SURFACE GROUPS IN THE GROUP OF GERMS OF ANALYTIC
DIFFEOMORPHISMS IN ONE VARIABLE.

SERGE CANTAT, DOMINIQUE CERVEAU, VINCENT GUIRARDEL, AND JUAN SOUTO

ABSTRACT. We construct embeddings of surface groups into the group of
germs of analytic diffeomorphisms in one variable.

1. INTRODUCTION

1.1. The main result. Let C be the field of complex numbers and Diff(C,0)
the group of germs of analytic diffeomorphisms at the origin 0 € C. Choosing
a local coordinate z near the origin, every element f € Diff(C,0) is determined
by a unique power series

fR) =aiz+wm? +az’ +...+a "+ ...

with f'(0) = a; # 0 and with a positive radius of convergence

~1

rad(f) = (hmsup\anyl/") . (1.1)
n—r—+oo

We denote by Diff(R,0) C Diff(C,0) the subgroup of real germs in this chart, i.e.

with @; € R for all i € N (this inclusion depends on the choice of the coordinate

z). The main goal of this note is the following result, that answers a question

raised by E. Ghys (see [8]], §3.3, or also [5], Problem 4.15).

Theorem A. Let I' be the fundamental group of a closed orientable surface, or
of a closed non-orientable surface of genus > 4. Then I" embeds in the group

Diff(R,0) and in particular in Diff(C,0).

We shall present three proofs of Theorem A. For simplicity, in this introduc-
tion, we restrict to the case where I is is the fundamental group of an orientable
surface of genus 2, and we consider the presentation

'y = (a1,b1,a2,by| [a1,b1] = [az,b2]). (1.2)
1
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Our proofs of theorem A are inspired by [3], where it is proved that a compact
topological group or a connected Lie group which contains a dense free group
of rank 2 contains a dense subgroup isomorphic to I';.

The surface groups considered in Theorem A are examples of limit groups.
Recently, and independently, A. Brudnyi proved a related embedding theorem:
limit groups embed into the group of (non converging) formal germs of diffeo-
morphisms (see [6]])

1.2. Compact groups. Let us describe the argument used in [3] to prove the
following result.

Theorem 1.1 ([3]). If a compact group G contains a free group F of rank 2,
then there is an embedding p: I'y — G such that F C p(I'2).

Proof. Denote by F,, the free group on m generators. The first ingredient is
a result by Baumslag [1] saying that I'; is fully residually free; this means
that there exists a sequence of morphisms py : I'—F> which is asymptotically
injective: for every g € I, \ {1}, pn(g) # 1 if N is large enough.

To be more explicit, we use the presentation of I'5, and we note that the
subgroup (ay,b1) of I'; is a free group F» = (ay,b;). Let p: Ty—(ay,b;) be the
morphism fixing a; and by and sending a, and b; to a; and b respectively. Let
7:I',—I be the Dehn twist around the curve ¢ = [ay,b;], i.e. the automorphism
that fixes a; and b, and sends ay and b to care~! and chye™! respectively.

Proposition 1.2 (see [3, Corollary 2.2]). Given any g € I';\ {1}, there exists a
positive integer ng such that potV(g) # 1 for all N > ny,.

Now, fix an embedding 1: (a;,b;) — G such that1({aj,b;)) = F. Composing
potV with 1, we get a sequence of points py := 10 pot" in Hom(I';,G). Now,
consider the element & = 1(p(c)) of G, and let T be the closure of the cyclic
group (h) in the compact group G. For ¢ € T, define a morphism p,: I'; — G by

pr(ar) =top(ar), pi(az) =totop(ar)ot!, (1.3)
p:(b1) =10 p(by), pi(by) =tovop(by)or™!; (1.4)

these representations are well defined and satisfy p; =10 pot" when t = iV,
Moreover, on the subgroup (a;,b1), p; coincides with 1o p, so F C p;(I'2). Thus,
(pt)rer is a compact subset R (7)) C Hom(I"2, G) that contains the sequence of

points py. Forevery ginI> \ {1}, the subset R (T)s = {p; | p:(g) # 1} is open,
and Proposition[I.2]shows that it is dense because {h" | n > no} is dense in T for
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every integer ng. By the Baire theorem, the subset of injective representations
pr is a dense G in R (T'), and this proves Theorem 1.1 O

The group Diff (R, 0) contains non-abelian free groups (this is well known, see
Section , and one may want to copy the above argument for G = Diff(R,0)
instead of a compact group. The Koenigs linearization theorem says that if f €
Diff (R, 0) satisfies f'(0) > 1, then f is conjugate to the homothety z — f7(0)z;
in particular, there is a flow of diffeomorphisms (¢'),cg for which ¢! = f. In
our argument, the compact group 7 introduced to prove Theorem will be
replaced by such a flow, hence by a group isomorphic to (R,+). Also, in that
proof, h = 1(p(c)) was a commutator, and the derivative of any commutator in
Diff(R,0) is equal to 1 at the origin, so that Koenigs theorem can not be applied
to a commutator. Thus, we need to change py into a different sequence of
morphisms: the Dehn twist T will be replaced by another automorphism of I,
twisting along three non-separating curves.

This argument will be described in details in Sections 2] and 3], the reader who
wants the simplest proof of Theorem A in the case of orientable surfaces only
needs to read these sections. Non orientable surfaces are dealt with in Section 4l

1.3. Lie groups. Now, let us look at representations in a linear algebraic sub-
group G of GL ,,(R). Assuming that there is a faithful representation1: F, — G
with dense image, we shall construct a faithful representation I'; — G.

The representation variety Hom(I';, G) is an algebraic subset of G*. Let ®_be
the irreducible component containing the trivial representation. Let py: I —
F; be an asymptotically injective sequence of morphisms, as given by Baum-
slag’s proposition. When the image of p is dense, one can prove that 1o py is in
R_ for arbitrarily large values of N. For g € I'; \ {1}, the subset K, C & of ho-
momorphisms killing g is algebraic, and it is a proper subset because it does not
contain 1o py for some large N. Then, a Baire category argument in &_implies
that a generic choice of p € K _1s faithful.

To apply this argument to G = Diff(R,0), one needs a good topology on
Diff(R,0), and a good “irreducible variety” X C Hom(I"», G) containing 1o py,
in which a Baire category argument can be used. This approach may seem diffi-
cult because Hom(I'2, G) is a priori far from being an irreducible analytic variety
but, again, the Koenigs linearization theorem will provide the key ingredient.

First, we shall adapt an idea introduced by Leslie in [17] to define a useful
group topology on Diff (R, 0) (see Section[5)). With this topology, Diff(R,0) is an
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increasing union of Baire spaces, which will be enough for our purpose. Denote
by Cont(R,0) C Diff(R,0) the set of elements f € Diff(R,0) with |f/(0)| < 1;
Cont stands for “contractions”. Consider the set X of representations p: I’ —
Diff(R,0) with p(a;) tangent to the identity, and p(b;) € Cont(R,0). Then, the
key fact is that the map

¥ : R —Cont(R,0) x Diff(R,0) x Diff(R,0)
p = (p(b1),p(a2),p(b2))

is a continuous bijection. Indeed, the defining relation of I' is equivalent to
ajbia; ' = [az,ba)by. Given (g1, f2,82) € Cont(R,0) x Diff(R,0) x Diff(R,0),
the germs g; and [f2, g2]g1 have the same derivative at the origin and, from the
Koenigs linearization theorem, there is a unique f; € Diff(R,0) tangent to the
identity solving the equation fig1f, I= [f2,82]g1: by construction there is a
unique morphism p: I'; — Diff(R,0) that maps the a; to the f;, and the b; to
the g;, and this representation satisfies ¥(p) = (g1, f2, g2). With this bijection ¥
and the topology of Leslie, we can identify & with a union of Baire spaces, in
which the Baire category argument applies.

1.4. Other fields. Let k be a finite field with p elements. The group Diff! (k,0),
also known as the Nottingham group, is the group of power series tangent to
the identity and with coefficients in the finite field k. It is a compact group
containing a free group (see [26]). Thus, by [3]], it contains a surface group.

Now, let p be a prime number, and let Q,, be the field of p-adic numbers.

Consider the subgroup Diff! (Z,,0) C Diff(Qp,0) of formal power series tan-
gent to the identity and with coefficients in Z,. First, note that all elements f
of Diff!(Z,,0) satisfy rad(f) > 1, so that Diff' (Z,,0) acts faithfully as a group
of (p-adic analytic) homeomorphisms on {z € Z, ; |z| < 1}. So, in that re-
spect, Diff! (Z,,0) is much better than the group of germs of diffeomorphisms
Diff(C,0). Moreover, with the topology given by the product topology on the
coefficients a, € Z,, of the power series, the group Diff! (Z,,0) becomes a com-
pact group. And this compact group contains a free group. By the result of [3]
described in Section[I.2] it contains a copy of the surface group I';. So, we get
a surface group acting faithfully as a group of p-adic analytic homeomorphisms
on{z€Z,;|z|<1}.In Sectionwe give a third proof of Theorem A that starts
with the case of p-adic coefficients.
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1.5. Organisation. The article is split in four parts.

I.- Sections [2] to [] give a first proof of Theorem A; Section [ is the only
place where we deal with non-orientable surfaces. We refer to Theo-
rem B in Section4.3|for a stronger result, in which the field R is replaced
by any non-discrete, complete valued field k.

IL— Section [5]and [ present our second proof, based on the construction of a
group topology on Diff(C,0).
ITL— Then, our p-adic proof is presented in Section 7}
IV.— Section[§|draws some consequences and list a few open problems, while
the appendix shows how to construct free groups in Diff (C,0), or Diff (k,0)
for any non-discrete and complete valued field.

Acknowledgement. Thanks to Yulij Ilyashenko, Frank Loray and Ludovic Mar-
quis for several discussions on this subject, and to the participants of the semi-
nars of Dijon, Moscou, Paris, and Toulouse during which the results of this paper
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—Part1. -

2. GERMS OF DIFFEOMORPHISMS AND THE KOENIGS LINEARIZATION
THEOREM

2.1. Formal diffeomorphisms. Let k be a field (of arbitrary characteristic).
Denote by k[z] the ring of formal power series in one variable with coefficients
in k. For every integer n > 0, let A,: k[z] — k denote the n-th coefficient func-
tion:

An: f=) and" = Au(f) = an. (2.1)

A formal diffeomorphism is a formal power series f € k[z] such that Ap(f) =0
and A1 (f) # 0. The composition f o g determines a group law on the set

Diff(k,0) = {f € k[z] | Ao(f) =0 and A, (f) # 0} 2.2)

of all formal diffeomorphisms.

For each n > 1, there is a polynomial P, € Z[A,By,...,A,,By| such thatif f =
Y an,z" and g =Y b,7" then fog =Y, P,(a1,b1,...,a,,b,)Z". Similarly, there
are polynomials Q, € Z[Ay,...,A,][A] '] such that f~' =Y, Ou(ay,...,a,)7"
if f =Y a,7"; the polynomial function Q, is given by the following inversion
formula:

Ly <—1>k1+k2+....<"+1>~"<"—1+’<1+k2+~->.(a_z)k‘ (_3)"

n VAl oo
al ky .. kl.kz. ai aj

where a; = A;(f) and the sum is over all sequences of integers k; such that
ki +2ky+3kzs+---=n—1.

We refer to [14] where this is proved for f and g tangent to the identity; the
general case easily follows.

To encapsulate this kind of properties, we introduce the following definition.
Let m be a positive integer. By definition, a function Q: Bﬁ(k,o)m —Kkisa
polynomial function with integer coefficients, if there is an integer n, and a
polynomial g € Z[A1 1,A21,. -\ Am—11,Amn] [Ai}, ... 7A;.11] such that

Q(f1,---»fm) = a(A1(f1), -, An(fm)) (2.3)

for all m-tuples (f1,...,fm) € Sﬁ(k,O)m; we denote by Z[Sif\f(k,O)m] this ring
of polynomial functions.
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Let F,, = (e1,...,e,) be the free group of rank m. To every word w =

Zl e eZk in F,,, with exponents n; € Z, we associate the word map w : Diff (k,0)” —

Diff (k, 0),

e

def
(gl,...,gm)r—>w(g1,...,gm)égzlo...ogz{". (2.4)
Since composition and inversion are polynomial functions on Sif\F(k, 0), we get:

Lemma 2.1. Let w: Bﬁ(k,O)m — Bﬁ(k,O) be the word map given by some
element of the free group ¥,,. For each n > 1, there is a polynomial function
O € Z[Diff(k,0)™] such that

An<W(817---agm)) - Qw,n(gla---agm)
forallgi,...,gm € Diff (k,0).

2.2. Diffeomorphisms and Koenigs linearization Theorem. Suppose now that
k is endowed with an absolute value |- |: k — R;. Then k becomes a metric
space with the distance induced by | - |. We shall almost always assume that

e Kk is not discrete, equivalently there is an element x € k with |x| # 0, 1;
e Kk is complete.

Let k{z} be the subring of k[z] consisting of power series f(z) = ¥ a,z" whose
radius of convergence rad(f) is positive (see Equation (I.I))). When k is com-
plete, the series Y a,z" converges uniformly in the closed disk D, = {z € k| |z| <
r} for every r < rad(f). The group of germs of analytic diffeomorphisms is the
intersection Diff (k,0) := Eﬁ(k, 0) Nk{z}; it is a subgroup of Si?F(k,O).

A germ f € Diff(k,0) is hyperbolic if |A;(f)| # 1. The following result is
proved in [21, Chapter 8] and [12, Theorem 1, p. 423] (see also [24, Theorem
1] or [I15]).

Theorem 2.2 (Koenigs linearization theorem). Let (K,|-|) be a complete, non-
discrete valued field. Let f € Diff(k,0) be a hyperbolic germ of diffeomorphism.
There is a unique germ of diffeomorphism h € Diff(k,0) such that h(f(z)) =
A1(f)-h(z) and Ay (h) = 1.

3. EMBEDDING ORIENTABLE SURFACE GROUPS

3.1. Abstract setting. Our strategy to construct embeddings of surface groups
relies on the following simple remark. Let I' be a countable group, and G be
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any group. Consider a non-empty topological space R, withamap P :s5s € R —
@, € Hom(I',G). Given g € I, set R, = {s € R | D,(g) = 1}.

Lemma 3.1. Assume that R_has the following 3 properties:
(1) Baire: R is a Baire space;
(2) Separation: for every g # 1 in T, ®y(g) # 1 for some s € R;
(3) Irreducibility: for every g €1, either Rg = R or Ry is closed with empty
interior.
Then the set of s € R_such that @ is an injective homomorphism is a dense Gg
in R ; in particular, it is non-empty.

Proof. For any g € I'\ {1}, one has R, # R by (2), so K, is closed with empty
interior by (3). By the Baire property, R \ (Uger (1} Rg) is a dense Gs. But
R\ (Uger\{11 Rg) is precisely the set of s € K such that P is injective. O

3.2. Baumslag Lemma. As explained in the introduction, it is proved in [1]
that the fundamental group of an orientable surface is fully-residually free. We
need a precise version of this result; to obtain it, the main technical input is the
Baumslag’s Lemma (see [22, Lemma 2.4]):

Lemma 3.2 (Baumslag’s Lemma). Let n > 1 be a positive integer. Let gy, ...,
gn be elements of Fy, and let cy, ..., ¢, be elements of ¥\ {1}. Assume that for
all1<i<n-—1, gflcigi does not commute with ci 1. Then for N large enough,

N, N N N
80C1 81€C -..Cy_18n—1Cn 8n 7 1.

Sketch of proof (I). The group PSL,(R) acts on the hyperbolic plane H by isome-
tries, and contains a subgroup I" such that (0) I' is isomorphic to Fy, (1) every
element g # Id in I" is a loxodromic isometry of H], and (2) two elements g and
hinT'\ {Id} commute if and only if they have the same axis, which happens if
and only if they share a common fixed point on dH. One can find such a group
in any lattice of PSL,(R). To prove the lemma, we prove it in I".

Fix a base point x € H, denote by a; and ®; the repulsive and attracting fixed
points of ¢; in dH, and consider the word

N_ N
80C1 81C 82-

For m large enough, ¢'g> maps x to a point which is near w,. If g; () were
equal to oy, then ¢y and glczgfl would share the common fixed point o1, and
they would commute. Thus, g;(®;) # o and then gocﬁ”/gw’z"gz maps x to a
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point which is near go(®;) if m’ is large enough. Thus, goc? g1c) g2(x) # x for
large N. The proof is similar if » is larger than 2. U

Sketch of proof (II). We rephrase this proof, using the action of F; on its bound-
ary, because this boundary will also be used in the proof of Proposition

Fix a basis ay,...,a; of F, and denote by dF; the boundary of F;. The ele-
ments of dF, are represented by infinite reduced words in the generators a; and
their inverses. If g is an element of Fj, and o is an element of JF}, the concatena-
tion g - o is an element of dFy: this defines an action of F; by homeomorphisms
on the Cantor set JF. If g is a non-trivial, its action on dFy has exactly two fixed
points, given by the infinite words m(g) =g---g--- and a(g) =g~ '---g7 !
(there are no simplifications if g is given by a reduced and cyclically reduced
word). Then we get: (1) every element g 7 Id in Fy has a north-south dynamics
on dF}, every orbit g" - B converging to ®(g), except when = a(g), and (2) two
elements g and 4 in Fy \ {Id} commute if and only if they have the same fixed
points, which happens if and only if they share a common fixed point on JF.
One can then repeat the previous proof with the action of Fy on its boundary. [

ag = ag = Qo
a] = 771a17)1_1
a1 = 771&177;1
az = naaamn; '
az = ﬁ2a2ﬁ51
ty=mi "

ty = naily '

FIGURE 1. The fundamental group I';.— The «; are three loops, while
the n; and M; are four paths. The figure is symmetric with respect to
the plane cutting the surface along the loops .

Write the surface of genus 2 as the union of two pairs of pants as in Figure|I]
with respective fundamental groups

<a(),a1,a2 | apa1ap = 1> and <ﬁ(),51,52 | dpa1ay = 1>. 3.1)
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This gives the presentation
ap,ai,an, aparay =1,
I, = ( ao,a,an, apaia =1, (3.2)
— — —1 — —1
1, ap=ap, ay =1t; ajfy, ap =1, ax

which can be rewritten as
—1 —1
I = <ao,a1,a2,t1,t2 | apaiar =1, aoty aiht, axi = 1 > (3.3)

Denote by p : T'y—(ag,a1,a2) ~ F; the morphism defined by p(a;) = a;, p(a;) =
aj,and p(t;) = p(tz) = 1. Let T: I';—1I"; be the (left) Dehn twist along the three
curves ao, ay, and ay, i.e. the automorphism fixing a; and sending #; to a;t;a, !
for i = 1,2. Note the following facts:
e Tsends g, to apd;a, I in particular, if g is a word in the @;, then T (g) =
N_  —N.
° pO‘CN fixes a; for every i =0, 1, 2, and

po‘cN(tj) :a]]yaaN (3.4)

for j =1, 2.

Proposition 3.3. For every g € I';\ {1}, there exists a positive integer ngy such
that pot™(g) # 1 for all N > ny.

Proof. To uniformize notations, we define #p = 1 so that for all i € {0,1,2} the
relation tiﬁiti_l = a; holds, and T maps #; to a;t;a, I LetA = (ap,ay,az) and
A = (ay,a,,a). Write g as a shortest possible word of the following form:

g = goti, g1t;, ' gatiy ---gn—11; ' &n (3.5)

where nis even, i, € {0,1,2} forall k < n, g; € A for k even, g; € A for k odd, and
the exponent of #;, is (—l)kle (we allow g = 1). One easily checks that g can be
written in this form because all generators can (for instance r; = 1-#;- 11y L. 1).

If k is such that iy = ix41, then g ¢ (a;,) if k is even (resp gx ¢ (a;,) if k is
odd) as otherwise, one could shorten the word using the relation t,-ka,-ktizl = aj,.

First claim. Ifk € {2,...,n—2} is even, g;laikgk does not commute to a;,_, .

If i} # ix41, this is because gx € A ~ F5 and no pair of A-conjugates of a;, and
a;,,, commute. If iy = i; 1, then gx ¢ (a;,) as we have just seen; since g;, is nota
proper power in A, this shows that gj. (a;;“’) #+ a?;‘” in the boundary at infinity of
the free group A, so g,?la,-k gk does not commute with g;,, and the claim follows.

Similarly, using the fact that g; € A for odd indices, we obtain:
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Second claim. Ifk <n—1isodd, g,?lﬁ,-k gk does not commute to a;,_, .

We have ™ (gi) = gy if k is even, and ™ (gi) = a) gxay™ if k is odd. After
simplifications, one has
Y

N 1 _-N_ N ~1_—N
T (8) = goaj ti &1ty 4y, gadintis - 8n—1t; a; " &n- (3.6)

For k odd, denote by g; € F, the image of g, under p. Applying p, we thus get
potV(g) = goal g1a;, N g2ali gy ... &) 1a; " gn, 3.7)
with g} := p(g;). Let us check that the hypotheses of the Baumslag Lemma
apply. For k even, the first claim shows that g;Iaikgk does not commute to
aj,.,» as required. For k odd, we use that p is injective on A and that A con-
tains gk_lﬁik gk and @;,_, ,, and we apply the second claim to deduce that g;:laik g
does not commute to a;,,. Applying Baumslag’s Lemma, we conclude that
pot™(g) # 1 for N large enough. O

3.3. Embeddings of free groups. The group Diff(R,0) contains non-abelian
free groups. This has been proved by arithmetic means [29, [11], by looking
at the monodromy of generic polynomial planar vector fields [13]], and by a
dynamical argument [20]. We shall need the following precise version of that
result.

Theorem 3.4. Let (k,|-|) be a complete non-discrete valued field. For every
pair (A1,Ay) in K*, there exists a pair fi, f € Diff(k,0) that generates a free
group and satisfies f{(0) = A and f3(0) = As.

This result is proved in [2, Proposition 4.3] for generic pairs of derivatives
(A1,A2). We provide a proof of Theorem in the Appendix, extending the
argument of [20]. We refer to Section|/.1|below for other approaches.

3.4. Embedding orientable surface groups. We can now prove Theorem A
for orientable surfaces:

Theorem 3.5. Let Iy be the fundamental group of a closed, orientable surface
of genus g. Then, there exists an injective morphism I';—Diff (R, 0).

The group Ty is trivial. The group I'y is isomorphic to Z?, hence it embeds
in the group of homotheties z +— Az, A € R% . If g > 2, then I', embeds in I';.
To see this, fix a surjective morphism I'>, — Z, and take the preimage A C I
of the subgroup (g — 1)Z C Z. Then, A is a normal subgroup of index g — 1
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in I';, and it is the fundamental group of a closed surface X, given by a Galois
cover of degree g — 1 of the surface of genus 2. Since the Euler characteristic is
multiplicative, the genus of ¥ satisfies —2(g—1) =2 —2g(X). Thus, g(X£) =g
and A 1is isomorphic to I';. Thus, we now restrict to the case g = 2.

By Theorem [3.4] we can fix an injective morphism
po : F» = (ap,ay,as | apayay = 1)—Diff(R,0) (3.8)
such that the images f = po(a1), f2 = po(a2), and fo = po(ao) = f5 ' f; ' satisfy

[i0) =4 >1, £(0)=M>1, f5(0)=2% <1 (3.9)

for some real numbers A; and A, > 1 and A9 = (AA2)~!. In particular, fp,

f1, and f are hyperbolic. For A € R*, denote by m;, (z) = Az the correspond-
ing homothety. For i € {0,1,2}, the Koenigs linearization theorem shows that
fi 1s conjugate to the homothety m; : there is a germ of diffeomorphism #; €
Diff(R,0) such that f; = hjom_ o hfl. Thus f; extends to the multiplicative
flow @; : R —Diff(R,0) defined by ¢f = h; om; ohl._1 for s € R ; by contruc-
tion, (p?"' = f; and @; commutes with f; for all s > 0. We note that s — @] is
polynomial in the sense that for all k € N, s — Ax(@}) is a polynomial function
with real coefficients in the variables s and s~ .
Set R = (R%)3. Asin Section consider the presentation

—1 —1
I, = <a0,a1,a2,t1,t2 | apaiay = 1, apty, aiht, axh = 1 > (3.10)

Given s = (so,51,52) € (R%)3, we define a morphism @, : I, — Diff(R,0) by

®y(a;) = f; forie{0,1,2} (3.11)
D,(t;) = @ligl  forie {1,2} (3.12)

This provides a well defined homomorphism because ¢; commutes with f;. As
we shall see below, this morphism ®; is constructed to coincide with pgo potV

for s = (A),AY,AY) (see Equation (3.4)).

Remark 3.6. For every s € &, the image of ®; contains f; and f>, hence the
free group po(F2). This will be used in Section [4.3]

To conclude, we check that the three assumptions of Lemma@hold for this
family of morphisms (®y)scx -

Clearly, R _1is a Baire space.

To check the irreducibility property, consider g € I'> and assume that R, # R :
this means that there exists a parameter s € X and an index k > 1 such that
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Ay(Ds(g)) # Ax(1d). The map s = (so,51,52) > Ax(Ps(g)) —Ax(Id) is a polyno-
mial function in the variables sgl, slil, and szjEl that does not vanish identically
on &, so its zero set is a closed subset with empty interior.

We now check that & has the separation property. As in Section denote
by p : T —F; = (ap,a;,a; | apaja; = 1) the morphism obtained by killing #
and t,. For the parameter s = (1,1, 1), &y is equal to pg o p. More generally, set-
ting sy = (AY,AY,A)) for N € N, the morphism @, : I, — Diff(R,0) satisfies

@, (a;) = f; forie{0,1,2} (3.13)

¥
D, (1) =0, 9" = £ fy forie {1,2}. (3.14)

This means that &, = pgop otV where, as in Section T:1p—1I% is the
Dehn twist along the three curves a;. By Proposition forall g e I\ {1}
there exists N € N such that pot"(g) # 1. Since py is injective, this implies that
®;, (g) # 1 which shows that & has the separation property.

4. NON-ORIENTABLE SURFACE GROUPS

Theorem 4.1. Let Ny be the fundamental group of a closed non-orientable sur-
face of genus g > 4. There exists an injective morphism N,— Diff(R,0).

Remark 4.2. The fundamental group N3 of the non-orientable surface of genus
3 is not fully residually free, and our methods do not apply to this group. (See [18]],
Proposition 9.)

4.1. Even genus. We first treat the case of an even genus g > 4. In this case,
the group N, embeds in N;. Indeed, the non-orientable surface of genus 4 is the
connected sum of a torus R?/Z? with two projective planes P?(R). Taking a
cyclic cover of the torus of degree k, we get a surface homeomorphic to the con-
nected sum of R?/Z? with 2k copies of P?(R), hence a non-orientable surface
of genus 2(k+ 1). Thus, it suffices to prove that Ny embeds in Diff(R,0).

The non-orientable surface of genus 4 is homeomorphic to the connected sum
of 4 copies of P>(R), and this gives the presentation (see Figure

Ny = (ay,a2,by,by | a3asb3b? = 1). 4.1)

Let p : Ny—{ay,ay) be the morphism fixing aj,a; and sending b; and b, to
afl and a, ! respectively. Let T: Ngy— N4 be the Dehn twist around the curve
Y= (a%a%)_l, 1.e. the automorphism that fixes a; and a; and sends b and b; to

vb1y~! and ybyy~! respectively.
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FIGURE 2. The fundamental group N4.— The base point is represented
by e, the 4 generators are a|, a», by, by, and the curve 7y is used to
construct the Dehn twist 7.

Lemma 4.3. Given any g € N4\ {1}, there exists ng € N such that for all N > ny,
potV(g) # 1.

For the proof. The proof of this statement is completely analogous to the proof
of [3, Corollary 2.2], using Baumslag Lemma, we leave it as an exercise to the
reader. See also [9, Proposition 4.13]. [

Using Theorem we fix two germs of diffeomorphisms f; and f, € Diff(R,0)
generating a free group and satisfying f{(0) > 1 and f3(0) > 1. We denote by
Po - F, = <a1,a2>—>DifF(R, 0) 4.2)

the injective morphism sending a; to f; for i € {1,2}. In particular,

po(¥) = (ffof5)™" (4.3)
is a hyperbolic germ: its derivative A = ((f7 o f7)'(0))~! is < 1. The Koenigs
linearization theorem gives an element / € Diff(R,0) such that po(y) =hom o
h~!. Consider the multiplicative flow ¢ : R’ —Diff(R,0) defined by ¢° = go
mgog . As above, " = po(y), ¢* commutes with po(y) for all s > 0, and
s — @* is a polynomial map: for all k € N, s — Ag(¢*) is a polynomial in the
variables s and s .

Set R = R%. Given s € R, consider the morphism p : Ny — Diff(R,0)
defined by

ap — fi a — fr
bl — (psflfl(pfs b2 — (psfzfl(pfs.

This gives a well defined homomorphism because ¢° commutes with fl2 f22.
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We now check the three assumptions of Lemma (3.1} Clearly, & is a Baire
space. The irreducibility is a consequence of the fact that for any g € N4, and
any k € N the map s +— A;(@(g)) is a polynomial function in the variables s*'.
The separation property follows from Lemma [.3] together with the fact that

Py = poo pot and that py is injective.

4.2. Odd genus. We now treat the case of a non-orientable surface of odd genus
g =2k+1, k> 2. One can write Ny as (see Figure below)

Nyor = {ay,...,ax,¢,by,... by | a...aic*by ... b7 =1). (4.4)

This group splits as a double amalgam of free groups

Nag1 = anar) 5 (1e) o« (bib).  (@45)
al...ak:T1 c*z“{:bk...b1
We shall use the following notation to refer to this amalgam structure:
e Aj =(aj,...ax)and ej o = (a%...az)_l;

e Ay =(Y,c)and ey =7and er3 = cy=39;

o A3 =(by,...,by) and e3n = b]%...b%.
So, each of the A; is a free group and the amalgamation is given by e1 > = e2 |
and €23 =€32.

Define a morphism p: Ny 1—{ay,...,ax) ~ F; by
a;—a; fori<k C|—>a,:2
bi+sa ! fori<k—1 by > ay

(the structure of almagam shows that p is well defined).

Lemma 4.4. The morphism p: Nyx1—Fy is injective in restriction to each of
the three subgroups of the amalgam (4.5).

Proof. By construction, it is injective in restriction to (ay,...,ax) and in restric-
tion to (b1, ...,bx). Then, note that p({y,c)) = (a?...a?,a; %) is isomorphic to
F, because it is a non-abelian subgroup of a free group. Since F; is Hopfian, p
is necessarily injective in retriction to (y,c). O

Consider 8 =b?---b? = ¢ 2yand note that p(8) = a’a,*, ---a; . Let T be the

Dehn twist corresponding to the decomposition above, i.e. the automorphism
fixing a;, sending ¢ to ycy~! and sending b; to (Y8)b;(y8)~!. Since 7 is the
composition of the twists given by yand 6 and these two twists commute we get

D (b) = (PSS!, Vb€ As.
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FIGURE 3. The fundamental group Ny .

In this situation, one can prove the following lemma in a similar way to Propo-

sition [3.3]

Lemma 4.5. Given any g € Nyg11 \ {1}, there exists ng € N such that for all
N >ng, potV¥(g) # 1.

Proof. Write g as a word in the graph of groups, i.e. g = s0...5, with 5, € A,
(we allow s; = 1) for some ry € {1,2,3}, with rp.y =g £ 1, and rp =r, = 1.
We take this word of minimal possible length among words satisfying these
contraints. If k is such that r,_; = ri1, then s; ¢ (e, ) since otherwise, one
could shorten the word using the structure of amalgam (in particular s; % 1 in
this case). Now one easily checks that

™ (g) = soa’lesld;stz o dNg, (4.6)

where dy = e,,_, . € {10}, and & =y — i1 € {£1}.

We claim that s,?ldksk does not commute with dy 1. If di # dj. 1, this follows
from the fact that y commutes with no conjugate of d in Ay = (¢, 8). If dj = dj 1,
then ry_1 = riq1, 50 Sk & (erryy) = (di). If [sk_ldksk,dk] = 1, then sy preserves
the axis of d in the Cayley graph of the free group A,,, so s; is a power of d,
because di € {y,8} is not a proper power; this contradicts that s; ¢ (dy).

Denote by 5y, d; € F, the images of s, d; under p. Since p is injective on
each A, Ek_lﬁljk does not commute with 51, so the hypotheses of Baumslag
Lemma apply to the word

—eoN_ —eN_ —€,_1N

_ &N
potV(g)=dy si1d,"'52...d,"| Sud, 4.7
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so potV(g) # 1 for N large enough. O

Now consider k elements f1, ..., f; of Diff(R,0) generating a free group of
rank k with f/(0) > 1 foralli € {1,...,k}, and f{(0) < f](0). Such a set can be
obtained from two generators g; and g» of a free group of rank 2 with g/(0) > 1,
as in Theorem by taking f; = g’i og% ogl_i fori <kand f; = g’f 0g ogl_k. Let
po : Fr = (ay,...,a;)—Diff(R,0) be the injective morphism sending a; to f; for
i < k. In particular, po(y) = (fZo---0 f2) "  and po(p(8)) = fZo fi 4 0o f; 2
are hyperbolic. Using Koenigs linearization theorem as above, there exists two
multiplicative flows @ and y : R* —Diff(R,0) and a pair of positive real numbers
A and p such that (1) ¢* = po(y) and y* = po(p(8)), and (2) s — ¢* and s — y*
are polynomial mappings.

Set R = (Ri)2 and, for every (s,s’) € R, define a morphism p; ¢ : Nox1—Diff (R, 0)
by

a;— f; fori<k c»—>(psfk_2(p_s
b o' £ (@) fori<k—1 b o'y fil@'yt) !

(this is well defined because ¢* and \|IS/ commute with pg(7y) = ( f12 0-+-0 sz)*l
and po(p(8)) = f7 ofk__21 o---o f; % respectively).

The assumptions of Lemma[3.1]hold: % is a Baire space, and the irreducibil-
ity follows from the fact that the maps s — @y and s’ — @, are polynomials in the
variables sT!, s/, The separation property follows from Lemma together
with the fact that pyv v = poo po 7V, and that pg is injective.

4.3. Embeddings in Diff(k,0). The proofs just given provide the following
Statement.

Theorem B. Let (K, |-|) be a non-discrete and complete valued field.

(1) Let T be the fundamental group of a closed orientable surface, or a
closed non-orientable surface of genus > 4. Then, there is an embedding
of T into Diff (k,0).

(2) Let F C Diff(k,0) be a free group of rank 2, generated by two germs
f and g with |f'(0)| > 1 and |g'(0)| > 1. Then, there is an embedding
of I, the fundamental group of a closed, orientable surface of genus 2,
into Diff(k,0) whose image contains F.
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Proof. For the first assertion, we just have to replace R by k in the proofs of
Theorem [3.5| and The parameter space is ® = (k*)? or k* or (k*)2, and it
is a Baire space because (K, |- |) is complete.

For the second assertion, we start with a representation pg in Equation (3.8))
whose image is equal to . Remark shows that all the injective morphisms
@, that we get satisfy also ®;(I;) D F. O

—Part II. -

5. THE FINAL TOPOLOGY ON GERMS OF DIFFEOMORPHISMS

Let (k,|-|) be a complete field. This section introduces a new topology on
k{z} and Diff(k,0), which will be used in our second proof of Theorem A. The
reader may very well skip this section on a first reading.

5.1. The final topology over the complex numbers. Until Section we fo-
cus on the case k = C. Let r be a positive real number. Consider the subalgebra
A, of C{z} consisting of those power series f(z) = Y., a,z" which converge on
the open unit disk D, (i.e. rad(f) > r) and extend continuously to the closed
unit disk D,. When endowed with the norm
1711, = max|£(z)]; (5.1)
€D,
A, 1s a Banach algebra. If s < r, the restriction of functions f € A4, to the smaller
disk Dy determines a 1-Lipschitz embedding 4, — 4.
The space C{z} is the union of the algebras A4, and can be thus endowed with
the final topology associated to the colimit
C{z} = m% (5.2)
This means that a subset U C C{z} is open if its intersection with 4, is open
for every r > 0. Equivalently, a map @: C{z} — X to a topological space is
continuous if and only if its composition with the embedding 4, — C{z} is
continuous for all r. Unless we say it explicitly, open sets, neighborhoods, and
continuous maps refer, from now on, to this topology. A word of warning: for
r > s, the inclusion 4, — A, is not a homeomorphism to its image, and neither
is the inclusion 4, — C{z}.
The goal of this section is to obtain several basic properties of this topology.
For instance, we are going to prove that there is a filtration of C{z} by compact
subsets C.{z} so that the continuity can be checked in restriction to each C.{z}.
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Remark 5.1. If s < r, the homomorphism 4, — A4 is compact: by Montel
theorem, the ball of radius 1 in 4, is mapped into a compact subset K; of 4.

Let K C 4, be a bounded subset. Then, the closure c/;(K) of (the image of)
K in 4 is compact. If t < s, the image of c¢l;(K) in 4, is compact, hence closed;
this implies that c/;(K) = c;(K) in C{z}. Thus, the closure K of K in C{z}
coincides with the closure cl;(K) of K in 4 for any s < r. As a consequence, K
is compact.

We denote by B4, (€) the open ball centred at 0 and of radius € in 4,, which we
also view as a subset of C{z}. If s<rand e <€, then Bz (¢) C Bg,(€¢') C C{z}.
Given any finite set of such balls B a, (€)), the sum Y| B , (g/) is the subset
of C{z} whose elements are sums fi +---+ f, with f; € B a, (g;) for all j.

Lemma 5.2. A subset U of C{z} is a neighborhood of 0 if and only if there are
decreasing sequences (ry) and (€,) tending to O such that U contains the set

B = U iB,qrj@j).

n j>1
Lemma [5.2] shows that the topology defined in this section is the same as the
topology introduced by Leslie in [[17], except that we consider germs of ana-
lytic functions at the origin in C instead of real analytic functions on a compact
analytic manifold.

Proof. First we argue that any set B as in the statement of Lemma s a
neighborhood of 0 in C{z}. To do so we need to check that BN 4, contains a
neighborhood of 0 for all r. The sum };_, B , (¢/) is a subset of C{z} which
is contained in 4, . It is open in A, because one of the summands, namely
Bg, (€4), is itself open. Now, the continuity of the inclusion 4, — A, forr, <r
implies that }}_, B a, (€j) N A, is also open in 4,. Since }j_| B A, (e;)N A, is
contained in BN 4,, the latter is a neighborhood of 0, as we needed to prove.

Suppose now that U is a neighborhood of the origin in C{z}, and fix a de-
creasing sequence (r,) tending to 0. For each n > 1, set U, = UN 4,,.

We first claim that there is a ball By in 4,, such that B C U. Since U, is open
in 4y,, consider € > 0 such that B, (¢) C . Now let B| = B, (¢/2). Then
for allm > 0, By C Bi + By, (n) so taking 1 = &/2, we get Bi C By, (¢/2) +
Bg, (g/2) C B, (€) C U, which proves our claim.

We now construct by induction open balls B,, C A4,, such that for all n, B +
.-+ B, C U. Given such a set of balls By, ..., B,, the set K =B|+---+B,
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provides a compact subset of A, , contained in U,;. Let € be the distance
from K to the complement of U, ., in A4, ,; by compactness, € > 0, and K +
Bg, (g/2) CU. We then define Byy1 = Bg, _ (¢/4). Then K+B,1 CK+
Bg, , (€/2) C U. This concludes the induction step and the proof. O

5.2. Coefficient functions. Recall that the coefficients of f € 4, can be com-
puted via the Cauchy integral formula:

Au(f) =~ / 1@, (5.3)

2 Sy 2

This implies that the linear form A,, is continuous on each algebra 4, with op-

erator norm [|A,|| g < 2~V el A, (f)| < "D f| 4, for all f € 4,

Since the maps A, separate points in C{z}, we obtain:

Lemma 5.3. For each n > 0, the map A, : C{z} — C is continuous. The topo-
logical space C{z} is Hausdorff.

More generally, we have:

Lemma 5.4. If),0,7" is a power series with infinite convergence radius, then
the quantity

O(f) =) _0aAu(f) (5.4)

is well defined for every f € C{z} and the function ®: C{z} — R is continu-
ous.

Proof. The estimate [|A,|| 4 < ﬁr’(”“) implies that the map
A= C, [ ) 0ulAn(f)] (5.5)
n

is continuous for any power series ), 0,z with convergence radius greater than

1 I . . .

+. By definition of the topology on C{z} we get that this map is continuous on

the whole space if the power series in question has infinite convergence radius.
O

5.3. Another filtration. We now introduce another filtration of C{z}. If ¢ is
any positive real number, we define

C.{z} = {f € C{z} with [A,(f)| < """ forall n} . (5.6)
Then C.{z} C C.{z} for ¢ < ¢/, and C{z} is the increasing union of all C.{z}.
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Lemma 5.5. C.{z} is compact, and contained in A, for all r < ¢~ .

compact subset A C C{z} is contained in some C.{z}.

Every

By compactness, the topology on C.{z} induced by 4, and by C{z} agree.

Proof. From Lemma 5.3 we deduce that C.{z} is closed in C{z}. If f € C.{z}

and r < ¢!, then
C

(5.7)

IFlla, < Xehr < o=
This means that C.{z} is a bounded subset in 4,. Since the inclusion 4, — 4
is compact for r > s, C.{z} has compact closure in 4, hence in C{z}. Since
C.{z} is closed, it is compact.

To prove the second assertion, assume by contradiction that there is a compact
subset A C C{z} such that for every integer m > 0 there exists f,, € A\ C,n{z}.
By definition, there is an index n,, > 0 with |A, (f,)| > m™*!. By Lemma
[5.4] each individual coefficient is continuous and thus bounded on the compact
A. Tt follows that n,, goes to +oo as m does. We can thus assume, passing to a
subsequence if necessary, that the n,’s are pairwise distinct.

Set 6,,, = (%)"m, and 0, = 0 if n is not one of the indices n,,. Then 6,11/”
converges towards 0 as n goes to 4o, meaning that the power series Y ,, 0,z has
infinite convergence radius. By Lemma[5.4] the map f — ©(f) = ¥, 0,|A,(f)]
is continuous on C{z} and thus bounded on our compact set A. On the other
hand we have

O(fm) = On,,|An,, (fin)| = m.

This yields the desired contradiction. U

Remark 5.6. Given r > 0, introduce

@,:{fGC{z}]rad(f)zr, sup]f\ﬁ%}. (5.8)
D,

This is the closure in C{z} of a ball in 4, and is therefore compact (Remark 5. ).
There are functions ¢y, ¢2, 1, and r : R}, — R’ such that

Ccl(r) {Z} CB C Ccz(r){z} and Qgrl(c) - CC{Z} - grg(c)~

It follows that one could equivalently state the results of this section in terms of
the filtration (B,),~¢ instead of (C¢{z})c>o0-

The following corollary allows us to view the final topology on C{z} as the
weak topology associated to the filtration by the compact sets C.{z}.
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Corollary 5.7. A subset F C C{z} is closed if and only if for all ¢ > 0, FNC.{z}
is closed. A map F : C{z} — X to a topological space is continuous if and only
if its restriction to C.{z} is continuous for all ¢ > 0.

Proof. Clearly, it suffices to prove the first assertion. If F is closed, so is F'N
C.{z}. Assume conversely that F N C.{z} is closed for all ¢ > 0, and let us
prove that F' is closed. By definition of the final topology, we need to prove that
given r > 0, its preimage j ! (F) under the inclusion j, : 4, — C{z} is closed. It
suffices to prove that for any R > 0, its intersection with the ball B4 (R) is closed
in 4,. Since Bz, (R) has compact closure, there exists ¢ > 0 such that B4 (R) C
C.{z}. Since FNC.{z} is closed, B4,(R) N j, ' (F) = B4,(R)N j, '(FNC.{z})
is a closed subset of 4, which concludes the proof. UJ

Although one can show that the topology on C{z} is not metrizable, each
space C.{z} is a metric space. Being compact, the topology on C.{z} can be
described in many equivalent ways:

Proposition 5.8. Let ¢ be a positive real number. Let (f,) be a sequence in
C.{z} and let f. be an element of C.{z}. The following are equivalent:
(1) (fin) converges to fw in Cc{z};
(2) for some (any) r < ¢, (fn) converges uniformly toward f.. on D,;
(3) (fm) converges toward fo uniformly on every compact subset of D .1,
(4) for every index n, A, (fn) converges toward A, (f-).

Proof. As seen before, C.{z} is contained in 4, for all r < ¢! and the topology
induced by ||-|| 4, agrees with the topology induced by C.{z}. This proves the
equivalence of the first three assertions.

To prove the equivalence with the last assertion, consider the map ®: C.{z} —
[0, 1]N defined by ®(f) = (i’,’,g) )nen, where [0, 1]N is endowed with the product
topology. This map being continuous and injective, it is a homeomorphism to

its image, and the result follows. O

5.4. The final topology on a field with an absolute value. In this section, we
explain that the final topology induced by the filtration C.{z} makes sense for
every field k with an absolute value |- |; but the results based on Montel theorem
(Remark [5.1)) may fail for fields k # C.

Let k be a complete field k with an absolute value |- | : k — R;. By Os-
trowski’s Theorem, K is either R or C, or the absolute value is non-archimedean:
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|x+y| < max(|x],|y|) for all x,y € k. The algebra k{z} of convergent power se-
ries is filtrated by the family of subsets

ke{z} = {f € k{z} with |4, (f)| < " for all n} (5.9)

for ¢ > 0. We endow Kk.{z} with the product topology, via the embedding f €
k.{z} = (A.(f))n € KN: a sequence (fi)ren of elements of k.{z} converges to
foo € k{z} if and only if A,(fx) — An(fe) for all n. For ¢ < ¢/, k.{z} is closed
in k{z} and the inclusion is a homeomorphism to its image. We then endow
k{z} with the topology associated to this filtration: a subset F C k{z} is closed
if and only if F Nk.{z} is closed in k.{z}. Equivalently, a map ¢ : k{z} — X
to a topological space is continuous if and only if its restriction to k.{z} is
continuous for every ¢ > 0. By construction, the maps f — A, (f) are continuous
on k{z}. Proposition shows that, when k = C, this topology agrees with the
final topology defined in Section [5.1]

If k is locally compact, each k.{z} is compact. In general, since k.{z} is a
countable product of complete metric spaces, we get:

Proposition 5.9. If Kk is a complete field, then k.{z} is a metrizable complete
space. In particular, it is a Baire space.

On the other hand, k{z} is not a Baire space since it is a countable union of
k.{z}, each of which is closed and has an empty interior.

5.5. The topological group of germs of diffeomorphisms. Any f € Diff(k,0)
can be written as f = A(z+z2f) for some f € k{z} or equivalently as

f=Mz+ @+ +ar+...) (5.10)
for some A € k* and d, € k. Thus, we define the maps A, : Diff (k,0) — k by
An(f) = An(f)/AL(f) = Gn. (5.11)
Given two real numbers ¢ > 0 and Ay > 1, we define the two subsets
Diff.(k,0) = { f € Diff(k,0) ; [A,(f)| < "' forall n} (5.12)

and

Difao(k0) = { £ € DI (.00 s - < Wi(P)] <o 5.13)
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Observe that if we denote by my,: z — 0z the multiplication by some scalar
o € k* then we have

moDiff.(K,0)mg ! = Diff 4 (k,0) (5.14)
and

maDiffy, . (k,0)my ' = Diffy, .o (k,0) (5.15)

Lemma 5.10. A map ¢ : Diff(k,0) — X to a topological space is continuous
if and only if it is continuous in restriction to Diff.(Kk,0) (or equivalently to
Diffy, . (k,0)) for every ¢ > 0 and Ao > 1.

Proof. 1t suffices to check the continuity of ¢ on the open set Uy, = {f ; %0 <
|A1(f)] < Ao} for all Ay > 1. By definition of the final topology, it suffices to
check its continuity on Uy, Nk.{z} for every ¢ > 1. But Uy, Nk.{z} is a subset
of Diff), (k,0) as soon as ¢’ > max(Ag,c?); since we know that @ is continuous
on Diffy, +(k,0), this proves the lemma. 0

Proposition 5.11. If Kk is a complete field, then Diffy .(k,0) and Diff.(k,0) are
complete metric spaces. In particular, they are Baire spaces.

Proof. By definition, Diff  (k,0) is homeomorphic to a countable product of
closed subsets of k; so, k being complete, its topology is induced by a complete
metric. Since k* is homeomorphic to the closed subset {(x,y)|xy — 1} C k2, the
same argument applies to Diff.(k,0). O

Theorem 5.12. Let (k, |- |) be a field with a complete absolute value. With the
final topology, Diff (k,0) is a topological group.

Lemma 5.13. For every real number ¢ > 1, there exists a real number ¢’ > 1
such that the following holds: if f and g are in Diff.. .(k,0), then fog and f~!
lie in Diff v (k,0).

Proof. Let f = Mz+Ly>2an2"), § = u(z+ Ly buz") with [dy], |by| < "' and
ALl 75 VT < e Let F = c(z+ Eosa ¢ 12%) = 14 € R{z} so that the

T 1l—cz
absolute value of the coefficients of f and g are bounded by the coefficients of
F. Then the absolute value of the coefficients of fog=Y,>1an(Ly>1bmz")"
cz(1—cz)
l—cz—c?z"
convergence radius, there exists ¢/ > 2 such that Ap(FoF) <( n=1 forall n > 2.

are bounded by the coefficients of F o F = Since F o F has positive

The first assertion follows.
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We now prove the second assertion. Let f = A(z+ Y,>,@,2"), and let f -1
A~ (z+¥,52bnz"). The inversion formula from Section n gives

y A (1) (=1t thka o) e
’ - la|*tas |t - -
|bn| ’kWh%;. ki'ky! - |do |||
_ F1)(n— 14k +hk+...)
= ‘ o)i(c)a...
- kl,kzz,... ki'kp!--- ( ) ( )
kl7k2,..‘ kl!kz! e

Thus, we have to bound the quantity

o (n+1)---(n—14+k+k+...)
Ki= ) kilky! - '

k1 ka,...

But the numbers K, are the coefficients of the power series expansion of the
reciprocal diffeomorphism g~! of

1 —272
gla)=z-—-2 -t =z(2- ===
1—z 1—z

In close form, we obtain

g 'y = Chw) L/

4 4
Since g_1 has positive convergence radius, there exists cg such that for all n > 2,
Ky < cf ! hence |b,| < (coc?)"! and the result follows. O

Proof of Theorem[5.12] By definition of the topology, given ¢ > 0, one only
needs to check the continuity of the group laws in restriction to Diff. .(k,0).
Since A,(fog) and A,(f~!) are given by polynomials in the coefficients
A(). Ailg), AL(F)!, Ar(g)*, the maps (f,g) — Au(fog) and £ Au(f )
are continuous on Diff. .(k,0). By Lemma there exists ¢’ such that for all
f.g € Diff..(k,0), fog and f~! lie in Diff. (k,0). Since the topology on
Diff s »+(k,0) is the product topology, the continuity of the coefficients implies
the continuity of the group laws. 0

5.6. Other topologies. First, we would like to point out that there are other
reasonable and useful topologies on C{z}, but for which the group laws are not
continuous. This the case for the so-called Takens topology 20, 4]; this is the
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topology induced by the distance
dist(f,g) = sup|Aa(f) — An(g)["/". (5.16)
n

Note that in particular the convergence radius of f — g is large if f and g are
close to each other in the Takens topology, and this implies that the right trans-
lation Ry: g = go f is not continuous if the radius of convergence of f is finite.
Indeed, a small perturbation g(z) + €z is mapped to Ry(g +€z) = go f +&f,
and the difference €f is not small in the Takens topology because its radius of
convergence does not depend on €.

We comment now on another important topology on Diff (C,0), but for which
the Baire property fails. Let Jets;(C,0) be the group of ¢-jets of diffeomor-
phisms ajz+---+apz’ mod (z”l), with a; # 0; it can be considered as a solv-
able algebraic group and thus as a solvable complex Lie group. Let

je: Diff(C,0) — Jets/(C,0) (5.17)

denote the homomorphism that maps a power series f =) ,a,7" to Zﬁzl an".

We can then define a topology on Diff(C,0) (resp. on Ei?f(C,O)): the weak-
est topology for which all projections j, are continuous. With this topology,
Diff(C,0) is a topological group, because the projections j, are homomorphisms.
Moreover, a sequence (f;,) converges toward a germ of diffeomorphism g if
and only if the coefficients A,(f,,) converge to A,(g) for all n. In other words,
this is the topology of simple convergence on the coefficients. In particular,
Diff(C,0) is not a closed subset of Bﬁ(c, 0) for this topology. With this topol-
ogy, Sif\F(C,O) is a Baire space, but Diff(C,0) is not (Proposition m fails if
Diff(C,0) is endowed with this topology).

5.7. Continuity in the Koenigs linearization Theorem. A contraction f €
Diff (k,0) is an element with |A;(f)| < 1. In this case, Koenigs theorem says that
the unique formal diffeomorphism /¢ tangent to the identity that conjugates f to
the homothety z — A (f)z has positive convergence radius. The following result
shows that f +— hy is continuous for the final topology on the set of contractions

Cont(k,0) = {f € Diff(k,0)| |A; ()| < 1}. (5.18)

Theorem 5.14. Let k be a field with a complete non-trivial absolute value. For
every germ f € Cont(k,0), the unique formal diffeomorphism hy such that

he(f(z)) =A1(f) hp(z) and Ay(hf) =1
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has positive convergence radius, and the map
h: f € Cont(k,0) — hs € Diff(k,0)

is continuous for the final topology. The coefficients of hy are polynomial func-
tions with integer coefficients in the variables A;(f) and (A1(f)! — 1)~ for
i,j> L

When k = C, it is shown in [21, Chapter 8] that i is convergent and its
coefficients depend holomorphically on f. Theorem [5.14]is just a variation on
this classical result.

Proof. We refer to [24] for the real and complex cases, and to [[12] for the non-
archimedian ones.

The coefficients of /1y can be computed inductively and turn out to be poly-
nomials with integer coefficients in the variables A;(f) and (A;(f)/ —1)~!, for
i,j > 1 (see for instance [24, Eq 4]). If |A;(f)| < a for some o in the interval
[0, 1[, then

(A (f)"—1]>1—-0 (5.19)

for all n > 0. By [24, Theorem 1] and [[12, Theorem 1] in the archimedean and
non-archimedean cases respectively, /¢ is convergent and for all ¢, A > 1, there
exists ¢’ such that iy € Diff (k,0) if f € Diffy .(k,0).

The topology on Diff +(C,0) is the product topology on the coefficients. Since
the coefficients of /¢ are continuous functions of f, it follows that the restriction
of f+ hy to Diffy .(f) is continuous. By definition of the final topology, this
proves the continuity of 4. U

6. A LARGE IRREDUCIBLE COMPONENT OF THE REPRESENTATION
VARIETY

This section describes our second proof strategy for Theorem A. For simplic-
ity, we consider only the fundamental group of a closed orientable surface of
genus 2, but we work over any field k with a complete absolute value |- |.

6.1. Anirreducible set of representations. Using the presentation
I, = (a,b,a,b| [a,b] = [a,b]), (6.1)

we get an idenfication

Hom(I";; Diff(k,0)) = {(f,8,f,2) € Diff (k,0)* | [f.e] = [F.g]}.  (6.2)
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Let X C Hom(I,, Diff(k,0)) be the set of representations p : I', — Diff(k,0))
such that p(a) is tangent to Id and p(b) is a contraction. As in Equation (5.18)),
we denote by Cont(k,0) the set of contractions. For ¢ > 0, we let X, = XN
Diff(C,0). Set

R = Cont(k,0) x Diff(k,0) x Diff(k,0), (6.3)
R (c) = Cont.(k,0) x Diff.(k,0) x Diff.(k,0), (6.4)
and denote by m: X — X the projection

n(p) = (p(b),p(@),p(b)) (6.5)

Proposition 6.1. The map T is a homeomorphism for the final topology, and its
inverse

n ' (g,1.8) — (f,8.]:3)
is a polynomial map, in the following sense: for each n € N*, the map (g, f,g) —
A,(f) is polynomial in (finitely many of) the variables Ay(g), Ax(f), Ax(g),
A(9)™h AL(f) 7 Av(®) ! and (Ar(9) = 1) (k> 1).

Proof. The projection T is continuous because both X and X come with the
topology induced by the same topology on Diff (k,0).

Consider a triple (g, f,g) € Cont(k,0) x Diff(k,0) x Diff(k,0). Since [f,g]
is tangent to the identity, the germs g and [f,g] o g have the same derivative
L =A(g) at 0. Since |A| < 1, we can apply Koenigs Theorem[5.14} we get two
germs A and hy € Diff(k,0) tangent to the identity such that

hiogoh'=my and ho([f,glog)oh,' =m, (6.6)

where mj (z) = Az is the multiplication by A. Then, the map f := h, Yo hy con-

jugates g to [f,g] og so

fogof'=[f.glog and [f.g]=[fg].
This means that one can define the preimage 1! (g, f,g) € Hom(I'2, Diff (k,0))
by the 4-tuple (f,g, f,g): the fact that t~' o = Id¢ follows from uniqueness
in Koenigs Theorem.

The continuity of T is a consequence of the continuity of the conjugacy in
Koenigs Theoremand of the continuity of the map (g, f,2) + [f, 2] og. The
fact that A,,(f) is polynomial in the given variables is a direct consequence of
the corresponding fact in Koenigs Theorem, and the fact that group operations
are polynomial mappings. U

-1



SURFACES GROUPS IN GERMS OF DIFFEOMORPHISMS 29

We denote the inverse map ! by ®:
VseR, dy=m l(s). (6.7)

Thus, if s = (g, f,g), then @ is the morphism [',— Diff (k,0) such that ®,(b) =
g, ®4(a) = f, &5(b) = g, and Py(a) is the unique germ of diffeomorphism f
which is tangent to the identity and satisfies the relation [f, g] = [f,g]. To con-
clude the proof, our goal now is to prove that for every ¢ > 0, the family of
morphisms @y, for s € R (c), satisfies the assumptions of Lemma Proposi-
tion m shows that & (c) is a Baire space. The following corollary proves the
irreducibility of R (¢).

Corollary 6.2. For any w € I';, denote by R (c)w C R.(c) the set of homomor-
phisms in R (c) that kill w. Then either R (c),, = R (c) or R(c)w is a closed
subset of R (c) with empty interior.

Proof. Since the functions s € R — Ax(Ps(g)) — Ax(Id) are continuous, R (c)y
is closed. Now, assume that R (¢),, # R (c): there exists k > 1 and a point s =
(20, f0,80) in R (c) such that Ay (®s(w)) # A (Id). According to Proposition
the map s — Ay (@s(w)) — Ax(Id) is a polynomial function in finitely many of

e the coefficients A, (go), An(fy) and A,(g,) (n > 1),

e the inverses A1 (go) ', A1(fo) ', A1(gy) ' and (A1 (go)*— 1)~ (k> 1)
(note that A (go), A1(f), A1(2,) and (A(go)* — 1) do not vanish on ®). Our
assumption says that this function does not vanish identically on R (c¢). As-
sume that K (c), contains a non-empty open subset U, and choose a point
s=(g1,f1,8;) in U. If k =R or C, we denote by By the interval [0,1] C R; in
the non-archimedean case we set By = {r € k, |t| < 1}. Then, we consider the
convex combination

so= (& =th+(U=0fo, fi=tfi+(1=0)]0.8 =121+ (1-1)g) (©68)
with 7 in Bg. According to Lemmabelow, g, f, and g, are in R (') for some
¢’ > ¢, and t — s, is continuous; thus {7 ; s, € U} is an open neighborhood of 1.

The function ¢ — 4,(@s,(w)) — A,(Id) does not vanish for r = 0, it is the
restriction of a rational function of the variable 7 to the interval [0, 1], and it
vanishes identically on the open set { ; s; € U}. This is a contradiction, which
shows that the interior of R (¢),, is empty. O

Let B be the interval [0,1] C Rif k=R or C, or the ball {r € k, || <1} in
the non-archimedean case.
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Lemma 6.3. Ler fj € Diff.,(k,0) and fi € Diff., (k,0), and fort € k, let f; =
(1—1)fo+1tfi. Let p € K be the value of t (if any) such that f,(0) = 0.
If co < c1 and co| f(0)] < c1]£{(0)|, then for allt € B \{p}, f; € Diff., (k,0).

Proof. Denote Ay = |f}(0)| and A; = |f{(0)|. By assumption, for all n > 2,
|An(f0)] < hocg ! and |A,(fi)] < Mac}.
Consider first the case k = R or C. Since Agco < Ajcy, we get for all ¢ € [0, 1],

An(f)] < (1= 1)hocy ™ + 1A} (6.9)
<(1=tMeref 2+ k™ <t (6.10)

This shows that f; € Diff,, (k) as soon as f;(0) # 0.
In the non-archimedean case, one has |t — 1| < 1 for 7 € Bi. Similarly, we get

An(f)] < max{ |1 —t|Aocf ', A1} (6.11)
< max{ chlcgfz, ch’ffl } < 7\.10’{*1. (6.12)

This shows that f; € Diff, (k) as soon as f;(0) # 0. Then, the continuity follows
from the continuity of the coefficients ¢ — A, (f;). 0

6.2. Separation. To conclude the proof, we fix ¢ > 0 and prove that R (c) sat-
isfies the separation condition of Lemma 3.1} We thus fix g € I’ \ {1} and show
that & (c) contains a representation that does not kill g. Write the orientable
surface group of genus 2 as I'; = (a,b,a,b | [a,b] = [a,b]), and let p : T, —(a, b)
be the morphism fixing a and b and sending @ and b to a and b respectively. Let
T : [',—I be the Dehn twist around the curve ¢ = [a, D], i.e. the automorphism
that fixes a,b and sends @ and b to cac~! and cbb~! respectively. According to
Proposition there exists a positive integer ng such that pot(g) # 1 for all
N > ng.

Apply Theorem to get a pair f1, f> of germs of diffeomorphisms gener-
ating a free group (fi, f>) of rank 2 and satisfying f{(0) > 1 and f3(0) > 1.
Define a morphism p : (a,b)—Diff(k,0) by p(a) = [fi, /2] and p(b) = £, .
Then p is injective, p(a) is tangent to the identity, and p(b) is a contraction.
Set py :=popot. For N > ng py(g) # 1. Thus, n(py) lies in R \ R; but it
might not lie in R (c).

Let cy > 0 be such that n(py) € R (cy). Given o € K*, let ad, be the inner
automorphism of Diff(k,0) given by f — mg o fomg!. As noticed in Equa-
tion (5.12)), we have ady (Diff., (k,0)) = Diffyc, (k,0). Thus, the representation
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py = adg o py satisfies w(py) € R (c) if o is sufficiently small. Since pj(g) # 1
this concludes that R (c) satisfies the separation condition of Lemma 3.1]

6.3. Conclusion. The family of representations ®;, with s € R (c) satisfies
the Baire property, the irreducibility property, and the separation property of
Lemma This lemma implies that a generic element of s € R (¢) gives an
embedding ®;: I, — Diff(k,0), proving Theorem A for the group ;.

— Part II1. -

7. A p-ADIC PROOF

7.1. Free groups with integer coefficients. A theorem of White [29] shows
that the homeomorphisms of R defined by f:z+ z+1and g : 7+ z> generate
a free group. Conjugating the maps f and gfg~! by 7+ 3%, asin [l lﬂ one gets
two formal diffeomorphisms

he) == L)
n=1

Z - ;1 n n
) = T b ( n )33 <

n=0

(7.1)

that generate a non-abelian free group (fo,g0) C Eﬁ(Q,O) C S'n‘\F(k,O). It is
remarkable that f( and g¢ are tangent to the identity at the origin and have integer
coefficients:

Theorem 7.1. The group BFF(Q,O) contains a non-abelian free group, all of
whose elements are tangent to the identity and have integer coefficients.

Thus, one can produce an explicit free group in Sﬁ(k, 0) for every field k of
characteristic 0. In characteristic p > 0, Szegedy proved that almost every pair
of elements in the Nottingham group Diff(Z/pZ,0) generates a free group [26].

7.2. Subgroups of Diff(Q,,0). In this section, p is a prime number, and Q,, is
the field of p-adic numbers, with its absolute value | - | normalized by |p| = 1/p.
Let G, denote the set of elements f =Y~ a,z" in Diff(Q,,0) such that

an €Z,Yn and |a;| = 1. (7.2)

Every element f € G, satisfies rad(f) > 1. The ultrametric inequality and the
Inversion formula show that G, is a subgroup of Diff(Q,,0). With the product

I This conjugacy is called the “Wilson trick” in [[L1].
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topology on coefficients (as in Section [5.6), it is a compact topological group,
and the morphism j,: G, — Jets;(Q,,0) is continuous for every integer £ > 1.
The kernel of j, will be denoted G, 4.

From Theorem we know that G, contains a free group of rank two gen-
erated by two germs f and go whose coefficients are in Z.

Corollary 7.2. Let p be a prime number and ¢ be a positive integer. The group
G, contains a non-abelian free group. The group G, contains a free group
(f,g) of rank 2 such that A\ (f) is a transcendental number while g is tangent to
the identity up to order /.

Proof. Start with a non-abelian free group F in G,. Since the group of jets
Jeth(Qp,O) is solvable, the restriction of jy to F is not injective. Its kernel is
a free group (as any subgroup of F), and if ¢ is large it is not cyclic. Thus, the
kernel is a non-abelian free group. This proves the first statement.

Set R, ={t€Z,; |t| =1}. Now, take a pair of generators fy and g¢ of a free
group of rank 2 in G, 4, and for t € R consider the family of representations
p:: Fo = (a,b) — G, defined by p,(a) = m; o fy and p;(b) = go (here, as usual,
my(z) =1tz). If wis an element of F,, and n is a positive integer, then A, (p;(w)) is
a polynomial function in 7 and 1/¢ (see Section . If w # 1, there is an integer
n>1suchthat A, (p;(w)) # A,(Id). Thus, the set R, C R_of parameters s such
that ps(w) = Id is finite, the union U1 Ry 1s at most countable, and there are
transcendental numbers in its complement. For such a parameter #, p; is injective
and A;(ps(a)) =t is transcendental. O

Now, we apply the result of [3]] described in Section|1.2{to get:

Theorem 7.3. Let p be a prime number. Let T» = (a,b,a,b| [a,b] = [a,b]) be
the fundamental group of a closed orientable surface of genus 2. Then
(1) For every integer £ > 1, the group I'; embeds in the compact group G, ;.
(2) There is an embedding p: T'y — G, such that p(a)’'(0) = p(a)’(0) is a

transcendental number while p(b) and p(b) are tangent to the identity
up to order (.

7.3. Back to complex coefficients. The field Q,, and thus the ring Z,,, embeds
(although not continuously) into C; such an embedding induces an embedding,
coefficient by coefficient, of Z,[[z]] into C[[z]]. Thus, the surface groups con-
structed in Theorem provide surface groups in Si?F(C, 0). This construction
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does not preserve the convergence of power series, but it preserves the order of
tangency to Id. Since there are transcendental complex numbers with modulus
< 1, we obtain:

Corollary 7.4. Let ¢ be a positive integer. There is an embedding p: I, —
Diff (C,0) such that |p(a)’'(0)| = |p(@)'(0)| < 1 while p(b) and p(b) are tangent
to the identity up to order (.

We can now prove the following version of Theorem A. This will be our third
and last proof of it.

Theorem 7.5. There is an embedding of T, in Diff(C,0) such that |p(a)’ (0)| =
|p(@)'(0)| < 1 while p(b) and p(b) are tangent to the identity up to order /.

Proof. The first step is to choose a sequence C = (aj,az,as,...) of complex
numbers such that

(a) the set {ay,ay,...} is algebraically free: if m > 1 and P € Zlxy, ..., Xp),
and if P(ay,...,an) =0, then P =0;
(b) |an) <27 foralln> 1.

Such a sequence exists because C is uncountable. Concrete examples can be
obtained from the Lindemann-Weierstrass theorem (see also [28]] for the con-
structions of von Neumann, Perron, Kneser, and Durand of uncountably many,
algebraically free complex numbers). We shall consider the a@; as indetermi-
nates for the field of rational functions Q(aj,az,...). Armed with such a set we
consider the following three formal diffeomorphisms

= T "
g=aiz+ Y azipi2 ", f=z+) asi2Z", g=z4+Y and . (1.3)
i=1 i=( i={
From the decay relation (b), these three power series have a positive radius of
convergence. Since |a;| < 1/2, the Koenigs linearization theorem gives a unique

element f € Diff(C,0) with f/(0) = 1 such that

fef ' =1f.8ls (7.4)

The four elements (f, g, f, &) determine a representation @ of I'; into Diff(C,0).

Let us prove that this representation is faithfull. Fix a non-trivial element w
of I'», and write it as a word in a, b, @, b and their inverses. For every integer n,
the coefficient A, (@(w)) is a polynomial function Q,,, in the variables a, (for
n>1), al_l, and the (a’f — 1)~ ! (for k > 1) with integer coefficients.
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Now, take a faithful representation p: I’ — Bi\fF(C,O) that satisfies the con-
clusion of Corollary There is an integer n > 1 such that A, (p(w)) # A, (1d).
This implies that Q,,, # A,(Id) when we specialize the indeterminates a; to
the coefficients of the generators p(a@), p(b), and p(b). Since Qy., # An(1d),
¢@(w) # Id and ¢ is the identity. O

— Part IV. -

8. COMPLEMENTS AND OPEN QUESTIONS

8.1. Takens’ theorem and smooth diffeomorphisms. To conclude this chap-
ter, we mention the following result which allows to realize any faithful repre-
sentation of a surface group in the group of formal germs as a group of C* germs.
Note that the p-adic method provides many embeddings of surface groups in
Sﬁ(R, 0) (see Corollary .

Recall that I'y denotes the fundamental group of the closed orientable surface
of genus g.

Theorem C. Letp: I'y — Si?f(R, 0) be a faithful representation of the surface
group Iy in the group of formal diffeomorphisms in one real variable. Then,
there exists a faithful representation p: I'g — Diff™(R,0) into the group of germs
of C*-diffeomorphisms such that the Taylor expansion of p(w) coincides with
p(w) for every w € T,

The proof will be a consequence of the following result (this theorem is easily
derived from the Sternberg linearization theorem and Theorem 2 of [27]]):

Theorem 8.1 (Sternberg [25]], Takens, [27]). Let f,g: (R,0) — (R,0) be two
germs of C=-diffeomorphisms, and let f and § denote their Taylor expansions.
Suppose that f is not flat to the identity, that is f #1d. Then, if f and § are con-
jugate by a formal diffeomorphism h, there exists a germ of C”-diffeomorphism
h: (R,0) — (R,0) such that

o the Taylor expansion of h coincides with h;

e /i conjugates f to g.

Proof of Theorem C. Denote by a;, l3,-, 1 <i < g the images of the standard gen-
erators of I'y by the representation p; they satisfy the relation

R 8
dloblodl_lz(n[dj,bj])obl. (8.1)
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By the theorem of Borel and Peano, one can find germs of diffeomorphisms
by and aj, bj, j > 2, whose respective Taylor expansions coincide with 131, aj,
and b j respectively. Then, Theorem provides a germ of diffeomorphism a;
such that aj obyoa; ! = (Hizz[aj,aj]) ob;. Thus, one gets a representation
p of I'; into Diff”(R,0) with Taylor expansion equal to p. Since the initial
representation p is injective, so is p. (|

8.2. Conjugacy classes. Two subgroups I'; and I'; of Diff(C,0) are topologi-
cally conjugate if there is a germ of homeomorphism ¢: (C,0) — (C,0) such
that oIy o @~ ! =T, and are formally conjugate if there is a formal dif-
feomorphism  such that oI’ 0 $~' =T,. A germ of homeomorphism @ is

anti-holomorphic if its complex conjugate z — @(z) is holomorphic.

Theorem 8.2 (Nakai, Cerveau-Moussu). Let I'y and Iy be two subgroups of
Diff(C,0) which are not solvable.

(1) If ¢ is a local homeomorphism that conjugates 1’1 to I'5, then @ is holo-
morphic, or anti-holomorphic.

(2) If ¢ is a formal conjugacy between I'y and Ty, then § converges and is
therefore a holomorphic conjugacy.

Thus, (the images of) two embeddings of I'y in Diff (C,0) are topologically or
formally conjugate if and only if they are analytically conjugate.

8.3. Two questions.

8.3.1. It would be interesting to exhibit an embedding o of the group I',, g > 2,
into the group of analytic diffeomorphisms of the circle R/Z fixing the origin
o € R/Z. 1f such an embedding exists, the suspension of this representation o
gives a compact manifold M, of dimension 3 that fibers over ¥, together with a
foliation ¢ of co-dimension 1 which is transverse to the fibration T: My — X,
and whose monodromy is given by T. The fixed point gives a compact leaf of
Fo, with holonomy given by the same representation T.

Question.— Does there exist an embedding of I'; into the group of analytic
diffeomorphisms of the circle fixing the origin ?

This question was the original motivation of Cerveau and Ghys when they
asked for a proof of Theorem A (see [8]).
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Remark 8.3. According to Theorem there is an embedding p of I in
Diff(Q,,0) such that p(a)’(0) and p(a)’(0) have modulus 1 while p(b) and p(b)
are tangent to the identity. Conjugate p by the homothety a — pz for some pos-
itive integer N. If N is large enough, the coefficients a,,, n > 2, of all elements of
p(I'2) have norm < 1, and the ultrametric inequality shows that p(I';) preserves
the open disks {z € C,, ; |z| < 1 —¢€} for every € > 0. Thus, it preserves arbitrary
thin annuli {z € C, ; 1 —¢|z] < 1}. (Here C,, is the completion of the algebraic

closure of Q,,.)

A related, but a priori simpler question is: does there exist an embedding of
I'; into the group of increasing, real analytic diffeomorphisms of [0, 1] fixing
0 and 1 ? Here, we demand that the diffeomorphisms extend to germs of real
analytic diffeomorphisms on neighbourhoods of 0 and 1. If we replace real
analytic diffeomorphisms by C® diffeomorphisms, interesting examples have
been constructed in [19]. We refer to the introduction of [19] for a description
of the difficulties in trying to apply the strategy of [3]: this is related to the
question of deciding when a diffeomorphism f of [0, 1] is contained in the flow
of a smooth vector field, hence to Mather’s invariant (see [10, 30]).

8.3.2. The derived subgroup of Diff(C, 0) is the kernel of the morphism j; : f +—
f'(0):
Theorem 8.4. Let k be a complete, non-discrete valued field. An element f of

Diff(k,0) is a commutator if and only if f'(0) = 1. All higher terms of the lower
central series coincide with the kernel of j; : Diff(k,0) — Jets; (k,0).

Proof. If f is a commutator [g, 4] then f'(0) = 1. If f/(0) = 1, compose f with
the homothety my (z) = Az for some A € k* of norm |A| # 1, and apply Koenigs
linearization theorem to find an element & € Diff(k,0) such that my o f = ho
myh~" and #/(0) = 1. Then f = [h,my]. This proves that the derived subgroup
of Diff (k, 0) is the kernel of j;; since 4 is in the kernel of j;, all subsequent terms
of the lower central series coincide with the derived subgroup. U

Now, consider the upper central series. The first terms are Diff(C,0) and its
derived subgroup Diff (k,0)(!). Then comes

Diff (k,0)® := [Diff (k,0)"), Diff(k,0)(1)]. (8.2)

The group of jets of order 3 which are tangent to identity, i.e. jets of the form
jz) =z+ a»7* 4+ a3z° modulo z*, is an abelian group; at the level of formal
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germs, it is known that the kernel of j3 in Sﬁ(k, 0)(") coincides with the de-
rived subgroup Bﬁf(k,O)(z) (see [7], §3, for the description of the upper central
series of Bﬁ(k,O)). We don’t know if a similar statement holds for germs of
diffeomorphisms:

Question.— Does the kernel of j3 coincide with the second derived subgroup
of Diff(C,0)(?) 2 More generally, what is the upper central series of Diff(C,0) ?

9. APPENDIX: FREE GROUPS

The following theorem, and its proof, are strongly inspired by [20]. The
proof given in [20] is somewhat difficult because it makes use of a topology on
Diff (C,0) which is not compatible with the group law. We adapt the same proof,
without reference to such a topology.

Theorem 9.1. Let (K,|-|) be a complete, non-discrete valued field. Let f and g
be elements of Diff(k,0) of infinite order. Let w be a non-trivial element of the
free group ¥,. Then, there is a polynomial germ of diffeomorphism h such that
w(hfh=! g) #1d.

If w=a"b"1-..a"b", one can choose h of the form 7+ €z*P(z) with an
arbitrarily small € and a polynomial function P € K[z] such that deg(P) < (2¢)!
and |P(x)| < 1 for all x € Dy.

Before proving this result, let us introduce some vocabulary and notation.
Write w as a reduced word in the generators a and b of the free group:

w=d"p""...a"p" 9.1)

where the n; are in Z \ {0}, except maybe if n| or ny is zero, but conjugating w
by a power of a, we only need to consider the case njny # 0. Set N = max |n;]|.

Let & be an element of Diff(k,0), and set f, = h 'ofoh. Letr >0 be
smaller than the convergence radius of 4, f, g and their inverses. Choose R > 0
such that all these germs, and all their compositions of length < 3N/ map Dg
inside D,.. If z is a point in Dg, then its orbit under the action of fj and g stays
in D, for all compositions of these germs given by words of length < N/ in Fy;
in this situation, we say that the orbit of z is well defined up to length N/. In
particular, if we look at the composition w(f}, g), and pick a point z in Dg, we
get a sequence of points

20=221=8"(20), 22 = £,2(21) --s 20 = w([fn:8)(20). 9.2)
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To prove the theorem, we construct a triple (%, R, z) such that the orbit of z is well
defined and the z; are pairwise distinct; in particular, zy # zo and w(f}, g) # Id.

Proof. We do a recursion on the length ¢, proving the existence of a triple
(h,R,z) such that the z; are pairwise distinct for 0 <i < . Since f and g have
infinite order, the union of all fixed points of /" and ¢g” in D, for —-N <m <N
is a finite set F. For j = 1, we just pick a point zqo sufficiently near the origin
with z; := g"(20) # zo; the only constraint is to take zo in the complement of F.
The points zp and z; will be kept fixed in the recursion.

Assume that a polynomial germ of diffeomorphism 4 has been constructed,
in such a way that (a) the points zo, 21, 22, ..., 22k, and 2o, 1 are pairwise distinct
(we just intialized the recursion for k = 0), and (b) h(z) = z+ &Ry (z) for some
small g, € k and some element Ry € K[z] of degree < (2k)! which is divisible by
z%. Consider a polynomial germ

2%
P(z) :z+nkz2H(z—Zj) 9.3)
=0

with a small n; € k; then

o P fixes z; for all j < 2k,

o Pi(za141) = axMi + by, for some pair (ay, by) € k? with a; # 0,

e as My goes to 0, the radius of convergence of P and its inverse P, o0

to infinity.

If we compose hy with P, then H = hy o Py is a new polynomial germ such that
the orbit of zp under fy and g gives the same sequence zg, 71, ..., Up tO Z2k+1-
The next point is

n
22 = S P (zars1) (9.4)
and we want to exclude the possibility zox12 € {20, ..,22k+1}; since
-1 n
k2 = (P 0 £, 0 Pi) (22k41) 9.5)
we want to avoid the inclusion
n
Jul P (Pe(zar41)) C Pi{z0, -+, 22041 1 (9.6)
and for that we just need to choose the parameter 1 in the definition of P in

such a way that f:kz"” (Pe(zok+1)) is not in {z,...,zo¢} and Py(zo11) is not a

fixed point of f;lkz"”. These constraints are satisfied for all small non-zero values
of My because f;f"” is not the identity and the coefficient a; in Pi(zx11) =

aiNx + by 1s not zero.
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The next point is 713 = g"%+3(z0412) and we want it to be disjoint from
{z0,.--,22k+1,20k+2}. For this, we do a second perturbation of the conjugacy.

Let
2k+1

Oi(z) = 2+ Prd® Il G-z 9.7)
=0

with a small By € k; then

o Oy fixes z; forall j <2k+1,

o Oi(za142) = cxBx + dj for some pair (cx,dy) € k? with ¢ # 0,

e as [; goes to 0, the radius of convergence of Qy and its inverse Q;l go

to infinity.

Now, we set hy1 = Qro H. This does not change the sequence z; for 0 <
i <2k+ 1, but the last point 7417 is replaced by ¢y + di. Since g"+3 #
Id and ¢ # 0 any non-zero, small enough value of B assures that zp; i3 ¢
{205+ -+ 22k 1, 22642}

To sum up, if we set ;| = Qo P, o hy then the sequence 2o, ..., zox13 1S
now made of pairwise distinct points. Moreover, when the parameters 1 and [
go to zero, the germ Q o P, and its inverse converge uniformly to the identity
on the disk Dz, so we can assume that the orbit of zy is well defined for all
composition of i1, f, g, and their inverses of length < 3N/. The germ Qy o Py
is equal to z+ Sx(z) where S is divisible by z> and deg(Sy) < (2k+1) x (2k+2).
Thus,

hiv1(2) = 2+ Py (2) (9.8)

where 72 divides P, and
deg(Pir1) < deg(P) x (2k+1) x (2k+2) < (2k+2)! 9.9)
This proves the recursion and finishes the proof of the theorem. UJ

Theorem 9.2. Let (K,|-|) be a complete, non-discrete valued field. If f and g
are elements of Diff (k;0) of infinite order, there exists an element h of Diff(k;0)
such that f, :=ho foh™! and g generate a free group of rank 2. One can choose
h such that ' (0) = 1.

Note that Theorem [3.4|is a direct corollary of that result; one just need to start
with f = Az or Az + 2% if A; is a root of unity, and similarly for g.

Proof. Denote by a, and b,, the coefficients of f and g respectively. Let L C k
be the field generated by the a, and b,,. Since k is not discrete, it has no isolated
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point; being complete with no isolated point, it is uncountable (a simple con-
sequence of Baire’s theorem [23]]), and it follows that its transcendental degree
over L is infinite: it contains an infinite sequence (c;) of algebraically inde-
pendent numbers (over the prime field of k, see [16, Chapter VIII]). We can
moreover assume that all ¢; are in the unit disk. Set 2o(z) = ¥,,>; ca2".
Consider a non-trivial element w of F,. The N-th coefficient function

hi— Ay(w(ho foh™!,g)) (9.10)

is a polynomial function on Sif\F(k, 0) in the sense of Section this means
that it is a polynomial function in the coefficients of & and Ay (h)~! (here, f
and g are fixed). If Ay(w(ho ofohal,g)) vanishes (resp. is equal to 1), then
Ay(w(ho foh™! g)) = 0 (resp. 1) for all formal diffeomorphisms /, because
the ¢; are algebraically independent over k. Thus, Theorem [0.1] implies that
w(ho ofohal,g) # 1d, and this shows that f,, := hgo fo hal and g generate a
free group of rank 2.

In this argument, we could start with hyp = z+ Y, c,2", because we can
choose the germ h in Theorem[9.1] with the additional constraint #'(0) = 1. O
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