Ω1

M) and complete it with the vectors η j to get a basis of
Ẑ0. With respect to this basis, the matrix of g∗ is upper triangular by blocks:
The two blocks on the diagonal are given by (i) the action of g∗ on Γ(Ω1

M)
and (ii) the diagonal matrix with coefficients λ j. The transposed matrix has m
linearly independant eigenvectors corresponding to the last m vectors of the
basis. This implies that g∗ has m linearly independent eigenvectors ν j ∈ Ẑ0
corresponding to the eigenvalues λ j:

g∗ν j = λ jν j, 1≤ j ≤ m.

Of course, some of these eigenvectors can be contained in Γ(Ω1
M).

2.5. Conclusion. The dimension of the cotangent space T ∗x M, x∈M, is equal
to dim(M). If m is strictly larger than the dimension of M, then the ν j(x) are
linearly dependent at all points x of M. Permuting the indices, we can assume
that there exists an integer n, with

2≤ n≤ dim(M) < m,

such that ν1, ... νn are linearly independent at the generic point x of M but

νn+1 =
j=n

∑
j=1

b jν j

where the b j are meromorphic functions, and the b j are uniquely determined
by this equation. Note that at least one of these functions is not constant
because the ν j are linearly independent in the complex vector space Γ(M 1

M).
Applying g∗ and dividing by λn+1 we get a second relation

νn+1 =
j=n

∑
j=1

λ j

λn+1
b j ◦g ν j.

By uniqueness of the b j, this implies that there is a non constant meromorphic
function Φ (equal to one of the b j) and a complex number α (of type λ j/λn+1)
such that

Φ◦g = αΦ.

This completes the proof of Theorem A.
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2.6. Complementary remarks.

2.6.1. In the proof of Theorem A, one can replace the sheaf of holomorphic
forms by the sheaf of closed holomorphic forms, and get similar results. On
compact Kähler manifolds, this does not change anything, because global
holomorphic forms are always closed. To get an interesting example, consider
the group N(C) of upper triangular complex matrices

B =

 1 x z
0 1 y
0 0 1

 .

Define M as the quotient of N(C) by the cocompact discrete subgroup N(Z[i])
of matrices with coefficients in the set of Gaussian integers Z[i]. Then

• ω = dz− ydx is a holomorphic 1-form on N(C), is invariant by right
multiplication, and defines a 1-form on M that is not closed: dω =
dx∧dy.
• g(x,y,z) = (qx,qy,q2z), with q ∈ Z \ {0}, is a dominant endomor-

phism with topological degree q8; moreover, g∗ω = q2ω.
Similar examples of non closed forms and automorphisms g 6= Id can be
constructed on SL2(C)/Λ where Λ is a cocompact lattice in the complex
Lie group SL2(C) (for SL2(C), any dominant endomorphism is an automor-
phism, see [5]).

2.6.2. When M is a compact Kähler manifold with h1,0(M) > 0, the Albanese
map provides a morphism αM : M→ AM where AM is the compact complex
torus

AM = (H0(M,Ω1
M))∗/H1(M,Z).

This morphism is equivariant under the action of g on M, the linear action
of the transpose tg∗ on the dual space (H0(M,Ω1

M))∗ and the action of g∗
on the lattice H1(M,Z). To study the image αM(M) and the action of g on
it, one can use the following fact: Let B ⊂ AM be the maximal connected
subtorus such that αM(M) + B = αM(M); let π : A→ A/B be the quotient
map; then π(αM(M)) is of general type and, consequently, all its dominant
endomorphisms have finite order (see [8] chapter VIII). This strategy provides
invariant fibrations as soon as h1,0(M) > 0 and M is not a torus.

2.6.3. The proof of Theorem A produces l−h1,1(M) independant logarithmic
1-forms ν j, with poles along the totally invariant hypersurfaces, that satisfy
g∗ν j = λ jν j; as said above, we can assume this forms to be closed. If we
have dim(M) of them, either there is an invariant, non constant, meromorphic
function, or the forms ν j define an invariant parallelism on the complement
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of the invariant hypersurfaces. With respect to this parallelism, g acts as an
affine transformation (as Tchebychev and Lattès maps do).

2.7. Ueda’s example (see [17]). Let us show that Theorem A can not be
extended when the hypersurfaces Wi are just forward invariant, i.e. g(Wi) =
Wi.

Let f be an endomorphism of the projective line P1(C), with degree d ≥ 2.
Assume that f has two periodic points x0 and y0 which are not totally invariant
and have distinct multipliers; here, by definition, the multiplier of a periodic
point x with f k(x) = x is the non negative k-th root of the modulus of the
derivative |( f k)′(x)|.

Let h ∈ End(P1(C)×P1(C)) be the diagonal endomorphism h = ( f , f ).
Since h commutes to η(x,y) = (y,x), it induces an endomorphism of the quo-
tient space (P1(C)×P1(C))/η. This complex surface parametrizes unordered
pairs of points of P1(C) and is isomorphic to the projective plane P2(C); us-
ing affine coordinates, the natural projection π : P1(C)×P1(C)→ P2(C) can
be identified with the map

π(x,y) = (xy,x+ y).

The image of the diagonal ∆ is the conic C = {(u,v); v2 = 4u}; horizontal
and vertical lines in P1(C)×P1(C) are mapped to the lines of P2(C) which
are tangent to C. The endomorphism g preserves C and the action of g on
C is conjugate to the action of f on P1(C) by π : ∆→ C. Since h permutes
horizontal (resp. vertical) lines,

• g permutes the set of lines tangent to the conic C.

In particular, each periodic point of f gives rise to a periodic tangent line.
Thus,

• the number of g-periodic lines is infinite.
Let us now assume that there is a non constant meromorphic function

Ψ : P2(C) 99K P1(C) and an endomorphism g of P1(C) such that

Ψ◦g = g◦Ψ.

Let us lift Ψ to Ψ̂ = Ψ◦π : P1(C)×P1(C) 99K P1(C). Then Ψ̂◦h = g◦ Ψ̂.
Let m = (x,y) be a periodic point of h of period k. The differential D(hk)m

must preserve three directions: The horizontal direction, the vertical one, and
the direction tangent to the level curve F(m) of Ψ̂ through m. If the multiplier
of the periodic point x of f has a larger modulus than the multiplier of y, then
the level curve F(m) must have a horizontal tangent at m. Let us apply this
remark to the point m0 = (x0,y0). By assumption neither x0 nor y0 is totally
invariant; taking preimages of the point m0, we see that there exists a Zariski
dense subset of points mi ∈ P1(C)×P1(C) such that F(mi) has a horizontal
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tangent at mi. This implies that Ψ̂ is a non constant rational function of the
second coordinate y. We get a contradiction because such a function is not
invariant under the action of η. This contradiction shows that

• if Ψ : P2(C) 99K P1(C) is a rational function, and g is an endomor-
phism of P1(C) such that Ψ◦g = g◦Ψ, then Ψ is constant.

In fact, the same proof shows that g does not preserve any algebraic foliation,
but g preserves the algebraic 2-web of lines tangent to the conic C.

3. MEROMORPHIC TRANSFORMATIONS

Let g : M 99KM be a meromorphic transformation of M. The indeterminacy
set Ind(g) is a Zariski closed subset of M of codimension ≥ 2. The comple-
ment Dom(g) of Ind(g) is the domain of definition of g.

3.1. Strong total invariance. Let α be a holomorphic 1-form on an open
subset U of M. Let V be the preimage of U under the holomorphic map
g : Dom(g)→M, and V ′ be the interior of the closure of V in M (thus adding
indeterminacy points of g to V ). Then g∗α is a well defined holomorphic
1-form on V and Hartogs theorem shows that g∗α extends to a holomorphic
section of the sheaf Ω1

M on V ′. This defines a linear map g∗ from the set of
sections of Ω1

M on U to the set of sections on V ′. In what follows, we assume
that g is dominant: The image of Dom(g) is Zariski dense in M and, equiva-
lently, g∗ is an injection from Γ(Ω1

M,U) to Γ(Ω1
M,V ′) for all open subsets U

of M.
The exceptional locus Exc(g) is the set of points m in M such that there is

a curve through m which is mapped to a point by g. Since g is dominant, the
codimension of Exc(g) is positive.

Let W ⊂M be a hypersurface. One says that W is strongly totally invariant
if the total transform g∗(W ) of W by g is a multiple of W. This means that there
is a positive integer m such that local equations ϕ of W are transformed into
m-th power of local equations when composed with g. With this definition,
Theorem A and its proof extend to strongly invariant hypersurfaces of rational
maps.

Unfortunately, this definition is not appropriate to rational transformations,
as the following example shows.

Example 3.1. Let C be a smooth cubic curve in the projective plane, and p
be a point of C. Let fp : P2(C) 99K P2(C) be the birational involution that
preserves the pencil of lines through p and fixes C pointwise. Its action on
the plane can be described as follows. Let L be a generic line through p; it
intersects C in three points p, a, and b. By definition, fp preserves L, fixes a
and b, and ( fp)|L is the unique non trivial involution with these properties. The
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line is isomorphic to P1(C) and, choosing homogenous coordinates along L
with a = [0 : 1] and b = [1 : 0], we have fp[x : y] = [−x : y]. The indeterminacy
points of fp are contained in C; one of them is p, and the other are points
q ∈C such that the line (pq) is tangent to C at q

In this example, all points of C \ Ind( fp) are fixed by fp, but C is not
strongly invariant; its total transform contains all exceptional curves of fp.
Choosing different points pi in C, and composing the fpi, we get birational
transformations of the plane with infinite order and a cubic curve of fixed
points. This behavior corresponds to a general fact: If a curve C is invariant
under a birational transformation f of the plane, then C contains indetermi-
nacy points of f (see [9] for example).

Remark 3.2 (see [2]). Let p1, ... pn be n generic points on the cubic curve
C. Blowing up all the indeterminacy points of the involutions fpi , we get a
surface X on which the fpi lift simultaneously to automorphisms. The com-
position of three of them g = fp1 ◦ fp2 ◦ fp3 is an automorphism with positive
entropy and with a smooth genus one curve of fixed points. This answers the
open question mentioned in [9], page 2987.

3.2. Total invariance. Let us define a more natural notion of invariance. One
says that W is totally invariant if its strict transform by g is equal to W (as a
set). For endomorphisms, this notion coincides with the definition given in
the introduction.

Let c(g) be the number of irreducible components of the codimension 1
part of the set of critical values of g. Let e(g) be the number of irreducible
components of Exc(g).

Theorem B. Let M be a compact complex manifold, and g be a dominant
meromorphic transformation of M. If the number of totally invariant hyper-
surfaces of M is strictly bigger than the sum

c(g)+ e(g)+dim(M)+dim(H1(M,Ω1
M)),

then g preserves a non constant meromorphic function.

Unfortunately, the numbers c(g) and (e(g) depend on g, and are not bounded
by the geometry of M; if M is projective, with a given polarization, c(g)+e(g)
can be bounded in term of the degree of g. A similar phenomenon appears in
Ghys-Jouanolou theorem.

Corollary 3.3. On a compact complex manifold, a dominant meromorphic
transformation with an infinite number of totally invariant hypersurfaces pre-
serves a non constant meromorphic function.
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Proof of Theorem B. We follow the same lines as in the proof of Theorem A.
By assumption, g has k totally invariant hypersurfaces W j, 1≤ j ≤ k, with

k > c(g)+ e(g)+dim(M)+dim(H1(M,Ω1
M)).

For each W j, we denote by W j
i its irreducible components.

Let W be a totally invariant hypersurface and Wi, be its irreducible compo-
nents. Then g∗σWi = miσW

ι−1(i)
+ σFi where Fi is a hypersurface contained in

Exc(g). The integer mi is different from 1 if, and only if Wi is contained in
the set of critical values of g. Thus, there are at least k− c(g) totally invariant
hypersurfaces W j for which mi = 1 for all their irreducible components W j

i .
For each of these invariant hypersurfaces W j, we can write

g∗σW j = σW j +σF j

where, by definition,
σW j = ∑

i
σW j

i

is a sum over the irreducible components W j
i of W j. The sections σF j of

Q1
M are contained in the vector space which is spanned by the σEi where Ei

describes the set of irreducible components of Exc(g); the dimension of this
complex vector space is equal to e(g). Thus, taking linear combinations, we
construct k− c(g)− e(g) sections σ j of Q1

M such that
• g∗σ j = σ j for all 1≤ j ≤ k− c(g)− e(g);
• the k− c(g)− e(g) sections σ j of Q1

M are linearly independent.
The arguments of sections 2.4 and 2.5 can then be reproduced to complete the
proof. Since the multiplicties mi are all equal to 1, the meromorphic function
Φ that is constructed is g-invariant: Φ◦g = Φ. �
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