RANDOM DYNAMICS ON REAL AND COMPLEX PROJECTIVE SURFACES

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We initiate the study of random iteration of automorphisms of real and complex
projective surfaces, as well as compact Kihler surfaces, focusing on the fundamental problem
of classification of stationary measures. We show that, in a number of cases, such stationary
measures are invariant, and provide criteria for uniqueness, smoothness and rigidity of invariant
probability measures. This involves a variety of tools from complex and algebraic geometry,
random products of matrices, non-uniform hyperbolicity, as well as recent results of Brown and
Rodriguez Hertz on random iteration of surface diffeomorphisms.
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2 SERGE CANTAT AND ROMAIN DUJARDIN

1. INTRODUCTION

1.1. Random dynamical systems. Consider a compact manifold M and a probability measure
v on Diff(M); to simplify the exposition we assume throughout this introduction that the support
Supp(v) is finite. The data (M, v) defines a random dynamical system, obtained by randomly
composing independent diffeomorphisms with distribution v. In this paper, these random dy-
namical systems are studied from the point of view of ergodic theory, that is, we are mostly
interested in understanding the asymptotic distribution of orbits.

Let us first recall some basic vocabulary. A probability measure p on M is v-invariant if
f«p = p for v-almost every f € Diff(M), and it is v-stationary if it is invariant on average:
§ fepdv(f) = p. A simple fixed point argument shows that stationary measures always exist.
On the other hand, the existence of an invariant measure should hold only under special circum-
stances, for instance when the group I, generated by Supp(v) is amenable, or has a finite orbit,
or preserves an invariant volume form.

According to Breiman’s law of large numbers, the asymptotic distribution of orbits is de-
scribed by stationary mesures. More precisely, for every = € M and vN-almost every ( fj) €
Diff(M)N, every cluster value of the sequence of empirical measures

n—1
1
(1.1) ~ 2 0o fuf)
=0

is a stationary measure. Thus a classification of stationary measures gives an essentially com-
plete understanding of the asymptotic distribution of such random orbits, as n goes to +co.

When I'), is a cyclic group, the set of invariant measures is typically too large to be amenable
to a complete description. On the other hand a number of recent works have shown that station-
ary measures, even if they always exist, tend to satisfy some rigidity properties when I}, is large.
Our goal in this article is to combine tools from algebraic and holomorphic dynamics together
with these recent results from random dynamics to study the case when M is a real or complex
projective surface and the action is by algebraic diffeomorphisms. Before describing the state of
the art and stating a few precise results, let us highlight a nice geometric example to which our
techniques can be applied.

1.2. Randomly folding pentagons. Let ¢y, . .., ¢4 be five positive real numbers such that there
exists a pentagon with side lengths ¢;. Here a pentagon is just an ordered set of points (a;)i—o,... 4
in the Euclidean plane, such that dist(a;,a;1+1) = ¢; fori = 0,...,4 (with a5 = ag by defini-
tion); pentagons are not assumed to be convex, and two distincts sides [a;, a;4+1] and [a;, a;41]
may intersect at a point which is not one of the a;’s.

Let Pent({, ..., £4) be the set of pentagons with side lengths ¢;. Note that Pent({, ..., ¢4)
may be defined by polynomial equations of the form dist(a;, a;11)? = E?, so it is naturally
a real algebraic variety. For every i, a; is one of the two intersection points {a;,a.} of the
circles of respective centers a;_1 and a;41 and radii #;_; and ¢;. The transformation exchanging
these two points a; and a;, while keeping the other vertices fixed, defines an involution s; of
Pent({g, . .., £4). It commutes with the action of the group SO (R) x R? of positive isometries
of the plane, hence, it induces an involution o; on the quotient space

(1.2) Pent®(l, ..., 04) = Pent(ly,...,4;)/(SO2(R) x R?).
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Each element of Pent®(, ..., ¢;) admits a unique representative with ag = (0,0) and a; =
(4o, 0), so as before Pent’({, ..., ¢,) is a real algebraic variety, which is easily seen to be of
dimension 2 (see [42], [108]]). When it is smooth, this is an example of K3 surface, and the
five involutions o; act by algebraic diffeomorphisms on this surface, preserving a canonically
defined area form (see §3.2); and for a general choice of lengths, the group generated by these
involutions generates a rich dynamics. Now, start with some pentagon P and at every unit of
time, apply randomly one of the ;. This creates a random sequence of pentagons, and our results
explain how this sequence is asymptotically distributed on Pent® (¢, . . ., £4). (The dynamics of
the folding maps acting on plane quadrilaterals was studied for instance in [57, 10].)

1.3. Stiffness. Let us present a few landmark results that shape our understanding of these
problems. First, suppose that v is a finitely supported probability measure on SLy(C), which we
view as acting by projective linear transformations on M = P!(C). Suppose that the group I,
generated by the support of v is non-elementary, that is, I, is non-compact and acts strongly
irreducibly on C? (in the non-compact case, this simply means that I, does not have any orbit
of cardinality 1 or 2 in P1(C)). Then, there is a unique v-stationary probability measure i on
PY(C), and this measure is not invariant. This is one instance of a more general result due to
Furstenberg [63]].

Temporarily leaving the setting of diffeomorphisms, let us consider the semigroup of trans-
formations of the circle R/Z generated by mgo and mgs, where mgy(z) = dx mod 1. Since
the multiplications by 2 and 3 commute, the so-called Choquet-Deny theorem asserts that any
stationary measure is invariant. Furstenberg’s famous “x 2 x 3 conjecture” asserts that any atom-
less probability measure y invariant under mo and ms is the Lebesgue measure (see [64]). This
question is still open so far, and has attracted a lot of attention. Rudolph [106] proved that the
answer is positive when y is of positive entropy with respect to mo or ms.

Back to diffeomorphisms, let v be a finitely supported measure on SLy(Z), and consider the
action of SL(Z) on the torus M = R2?/Z2.

In that case, the Haar measure dx A dy of R?/Z2, as well as the atomic measures equidis-
tributed on finite orbits I',(x, ), for (z,y) € Q?/Z?, are examples of I, -invariant measures.
By using Fourier analysis and additive combinatorics techniques, Bourgain, Furman, Linden-
strauss and Mozes [21] proved that if I'), is non-elementary, then every stationary measure [
on R?/Z? is T -invariant, and furthermore it is a convex combination of the above mentioned
invariant measures. This can be viewed as an affirmative answer to a non-Abelian version of
the X2 x 3 conjecture. This property of automatic invariance of stationary measures was called
stiffness (or more precisely v-stiffness) by Furstenberg [65], who conjectured it to hold in this
setting. Soon after, Benoist and Quint [11]] gave an ergodic theoretic proof of this result, which
allowed them to extend the stiffness property to certain actions of discrete groups on homoge-
neous spaces. They also derived the following equidistribution result for the action of SLo(Z)
on the torus: for every (x,y) ¢ Q?/Z>, the random trajectory of (z,y) determined by v almost
surely equidistributes towards the Haar measure.

Finally, Brown and Rodriguez-Hertz [22], building on the work of Eskin and Mirzakhani [58]],
managed to recast these measure rigidity results in terms of smooth ergodic theory to obtain a
version of the stiffness theorem of [21]] for general C? diffeomorphisms of compact surfaces.
We shall describe their results in due time, so for the moment we will content ourselves with one
illustrative consequence of [22]. As above, let v = » a;dy; be a finitely supported probability
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measure on SLy(Z) and consider perturbations {f;.} of the f; in the group Diff2 (R2?/Z?)
of C? diffeomorphisms of R?/Z? preserving the Haar measure. Set v, = Y. a;dy, .. Then,
for sufficiently small perturbations, stiffness still holds, that is: any v.-stationary measure on
R?/Z2 is invariant, and is a combination of the Haar measure and measures supported on finite
I’y -orbits.

In this paper, we obtain a new generalization of the stiffness theorem of [21], for algebraic
diffeomorphisms of real algebraic surfaces. Before entering into specifics, let us emphasize that
the article [22]], by Brown and Rodriguez-Hertz, is our main source of inspiration and a key
ingredient for some of our main results.

1.4. Sample results: stiffness, classification, and rigidity. Let X be a smooth complex pro-
jective surface, or more generally a compact Kéhler surface. Denote by Aut(X) its group of
holomorphic diffeomorphisms, referred to in this paper as automorphisms. When X < PV (C)
is defined by polynomial equations with real coefficients, the complex conjugation induces an
anti-holomorphic involution s: X — X, whose fixed point set is the real part of X: X(R) =
Fix(s) ¢ X. We denote by Xg the surface X viewed as an algebraic variety defined over R,
and by Aut(Xgr) the group of automorphisms defined over R; Aut(Xg) coincides with the
subgroup of Aut(X) that centralizes s. When X (R) # (J, the elements of Aut(Xgr) are the
real-analytic diffeomorphisms of X (R) admitting a holomorphic extension to X. Note that in
stark contrast with groups of smooth diffeomorphisms, the groups Aut(Xg) and Aut(X) are
typically discrete and at most countable.

The group Aut(X) acts on the cohomology H™*(X;Z). By definition, a subgroup I' <
Aut(X) is non-elementary if its image I'* < GL(H*(X;C)) contains a non-Abelian free
group; equivalently, I'* is not virtually Abelian. When I" is non-elementary, there exists a pair
(f,g) € T'? generating a free group of rank 2 such that the topological entropy of every ele-
ment in that group is positive (see Lemma[A.T)). Pentagon foldings provide examples for which
Aut(XR) is non-elementary.

Let v be a finitely supported probability measure on Aut(X). As before we denote by I',, the
subgroup generated by Supp(v).

Theorem A. Let Xgr be a real projective surface and v be a finitely supported symmetric prob-
ability measure on Aut(XR). If T, preserves an area form on X (R), then every ergodic v-
stationary measure 1 on X (R) is either invariant or supported on a proper T'y-invariant sub-
variety. In particular if there is no I, -invariant algebraic curve, the random dynamical system
(X, v) is stiff-

This theorem is mostly interesting when I, is non-elementary and we will focus on this case
in the remainder of this introduction.

Stationary measures supported on invariant curves are rather easy to analyse (see J10.4).
Moreover, it is always possible to contract all I', -invariant curves, creating a complex analytic
surface X with finitely many singularities. Then on X (R), stiffness holds unconditionally.

This result applies to many interesting examples, because Abelian, K3, and Enriques surfaces,
which concentrate most of the dynamically interesting automorphisms on compact complex
surfaces, admit a canonical Aut(X )-invariant 2-form. In particular, it applies to the dynamics
of pentagon foldings. Note also that linear Anosov maps on R?/Z? fall into this category, so
Theorem [A] contains the stiffness statement of [21]. While not directly covered by this article,
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the character variety of the once punctured torus (or the four times punctured sphere) should be
amenable to the same strategy (see [27, 166, 67]).

Once stiffness is established, the next step is to classify invariant measures. When X is a
K3 surface and I',, contains a parabolic automorphism, I', -invariant measures were classified
by the first named author in [26]. A parabolic automorphism acts by translations along the fiber
of some genus 1 fibration with a shearing property between nearby fibers (see below for
details). An example is given by the composition of the foldings ¢; and ;1 of two adjacent ver-
tices in the space of pentagons. In a companion paper [32]] we generalize and make more precise
the results of [26]. A nice consequence is that for a non-elementary group of Aut(Xgr) con-
taining parabolic elements and preserving an area form, any invariant measure is either atomic,
or concentrated on a I, -invariant algebraic curve, or is the restriction of the area form on some
open subset of X (R) bounded by a piecewise smooth curve.

For random pentagon foldings, these results give a complete answer to the equidistribu-
tion problem raised in Indeed, assume for simplicity that the group generated by the
five involutions o; of Pent"(y, ..., ¢;) does not preserve any proper Zariski closed set, and
that Pent®({p, ..., £4) is connected. Then the stiffness and classification theorems imply that
the only stationary measure is the canonical area form. Therefore by Breiman’s law of large
numbers, for every initial pentagon P € Pent®({y, ..., /s) and almost every sequence (m;) €
{0,...,4}N, the random sequence P,, = (0, _, O - 0 0, ) (P) equidistributes with respect to
the area form. Thus, quantities like the asymptotic average of the diameter are given by explicit
integrals of semi-algebraic functions, independently of the starting pentagon P.

Another example widely studied in the literature is the family of Wehler surfaces. These are
the smooth surfaces X < P! x P! x P! defined by an equation of degree (2,2, 2). Then for each
index i € {1,2,3}, the projection 7;: X — P! x P! which “forgets the variable x;” has degree
2, so that there is an involution o; of X that permutes the two points in the generic fiber of ;.

Corollary. Let Xg < P! x P! x P! be a real Wehler surface such that X (R) is non empty. If
XR is generic, then:

(1) the surface X is a K3 surface and there is a unique (up to choosing an orientation of X (R))
algebraic 2-form volxy, on X (R) such that SX(R) volx, = 1;

(2) the group Aut(XR) is generated by the three involutions o; and coincides with Aut(X);
furthermore it preserves the probability measure defined by volxg;

(3) if v is finitely supported and T, has finite index in Aut(XR) then (X (R),v) is stiff: the
only v-stationary measures on X (R)) are convex combinations of the probability measures
defined by vol xy, on the connected components of X (R).

Here by generic we mean that the equation of X belongs to the complement of at most count-
ably many hypersurfaces in the set of polynomial equations of degree (2,2,2) (see for
details). This result follows from Theorem [A]together with Proposition [3.3]and Corollary [TT.5]
Actually in Assertion (3), it is only shown in this paper that the v-stationary measures are convex
combinations of volume forms on components of X (R), together with measures supported on
finite orbits. The generic non-existence of finite orbits will be established in a forthcoming paper
[31]] dedicated to this topic.

Without assuming the existence of parabolic elements in I',, we establish a measure rigidity
result in the spirit of Rudolph’s theorem on the x2 x 3 conjecture.



6 SERGE CANTAT AND ROMAIN DUJARDIN

Theorem B. Let Xg be a real projective surface and T' a non-elementary subgroup of Aut(Xg ).
If all elements of T' preserve a probability measure p supported on X (R) and if u is ergodic
and of positive entropy for some f € I, then i is absolutely continuous with respect to any area
measure on X (R).

In particular if T" is a group of area preserving automorphisms, then up to normalization
w1 will be the restriction of the area form on some I'-invariant set. Kummer examples are a
generalization of linear Anosov diffeomorphisms of tori to other projective surfaces (see [33}37]]
for more on such mappings). When I' contains a real Kummer example, we can derive an exact
analogue of the classification of invariant measures of [[21], that is the assumption “x has positive
entropy” can be replaced by “/ has no atoms” (Theorem [I2.5). We also obtain a version of
Theorem for polynomial automorphisms of the affine plane A%{(see Theorem .

1.5. Some ingredients of the proofs. The proofs of Theorems |A| and |B|rely on the deep re-
sults of Brown and Rodriguez-Hertz [22]. To be more precise, recall that an ergodic stationary
measure g on X admits a pair of Lyapunov exponents A" (u) = A\~ (i), and that y is said hy-
perbolic if AT (1) > 0 > A7 (p). In this case the (random) Oseledets theorem shows that for
p-almost every = and vN-almost every w = (f;)jen in Aut(X)N, there exists a stable direction
Ej(x) < T,Xwr. In [22], stiffness is established for area preserving C? random dynamical
systems on surfaces, under the condition that the stable direction Ef(x) < T,Xgr depends
non-trivially on the random itinerary w = (f;);jen, or equivalently that stable directions do not
induce a measurable I, -invariant line field. One of our main contributions is to take care of this
possibility in our setting: for this we study the dynamics on the complex surface X .

Theorem C. Let X be a complex projective surface and v be a finitely supported probability
measure on Aut(X). If T, is non-elementary, then any hyperbolic ergodic v-stationary measure
won X satisfies the following alternative:

(a) either yu is invariant, and its fiber entropy h,(X;v) vanishes;

(b) or p is supported on a I, -invariant algebraic curve;

(c) or the field of Oseledets stable directions of p is not I'y-invariant; in other words, it gen-
uinely depends on the itinerary (f;);=0 € Aut(X)N.

As opposed to Theorems [Af and (B} this result holds in full generality, without assuming the
existence of an invariant volume form nor an invariant real structure. Understanding this some-
what technical result requires a substantial amount of material from the smooth ergodic theory
of random dynamical systems, which will be introduced in due time. When g is not invari-
ant, nor supported by a proper Zariski closed subset, Assertion (c) precisely says that the above
mentioned condition on stable directions used in [22] is satisfied. This is our key input towards
Theorems [Aland

The arguments leading to Theorem [C|involve an interesting blend of Hodge theory, pluripo-
tential analysis, and Pesin theory. They rely on the following well-known principle in higher
dimensional holomorphic dynamics: if y is an ergodic hyperbolic stationary measure, p-almost
every point admits a Pesin stable manifold biholomorphic to C; then, according to a classical
construction going back to Ahlfors and Nevanlinna, to any immersion ¢ : C — X is associated
a (family of) closed positive (1, 1)-current(s) describing the asymptotic distribution of ¢(C) in
X, hence also a cohomology class in H?(X,R). These currents provide a link between the
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infinitesimal dynamics along u, more precisely its stable manifolds, and the action of I';, on
H?(X;R), which itself can be analyzed by combining tools from complex algebraic geometry
with Furstenberg’s theory of random products of matrices.

Theorem D. Let X be a compact projective surface and v be a finitely supported probability
measure on Aut(X), such that T, is non-elementary. Let k be a fixed Kiihler form on X.

(1) If k is any Kdhler form on X, then for vN-almost every w := (f;);=0 € Aut(X)N the limit
1

R N Ty AU LA

exists as a closed positive (1,1)-current. Moreover this current T does not depend on k
and has Holder continuous potentials.

(2) If the v-stationary measure L is ergodic, hyperbolic and not supported on a I, -invariant
proper Zariski closed set, then for u-almost every x and vN-almost every w, the only
Ahlfors-Nevanlinna current of mass 1 (with respect to kg) associated to the stable mani-
fold Wi(x) coincides with T}3.

The right setting for such a statement is certainly that of a compact Kéhler surface. We
actually show in that any compact Kihler surface supporting a non-elementary group of
automorphisms is projective (see also Appendix [A] for the non-Kihler case). The algebraicity
of X is, in fact, a crucial technical ingredient in the proof of assertion (2), because we use
techniques of laminar currents which are available only on projective surfaces. Theorem [D]
enters the proof of Theorem|[C|as follows: since I',, is non-elementary, Furstenberg’s description
of the random action on H?(X, R) implies that the cohomology class [7}%] depends non-trivially
on w; therefore for p-almost every x, W5(x) also depends non-trivially on w.

Remark 1.1. Beyond finitely supported measures, Theorem [A] and [D|hold under optimal
moment conditions on v (this adds several technicalities, notably in Sections [5]and [6).

1.6. Organization of the article. Let X be a compact Kihler surface and v be a probability
measure on Aut(X).

— In Section 2] we describe the action of Aut(X) on H*(X;Z), in particular on the Dolbeault
cohomology group H'!'(X;R). The Hodge index theorem endows it with a Minkowski
structure, which is essential in our understanding of the dynamics of I',, acting on the coho-
mology. This section prepares the ground for the analysis of random products of matrices
done in Section[5] A delicate point to keep in mind is that the action of a non-elementary
subgroup of Aut(X) on H'!(X;R) may be reducible.

— Section [3| describes several classes of examples, including pentagon foldings and Wehler’s
surfaces. It is also shown there that a compact Kéhler surface with a non-elementary group
of automorphims is necessarily projective (see Theorem [E]in §3.6).

— After a short Section [ introducting the vocabulary of random products of diffeomorphisms,
Furstenberg’s theory of random products of matrices is applied in Section [5]to the study of
the action on H%!(X;R). This, combined with the theory of closed positive currents, leads
to the proof of the first assertion of Theorem [D]in Section [] The continuity of the potentials
of the currents 735, which plays a key role in the subsequent analysis of Section 8] relies on a
recent result of Gouézel and Karlsson [68]].
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— Pesin theory enters into play in Section [/| in which the basics of the smooth ergodic theory
of random dynamical systems (specialized to complex surfaces) are described in some de-
tail. This is used in Section [§]to relate the Pesin stable manifolds to the currents T}, using
techniques of laminar currents.

— Theorem [C|is proven in Section [J] by combining ideas of [22] with Theorem [D]and an ele-
mentary fact from local complex geometry inspired by a lemma from [[7]].

— Theorem[Alis finally established in Section[I0] When I, is non-elementary (Theorem[10.10)
it follows rather directly from [22], Theorem E], and a result of Avila and Viana [2]. Ele-
mentary groups are handled separately by using the classification of automorphism groups of
compact Kihler surfaces (see Theorems[I0.3]and Proposition [I0.5). Note that the symmetry
of v is used only in the elementary case.

— Sections [T1] and [12] are devoted to the classification of invariant measures. In Section [IT]
after recalling the results of [26} 32], we show that when I', contains a parabolic element,
any invariant measure giving no mass to subvarieties is hyperbolic. Our approach is inspired
by the work of Barrientos and Malicet [5]]. This provides an interesting connection with some
classical problems in conservative dynamics (see for a discussion). In Section |12] we
prove Theorem [B] as well as several related results. This relies on a measure rigidity theorem
of [22]), together with ideas similar to the ones involved in the proof of Theorem [C|

This article is part of a series of papers dedicated to the dynamics of groups of automorphisms
of compact Kihler surfaces, notably K3 and Enriques surfaces. The article [32] is focused on
the classification of invariant measures in presence of parabolic elements. In [31]] we study the
existence of finite orbits for non-elementary group actions; tools from arithmetic dynamics are
used to study the case where X and its automorphisms are defined over a number field. In
a forthcoming work, we plan to extend the techniques of Brown and Rodriguez-Hertz to the
complex setting; with Theorem [C] at hand, this would extend Theorem [A] from the real to the
complex case.

1.7. Conventions. Throughout the paper C stands for a “constant” which may change from
line to line, independently of some asymptotic quantity that should be clear from the context
(typically an integer n corresponding to the number of iterations of a dynamical system). Using
this convention, we write ¢ < bifa < Cband a = bif a < b < a. All complex manifolds are
considered to be connected, so from now on “complex manifold” stands for “connected complex
manifold”. For a random dynamical system on a disconnected complex manifold, there is a finite
index sugbroup I of T',, which stabilizes each connected component, and an induced measure
v’ on I with properties qualitatively similar to those of v (see §10.2)), so the problem is reduced
to the connected case.

1.8. Acknowledgments. We are grateful to Sébastien Goué&zel, Francois Ledrappier, and Fran-
cois Maucourant for interesting discussions and insightful comments. The first named author
was partially supported by a grant from the French Academy of Sciences (Del Duca foundation),
and the second named author by a grant from the Institut Universitaire de France.
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2. HODGE INDEX THEOREM AND MINKOWSKI SPACES

In this section we define the notion of a non-elementary group of automorphisms of a compact
Kéhler surface X . We study the action of such a group on the cohomology of X, and in particular
the question of (ir)reducibilty. We refer to Appendix [A] for a discussion of the non-Kihler case.

2.1. Cohomology.

2.1.1. Hodge decomposition. Denote by H*(X; R) the cohomology of X with coefficients in
the ring R; we shall use R = Z, Q, R or C. The group Aut(X) acts on H*(X;Z), and
Aut(X)* will denote the image of Aut(X) in GL(H?(X;Z)).The Hodge decomposition

2.1) HYX;C)= @ HP(X;C)
p+q=k

is Aut(X)-invariant. On H%9(X;C) and H>?(X; C), Aut(X) acts trivially. Throughout the
paper we denote by [«] the cohomology class of a closed differential form (or current) c.

The intersection form on H2(X;Z) will be denoted by {- | -); the self-intersection {(a|a) of a
class a will also be denoted by a? for simplicity. This intersection form is Aut(X )-invariant. By
the Hodge index theorem, it is positive definite on the real part of H*%(X;C) ® H*?(X;C)
and it is non-degenerate and of signature (1, 2%!(X) — 1) on HYY(X; R).

Lemma 2.1. The restriction of Aut(X)* to the subspace H*°(X; C) (resp. H%?(X;C)) is
contained in a compact subgroup of GL(H?*°(X; C)) (resp. GL(H*?(X; C))).

Proof. This follows from the fact that {:|-) is positive definite on the real part of H*%(X;C) ®
H%2(X;C). An equivalent way to describe this argument it to identify H?"(X; C) with the
space of holomorphic 2-forms on X . Then, there is a natural, Aut(X)-invariant, hermitian form
on this space: given two holomorphic 2-forms €21 and €25, the hermitian product is the integral

2.2) f Q1 A Q.
b's
Thus, the image of Aut(X) in GL(H*°(X; C)) is relatively compact. O

The Néron-Severi group NS(X; Z) is, by definition, the discrete subgroup of H!(X;R)
defined by NS(X;Z) = HY'(X;R) n H?(X;Z); more precisely, it is the intersection of
HY'(X;R) with the image of H?(X;Z) in H?>(X;R), i.e. with the torsion free part of the
Abelian group H?(X;Z). The Lefschetz theorem on (1, 1)-classes identifies NS(X; Z) with
the subgroup of H!(X;R) given by Chern classes of line bundles on X. The Néron-Severi
group is Aut(X)-invariant, as well as NS(X; R) := NS(X;Z) ®z R for R = Q, R, or C. The
dimension of NS(X; R) is the Picard number p(X).

2.1.2. Norm of f*. Let |-| be any norm on the vector space H*(X; C). If L is a linear transfor-
mation of H*(X; C) we denote by | L| the associated operator nom and if W < H*(X;C) is
an L-invariant subspace of H*(X; C), we denote by | L], the operator norm of L |y .

If w is an element of H0(X; C), then u A T is an element of H1(X;R) such that |u|> <
C'|u A u| for some constant C' that depends only on the choice of norm on the cohomology;
in particular, the norm of f* on H?(X; C) is controlled by the norm of f* on H!(X;C).
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Using complex conjugation, the same results hold on H%!(X; C); by Poincaré duality we also
control | f*| zrp.a(x.c) for p + ¢ > 2. Together with Lemma we obtain:

Lemma 2.2. Let X be a compact Kdihler surface. There exists a constant Cy > 1 such that

Co 1 1 e x.c) < 1 1 xery < 1 e x0
for every automorphism f € Aut(X).

2.2. The Kihler, nef, and pseudo-effective cones. (See [18| 83] for details on the notions
introduced in this section.)

Let Kah(X) ¢ H'!(X;R) be the Kiihler cone, i.e. the cone of classes of Kihler forms. Its

closure Kah(X) is a salient, closed, convex cone, and
(2.3) Kah(X) c Kah(X) c {ve H"Y(X;R) ; (v|v) = 0}.

The intersection NS(X; R) nKah(X) is the ample cone Amp(X), while NS(X; R) nKah(X)
is the nef cone Nef(X). They are all invariant under the action of Aut(X) on HY!(X;R). We
shall also say that the elements of Kah(X) are nef classes, but the notation Nef(X) will be
reserved for NS(X; R) n Kah(X). The set of classes of closed positive currents is the pseudo-
effective cone Psef(X). This cone is an Aut(X)-invariant, salient, closed, convex cone. It is
dual to Kah(X) for the intersection form (see [18, Lem. 4.1]):

(2.4) Kah(X) = {ue H"Y(X;R) ; (u|v) =0 Vv e Psef(X)}
and vice-versa.

We fix once and for all a reference Kihler form o with [kg]? = (ko A ko = 1. Then we
define the mass of a pseudo-effective class a by M(a) = {a|[ko]), or equivalently the mass
of a closed positive current 7 by M(T') = (T A r(; we may also extend this definition to any
class, pseudo-effective or not (but then M(a) = {a|[ko]) may be negative). The compactness
of the set of closed positive currents of mass 1 implies that, for any norm |-| on H'1(X,R),
there exists a constant C' such that

(2.5) Ya € Psef(X), C!la] < M(a) < Clal.

If v is an element of Psef(X) and v? > 0, then by the Hodge index theorem we know
that (u|v) > 0 for every class v € H"'(X;R) such that u> > 0 and {(u|[ko]) = 0 (see
Equation (2.7)). So, in Equation (2.4)), the most important constraints come from the classes
v € Psef(X) with v? < 0. If v is such a class, its Zariski decomposition expresses v as a sum
v = p(v) + n(v) with the following properties (see [18]):

(1) this decomposition is orthogonal: {p(v) | n(v)) = 0;

(2) p(v) is a nef class, i.e. p(v) € Kah(X);

(3) n(v) is negative: it is a sum n(v) = >, a;[D;] with positive coefficients a; € R of
classes of irreducible curves D; < X such that the Gram matrix ((D; | D;)) is negative
definite.

Proposition 2.3. If a ray R v of the cone Psef(X) is extremal, then either v?> = 0 or R v =
R, [D] for some irreducible curve D such that D* < 0. The cone Psef(X) contains at most
countably many extremal rays R, v with v* < 0.

Let u be an isotropic element of Kah(X). If Ry u is not an extremal ray of Psef(X), then u
is proportional to an integral class v’ € NS(X; Z).
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Proof. If R v is extremal, the Zariski decomposition v = p(v) + n(v) involves only one term.
If v = p(v) then v? > 0. Otherwise v = n(v) and by extremality n(v) = a[D] for some
irreducible curve D with D? < 0. The countability assertion follows, because NS(X; Z) is
countable. For the last assertion, multiply u by {(u|[#0])~! to assume (u|[ko]) = 1 and write u
as a convex combination u = {v da(v), where « is a probability measure on Psef(X') such that
a-almost every v satisfies

= (v[[ro]) = 1,

— R v is extremal in Psef(X) and does not contain w.

Since u is nef, (u|v) > 0 for each v; and u being isotropic, we get v € u\Ru for a-almost
every v. By the Hodge index theorem, v?> < 0 almost surely. Now, the first assertion of this
proposition implies that v € R [D,] for some irreducible curve D,, = X with negative self-
intersection; there are only countably many classes of that type, thus « is purely atomic, and u
belongs to Vect([D,]; a(v) > 0), a subspace of NS(X; R) defined over Q. On this subspace,
gx is semi-negative, and by the Hodge index theorem its kernel is Ru. Since Vect([D,]; a(v) >
0) and gy are defined over Q, we deduce that u is proportional to an integral class. O

2.3. Non-elementary subgroups of Aut(X ). When X is a compact Kéhler surface, the action
of Aut(X) on H'!(X,R) is subject to several constraints: the Hodge index theorem implies
that it must preserve a Minkowski structure and in addition it preserves the lattice given by the
Neron-Severi group. In this section we review the first consequences of these constraints.

2.3.1. Isometries of Minkowski spaces. Consider the Minkowski space R™*!, endowed with
its quadratic form ¢ of signature (1, m) defined by

(2.6) g(x) = x5 — ), 7.
=1

The corresponding bilinear form will be denoted {:|-). For future reference, note the following
reverse Schwarz inequality:

2.7) if q(z)=0andq(z') >0 then (x|z') > q(x)"q(z")"/?

with equality if and only if = and 2’ are collinear. We say that a subspace W < R™*! is of
Minkowski type if the restriction gy is non-degenerate and of signature (1, dim(W) — 1).

In this section, we review some well-known facts concerning isometries of R»™ = (R™*! q)
(see e.g. [101L 75, 61] for details). We denote by || the Euclidean norm on R™*!, and by
P: R™*1\{0} — P(R™"1!) the projection on the projective space P(R™*!) = P"*(R).

The hyperboloid {z ; g(z) = 1} has two components, and we denote by O, (R) the sub-
group of the orthogonal group Oy ,,(R) that preserves the component Q = {g(z) = 1; z¢ >
0}. Endowed with the distance dg(z,y) = cosh™'{x|y), Q is a model of the real hyper-
bolic space H™ of dimension m. The boundary at infinity of H™ will be identified with
OP(Q) = P(R™*!) and will be denoted by JH™. It is the set of isotropic lines of q.

Any isometry v of H'" is induced by an element of Ofm(R), and extends continuously to
OH™: its action on JH™ is given by its linear projective action on P(R™"1!). Isometries are
classified in three types, according to their fixed point set in H™ v oH™:

— ~ is elliptic if + has a fixed point in H";
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— -y is parabolic if v has no fixed point in H™ and a unique fixed point in JH";
— ~ is loxodromic if y has no fixed point in H"* and exactly two fixed points in /H™.

A subgroup I' of Oim(R) is non-elementary if it does not preserve any finite subset of H™ U
JH™. Equivalently I" is non-elementary if and only if it contains two loxodromic elements with
disjoint fixed point sets.

The group Oim(R) admits a Cartan or KAK decomposition (see [61] §1.5]). To state it,
denote by ¢y = (1,0,...,0) the first vector of the canonical basis of R™*1; this vector is
an element of H™, and its stabilizer Stab(eg) in Oim(R) is a maximal compact subgroup,
isomorphic to O,,—1(R).

Lemma 2.4. Every v € Ofm(R) can be written (non-uniquely) as v = kyaks, where k; €
Stab(eg) and a is a matrix of the form

coshr sinhr 0
sinhr coshr 0
0 0 id,—1

with r = dg(eg, veo)-

Proof. Note that K := Stab(eq) acts transitively on the set of hyperbolic geodesics through e.
Denote by L the hyperbolic geodesic H™ n Vect(eg, e1), where e; = (0,1,0,...,0) is the
second element of the canonical basis of R™*!. If y(eg) = e then v belongs to K and
we are done. Otherwise choose k1,ks € K such that k7 (y(eg)) € L, ka(y '(eq)) € L,
and eg lies in between ka(y~!(ep)) and &k '(7(eg)); then eg is in fact the middle point of
[k2(v~(€0)), k1 (7(e0))] because dii(eo, ¥(€0)) = dri(eo, v~ " (e0)) > 0. The isometry a :=
ki tykyt maps ka(7 ' (eg)) € L to e and eq to ky *(y(eg)) € L. It follows that a is a hyper-
bolic translation along L of translation length dg(eq, k7' ((e0)) = dm(eo, v(eo)). To conclude,
change a into a o k=1 and ko into k o ky where k is the element of K that preserves e and acts
like a on the orthogonal complement of Vect(eg, e1). O

Corollary 2.5. If |-| denotes the operator norm associated to the euclidean norm in R™*!, then
17| = |lal, where v = kiaks is any Cartan decomposition of . In particular ||y| = |y~ | and

|7]l = cosh dz(eo, v(e0)) = |veol -
Furthermore for every e € H™ and any y € Ofm(R)
|7l = cosh dgz(e, v(e)),

where the implied constant depends only on the base point e.
This is an immediate corollary of the previous lemma.

2.3.2. Irreducibility. A non-elementary subgroup of Oim(R) does not need to act irreducibly
on R™*1, Proposition below, clarifies the possible situations.

Lemma 2.6. Let I' be a non-elementary subgroup of Of,m(R) (resp. v be an element of
Ofm (R)). Let W be a subspace of R*™.

(1) If W is D-invariant, then either (W, q|w ) is a Minkowski space and Ty is non-elementary,
or qlw is negative definite and T|yy is contained in a compact subgroup of GL(W).
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(2) If W is ~y-invariant and contains a vector w with g(w) > 0, then ~y|w has the same type
(elliptic, parabolic, or loxodromic) as ~, in particular, W contains the ~y-invariant isotropic
lines if v is parabolic or loxodromic.

Proof. The restriction ¢|yy is either a Minkowski form or is negative definite. Indeed, it cannot
be positive definite, because W would then be a I'-invariant line intersecting the hyperbolic
space H™ in a fixed point; and it cannot be degenerate, since otherwise its kernel would give a
[-invariant point on 0H™. If ¢|y is a Minkowski form and I'|yy is elementary, then I preserves
a finite subset of (H™ u 0H™) n V and T itself is elementary. This proves the first assertion.
The proof of the second one is similar. O

Let I' be a non-elementary subgroup of Ofm(R). Let Zar(I') < Oy, (R) be the Zariski
closure of I', and

(2.8) G = Zar(I)™"

the neutral component of Zar(T"), for the Zariski topology. Note that the Lie group G(R)) is not
necessarily connected for the euclidean topology.

Lemma 2.7. The group I' N G(R) has finite index in T. If Ty is a finite index subgroup of T,
then Zar(I'g)"™ = G.

Proof. The index of G in Zar(I') is equal to the number ¢ of irreducible components of the
algebraic variety Zar(I'), and the index of I' n G(R) in I is at most £. Now, let I'y be a finite
index subgroup of I". Then, I'y n G(R) has finite index in I' n G(R), and we can fix a finite
subset {1, ..., a5} = I' n G(R) such that I' n G(R) = {J; o (T'o n G(R)). So

(2.9) Zar(T n G(R)) U a;Zar(Ty n G(R)) = G(R).

Because I' n G(R) is Zariski dense in the irreducible group G we find G = Zar(I'o n G(R)).
So G < Zar(T'y) and the Lemma follows as G = Zar(I")"". O

Proposition 2.8. Let I" Ofm (R) be non-elementary.

(1) The representation of ' nG(R.) (resp. of G(R.)) on RY™ splits as a direct sum of irreducible
representations, with exactly one irreducible factor of Minkowski type:

RV =V, @ Vp;

here V. is of Minkowski type, and Vy is an orthogonal sum of irreducible representations
Vo,; on which the quadratic form q is negative definite.

(2) The restriction G|y, coincides with SO(V; q|v, ).

(3) The subspaces V. and Vi are I'-invariant, and the representation of I' on V. is strongly
irreducible.

Proof. A group I' is non-elementary if and only if any of its finite index subgroups is non-
elementary. So, we can apply Lemma2.6{to I' n G(R): if W < RY™ is a non-trivial (I' n
G(R))-invariant subspace, ¢l is non-degenerate. As a consequence, R>™ is the direct sum
W @ W+, where W+ is the orthogonal complement of W with respect to ¢. This implies that
the representation of I' n G(R)) on R™ splits as a direct sum of irreducible representations,
with exactly one irreducible factor of Minkowski type, as asserted in (1).
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The group G preserves this decomposition, and by Proposition 1 of [9], the restriction G|y,
coincides with SO(V; g|v, ); this group is isomorphic to the almost simple group SO; ,(R),
with 1 + k& = dim(V7.). This proves the second assertion.

Since G is normalized by I', we see that for any v € I', YV ' is a G-invariant subspace of
the same dimension as V* and on which ¢ is of Minkowski type. Hence V., as well as its
orthogonal complement V{y are I'-invariant. By Lemma the action of I" on V. is strongly
irreducible; indeed, if a finite index subgroup I'y in I" preserves a non-trivial subspace of V.
then, by Zariski density of Iy n G(R) in G(R), this subspace must be V, itself. On Vp, I’
permutes the irreducible factors V ;. O

Now, set V = R1™ and assume that there is a lattice Vz < V such that

(1) Vz is I'-invariant;
(ii) the quadratic form q is an integral quadratic form on V7.

In other words, there is a basis of V' with respect to which ¢ and the elements of I' are given
by matrices with integer coefficients. In particular, V" has a natural Q-structure, with V(Q) =
Vz ®z Q. This situation naturally arises for the action of automorphisms of compact Kahler
surfaces on NS(X; R). The next lemma will be useful in [31].

Lemma 2.9. If T contains a parabolic element, the decomposition V. @ Vj is defined over Q,
Ly, is a finite group, and G is the subgroup SO(V,; q) x {idy,} of O(V; q).

Proof. If v € T is parabolic, it fixes pointwise a unique isotropic line, therefore this line is
defined over Q. In addition it must be contained in V. because (7" (u))n>0 converges to the
boundary point determined by this line for every u € H™. So, V. contains at least one non-zero
element of Vz. Since the action of I' on V. is irreducible, the orbit of this vector generates V.
and is contained in Vz, so V. is defined over Q. Its orthogonal complement Vj is also defined
over Q, because ¢ itself is defined over Q. As a consequence, I'|y;, preserves the lattice Vp N Vz
and the negative definite form ¢|y;; hence, it is finite. Thus G|y is trivial and the last assertion
follows from the above mentioned equality G|y, = SO(V,;qv, ). O

Example 2.10. The purpose of this example is to show that the existence of a parabolic element
in I is indeed necessary in Lemma[2.9] even for a group of automorphisms of a K3 surface.

Let a be a positive square free integer, for instance a = 7 or 15. Let a be the positive square
root y/a, K be the quadratic field Q(«), and 7 be the unique non-trivial automorphism of K,
sending « to its conjugate @ := n(a) = —+/a. We view 7 as a second embedding of K in C.
Let O be the ring of integers of K.

Let / be an integer > 2. Consider the quadratic form in ¢ + 1 variables defined by

(2.10) qe(zo, 21, ... 2q) = Qi —at — - — 2l

It is non-degenerate and its signature is (1, ). The orthogonal group O(gs; Ok ) is a lattice in
the real algebraic group O(gs, R). The conjugate quadratic form g; = @z — 23 — -+ — w% is
negative definite.

Embed O%! into R*+2 by the map (z;) — (2;,7(z;)), to get a lattice A = R?**? and
consider the quadratic form @, := ¢y @ Gg. Then embed O(qs; Ok ) into O(Qy; R) by the
homomorphism A € O(q,, Or) — A @ n(A); we denote its image by I'; < O(Q; R). Itis
shown in [97]], Chapter 6.4, that
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— @y is defined over Z with respect to A,

— I'; < O(Qe; Z) (with respect to this integral structure),

— the group G = Zar(I'})™ coincides with SO(q/;; R) x SOY(gz; R) (and the group
1(O0(qe; Ok)) is dense in the compact group O(gg; R)).

Now, assume 2 < ¢ < 4, so that 2¢ + 2 < 10, and change Q) into 4(Q);: it is an even quadratic
form on the lattice A ~ Z*2. According to [98| Corollary 2.9], there is a complex projective
K3 surface X for which (NS(X;Z), ¢x) is isometric to (A, 4Q,). On such a surface, the self-
intersection of every curve is divisible by 4 and consequently there is no (—2)-curve. So, by the
Torelli theorem for K3 surfaces (see [0]), Aut(X )‘*NS( X:z) has finite index in O(4Qy; Z).

Since 0(4Q¢;Z) = O(Qr;Z) we can view I'} as a subgroup of O(4Q;Z). Set I'* =
Aut(X)* n T’} and let I" denote its pre-image in Aut(X'). Then, I' is a subgroup of Aut(X) for
which the decomposition NS(X;R); @ NS(X;R)g is non-trivial (here, both have dimension
¢ + 1) while the representation is irreducible over Q.

2.3.3. The hyperbolic space Hx. Let X be a compact Kihler surface. By the Hodge index
theorem, the intersection form on H11 (X, R) has signature (1, h%!(X) — 1). The hyperboloid

{ue HY'Y(X,R), (u|up} =1

has two connected components, one of which intersecting the Kéhler cone. The hyperbolic
space Hx is by definition this connected component, which is thus a model of the hyperbolic
space of dimension h''}(X) — 1. We denote by dy the hyperbolic distance, which is defined as
before by cosh(dp(u, v)) = {u|v). From Lemma[2.2]and Corollary [2.5|we see that if ||| is any
norm on H*(X, C), then | f*| = | (f*)7*|| = {[xo] | f*[r0]) (here kq is the fixed Kahler form
introduced in Section[2.2)).

According to the classification of isometries of hyperbolic spaces, there are three types of
automorphisms: elliptic, parabolic and loxodromic. An important fact for us is that the type of
isometry is related to the dynamics on X; for instance, every parabolic automorphism preserves
a genus 1 fibration, every loxodromic automorphism has positive topological entropy (see [28]
for more details). A subgroup I of Aut(X) is said non-elementary if its action on Hx is non-
elementary. As we shall see below, the existence of such a subgroup forces X to be projective:

Theorem 2.11. If X is a compact Kiihler surface such that Aut(X) is non-elementary, then X
is projective.
For expository reasons, the proof of this result is postponed to §3.6.2] Theorem [E]

2.3.4. Automorphisms and Néron-Severi groups. Let X be a compact Kéhler surface and I" be
a non-elementary subgroup of Aut(X). Let I'; , be the image of I' in GL(H?(X; C)), and I'*

be its image in GL(H?(X;C)). If we combine Proposition [2.8| together with Lemma [2.1| for
I'] 1, we get an invariant decomposition

(2.11) HM(X;R)= H"(X;R), @ H"(X;R)o.

Denote by H2(X;R)g the direct sum of H'!(X;R)o and of the real part of H>°(X;C) ®
H%2(X;C); then

(2.12) H*(X;R) = HY'(X;R)y @ H*(X;R)g
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and I'*| 2 x.R), i contained in a compact group (see Lemma . The Néron-Severi group is
I'-invariant, and since X is projective it contains a vector with positive self-intersection. Then
Proposition [2.8]and Lemma[2.6|imply:

Proposition 2.12. Let X be a compact Kihler surface and I' be a non-elementary subgroup of
Aut(X). Then H'(X;R); = NS(X;R), is a Minkowski space, and the action of T on this
space is non-elementary and strongly irreducible.

Since non-elementary groups of isometries of H"* occur only for m > 2, we get:

Corollary 2.13. Under the assumptions of Proposition the Picard number p(X) is greater
than or equal to 3. If equality holds then NS(X;R); = NS(X;R) and the action of T on
NS(X; R) is strongly irreducible.

From now on we set:
(2.13) Ir := H(X;R), = NS(X;R),.

This is a Minkowski space on which I" acts strongly irreducibly; the intersection form is negative
definite on the orthogonal complement

(2.14) I} « HYY(X;R).

Moreover by Proposition (2) the group G = Zar(T')'™ satisfies G(R)|. = SO(Ip). If
I" contains a parabolic element, then Il is rational with respect to the integral structures of
NS(X;Z) and H?(X;Z), and G(R) = SO(II1) x {idH#} (see Lemma.

2.3.5. Invariant algebraic curves I. Assume that I' is non-elementary and let C' — X be an ir-
reducible algebraic curve with a finite I'-orbit. Then the action of I" on Vectz { f*[C]; f e '} <
NS(X; Z) factors through a finite group. From Propositions and we deduce that the
intersection form is negative definite on Vectz(I" - [C]), thus Vectr (I" - [C]) is one of the ir-
reducible factors of NS(X,R)o. This argument, together with Grauert’s contraction theorem,
leads to the following result (we refer to [28, [77]] for a proof; the result holds more generally for
subgroups containing a loxodromic element):

Lemma 2.14. Let X be a compact Kdahler surface and 1" be a non-elementary group of au-
tomorphisms on X. Then, there are at most finitely many U-periodic irreducible curves. The
intersection form is negative definite on the subspace of NS(X;Z) generated by the classes of
these curves. There is a compact complex analytic surface Xy and a I'-equivariant bimeromor-
phic morphism X — Xy that contracts these curves and is an isomorphism in their complement.

The next result follows from [46].

Proposition 2.15. Let X be a compact Kdihler surface and I' a non-elementary subgroup of
Aut(X). Then any T'-periodic curve has arithmetic genus 0 or 1.

Note if C is I'-periodic, this result applies to C' = T - C, which is invariant. Then, the
normalization of any irreducible component of C has genus 0 or 1, and the incidence graph of
the components of C obeys certain restrictions (see [28] §4.1] for details). If furthermore X is a
K3 or Enriques surface, each component is a smooth rational curve of self-intersection —2.
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2.3.6. The limit set. LetT" = Aut(X) be non-elementary. The limit set of T" is the closed subset
Lim(T') < 0Hx < P (H"'(X;R)) defined by one of the following equivalent assertions:

(a) Lim(T") is the smallest, non-empty, closed, and I'-invariant subset of P(H);

(b) Lim(I") ¢ dHx is the closure of the set of fixed points of loxodromic elements of I" in
JHx (these fixed points correspond to isotropic lines on which the loxodromic isometry
act as a dilation or contraction);

(¢) Lim(T") is the accumulation set of any [-orbit I'(P(v)) <= P(H“'(X;R)), for any
v ¢ H%.

We refer to [[75,[101] for a study of such limit sets. From the second characterization we get:

Lemma 2.16. The limit set Lim(T") of a non-elementary group is contained in P(Ilp) n dHy.

From the third characterization, Lim(T") is contained in the closure of I'(P([x])) for every
Kihler form  on X. Since X must be projective, we can chose [x] in NS(X;Z). As a conse-
quence, Lim(T") is contained in Nef(X):

Lemma 2.17. Let X be a compact Kiihler surface. If T is a non-elementary subgroup of Aut(X)
its limit set satisfies Lim(T") < P(Nef(X)) < P(NS(X;R)).

2.4. Parabolic automorphisms. We collect a few basic facts on parabolic automorphisms: they
will be used in the next section to describe explicit examples, and then in Sections[10]and [T1]

Let f be a parabolic automorphism of a compact Kahler surface. Then f* preserves a unique
point on JHy, and f preserves a unique genus 1 fibration 7y: X — B onto some Riemann
surface B. The fixed point of f* on 0Hy is given by the class [F'] of any fiber of 7; (see [28]).
The fibers of 7y are the elements of the linear system |F|, 7y is uniquely determined by [F],
and if g is another automorphism of X that preserves a smooth fiber of 7 (resp. the point
P[F'] € PNS(X;R)), then g preserves the fibration and is either elliptic or parabolic.

Lemma 2.18. Let X be a K3 or Enriques surface, and m: X — B be a genus 1 fibration. If
g € Aut(X) maps some fiber F of  to a fiber of w, then g preserves the fibration and either g is
parabolic or it is periodic of order < 66.

Proof. Since g maps F to some fiber F”, it maps the complete linear system | F| to |F’|, but both
linear systems are made of the fibers of . So g preserves the fibration and is not loxodromic. If
g is not parabolic it is elliptic, and its action on cohomology has finite order since it preserves
H?(X,7Z). On a K3 or Enriques surface every holomorphic vector field vanishes identically, so
Aut(X)? is trivial and the kernel of the homomorphism Aut(X) 3 f + f* is finite (see [28]
Theorem 2.6]); as a consequence, any elliptic automorphism has finite order. The upper bound
on the order of g was obtained in [78]. O

Proposition 2.19. Let X be a compact Kiihler surface and let f be a parabolic automorphism
of X, preserving the genus 1 fibration 7: X — B. Consider the group Aut(X;7) := {g €
Aut(X) ; dgp € Aut(B), T o g = gp o 7}, and assume that the image of the homomorphism
g € Aut(X;7) — gp € Aut(B) is infinite. Then, X is a torus.

This result directly follows from the proof of Proposition 3.6 in [34]]. In particular the auto-
morphism fp € Aut(B) such that mfo f = fpomy has finite order when X is a K3, an Enriques,
or a rational surface. The dynamics of these automorphisms is described in Section [I1.1]
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Lemma 2.20. [f T is a subgroup of Aut(X) containing a parabolic automorphism g, then T'
is non-elementary if and only if it contains another parabolic automorphism h such that the
invariant fibrations ©, and 7, are distinct. Then, the tangency locus of the two fibrations is
either empty or a curve, and there are positive integers m, n such that g™ and h"™ generate a
free group of rank 2.

Proof. Let I be a fiber of 7,. If I is non-elementary, there is an element f in I" that does not
fix [F']; in particular f does not preserve m,. Then, h := f 1 o g o f is another parabolic
automorphism with a distinct invariant fibration, namely 7;, = 7, o f. Being distinct, 7, and 7,
have a tangency locus of codimension > 1.

Conversely, if I contains two parabolic automorphisms with distinct fixed point in JH x, then
the ping-pong lemma proves that there are powers m, n > 1 such that (¢, h™) is a free group
of rank 2; in particular, I' is non-elementary. (See [28]] for more precise results.) O

3. EXAMPLES AND CLASSIFICATION

This section may be skipped in a first reading. It describes a few examples, and proves that a
compact Kéhler surface X is projective when its automorphism group is non-elementary.

3.1. Wehler surfaces (see [36,[103} (113, [114]]). Consider the variety M = P! x P! x P! and
let 71, 7o, and 73 be the projections on the first, second, and third factor: m;(z1, 22, 23) = z;.
Denote by Lj; the line bundle 7*(O(1)) and set

(3.1) L=I3QLiQL:=7i02)715012)®i(0(2)).

Since Kp1 = O(—2), this line bundle L is the dual of the canonical bundle K;. By definition,
|L| ~ P(H°(M, L)) is the linear system of surfaces X — M given by the zeroes of global
sections P € H°(M, L). Using affine coordinates (r1, 79, z3) on M = P! x P! x P!, such
a surface is defined by a polynomial equation P(z1,z2,23) = 0 whose degree with respect to
each variable is < 2 (see [25 93] for explicit examples). These surfaces will be referred to as
Wehler surfaces or (2,2,2)-surfaces; modulo Aut(M ), they form a family of dimension 17.

Fix k € {1,2,3} and denote by i < j the other indices. If we project X to P! x P! by
mi; = (m,m;), we get a 2 to 1 cover (the generic fiber is made of two points, but some fibers
may be rational curves). As soon as X is smooth the involution o}, that permutes the two points
in each (general) fiber of 7;; is an involutive automorphism of X'; indeed X is a K3 surface and
any birational self-map of such a surface is an automorphism.

Proposition 3.1. There is a countable union of proper Zariski closed subsets (W;)i=o in |L|
such that

(1) if X is an element of |L|\Wy, then X is a smooth K3 surface and X does not contain any
fiber of the projections m;;;

(2) if X is an element of |L|\(|J; W5), the restriction morphism Pic(M) — Pic(X) is surjec-
tive. In particular its Picard number is p(X) = 3.

From the second assertion, we deduce that for a very general X, Pic(X) is isomorphic to
Pic(M): it is the free Abelian group of rank 3, generated by the classes

(32) C; = [(Lz)|X]
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The elements of |(L;) x| are the curves of X given by the equations z; = « for some a € P'.
The arithmetic genus of these curves is equal to 1: in other words the projection (7;) x: X — P!
is a genus 1 fibration. Moreover, for a general choice of X in |L|, (;)|x has 24 singular fibers of
type l1, i.e. isomorphic to a rational curve with exactly one simple double point. The intersection
form is given by ¢? = 0 and {¢;|c;) = 2if i # j, so that its matrix is given by

0 2 2
(3.3) 2 0 2

2 20
Proof of Proposition[3.1} By Bertini’s theorem, X is smooth as soon as it is in the complement
of some proper Zariski closed subset W, — |L|. Now, let us assume that X is smooth. The
adjunction formula implies that the canonical bundle Ky is trivial. From the hyperplane section
theorem of Lefschetz [96]], we know that X is simply connected. So, X is a K3 surface (see [6]).
Write the equation of X as A(x1,x2)x3 + B(z1,22)73 + C(z1,22) = 0. Then, X contains a
fiber 711_21 (a1, as) if and only if the three curves given by A = 0, B = 0, and C' = 0 contain the
point (a1, ag). This imposes a non-trivial algebraic condition on X; hence, enlarging W), the
first assertion is satisfied.

For the second assertion, we apply a general form of the Noether-Lesfchetz theorem [112]
Théoréme 15.33]. We know that L is very ample, that H2(X) is isomorphic to C. Indeed X is
a K3 surface, and H%°(X) is contained in the vanishing cohomology since X may degenerate
on six copies of P! x P! (taking the equation (23 — 1)(z3 — 1)(23 — 1) = 0). So, the Noether-
Lefschetz theorem says precisely that the restriction morphism is surjective for a very general
choice of X € |L|. O

Lemma 3.2. Assume that X does not contain any fiber of the projection ;;. Then, the involution
o} preserves the subspace Zci @ Zcy ® Zcs of NS(X;Z) and

opci = ¢i, 0j¢j = ¢, Opcr = —Cp + 2¢; + 2¢;.
Equivalently, the action of o} on Vectr(c1, co, c3) preserves the classes ¢; and c;j and acts as

a reflexion with respect to the hyperplane Vect(c;, c;) < NS(X;R). In other words, o, (v) =
v+ %<v|uk>ukf0r allvinZcy @ Zcos @ Zcs.

Proof. Since oy, preserves ;; it preserves the fibers of 7; and 7, hence o7} fixes ¢; and c;. Now,
consider a fiber C' = {z; = w} < X of 7g. Then, 0 (C) U C = Wi;l(ﬂij(C)) because there
is no curve in the fibers of 7;;. On the other hand, m;;(C) < P! x P! is a (2,2)-curve so it is
rationally equivalent to the union of two vertical and two horizontal projective lines. This gives
o;gck = —cp + 2¢; + 2Cj. O

Combining this lemma with the previous proposition, we see that a very general Wehler sur-
face has Picard number 3, H has dimension 2, NS(X; Z) = Vectz(c1, c2, ¢3) and the matrices
of the ¢ in the basis (¢;) are

~1.0 0 1 2 0 10 2
G4 o= 2 10|, 05=0 10|, ox=]01 2
2 0 1 0 2 1 00 —1

Proposition 3.3. If X is a very general Wehler surface then:
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(1) X is a smooth K3 surface with Picard number 3;

(2) Aut(X) is equal to {o1,09,03), it is a free product of three copies of Z/2Z, and Aut(X)*
is a finite index subgroup in the group of integral isometries of NS(X; Z);

(3) Aut(X)* acts strongly irreducibly on NS(X; R);

(4) Aut(X) does not preserve any algebraic curve D < X;

(5) the limit set of Aut(X)* is equal to OH x;

(6) the compositions o; 00 and 0;00j o oy, are respectively parabolic and loxodromic for every
triple (i, 7, k) with {i, j,k} = {1, 2, 3}.

Proof. The first three assertions follow from Proposition [25} §1.5] and [36, Thm 3.6]. For
the fourth one, note that any invariant curve D would yield a non-trivial fixed point [D] in
NS(X;Z), contradicting assertion (3). The fifth one follows from the second because the limit
set of a lattice in Isom(NS(X; R)) is always equal to 0H x. To prove the last assertion, it suffices
to compute the corresponding product of matrices given in Equation (3.4) (see [23]). g

Remark 3.4. In [4], Baragar gives examples of smooth surfaces X € |L| for which p(X) > 4
and the limit set of Aut(X)* in JH is a genuine fractal set.

3.2. Pentagons. The dynamics on the space of pentagons with given side lengths, introduced in
§1.2] shares important similarities with the dynamics on Wehler surfaces. A pentagon with side
lengths £, . . ., 4 modulo translations of the plane is the same as the data of a 5-tuple of vectors
(v4)i=0,....4 In R? (identified with C) of respective length ¢; such that D vi = 0. Write v; = £t;
with |¢;| = 1. Then the action of SO2(R) can be identified to the diagonal multiplicative action
of Uy = {ae C; |a|] = 1} on the ¢;:

3.5) - (t(),...,t4) = (ato,...at4).

Now, following Darboux [43]], we consider the surface X in ]P"é defined by the equations

(3.6) lozg + €121 + lozg + U323 + 0424 =0
' bo/z0 + 01)z1 + la)z0 + l3)z3 + £y)24 = 0
where [zg : ... : z4] is some fixed choice of homogeneous coordinates, and the second equation

must be multiplied by 2g2; 222324 to obtain a homogeneous equation of degree 4.

Remark 3.5. This surface is isomorphic to the Hessian of a cubic surface (see [50, §9]). More
precisely, consider a cubic surface S < IP’?’C whose equation F' can be written in Sylvester’s
pentahedral form that is, as a sum F' = Z?:o )\iFi?’ for some complex numbers A; and linear
forms F; with Z?:o F; = 0. By definition, its Hessian surface H is defined by det(0;0; F') = 0.
Then, using the linear forms F; to embed Hp in ]P"é, we obtain the surface defined by the pair
of equations Z?:o z; = 0 and Z?:o )\ilzi = 0. Thus, H is our surface X, for 7 = )\;. We refer
to [49, 441 48| [105]] for an introduction to these surfaces and their birational transformations.

For completeness, we prove some of its basic properties.

Lemma 3.6. Let { = ({o,...,ls) be an element of (C*)°. The surface X < P defined by
the system (3.6) has 10 singularities at the points q;j determined by the system of equations
lizi + ljzj =0, 21, = 21 = 2y, = Owithi < jand {i,j,k,l,m} = {0,1,2,3,4}. In the
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complement of these ten isolated singularities, X is smooth if and only if

4
(3.7) Dleili #0 Ve {£1}.
1=0

Proof. We first look for singularities in the complement of the hyperplanes z; = 0, and work

in the chart zo = 1. Then z4 = —({p + {121 + l222 + l324)/4 and we replace in the second
equation of (3.6) to obtain an affine equation of X in this chart, namely:

0y ly 4 0
(3.8) 14243 4 + 45 = 0.

21 29 z3 B bo + l121 + lozg + f323

Singularities are determined by the system of equations 27 = 23 = 25 = £;2(lo + {121 + la22 +
¢323)?. So, by symmetry, at a singularity where none of the coordinates vanishes we must have
z; = €;z for some €; = +1 and a common factor z # 0; this is precisely Condition (3.7).

Looking for singularities with one coordinate equal to 0, say z; = 0 in the chart zg = 1, we
obtain the system of equations

0= (50222’3 + l329 + 6223)(50 + lozo + 5323) + (f% — 53)2223
3.9 0= 6123(60 + 20929 + €323)
0= flzg(go + loz9 + 25323)

together with £y + lo29 + l323 + l4z4 = 0 and £1202324 = 0 (in particular, 29, 23 or z4 must
vanish). The solutions of this system are given by z; = 2o = z3 = 0, which gives the point
Goa = [l4 : 0:0:0: —f],orz = 22 = 0and ¥y + ¢323 = 0, which corresponds to
qos = [¢3:0:0: —lp: 0], or z; = z3 = 0 which gives qo2, or 21 = z4 = 0 but then either
zg = 0 or z3 = 0 and we end up again with gg2 and go3. The result follows by symmetry. U

Lemma 3.7. If { € (C*)? satisfies Condition (3.7), then the ten singularities are simple nodes
(Morse singularities) and the surface X is a (singular) K3 surface: a minimal resolution X of
X is a K3 surface, which is obtained by blowing-up its ten nodes, thereby creating ten rational
(—2)-curves.

Proof. Working in the chart zy = 1 and replacing z4 by —({y + ¢121 + l229 + l323)/l4, the
quadratic term of the equation of X at the singularity (z1, 22,23) = (0,0,0) is (—¢y/l4)Q,
where

(3.10) Q(z1, 22, 23) = L2023 + laz123 + (32122

is a non-degenerate quadratic form (its determinant is 2£1¢5¢5 # (). So locally X is holomor-
phically equivalent to the quadratic cone {Q = 0}, hence to a quotient singularity (C2,0)/n
with n(z,y) = (—z, —y). The minimal resolution of such a singularity is obtained by a simple
blow-up of the ambient space, the exceptional divisor being a (—2)-curve in the smooth sur-
face X. The adjunction formula shows that there is a holomorphic 2-form 2x on the regular
part of X; locally, Qx lifts to an n-invariant form Q’y on C*\{0}, which by Hartogs extends
at the origin to a non-vanishing 2-form. To recover X, one can first blow-up C? at the origin
and then take the quotient by (the lift of) n: a simple calculation shows that (', determines a
non-vanishing 2-form on X. After such a surgery is done at the ten nodes, X is a smooth surface
with a non-vanishing section of K ;; since it contains at least ten rational curves, it can not be
an Abelian surface, so it must be a K3 surface. O
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Remark 3.8. Let L;; be the line defined by the equations z; = 0, z; = 0, £ozo + - - - + {424 = 0;
each of these ten lines is contained in X, each of them contains 3 singularities of X (namely ¢y,
Qum» Qe With obvious notations), and each singularity is contained in three of these lines. If one
projects them on a plane, the ten lines L;; form a Desargues configuration (see [48, 49]).

All this works for any choice of complex numbers ¢; # 0. Now, since the ¢; are real, X is en-
dowed with two real structures. First, one can consider the complex conjugation c¢: [z;] — [Z]
on P4(C) and restrict it to X: this gives a first antiholomorphic involution cx. Another one
is given by sx: [z;] — [1/Z]. To be more precise, consider first, the quartic birational in-
volution J € Bir(Pg) defined by J([z;]) = [1/2]; J preserves X, it determines a birational
transformation Jx € Bir(X), and on X it becomes an automorphism because every birational
transformation of a K3 surface is regular. Thus, sx = Jx o cx determines a second antiholo-
morphic involution s ¢ of X. In what follows, we denote by (X, sx) this real structure (even if

it would be better to study it on X); its real part is the fixed point set of sy, i.e. the set of points
in X (C) with coordinates of modulus 1: the real part does not contain any of the singularities
of X, this is why we prefer to stay in X rather than lift everything to X. Thus, with the real
structure defined by sx, the real part of X coincides with Pent®({o, ..., £4) if (£;) € (R*)5.

Remark 3.9. When ¢; > 0 for all indices i € {0, ...,4}, a complete description of the possible
homeomorphism types for the real locus (in the smooth and singular cases) is given in [42]: in
the smooth case, it is an orientable surface of genus g = 0, . .., 4 or the union of two tori.

Remark 3.10. The involution J preserves X and the two real structures (X, cx) and (X, sx). It
lifts to a fixed point free involution Jx on X, and X / Jx is an Enriques surface. On pentagons,
J corresponds to the symmetry (z,y) € R? ~ (x, —y) that reverses orientation. Thus we see
that the space of pentagons modulo affine isometries is an Enriques surface. When X acquires
an eleventh singularity which is fixed by Jx, then X / J- x becomes a Coble surface: see [48], §5]
for nice explicit examples. This happens for instance when all lengths are 1, except one which
is equal to 2 (this corresponds to ¢ = 1/4 in [48], §5.2]).

Finally, let us express the folding transformations in coordinates. Given i # j in {0, ..., 4}
(consecutive or not) we define an involution (¢, ¢;) — (¢, t;) preserving the vector ¢;t; 4 (;t; by
taking the symmetric of ¢; and ¢; with respect to the line directed by ¢;t; 4 £;t;. In coordinates,
t), = u/t), for some u of modulus 1, and equating /;t; + £;t; = {;t] + ﬁjt; one obtains

Ot 4 0t
G.11) (tt]) = (“ “) withu = Gt
t; tj &ti —‘rgjtj

Observe that these computations also make sense when the ¢; are complex numbers, or when we
replace the ¢; by the complex numbers z;. This defines a birational involution o;; : X --» X,

(3.12) oijlzo iz = (20 ..ot 2y

with 2z = 2 if b # 4,7, 2{ = vz, and 2} = vz with v = (b2 + £25)/(bizj + £2).
Again, since every birational self-map of a K3 surface is an automorphism, these involutions
oi; are elements of Aut(X') that commute with the antiholomorphic involution s ;> hence, they
generate a subgroup of Aut(X ;5 ¢). Thus we have constructed a family of projective surfaces

X, depending on a parameter ¢ € P*(C), endowed with a group of automorphisms generated by
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involutions. Note that this group can be elementary: for instance when the five lengths are all
equal the group is finite because in that case (2}, ;) = (2j, 2;). When j = i + 1 modulo 5, 0;;
corresponds to the folding transformation described in the introduction.

Remark 3.11. Pick a singular point ¢;;, and project X from that point onto a plane, say the
plane {z; = 0} in the hyperplane P = {{ypz9 + --- + £4z4 = 0}. One gets a 2 to 1 cover
X — P2, ramified along a sextic curve (this curve is the union of two cubics, see [[105]]). The
involution o;; permutes the points in the fibers of this 2 to 1 cover: if z is a point of X, the line
joining ¢;; and z intersects X in the third point o;;(x). The singularity ¢;; is an indeterminacy
point, mapped by o;; to the opposite line L;;.

Proposition 3.12. For a general parameter { € P*(C):

(1) X is a K3 surface with ten nodes, with two real structures cx and sx when { € IP’4(R),'

(2) ifi, 5 =i+ 1, k = 1+ 2 are distinct consecutive indices (modulo 5), then o;j o 0y is a
parabolic transformation on X;

(3) ifi, j, k, and [ are four distinct indices (modulo 5), then o;; commutes to oy,;.

(4) the group 1" generated by the involutions o;; is a non-elementary subgroup of Aut(X i5%)
that does not preserve any algebraic curve.

In [48]], Dolgachev computes the action of o;; on NS(X ). This contains a proof of this
proposition. He also describes, up to finite index, the Coxeter group generated by the o;;. The

automorphism groups of X and of the Enriques surface X / J}( are described in [49] and [107].

Proof. We already established Assertion (1) in the previous lemmas. For Assertion (2), denote
by I, m the indices for which {3, j,k,I,m} = {0,...,4}, and consider the linear projection
Tim: P5(C) --» PL(C) defined by [20 : ... : 24] = [z : 2m]. The fibers of 7, are the
hyperplanes containing the plane {z; = z,, = 0}, which intersects X on the line L;,,. This line
is a common component of the pencil of curves cut out by the fibers of 7;,,, on X, and the mobile
part of this pencil determines a fibration 7, x : X — P! whose fibers are the plane cubics

(3.13) (Elzl+€mzm)(€mzl+£lzm)zizjzk = zlzm(&zjzk+€jzizk—I—ékzizj)(&zi—l—éjz]' —I—Ekzk),

with [z : zp,] fixed. The general member of this fibration is a smooth cubic, hence a curve of
genus 1.

Then o;; and o, preserve m,, x, and along the general fiber of 7, x each of them is de-
scribed by Remark for instance, o;;(x) is the third point of intersection of the cubic with
the line (gij, z). Thus, writing such a cubic as C/Ay;,.., ], 0ij acts as z — —z + by, for some
bij € C/A,..,,) that depends on [z : z,,] and the parameter /; it has four fixed points on the
cubic curve, which are the points of intersection of the cubic with the hyperplanes z; = z;
and z; = —z;; equivalently, the line (g;;, ) is tangent to the cubic at these four points.

By Lemma either o;; o 0, is of order < 66 (in fact of order < 12 because it preserves
Tm|x fiber-wise), or it is parabolic. Due to this bound on the order, and the fact that there do
exist pentagons for which ;; o o, is of infinite order (indeed, this reduces to the corresponding
fact for quadrilaterals, see the example below), o;; o 0, is parabolic for general /.

Example 3.13. Take ¢/ = 1 and m = 2, and normalize our pentagons to assume that ty = 1,
which means that the first vertices are ap = (0, 0) and a; = (o, 0); in homogeneous coordinates
this corresponds to the normalization [1 : 21 : 23 : 23 : 24] with z; = ¢;. Now, the pentagon in a
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fiber of 75 x have three fixed vertices, namely ag, a1 and ag. The remaining vertices ag and a4
move on the circles centered at ao and ag and of respective radii £» and ¢4, with the constraint
aszay = {3. The circles are two conics, the fiber is a 2 to 1 cover of each of these two conics, and
the automorphisms o293 and o34 preserve these fibers. Forgetting the vertex a;, and looking at
the quadrilateral (ag, a2, as, as), one recovers the involutions described in [10]. The fixed points
of 093 correspond to configurations with tangent circles, i.e. ag on the segment [ag, a4].

Assertion (3) follows directly from the fact that o;; changes the coordinates z; and z; but
keeps the other three fixed.

Finally, for a general parameter ¢, I" contains two such parabolics associated to distinct fibra-
tions 7, and 7y, SO it is non-elementary (see Lemma . In addition I' does not preserve
any curve in X. Indeed, let E < X be a I"-periodic irreducible curve, and denote by F’ its
image in IP’%3 under the projection X > X. IfFisa point, it is one of the singularities g;;, and
changing F into its image under (the lift of) o;; the curve I’ becomes the line L;;. So, we may
assume that F' is an irreducible curve. Now, the orbit of F' is periodic under the action of the
parabolic automorphisms g; = 000, with k = j+ 1 and j = i+ 1. Since the invariant curves
of a parabolic automorphisms are contained in the fibers of its invariant fibration, we deduce that
F'is contained in the fibers of each of the projections 7;,,; this is obviously impossible. U

3.3. Enriques surfaces (see [40, 51]]). Enriques surfaces are quotients of K3 surfaces by fixed
point free involutions. According to Horikawa and Kondo (|73} [74} [81]]), the moduli space
ME of complex Enriques surfaces is a rational quasi-projective variety of dimension 10. An
Enriques surface X is nodal if it contains a smooth rational curve; such rational curves have
self-intersection —2, and are called nodal-curves or (—2)-curves. Nodal Enriques surfaces form
a hypersurface in Mp.

For any Enriques surface X, the lattice (NS(X; Z), gx ) is isomorphic to the orthogonal direct
sum Fg = U Eg(—1), (ﬂ) Let Wx < O(NS(X; Z)) be the subgroup generated by reflexions
about classes u such that u? = —2, and W (2) be the subgroup of W acting trivially on
NS(X;Z) modulo 2. Both Wx and Wx (2) have finite index in O(NS(X; Z)). The following
result is due independently to Nikulin and Barth and Peters (see [51] for details and references).

Theorem 3.14. If X is an Enriques surface which is not nodal, the homomorphism Aut(X) 3
f— f* e GL(H*(X, Z)) is injective, and its image satisfies Wx (2) = Aut(X)* = W.

In particular, for any unnodal Enriques surface, Aut(X) is non-elementary, contains parabolic
elements, and acts irreducibly on NS(X'; R); thus, it does not preserve any curve.

3.4. Examples on rational surfaces: Coble and Blanc. Closely related to Enriques surfaces
are the examples of Coble, obtained by blowing up the ten nodes of a general rational sextic
curve Cy — P2. The result is a rational surface X with a large group of automorphisms. To
be precise, consider the canonical class Kx < NS(X;Z); its orthogonal complement K )L( isa
lattice of dimension 10, isomorphic to Ejg, and we define Wx (2) exactly in the same way as
for Enriques surfaces. Then, Aut(X)* preserves the decomposition Ky @ K, and Aut(X)*

"Here, U is the standard 2-dimensional Minkowski lattice, (Z?,x122), and Es is the root lattice given by the
corresponding Dynkin diagram; so Es(—1) is negative definite, and F1¢ has signature (1,9) (see [40L Chap. II]).
Also, recall that in this paper NS(X; Z) denotes the torsion free part of the Néron-Severi group, which is sometimes
denoted by Num(X; Z) in the literature on Enriques surfaces.
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contains Wx (2) when X does not contain any smooth rational curve of self-intersection —2
(see [30], Theorem 3.5). Also, Coble surfaces may be thought of as degeneracies of Enriques
surfaces: an interesting difference is that [ K x| is non trivial; in particular, NS(X; Z) is always
non-trivial, for any I' < Aut(X). There is a holomorphic section of —2K y vanishing exactly
along the strict transform C' < X of the rational sextic curve Cp; this means that there is a
meromorphic section Qy = &(z,y)(dx A dy)? of K¢ that does not vanish and has a simple
pole along C'. Thus, the formula

(3.14) volx(U) = JU |€(z,y)|dx A dy A dT A dy = JU |€(x,y)| (idx A dT) A (idy A dY)

determines a finite measure voly = Q}Xﬂ A Q}Xﬂ ”, which we may assume to be a probability
after multiplying Q2 x by some adequate constant; this measure is Aut(X)-invariant (because
vol x is uniquely determined by the complex structure; see also Remark below).

Another family of examples has been described by Blanc in [[14]. One starts with a smooth
cubic curve Cy < P2, If ¢, is a point of Cy, there is a unique birational involution s; of P? that
fixes Cp pointwise and preserves the pencil of lines through ¢;. The indeterminacy points of s;
are ¢ and the four tangency points of Cyy with this pencil (one of them may be “infinitely near ¢;”
and in that case it corresponds to the tangent direction of Cj at ¢1); thus the indeterminacies of s;
are resolved by blowing-up points of Cy (or points of its strict transform). After such a sequence
of blow-ups s; becomes an automorphism of a rational surface X that fixes pointwise the strict
transform of Cj. So, if we blow-up other points of this curve, s; lifts to an automorphism of the
new surface. In particular, we can start with a finite number of points ¢; € Cy, ¢ = 1,...,k, and
resolve simultaneously the indeterminacies of the involutions s; determined by the g;. The result
is a surface X, with a subgroup I' := (sq, ..., sy of Aut(X). Blanc proves that (1) there are no
relations between these involutions, that is, I" is a free product (s1, ..., sy ~ *?:1 Z/27Z, (2)
the composition of two distinct involutions s; o s; is parabolic, and (3) the composition of three
distinct involutions is loxodromic. There is a meromorphic section 2x of Kx with a simple
pole along the strict transform of C, but the form volx := Qx A Qy is not integrable.

Remark 3.15. If I'  Aut(X) is generated by involutions and there is a meromorphic form (2
such that f*Q = £(f)Q for every f € T, then {(f) = £1: this is the case for Blanc’s examples
or general Coble surfaces, since Wx (2) is also generated by involutions (see [51]).

3.5. Real forms. For each of the examples described in Sections|3.1|to we may ask for the
existence of an additional real structure on X, and look at the group of automorphisms Aut(Xg)
that preserve the real structure (automorphisms commuting with the anti-holomorphic involution
describing the real structure). Note that if X is a smooth projective variety with a real structure,
then X (R) is either empty or a compact, smooth, and totally real surface in X.

If X is a Wehler surface defined by a polynomial equation P(x1, x2, x3) with real coefficients
the o; are automatically defined over R. If X is a Blanc surface for which Cj is defined over R
and the points ¢; are chosen in Cy(R), then again (sq, ..., s;) < Aut(Xr). Real Enriques and
Coble surfaces provide also many examples for which Aut(Xg) is non-elementary (see [43]).

%if locally C' = {x = 0} then £(z,y) = n(x,y)/x where 1 is regular; thus, |¢| = || |z| " is locally integrable
because T% is integrable with respect to rdrdf when a < 2
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3.6. Surfaces admitting non-elementary groups of automorphisms. The surfaces in the pre-
vious examples are all projective. This is a general fact, which we prove in this paragraph: we
rely on the Kodaira-Enriques classification to describe compact Kéhler surfaces which support
a non-elementary group of automorphisms and prove Theorem [2.T1]

3.6.1. Minimal models. We refer to Theorem 10.1 of [28]] for the following result:

Theorem 3.16. If X is a compact Kdhler surface with a loxodromic automorphism, then

— either X is a rational surface, and there is a birational morphism m: X — IP%;

— or the Kodaira dimension of X is equal to 0, and there is an Aut(X )-equivariant bimero-
morphic morphism w: X — Xg such that X is a compact torus, a K3 surface, or an
Enriques surface.

In particular, h*°(X) equals 0 or 1.

Remark 3.17. If X is a torus or K3 surface, there is a holomorphic 2-form €2 x on X that does
not vanish and satisfies §  $2x AQlx = 1. Itis unique up to multiplication by a complex number
of modulus 1. A consequence of utmost importance to us is that the volume form

(3.15) Qx A Qx

is Aut(X)-invariant. Furthermore for every f we can write f*Qx = J(f){2x, where the Jaco-
bian f € Aut(X) — J(f) € Uy is a unitary character on the group Aut(X). Since H?°(X; C)
is generated by [€2x |, we obtain

(3.16) ffw=J(f)Hw Ywe H**(X;C).

If Y is an Enriques surface, and X — Y is its universal cover, then X is a K3 surface: the
volume form Qx A Qx is invariant under the group of deck transformations, and determines
an Aut(Y)-invariant volume form on Y. So, if X is not rational, the dynamics of Aut(X)
is conservative: it preserves a canonical volume form which is uniquely determined by the
complex structure of X.

It follows from Theorem that, in most cases, Aut(X) is countable (see [28, Rmk 3.3]).

Proposition 3.18. Let X be a compact Kiihler surface. If Aut(X) contains a loxodromic el-
ement, then the kernel of the homomorphism Aut(X) — Aut(X)* < GL(NS(X;Z)) is finite
unless X is a torus. So, if Aut(X) is non-elementary, then Aut(X) is discrete or X is a torus.

3.6.2. Projectivity.

Theorem E. Let X be a compact Kdihler surface and 1" be a non-elementary subgroup of
Aut(X). Then X is projective, and is birationally equivalent to a rational surface, an Abelian
surface, a K3 surface, or an Enriques surface.

From the discussion in §§3.1] we see that there exist examples with a non-elementary
group of automorphisms for each of these four classes of surfaces. Theorem [E]is a direct conse-
quence of Theorem [3.16)and the following lemmas.

Lemma 3.19. Let f be a loxodromic automorphism of a compact Kiihler surface X. The fol-
lowing properties are equivalent:

(1) on H?>Y(X; C), f* acts by multiplication by a root of unity;
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(2) X is projective.

If X supports a loxodromic automorphism, then dim(H?%(X; C)) < 1; and with notation as
in Remark [3.17] the first assertion is equivalent to

(1) either H*°(X; C) = 0 or J(f) is a root of unity.

Proof of Lemma[3.19) The characteristic polynomial x ¢ of f*: H*(X;Z) — H?*(X;Z) is a
monic polynomial with integer coefficients. Since f is loxodromic, f* has a real eigenvalue
A(f) > 1. Besides A(f) and A(f)~', all other roots of X have modulus 1, so A(f) is a
reciprocal quadratic integer or a Salem number (see § 2.4.3 of [28]] for more details). Thus, the
decomposition of x s into irreducible factors can be written as

(3.17) Xr(t) = S¢(t) x Rs(t) = S¢(t) x Hcf,i(t)
i=1

where Sy is a Salem polynomial or a reciprocal quadratic polynomial, and the C'y; are cyclo-
tomic polynomials. In particular if £ is an eigenvalue of f* and a root of unity, we see that ¢ is
aroot of R¢(t) but not of Sy (t).

The subspace H*(C) = H?(X;C) is f*-invariant and, by Lemma 2.1} all eigenvalues of
f* on that subspace have modulus 1; if an eigenvalue of f*|z2,0(x.c) is not a root of unity, then
itis a root of Sy.

Assume that all eigenvalues of f* on H*Y(X; C) are roots of unity. Then Ker(S¢(f*)) =
H?(X;R) is a f*-invariant subspace of H>!(X;R). This subspace is defined over Q and is
of Minkowski type; in particular, it contains integral classes of positive self-intersection, and by
the Kodaira embedding theorem, X is projective. Conversely, assume that X is projective. The
Néron-Severi group NS(X; Q) < HY'(X;R) is f*-invariant and contains vectors of positive
self-intersection, so by Proposition [2.8] it contains all isotropic lines associated to loxodromic
automorphisms. Now any f* invariant subspace defined over Q and containing the eigenspace
associated to A\(f*) contains Ker(S¢(f*)), so we deduce that Ker(S;(f*)) < NS(X;Q). In
particular, Ker(S;(f*)) does not intersect H*Y(X; C), which is invariant, and we conclude that
all eigenvalues of f* on H*?(X; C) are roots of unity. O

Lemma 3.20. Let X be a compact Kiihler surface. If X is not projective, then Aut(X)* is
virtually Abelian and if it contains a loxodromic element it is virtually cyclic.

Proof. Assume that Aut(X)* is not virtually Abelian, or that it contains a loxodromic element
without being virtually cyclic. According to Theorem 3.2 of [28], Aut(X)* contains a non-
Abelian free group I' such that all elements of I"\{id} are loxodromic; from Theorem ei-
ther h2%(X) = 0 or X is the blow-up of a torus or a K3 surface. In the first case, H(X;R) =
HY'(X;R) so, by the Hodge index theorem, H'!(X;R) contains an integral class with pos-
itive self-intersection; then, the Kodaira embedding theorem shows that X is projective. In the
second case, by uniqueness of the minimal model, the morphism X — X onto the minimal
model of X is Aut(X)-equivariant, so we can assume that X = X is minimal and h*?(X) = 1.
Consider the homomorphism J: Aut(X) — Uy, as in Remark Since Uy is Abelian
ker(.J|r) contains loxodromic elements: indeed if f,g € I" and f # g then [f,g] = fgf tg~*
is loxodromic and J([ f, g]) = 1. From Lemma[3.19|we deduce that X is projective. O
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4. GLOSSARY OF RANDOM DYNAMICS, |

We now initiate the random iteration by introducing a probability measure on Aut(X). In this
section we introduce a first set of ideas from the theory of random dynamical systems, as well
as some notation that will be used throughout the paper.

4.1. Random holomorphic dynamical systems. Let X be a compact Kihler surface, such that
Aut(X) is non-elementary. Note that Aut(X) is locally compact for the topology of uniform
convergence —in many interesting cases it is actually discrete (see Proposition[3.18)- so it admits
a natural Borel structure. We fix some Riemannian structure on X, for instance the one induced
by the Kihler form rg. For f € Aut(X), we denote by | f| 1 the maximum of | D f, | where the
norm of D fy: Tpy M — T,y M is computed with respect to this Riemannian metric.

We consider a probability measure v on Aut(X) satisfying the moment condition (or inte-
grability condition)

(4.1) f (1081l ) + 108 [ £ vy ) d(F) < +e0.

The norm | - Hcl( x) 1s relative to our choice of Riemannian metric, but the finiteness of the
integral in does not depend on this choice. In many interesting situations the support of v
will be finite, in which case the integrability (4.1)), as well as stronger moment conditions which
will appear later (see Conditions and (5.27)), are obviously satisfied.

Lemma 4.1. The measure v satisfies the moment condition @.1)) if and only if it satisfies the
higher moment conditions

@2) [ (1o len ) + 108 1 o) () <,
forall k > 1.

Here the C* norm is relative to the expression of f in a system of charts (we don’t need to be
precise here because only the finiteness in (4.2) matters). This lemma follows from the Cauchy
estimates. In particular, if v satisfies (4.1), then it satisfies a similar moment condition for the
C? norm, a property required to apply Pesin’s theory.

Given v, we shall consider independent, identically distributed sequences ( f,)n>0 of random
automorphisms of X with distribution v, and study the dynamics of random compositions of the
form f,,_10---ofp. The data (X, ) will be referred to as a random holomorphic dynamical
system on X . Many properties of (X, v) depend on the properties of the subgroup

4.3) ' =T, := (Supp(v))

generated by (the support of) v in Aut(X). If in addition I, is non-elementary, we say that
(X, v) is non-elementary.

4.2. Invariant and stationary measures. Let G be a topological group and v be a probability
measure on G. Consider a measurable action of G on some measurable space (M, A). Every
f € G determines a push-forward operator u — f.u, acting on positive (resp. probability)
measures ¢ on (M, A). By definition, a probability measure p on (M, A) is v-stationary if

(4.4) f Ffopdv() =
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and it is v-almost surely invariant if f,u = u for v-almost every f. Let us stress that we only
deal with probability measures in this definition; slightly abusing terminology, most often we
drop the mention to v and the mention that 4 is a probability. A stationary measure is ergodic if
it is an extremal point of the closed convex set of stationary measures (see [12] §2.1.3]).

If 1 is almost surely invariant then it is stationary but the converse is generally false. If M
is compact, the action G x M — M is continuous, and A4 is the Borel o-algebra, the Kaku-
tani fixed point theorem implies the existence of at least one stationary measure. On the other
hand the existence of an invariant measure is a very restrictive property. For instance, proximal,
strongly irreducible linear actions on projective spaces have no (almost surely) invariant proba-
bility measure (see Sections [I.3]and [5.3)). Following Furstenberg [65] we say that an action is
stiff (or v-stiff) if any v-stationary measure is v-almost surely invariant.

We shall consider several measurable actions of Aut(X): its tautological action on X, but
also its action on the projectivized tangent bundle P(7'X), on cohomology groups of X and
their projectivizations, on spaces of currents, etc. In all cases, M will be a locally compact
space and A its Borel o-algebra, which will be denoted by B(M).

Remark 4.2. Since X is compact and the action Aut(X) x X — X is continuous, a probability
measure p on (X, B(X)) is v-almost surely invariant if and only if it is invariant under the action
of the closure of I, in Aut(X); this follows from the dominated convergence theorem.

4.3. Random compositions. Set Q = Aut(X)YN, endowed with its product topology. The
associated Borel o-algebra coincides with the product o-algebra, and it is generated by cylinders
(see § . We endow Q with the product measure . Choosing a random element in €2
with respect to N is equivalent to choosing an independent and identically distributed random
sequence of automorphisms in Aut(X) with distribution v. For w € Q, we let f, = fp and
denote by f/’ the left composition of the n first terms of w, that is

4.5) fo = Jfn-10---0fo

for n > 0. By definition fO = id. Let us record for future reference the following consequence
of the Borel-Cantelli lemma. We denote by o: {2 — Q the unilateral shift, i.e. the continuous
transformation defined by o ( fo, f1,...) = o(f1, fo2,...).

Lemma 4.3. If (X, v) is a random dynamical system satisfying the moment condition {@.1), then
for vN-almost every sequence w = (f,,) € €,

1 -1

o (log || fall o1 + log | £ HCl) e 0.
Remark 4.4. We are not considering the most general version of random holomorphic dynam-
ical systems: one might consider compositions fyn—1(¢) © - -+ 0 fy(g) © fe where ¥ : ¥ — M is
some measure preserving transformation of a probability space and ¥ 3 £ — fe € Aut(X) is
measurable. The methods developed below do not apply to this more general setting.

5. FURSTENBERG THEORY IN H11(X: R)

Consider a non-elementary random holomorphic dynamical system (X, r) on a compact
Kihler surface, satisfying the moment condition (4.I). The main purpose of this section is
to analyze the linear action of (X, v) on HY1(X, R) by way of the theory of random products
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of matrices. Basic references for this subject are the books by Bougerol and Lacroix [[19] and by
Benoist and Quint [12].

5.1. Moments and cohomology. We start with a general discussion on the dilatation of co-
homology classes under smooth transformations. Let M be a compact connected manifold of
dimension m, endowed with some Riemannian metric g. If f: M — M is a smooth map, | f] -
denotes the maximum norm of its tangent action, computed with respect to g (see Section {.T)).
Thus, f is a Lipschitz map with Lip(f) = | f||-: for the distance determined by g; in particular
|fllcr = 1 whenever f is onto. Fix a norm ||, on each cohomology group H*(M;R), for
0<k<m.

Lemma 5.1. There is a constant C > 0, that depends only on M, g, and the norms ||y,
such that |f*[a]| e < CHLip(f)¥ |[]| g for every class [a] € H*(M;R) and every map
f: M — M of class C*. In other words, the operator norm | f*| x is controlled by the
Lipschitz constant:

| £ e < C*Lip(f)* < C¥|f]1%.

Proof. Pick a basis of the homology group Hy(M;R) ~ H*(M;R)* given by smoothly im-
mersed, compact, k-dimensional manifolds ¢;: N; — M, and a basis of H*(M;R) given by
smooth k-forms ;. Then, the integral SNl_ ¥ (f*a;) is bounded from above by C*| f ||lél for
some constant C, because

k

(5.1) |(F*ap)e(viy oy op)| = laj(fuvr, o faon)| < e FIE ] T lel,
/=1

for every point x € M and every k-tuple of tangent vectors v, € T, M ; here, c¢; is the supremum
of the norm of the multilinear map (c;), over z € M. O

If v is a probability measure on Diff (M) satisfying the moment condition (.1J), then
(5.2) V1< k<m, f log (| f*|lgx) + log (H(ffl)*HHk) dv(f) < 4oo0.
Diff (M)
If we specialize this to automorphisms of compact Kéhler surfaces we get

* —1\*
(5.3) Lutm log (1F*;11) + log (| (F)* | y1a) dv(f) < +0,

which is actually equivalent to (5.2) by Lemrna We saw in that 1F* g = |5 ons

so this last condition is in turn equivalent to

(5.4) | g1 ) ) < e
Aut(X)

5.2. Cohomological Lyapunov exponent. From now on we denote by |-| anorm on H! (X, R)
and by || the associated operator norm. The linear action induced by the random dynamical
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system (X, v) on HY1(X R) defines a random product of matrices. Since the moment condi-
tion (5.4) is satisfied, we can define the upper Lyapunov exponent \z1,1 (or Ag1,1(v)) by

55 Ao = lim f tog((/2)* N )
56) =l > log(£2)°]

n—+w n,

where the second equality holds almost surely, i.e. for #N-almost every w € €. This conver-
gence follows from Kingman’s subadditive ergodic theorem, since |-| being an operator norm,
(w,n) — log(||(f)*|) defines a subadditive cocycle (see [12, Thm 4.28] or [19, Thm 1.4.1]).
Note that (f))* = f§o---of¥_,, so we are dealing with right compositions instead of the usual
left composition. However since fj o---o f*_; has the same distribution as f¥_; o---o f§, the
Lyapunov exponent in (5.5)) corresponds to the usual definition of the upper Lyapunov exponent
of the random product of matrices. We refer to [[19,185]] for the definition and main properties of
the subsequent Lyapunov exponents (see also [12] §10.5]).

Proposition 5.2. Let (X, v) be a non-elementary holomorphic dynamical system on a compact
Kdihler surface, satisfying the moment condition @.1)), or more generally (5.4). Then the coho-
mological Lyapunov exponent A1 is positive and the other Lyapunov exponents of the linear
action on HY1 (X, R) are —\p1.1, with multiplicity 1, and 0, with multiplicity h*'(X) — 2.

Proof. Consider the I', -invariant decomposition 11, (—BH%V given by Proposition and Equa-
tion (2.13). Since the intersection form is negative definite on Hl , the group I'} |HL is bounded
and all Lyapunov exponents of T'? ’HL vanish. The linear action of I, on Il is strongly ir-

reducible and non-elementary, hence not relatively compact. Therefore Furstenberg’s theorem
asserts that Ag1,1 > 0 (see e.g. 19, Thm I11.6.3] or [[12, Cor 4.32]), and the remaining proper-
ties of the Lyapunov spectrum on IIr, follow from the KAK decomposition in Of’m(R), with
1 +m = dim(Ilr,) (see Lemma 2.4). O

Lemma 5.3. Ifa € HY(X; R) satisfies a*> > 0, for instance if a is a Kéhler class, then

1
lim —log|(f)*al = Aga
n

n—+0o0

for vN-almost every w.

Proof. Corollary [2.5]implies that if a € Hy then for every f € Aut(X), |f*a| = | f*|,
the implied constants depend only on a. Thus the result follows from Equation (5.6). O

Remark 5.4. It is natural to expect that Lemma 5.3|holds for any a € IIp\ {0}; this is true under
the more stringent moment assumption (5.26)) (see the proof of Proposition [5.15below).

If the order of compositions is reversed (which is less natural from the point of view of iterated
pull-backs), then Lemma@] indeed holds for any a in Il (see [19, Cor. II1.3.4.1]):

Lemma 5.5. For any a € I, and for vN-almost every w = (f,)n>0 € Q we have

lim —log|fn fial = Mg
n—+0o0
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5.3. The measure 5. By Furstenberg’s theory the linear projective action of the random dy-
namical system (X,v) on PIIp, < PH(X;R) admits a unique stationary measure upry;. ;
this measure does not charge any proper projective subspace of PIIp . Recall that the mass of a

class a is defined by M(a) = {a|[ko]) (see §[2.2).

Lemma 5.6. For vN-almost every w, there exists a unique nef class e(w) such that M(e(w)) = 1
and

b
M((f5)*a)

2

(57) (f3)*a — e(w)

—00
for any pseudo-effective class a with a* > 0 (in particular for any Kdhler class). In addition,
the class e(w) is almost surely isotropic and P(e(w)) is a point of the limit set Lim(I",)) < dHy.

Before starting the proof, note that I'}; ‘Hry is proximal, in the sense of [[12, §4.1]; equivalently,
Fﬁ\nr” is contracting, in the sense of [19, Def III1.1.3]. In other words, there are sequences of
elements g,, € T', such that || g,”;Hfl gnlmp, converges to a matrix of rank 1: for instance one can
take g, = f", where f € I, is any loxodromic automorphism.

Proof. For f € Aut(X), we use the notation f* for its action on PH'!(X; R). Since the action
of I', on Ilr, is strongly irreducible and proximal, its projective action satisfies the following
contraction property (see [19, Thm IIL.3.1]): there is a measurable map w € Q — e(w) € PIIp,
such that for almost every w, any cluster value L(w) of

1
5.8 B O
8 Hfék'"fé‘llfo I

in End(IIp, ) is an endomorphism of rank 1 whose range is equal to Re(w).

Let e(w) be the unique vector of mass 1 in the line Re(w). If a € I, satisfies a® >
0 and M(a) > 0, then any cluster value of M((f™)*a)~'(f")*a must coincide with e(w)
because by Corollary 2.5|the mass M(( f)*a) is comparable to the norm | fG - - - f¥]. Thus, the
convergence is satisfied. Furthermore e(w) is nef, because we can apply this convergence
to a nef class a and Aut(X) preserves the nef cone. Also, e(w) belongs to Lim(I", ), hence it is
isotropic. Now, let a and @’ be two classes of Hx with a € I, . Since the hyperbolic distance
between (f)*(a) and (f7})*(a’) remains constant and the convergence holds for a, it
also holds for a’. This concludes the proof, for every class with positive self-intersection is
proportional to a unique class in Hy. O

Remark 5.7. As in Remark [5.4] under the exponential moment condition (5.26)), the conver-
gence in Equation (5.7) holds for any a € IIp\ {0} and almost every w € €; to be precise,
W( fM)*a converges towards e(w) or its opposite. Then, we actually get the conver-

gence for any a € H%(X;R)\II{ (write @ = a4 + ap and use that T',, acts by isometries on
IT{)

Here is a summary of the properties of the stationary measure ppyyy. ; from now on, we view
it as a measure on PH 1! (X; R) and rename it as j1, because it is supported on 0H x.

Theorem 5.8. The probability measure defined on PH'(X; R) by

(5.9) fo = féme(w)) dv™ (w)
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is v-stationary and ergodic. It is the unique stationary measure on PHY'(X;R) such that
,u,,;(IP’(H%V)) = 0. The measure pp has no atoms and is supported on Lim(T',); in particular, if
A < Lim(T,) is such that pa(A') > 0 then A is uncountable.

The top Lyapunov exponent satisfies the so-called Furstenberg formula:

(5.10) Apgia = Jlog <‘J|c;7’1‘> dv(f) dus(u),

where i € HH(X, R)\ {0} denotes any lift of u € Lim(T',) « PH (X, R).

Proof. The ergodicity of pp = pprry., as well as its representation follow from the proper-
ties of the action of I',, on P(IIy) (see [19, Chap. III]). Also, we know that Az1,1 is equal to the
top Lyapunov exponent of the restriction of the action to P(Ilp, ), so the formula follows
from the strongly irreducible case (see [[19, Cor III1.3.4]).

Let now 1 be a stationary measure on PH ! (X; R) such that p(IP’H%U) = 0. A martingale
convergence argument shows that ( I )*p converges to some measure i, for almost every w
(see [19, Lem. 11.2.1]). Since T, preserves the decomposition Iy, @ H%V and || (f7)*| tends to
infinity while || (f)* |Hﬁ || stays uniformly bounded, we get that (f)*u converges to PIIr, for
p-almost every u and vN-almost every w; thus /i, is almost surely supported on PIIr, . Since by
stationarity p = S,udeN (w) we conclude that x gives full mass to P(IIp, ), hence p = pp. O

Remark 5.9. If Supp(v) generates I',, as a semi-group, then Supp(us) = Lim(T',), otherwise
the inclusion can be strict: take a Schottky group I' = {f, g) = PSL(2,R) and v = (67 + d,)/2.

Remark 5.10. Since Lim(I",) < Psef(X), for every w € Lim(I",) there exists a unique @ such
that Pi = w and (@ | [ko]) = M(@) = 1. Then the following formula holds:

- M(f*u
AN A = [log (M) du(f) diaf) = [ 10g (M) dv(f) dyio().

Indeed set r(w) = M(w)/ |w|. On the limit set this function satisfies 1/C < r(a) < C, where
C is the positive constant from Equation (2.5)). Then, for all m > 1,the stationarity of 15 implies

[10s (T(f *a)> Av(1) diofu) = [ o <Tr(f’f"’f5‘ i) ) A (fm) -+ vl fo) dao(u).

r(a) (froa-- fow)

Summing from m = 0 to n — 1, telescoping the sum, and dividing by n gives

1o (M) avtyauetun = [0 ((f(’“)) Av(fo 1)+ dv(fo) dua(u).

r(a) r(a)
Finally since 1/C < r < C, the right hand side tends to zero as n — 0. Hence the integral of
log(r o f*/r) vanishes, and (5.11) follows from Furstenberg’s formula. O

Proposition 5.11. The point P(e(w)) is vN-almost surely extremal in P(Kah (X)) and in P(Psef (X)).

Proof. The class e(w) almost surely belongs to Kah(X) and to the isotropic cone. By the Hodge
index theorem —more precisely, by the case of equality in the reverse Schwarz Inequality (2.7)-
e(w) cannot be a non-trivial convex combination of classes with non-negative intersection and
mass 1; so P(e(w)) is an extremal point of the convex set P(Kah(X)) « PH(X;R).
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From Proposition 2.3 there are at most countably many points P(u) in P(Kah(X)) such that
u? = 0 and P(u) is not extremal in P(Psef(X)). Therefore the second assertion follows from
the fact that g is atomless. O

5.4. Some estimates for random products of matrices.

5.4.1. Sequences of good times. We now describe a theorem of Gouézel and Karlsson, spe-
cialized to our specific context. Fix a base point eg in the hyperbolic space Hx, for instance
ep = [ko] with kg a fixed Kéhler form (as in Section . Consider the two functions of
(n,w) € N x  defined by

(5.12) T(n,w) = du(eo, (f5)*e0), N(n,w) =log|(f3)"]-
They satisfy the subadditive cocycle property
(5.13) a(n + m,w) < a(n,w) + a(m, o™ (w)),

where o is the unilateral shift on 2 (see § . Let a(n,w) be such a subadditive cocycle; if
a(1,w) is integrable the asymptotic average is defined to be the limit

1 N/ N
(5.14) A= nl_l)I_iI_loo - fa(n,w) dv (w);

it exists in [—00, +00), and we say it is finite if A # —oo. The functions 7" and N are examples
of ergodic subadditive cocycles and from Theorem Remark and Corollary we
deduce that the asymptotic average of each of these cocycles is equal to Ag1,1.

Following [68]], we say that a(n,w) is tight along the sequence of positive integers (n;) if
there is a sequence of real numbers (dy) = (d¢(w))r=0 such that

(i) &¢ converges to 0 as £ goes to +00;
(ii) for every ¢, and for every 0 < ¢ < n;,

a(nivw) - — ¢, O-e(w)) — Al < boy;

(ni
(iii) for every ¢ and for every 0 < £ < n;
a(ng,w) —a(n; — Liw) = (A — d,)L.
Theorem 5.12 (Gouézel and Karlsson [68]). Let a(n,w) be an ergodic subadditive cocycle, with

a finite asymptotic average A. Then, for almost every w, the cocycle is tight along a subsequence
(ni(w)) of positive upper density.

Recall that the (asymptotic) upper density of a subset S of N is the non-negative number
defined by dens(S) = limsup,_, ., (1S n [0,k —1]|). A sequence (n;);>o is said to have
positive upper density if the set of its values S = {n; ; i > 0} satisfies dens(S) > 0.

Proof. Let us explain how this result follows from [68]]. First, fix a small positive real number
p > 0, and apply Theorem 1.1 and Remark 1.2 of [68] to get a set {2, of measure 1 — p such
that the first two properties (i) and (ii) are satisfied for every w € {2, with respect to a sequence
(6¢) that does not depend on w, and for a sequence of times (n;(w)) of upper density > 1 — p.
To get (iii), we apply Lemma 2.3 of [68] to the sub-additive cocycle a(n,w) (not to the cocycle
b(n,w) = a(n,oc "(w)) as done in [68]). For every ¢ > 0, there is a subset Q. < 2 and a
sequence (0)¢=0 such that
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(a) YN(€) > 1 — ¢, and &) converges towards 0 as ¢ goes to +00;
(b) for every w € )L, there is a set of bad times B(w) < N such that for every k& > 0
|B(w) N [0,k — 1]] < €k, and for every n ¢ B(w) and every 0 < £ < n,
a(n,w) —a(n —liw) = (A —§))L.

If w belongs to ©2, N 2, the set of indices i for which n;(w) ¢ B(w) is infinite. More precisely,
the set S(w) = {n;(w) ; nj(w) ¢ B(w)} has asymptotic upper density > 1 — p — . Along
this subsequence, the three properties (i), (ii), and (iii) are satisfied. Since this holds for all
w € QL N Q, and the measure of this setis > 1 — p — ¢, this holds for vN-almost every w. [

Corollary 5.13. For vN-almost every w € Aut(X)N, there is an increasing sequence of integers
(ni(w)) going to +00 and a real number A(w) such that

n;(w) i\ nl(w)

fi MGG )
Ay ST
=0 [ (7)) = Vo

for all indices v = 0.

Proof. Apply Theoremm 5.12]to the subadditive cocyle N (n,w) and note that

J ni(w) oN(ni—tw) ni(w)
I St N (N SEA G P
o |(fo ) (— |(f2 ) H =0 v =0
which is bounded as n;(w) — o0. The second estimate is similar. O

5.4.2. A mass estimate for pull-backs. Assume that (X, v) is non-elementary and satisfies the
condition (@.T). Recall from Lemma [5.5] that M((f7)*a)~!(f")*a converges to the pseudo-
effective class e(w) for almost every w and every Kihler class a. Thus, on a set of total -
measure, this convergence holds for all ¥ (w), k > 0. Since M(e(w)) = 1, we obtain

(5.16) foe(ow) = M(fge(ow))e(w);
more generally, for every k > 1
(5.17) (£5) e(ohw) = M((f5) (0" w))e(w).

Lemma 5.14. For vN-almost every w, we have

log M(f2)"e(0")) — A

n—0o0

This does not follow from Lemmabecause e(oc"w) depends on n. Our argument relies on
Theorem [5.12] for convenience but other strategies could certainly be applied.

Proof. For almost every w, for every k > 1, and for every Kahler class a, we have

* 0, *

ko 1 k -14
(5.18) e(c’w) = nh_r)rgo MfF - fra)
So
(5.19) fE el (w)) = (11113(}0 ﬁgfi’: : 12;) e(w) =: ((k,w)e(w)
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where ((k,w) is both equal to M((f¥)*e(c*(w))) and to the limit

o M(fg-- fFqa) . M((f3)*a)
. k = 1 - 1 M((f"F Y*a)’
(5.20) ) = 8 N fr ) M((f7 )" a)

We want to show that, vN-almost surely, (1/k) log ¢(k,w) converges to Ag1.1.

Before starting the proof, note that ¢ is a multiplicative cocycle: ((k,w) = H];:l ¢(1,0w);
in particular, log {(k, w) is equal to the Birkhoff sum 21221 log ¢(1,0%w). Since

(5.21) CH (o g < M(fFelo(w)) < CUf g,

our moment condition shows that log({(1,w)) is integrable. So, by the ergodic theorem of
Birkhoff, limy % log ¢(k,w) exists vN-almost surely.

Pick a sequence (n;) of good times for w, as in Theorem If we compute the limit in
Equation (5.20) along the subsequence (n;) we see that ((k,w) = Cexp((Ag1.1 — d(k))k) for
some constant C' > 0, and some sequence (k) converging to 0 as k goes to +00. This gives

1
(5.22) limsup — log ((k,w) = Agi1.
k—400 k
Now, consider the linear cocycle T : Q x HM(X,R) — Q x Hb'(X, R) defined by
(5.23) T(w,u) = (0(w), (f)su)

and let PY be the associated projective cocycle on  x PH (X R). The Lyapunov expo-
nents of T are +\ 1.1, each with multiplicity 1, and 0, with multiplicity h''(X) — 2. Since
P((f})*e(o(w))) = P(e(w)), the measurable section {(w,P(e(w))) ; w € Q} is PY-invariant.
Therefore, by ergodicity of o with respect to v, m = Sép(e(w)) dvN(w) defines an invariant
and ergodic measure for PY. It follows from the invariance of the decomposition into character-
istic subspaces in Oseledets’ theorem that e(w) is contained in a given characteristic subspace

of the cocycle T'; thus, if A denotes the Lyapunov exponent of T in that characteristic subspace,
we get (as in Remark [5.10) that

_ 10 |(f5)xul 1 M((£)+(e(w)) UN(,
(5.24) A= Jl g ] dm(w,u) = | log M(c(w)) dv (w)
(5.25) = JlogC(l,w)ldyN(w)

(see Ledrappier [85] §1.5]). Birkhoft’s ergodic theorem implies that limy % log ((k,w) = —A,
with A € {£ 1,1, 0}, therefore the Inequality (5.22)) concludes the proof. U

5.4.3. Exponential moments. The result of this section will only be used in Theorem SO
this paragraph may be skipped on a first reading. Consider the exponential moment condition

(5.26) ir >0, J(”ﬂCl + Hf_chl)T dv(f) < +o0.

As in Section 5.1] this upper bound implies the cohomological moment condition

(5.27) Ir > 0, f(f*|H1,1 + (Y o) dv(f) < +oo.
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Proposition 5.15. Assume that v satisfies the Condition (5.26). Let D: Aut(X) — R, be a
measurable function such that { D(f)™ dv(f) < oo for some 7' > 0. Then, there is a measurable
Sfunction B: Q) — R satisfying

flong(B(w)) dvN(w) < o

such that for vN-almost every w = (f,) and every n = 0

gy Ul SN
B 7<B .
2 DU § Mg, < 2@

This is a refined version of Corollary [5.13] The result is stated in our setting, but it holds for
more general random products of matrices.

Proof. We are grateful to Sébastien Gouézel for explaining this argument to us. We temporarily
use the notation P(-) for probability with respect to ™ or v~ (so, here, P does not denote
projectivisation).

*,., %
it < o)

Step 1.— For every 0 < € < Ap1,1 there exists constants ¢, C' > 0 such that
(5.28) P((f0)*y <€) < Ce™ ™.

for every b € Il with |b| = 1. This large deviation result, which is uniform in n and b, follows
from condition (5.27)) (see for instance [[19} §V.6], and [12, §12]).

Step 2.— Let us prove that

First Estimate.— We start with the first estimate: ;7" ' D(fj_1)

* DY * . .

(5.29) P M >e | <Ce .
15+ Fial
For this, fix f;, ..., fn—1. Then, there is a point @ € IIr with |a| = 1 such that ‘ [ oz 1” =
frof 1a’ Hence, if | f§ - fi_ | < | fF -+ £7_1] €%, we infer that
(5.30) £ fraal < [ £ e = [£] - £iovale.
Thus, if we set
1

(5.31) = [ e,

| fr- ’
we obtain that ;‘_1b‘ < €% this happens with (conditional) probability < Ce~% (rela-
tive to */), for the uniform constants given in Step 1. Averaging over fir--s fn—1, we get the
result.

Step 3.— The moment condition satisfied by D and Markov’s inequality imply P(D > K) <
C1K —7' for some constant C1 > 0. Fix € € R small with respect to Ag1.1 and 7/. Then, on a
set (e, J) of measure

(5.32) yN(Q(g, J)) >1-— 02(6*(57'//2)‘] + efacj)7
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for some Cy = C3(¢) > 0, we have both D(f;—1) < e¥/2 and [ERre 1” e~ forall j = J.

lFEril S
For w = (fy) in Q(g, J), we get

(5.33) i D(f;1) M\ iD i) sl Z el
- |fo - fal Hfo o Pt

J
< X Pt sy

=Cs + Z by R b P

The moment condition (5.26) gives P(|f*| > K ) < C4K ™7 and as already noticed, we also
have P(D(f) > K) < C1 K~ So, with = min(r, 7'), there is a set of probability at least
1 — C5JK~" on which

J—1
(5.34) SIDENNS- £ ] < CoT K72,
=0

Taking K = J3/77, we have JK "7 = J 2, and we obtain

J-1
(5.35) P (Z D(HIfE] - ”fy*H > J1+3(J+2)/n> < ChJ2.
j=0
Also, note that J1HGT+6)/m < exp (CJ%/2).
By the Borel-Cantelli lemma, the sum in (5.33)) is almost surely bounded by some constant
B(w) which satisfies P (log B > J3/2) < CJ~?;in particular E (log* B) < .
Second Estimate.— To obtain the second estimate of Proposition [5.15] we apply the above

proof to the reversed random dynamical system, induced by 7 : f — v(f~!). Indeed, the core
of the argument is the inequality (5.33) which is not sensitive to the order of compositions. [

6. LIMIT CURRENTS

Our goal in this section is to prove the counterpart of the convergence at the level of
closed positive currents on X. Throughout this section we fix a non-elementary random holo-
morphic dynamical system (X, v) satisfying the moment condition (4.1]), so that all results of
apply. We refer the reader to [71] (in particular Chapter 8) for basics on pluripotential theory on
compact Kédhler manifolds (see also [?]).

6.1. Potentials and cohomology classes of positive closed currents. Let us fix once and for
all a family of Kihler forms (k;)1<;<p11(x) such that [£:]®> = 1 and the [x;] form a basis of
HY1(X:R); in addition we require that the &; satisfy

(6.1) Ko = /BZI‘%

for some B > 0, where kg is the Kihler form chosen in Section (note that necessarily
£ < 1). We also fix a smooth volume form volx on X, normalized by S « vol = 1. On tori, K3
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and Enriques surfaces, we choose vol x to be the canonical Aut(X )-invariant volume form (see
Remark[3.17). It is convenient to assume in all cases that vol x is also the volume form associated
with the Kéhler metric xg (up to scaling). On tori, K3 and Enriques surfaces this implies that
Ko is the unique Ricci-flat Kdhler metric in its Kéhler class; its existence is guaranteed by Yau’s
theorem (see [60] for the interest of such a choice in holomorphic dynamics).

Unless otherwise specified, the currents we shall consider will be of type (1, 1). The action
of a current 7" on a test form ¢ will be denoted by (T, o) or { T' A . If T is closed, we denote
its cohomology class by [T]; so, if ¢ is a closed form, (7', ¢) = {[T']|[¢]). By definition the
mass of a current is the quantity M(T') = { T A rkq; so M(T') = {[T]|[x0]) when T is closed.

6.1.1. Normalized potentials. If a is an element of H! (X; R), we denote by (¢;(a))1<i<pt1 (x)
its coordinates in the basis ([;]), so that a = ). ¢;(a)[~;]. Then, we set

(6.2) O(a) = Z ci(a)k;.

7
Likewise, given a closed (1, 1)-form « or a closed current of bidegree (1,1), we set ¢;(a) =
¢i([a]) and ©(a) = O([a]); hence, [O(c)] = [a]. It is worth keeping in mind that some
coefficients ¢;(cv) can be negative and ©(«) need not be semi-positive, even if « is a Kéhler
form. If 7" is a closed positive current of bidegree (1, 1) on X we define its normalized potential
to be the unique function uz € L(X) such that

63) T — O(T) + dd°(ur) and f wr vol — 0

X
(see [71} §8.1]). The function u is locally given as the difference v — w of a psh potential v of
T and a smooth potential w of O(T").

Lemma 6.1. There is a constant A > 0 such that the following properties are satisfied for every
closed positive current T of mass 1

(1) —A<¢(T) < Aforalll <i < hb(X), and —Aro < O(T) < Ary.
(2) the function ur is (Akg)-psh: ddc(uT) + Akg is a positive current.

Proof. Since the coefficients T' — ¢;(T") are continuous functions on the space of currents and
closed positive currents of mass 1 form a compact set K, the functions |¢;| are bounded by
some uniform constant A’ on K. Setting A = A’37!, with 3 as in Equation (6.1), we get
—Ako < O(T) < Arg forall T' € K. Then dd°ur =T — O(T) = — Ak and (2) follows. O

Corollary 6.2. The set of potentials {up | T is a closed positive current of mass 1 on X} is a
compact subset of L*(X;vol).

Proof. Since this is a set of (Akg)-psh functions which are normalized with respect to a smooth
volume form, the result follows from Proposition 8.5 and Remark 8.6 in [[71]. O

Remark 6.3. Another usual normalization imposes the condition sup,.x ur(z) = 0; by com-
pactness this would only change u7 by some uniformly bounded constant. However since many
of our dynamical examples preserve a natural volume form it is more convenient for us to nor-

malize as in (6.3).
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6.1.2. The diameter of a pseudo-effective class. For a class a € Psef(X') we define
(6.4) Cur(a) = {T ; T'is a closed positive current with [T'] = a},
This is a compact convex subset of the space of currents. If S and 7" are two elements of Cur(a),
then O(S) = O(T) = O(a) and T' — S = dd*(ur — us). We set
(6.5) dist(S,T) = f |lus — ur|vol .
X

This is a distance that metrizes the weak topology on Cur(a): this follows for instance from the
fact that by Corollary [6.2] (Cur(a), dist) is compact. By definition, the diameter of a is

(6.6) Diam(a) = Diam(Cur(a)) = sup{dist(S,7T) ; S, T'in Cur(a)},
If a € Psef(X), then Diam(a) is a non-negative real number which is finite by Corollary
If Cur(a) = &, we set Diam(a) = —oo. Note that Diam is homogeneous of degree 1:

Diam(ta) = t Diam(a) for every a € Psef(X) and t > 0.

Example 6.4. Let 7: X — B be a fibration of genus 1. Let a be the cohomology class of
any fiber X,, = 7~ !(w), w € B. Then, to every probability measure ;5 on B corresponds a
closed positive current 7}, , € Cur(a), defined by (T},,, 9) = {5 { . wdup(w), and any closed
positive current in Cur(a) is of this form. In this case Diam(a) > 0. Now, assume that f
is a loxodromic automorphism of X, and denote by ¢ the unique (1, 1)-class of mass 1 that
satisfies f*0; = A;0f, where )y is the spectral radius of f* € GL(H"!(X;R)); then Cur(6y)
is represented by a unique closed positive current TJT and Diam(6s) = 0. For generic Wehler
surfaces, these two types of classes, given by eigenvectors of loxodromic automorphisms and
classes of genus 1 fibrations, are dense in the boundary of Hx n NS(X; R) (see [28]).

Lemma 6.5. On Psef(X), a — Diam(a) is upper semi-continuous, hence measurable.

Proof. Let (a,,) be a sequence of pseudo-effective classes converging to a. For every n we
choose a pair of currents (S,,,7},) in Cur(a,)? such that dist(S,,7,) = Diam(a,) — 1/n.
The masses of S,, and T;, are uniformly bounded because they depend only on a,. By Corol-
lary we can extract a subsequence such that .S,, and 7}, converge towards closed positive
currents S, T' € Cur(a), and ug, and uz, converge towards their respective potentials ug and
up in L* (X, vol). Then, dist(S,T) = § |ug — ur|vol = limy, dist(Sy, T%), which shows that
Diam(a) = lim sup,, (Diam(ay,)). O

6.2. Action of Aut(X).

6.2.1. A volume estimate. Let X be a compact, complex manifold, and let vol be a C°-volume
form on X with vol(X) = 1. If f is an automorphism of X, let Jac(f): X — R denote its
Jacobian determinant with respect to the volume form vol: f*vol = Jac(f)vol. The following
lemma is a variation on well-known ideas in holomorphic dynamics (see for instance [70]).

Lemma 6.6. Let k be a hermitian form on X. Let h be a k-psh function on X such that
SX hvol = 0, and let f be an automorphism of X. Then,

JX |h o f| vol < C'log(C|Jac(f),)

for some positive constant C' that depends on (X, k) but neither on f nor on h.
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Proof. We first observe that there is a constant ¢ > 0 such that vol{|h| > t} < cexp(—t/c); this
follows from Lemma 8.10 and Theorem 8.11 in [71]], together with Chebychev’s inequality (see
Remark [6.3|for the normalization). Then, we get

(6.7) fX |ho flvol = JOOO vol{|h o f| = t}dt
= f:o vol(f~H|h| = t})dt
< JOS vol(X)dt + HJac(f_l)Hoo fgo cexp(—t/c)dt

s

(6.8) < svol(X) + HJac(f_l)Hooc2 exp(—s/c)

where the inequality in the third line follows from the change of variable formula. Now, we
minimize by choosing s = clog(c|Jac(f )|  /vol(X)) and we infer that

(6.9) J |h o f]vol < cvol(X) [ 1+ log M .
X vol(X)
Since the total volume is invariant, |[Jac(f)||,, = 1, and the asserted estimate follows. O

6.2.2. Equivariance. Let us come back to the study of (X,v). If f is an automorphism of
X, then f*Cur(a) = Cur(f*(a)) for every class a € HY'(X,R). If a € Psef(X) and
T € Cur(a), then T' = O(a) + dd°(ur) and

(6.10) 5T = f*@(a) +dd(upo f) = @(f*a) + ddc(Uf*@(a) +ug o f).

This shows that the normalized potential of f*7 is given by

(6.11) U = Ufxg(q) + UT O f+ E(f, T)

where E(f,T) € R is the constant for which the integral of u g«7 vanishes; since uxg(q) has
mean 0, we get

(6.12) E(f,T)= —J (uf*@)(a) + ur o f) vol = —f ur o fvol.

X X
Remark 6.7. If vol is f-invariant, for instance if it is the canonical volume on a K3 or Enriques
surface, then E(f,T) = 0, which simplifies a little bit the analysis of the potentials below.

Lemma 6.8. On the set of closed positive currents of mass 1, the function (f,T) — E(f,T)
satisfies

|E(f,T)| < Clog (CHJac(f_l)HOO)

where the implied positive constant C depends neither on f nor onT.

Proof. From Lemma|6.1] the potentials ur are uniformly (Ar)-psh, so the conclusion follows
from Equation (6.12) and Lemma [6.6] O

Lemma 6.9. There exists a constant C' such that if a is any pseudo-effective of mass 1, and f is
any automorphism of X, then

Diam(f*a) < C'log (C’”Jac(f_l)Hoo) :
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Proof. Indeed, if S and T belong to Cur(a), by Equation (6.11) we have upsp — uprg =
(uT - ’LLS) Of + E<f7T) - E(f,S), SO

(6.13) dist(f*T, f*S) < f|uT o f] vol —i—f]us o flvol+|E(f,T)| +|E(f,S)|;

and the result follows from Lemmas and since ug and uy are uniformly (Akg)-psh. O

6.2.3. An estimate for canonical potentials.

Lemma 6.10. For any Kdhler form r on X there exists a positive constant C (k) such that for
every f € Aut(X),
2
“Uf*n”(p < CH)Ifler-
In addition C (k) < C'|k|,, where ||, is the sup norm of the coefficients of k in a system of
coordinate charts, and C' depends only on X (and the choice of these coordinate charts).

Recall the choice of Kihler forms (k;) from §[6.1]and the definition of ©(-) from §

Corollary 6.11. If kK = ) c;k; in Lemma then the constant C(k) satisfies C(k) <
C"M(k). Likewise, “f*@(a)Hcl < C"M(a)| flcn for all a € Psef(X).

Indeed C(r) < C'||k]|, < C" 3, lei] and uprg(q) = D) ci(a)upsy,.

Proof of Lemma By definition f*x — O(f*k) = dd® (uy#,). The desired estimate will be
obtained by constructing a solution ¢ to the equation

(6.14) dd‘¢ = f*rk — O(f*k)

which satisfies @1 < CHfH%l. Then, since u s+, and ¢ differ by a constant and wu g« is
known to vanish at some point, it follows that u s, satisfies the same estimate. To construct
the potential ¢, we follow the method of Dinh and Sibony [47, Prop. 2.1] which is itself based
on [17] (we keep the notation from [47]). Let a be a closed (2,2)-form on X x X which is
cohomologous to the diagonal A. In [17], Bost, Gillet and Soulé construct an explicit (1, 1)-
form K on X x X such that dd°K = [A] — «; they refer to it as the “Green current”. It is C*
outside the diagonal, and along A, it satisfies the estimates

(6.15) K(z,y) =0 (W) and VK (z,y) = O <W>

|z —yl |z =yl
(here we mean that these estimates hold for the coefficients of K and V K in local coordinates).
These estimates are easily deduced from the explicit expression of K as . (pn— ) given in [47,
Prop. 2.1], where 7 : X x X — X x X is the blow-up of the diagonal, 7 and S are smooth (1,1)
forms on X x X and © is a function with logarithmic singularities along the proper transform
of Ain X x X. It is shown in [47, Prop. 2.1] that a solution to Equation (6.14) is given by

(6.16) ¢(x) = K(z,y) ~ (f*(y) — O(f7K) ()

yeX
(in the notation of [47]], f*x and O(f*k) correspond to O and Q~ respectively). The co-
efficients of the smooth (1, 1)-forms f*x and ©(f*k) have their uniform norms bounded by
CHfH%l, where C' = C(k) < C'||k|,. The first estimate in (6.15]) implies that the coefficients of
K belong to L _for p < 2, so it follows from the Holder inequality that ¢ oo < C”|%] | f]2n

loc



RANDOM DYNAMICS ON COMPLEX SURFACES 43

(for some constant C” depending only on X). A similar estimate for V¢ is obtained from
derivation under the integral sign and the fact that VK € L for p < 4/3. This concludes the
proof. g

6.3. Convergence and extremality.

Theorem 6.12. Let (X, v) be a non-elementary random holomorphic dynamical system on a
compact Kdhler surface X, satisfying the moment condition (&.1). Then for ps-almost every
point a € 1Lim(T"), the following properties hold:

(1) there is a unique nef and isotropic class a € H'(X;R) of mass 1 with P(a) = a;
(2) the convex set Cur(a) is a singleton {T,};

(3) the class a is an extremal point of P(Kah(X)) and of P(Psef(X));

(4) the current T, is extremal in the convex set of closed positive currents of mass 1.

Combining this result with Lemma [5.6] and Equation (5.9) we obtain the first and second
assertions of the following corollary; the third assertion follows from the first one and the equiv-
ariance relation (5.16).

Corollary 6.13. The following properties are satisfied for vN-almost every w:

(1) there exists a unique closed positive current TS in the cohomology class e(w);
(2) for every Kiihler form k,

1 %
——(f0)'k — T}
M () o)
(3) the currents I} satisfy the equivariance property
M((£) To) S
Pl Tow) = —npermy Lo — M) To0) Lo

Proof of Theorem[6.12] The first and third properties were already established, respectively in
Lemma [2.16] and and Proposition [5.11] Property (4) follows from (2) and (3). It remains
to prove (2). For this, we denote by f* the projective action of f* on PH!(X;R). For
a € Lim(I"), let us set diam (a) = Diam(a), where a is the unique pseudo-effective class of
mass 1 such that P(a) = a; this defines a measurable function on Lim(I"), by Lemma[6.5] Our
purpose is to show that diam (a) = 0 for pp-almost every a. The stationarity of ., reads

(6.17) | diomn @) dne (@) = [ [ diam (5 @) v F)do )

and iteratingthis relation gives

©18) [ din (@) duo (o) = [diam (72 13 @) dul)--dv o @)

(notice the order of compositions chosen here). Since the diameter is upper-semicontinuous it is
uniformly bounded on Lim(I"). So, if we prove that

(6.19) lim diam(f*--- f¥(a)) = 0

n—+0o0
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for vN-almost every ( fr) and every a, then we can apply the dominated convergence theorem
to infer that diam (a) = 0 pp-almost surely. To derive the convergence (6.19)), note that

_ Diam (f5 - ffa)
T OM(fp o Jfa)

because Diam is homogeneous. Applying Lemma and the multiplicativity of the Jacobian
we get that

(6.20) diam (f* -+ /7 (a))

_ -1 _
Clog (C|Jac(fio---o fa)|,,) _ XiZo log|fi "len
M (f--- fra) M(f5 - ffa)
We conclude with two remarks. Firstly, the moment condition (.1) implies that the sequence

% Z;:ol log H f;l || o1 18 almost surely bou;Ilded. Secondly, Lemmal5.5|shows that M(f¥ - - - fia)

6:21) diam (- f¥(a)) <

goes exponentially fast to infinity for v -almost every w = (f,,) (this is where the order of
compositions matters). Thus diam ( i: e f ’1“ (g)) — 0 almost surely, and we are done. U

Remark 6.14. The uniqueness of T in its cohomology class implies that 7, depends measur-
ably on a. Indeed there is a set E — Lim(T") of full measure along which the map a — T, is
continuous (recall that the space Cur; (X)) of positive closed currents of mass 1 on X is a com-
pact metrizable space). This implies that ¢ — T, is a measurable map from Lim(I"), endowed
with the p19-completion of the Borel o-algebra, to Cur; (X), endowed with its Borel o-algebra.

6.4. Continuous potentials. We now study the limit currents 7’5 introduced in Corollary

Theorem 6.15. Let (X, v) be a non-elementary random holomorphic dynamical system on a
compact Kéhler surface X, satisfying the moment condition @.1). Then for vN-a.e. w the
current I has continuous potentials.

Lemma 6.16. Let « be any Kdhler form on X. For vN-almost every w, there exists an increasing
sequence of integers (n;)i=o = (n;(w)) such that

(1) the potentials M((f7)*k) " u (f25)* s 97€ uniformly bounded;
(2) the potentials M(( gi)*ﬁ)_IU(fSi)*H are uniformly bounded too.

If the exponential moment condition holds, these assertions hold for all n (i.e. extracting a
subsequence (n;) is not necessary); in addition the function w +— log™ ”UTg o IS vN_integrable.

Proof of the Lemma. Recall the notation w = ( f,,)n>0. First,
(6.22) fr1k = fr10(k) + dd° (uxo fr1)
— O(fi_1r) + dd* (upe o0+ we0fa 1)
(For the moment, we do not introduce the constants F( f,,; ) in the computation). We obtain
Ficafioak = Fia®(fiom) + dd (upe o0 fas + o (fa-19f-2) )

= O(fn_afn 1K) + dd° (ufr’fo@(f:fln) +upr o O fn—2 + ko (fa-1 Ofn_2)> :
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Setting Gj = fr—10---0fj, for j < k — 1, (so in particular G ; = ff; forall j > 1) and
Gj; = idy, we get

n—1
623) (S5 =O((2)"K) + dd° (uf EDIET IS Goa) ~
7=0

Let u,, denote the function in the parenthesis. We want to estimate the sup-norm |u,,||,. Lemma
and Corollary [6.T1| provide successively the following upper bounds

(6.24) lupreer,, m| < CUAIEM(GE k) < CM() 118 |G
i s (SR i
(6.25) H*un < e L OM(k) Y [ fil2 e
MGz |, S Mz T MO 4 Wle vz g

To estimate this sum we apply Theorem to the subadditive cocycle N (n,w) = log | (f2)*|,
as we did for Corollary there exists a sequence (J;) of positive numbers converging to 0,
an increasing sequence n; = n;(w) of integers, and a constant C’(w) such that

|‘G;'<+1 n; Hf]?k+1"'f;-71” / .
e = < O exp(— (M — 6
(G R V7 Ry ot I

forall? > 1 and all 0 < j < n;. Fix any real number € with 0 < € < A;. Then from Lemmal4.3|
we know that, for almost every w, there is a constant C” (w) such that | f; ||201 < C"exp(ej). So

from (6.25) we get

(6.26)

L Jue] N
(6.27) Hu A < 72—+ C"(w)M(k exp(—(A\ —e—48(5))J
Ve |, = MGy O M) 2 "
This inequality shows that |M((f1i)*k) L, , is uniformly bounded.
Now, note that u(fnyx, = un + E, with E,, = — {upvol. Since HM((fL”)*/{)_luni o, 18

uniformly bounded, so is M((f)*k) "' E,,, and the first assertion of the lemma is established.
The second assertion is proved exactly in the same way, except that the expressions of the

form f7O(G7,, ,x) must be replaced by (fg_lj)*@((f()_lo- . ~Ofn__1j_1)*/€); then we use the

second estimate in Corollary [5.13] and the fact that for every f € Aut(X), | f*| = |(f~1)*|.

If the exponential moment condition (5.26) holds, we follow the same argument and apply
PropositionPM— instead of Theorem —to (6:23), with D(f) = | f[%:. O

Proof of Theorem|[6.13] First, we prove that the normalized potential urs is bounded, for V-
almost every w. To see this, recall that M((f7)*k)~1(f?)*k converges to TS as n — 0.
From Lemma [6.16, we know that the normalized potentials M((fJ)*%) ™ u(sn)#, of the cur-

rents M((f7)*k)~! (f*)* k are uniformly bounded along some subsequence n; = n;(w). These
potentials are Arg-psh functions on X so, by compactness, they converge to u7s in LY (X;vol).
Thus, urs is essentially bounded. We conclude that urs is bounded because quasi-plurisubhar-
monic functions are use and have a value (in R U {—0}) at every point.
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Now, we show that urs is continuous. Here, the argument is similar to the one used to prove
Theorem [6.12] If 7" is a positive closed current with bounded potential on X, we define

(6.28) Jump(T') = max <lim sup ur(y) — lim inf uT(y)) .
xe

y— Yy—x
Then 0 < Jump(7T') < 2|ur|,,, and Jump(7") = 0 if and only if w7 is continuous. In addition
Jump(f*T) = Jump(T) for every f € Aut(X ) because [T = O(f*a) +dd*(up+g(q) +uro
f) and us«g([7y) is continuous (see Equation (6.10)). From the equivariance relation

1
(6.29) 15 = T35

“ ((fw) U"w) 7
which follows from the third assertion of Corollary [6.13] we get

1
((fw) J"w)

Remark@ says that w — 77 is measurable; hence, w — ugs is measurable. If C is large
enough, the first step of the proof gives a subset Q¢ <  such that v(Q¢) > 0 and Hqu3 o <C
for all w € Q¢. By ergodicity of the shift, c"w € ()¢ for almost every w and infinitely many n;
for such an n, [urs, | < Cand Jump (T3.,) < 2C. By Lemma M ((f2)* Tn,,) goes
to infinity almost surely. So, Jump (7}5) = 0, and the proof is complete. O

(6.30) Jump (7)) =

Jump ()

Theorem 6.17. Let (X, v) be a non-elementary random holomorphic dynamical system on a
compact Kéihler surface X, satisfying the exponential moment condition (5.26). Then there exists
0 > 0 such that for vN-almost every w the potential urs is Holder continuous of exponent 0.

The proof is a variation on the following well-known fact, applied to u = wugps: let u, be a
sequence of continuous functions converging uniformly to v : M — R on some metric space
M. If |u, —u|,, < A" and Lip(u,) < B™ with A < 1 < B, then u is a Holder continuous
function for the exponent o« = — log(A)/(log(B) — log(A)).

Proof. The initial computations are similar (but not identical) to those used to reach Lemma[6.16]
Keeping the notation G, = f,,—1 0 --- o f;, a descending induction starting from

(6.31) f T;nw - @(f To-snw) + ddc (uf:—le(T&Sw) + UT;nw (¢] fn—1>

yields
n—1 )

(6.32) (fw) o"w = ((fw) cr"w) + dd* <2 uf*@ j+1 WTin,,) © fi) + urs,  °© fﬁ) :
7=0

Thus, there is a constant of normalization £ = F(w;n) such that

e ij—i—u:rsn ofl | +FE
((fw) U“w (Z f @ J-Hn on v 7 “

Note that the additional term E does not affect the modulus of continuity of u7s. Since Lip(f;) <
|fjll -1 forall j, Lemmal6.10jand Corollary|6.11|imply Lip(uf;k@(a)) < C|f; HQCI M(a) for every

633)  ups =
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class a € Psef(X); hence

634 Lip(upros,, 1) < CUHIEMG 1T < Cli1E Gl
n—1 n—1

(6.35) <CIflEn [T 180 <CTTIfelEn
l=j+1 l=j

Finally, since 1 < Lip(f;) for every 0 < j < n — 1, we obtain

n—1
j 2
(6.36) Lip (uf*@( Gty ) ofg) <L (uf*@(gmn o )HLlp ) < clH el 2.

=0
Denoting the modulus of continuity by modc(u, 1) = Sup(; »1)<, [u(z) — u(2’)[, we infer from
Equation (6.33) that

n—1
6.37) mode(ugy, ) < Cn [ Mol -7+ Jus._ |, ] -
M (72 (T \ "L e
To ease notation set A\ = Ay11. Fix a small € > 0. By Lemma [5.14] for almost every w there
exists C = Ct(w) such that M ((f2)*(Tn,,)) " < Ce ™A% for every n. Fix M larger than
but close to exp (E (log | f||1))- Applied to the vN-integrable function w = (f,) — log | fol 1.
the Birkhoff ergodic theorem gives

n—-1 n—1
(6.38) [T1fe% < CM™ aswellas n [ |1 /el < CM™
=0 =0

for some C' = C)s(w) (increase M to deduce the second inequality from the first). Thus,
(6.39) modc(urs, ) < CreA—¢) (M”r + HuT;anw)

for some C; > 0. By Lemma , w > log™ H“TS ., 18 integrable, so for almost every w there
exists Cy = C¢(w) such that H“Tjnw HOO < (€™ holds for all n, and we infer that

(6.40) modc(ugs,r) < C3e ") (M7 + ) = Cye "N %) (Me™®)"r +1).

Choosing n so that r = (Me™°)™" we get modc(urs,r) < Cyr? with § = 102]/[2; and the

proof of the theorem is complete. g

7. GLOSSARY OF RANDOM DYNAMICS, II

In this section we consider a random holomorphic dynamical system (X, ) on a compact
Kihler surface, satisfying the moment condition (@.I). Our goal is to collect a number of facts
from the ergodic theory of random dynamical systems, including the construction of associ-
ated skew products, fibered entropy and Lyapunov exponents of stationary measures, stable and
unstable manifolds, and various measurable partitions. Here the group I', may a priori be el-
ementary; also, the compactness assumption on X can be dropped in most of these results (in
this case (@.I) should be strengthened to a C?>-moment condition). Since some subsequent ar-
guments rely on the work [22]] of Brown and Rodriguez-Hertz, we have tried to make notation
consistent with that paper as much as possible.
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7.1. Skew products and stationary measures associated to (X, ). Define:

— Q= Aut(X)N, whose elements are denoted by w = (f,,)n=0. On 2, the one-sided shift
is denoted by o: 2 — .
- ¥ = Aut(X)Z, whose elements are denoted by & = (f,,)nez. On X, the two-sided shift
is denoted by ¥: ¥ — X..
- X =¥ x Xand &y = Q x X, whose elements are denoted by x = (£, ) and
x = (w,z) respectively. The natural projections are denoted by 7y, : X — X (resp.
o Xy > Qand 7y : X — X (resp. mx : X+ — X, using the same notation).
Recall that the product o-algebra on €2 (resp. X)) is generated by cylinders (ﬂ), and that it
coincides with the Borel o-algebra B(2) (resp. B(X)) (see [?, Lem. 6.4.2]).

7.1.1. Skew products. For w € Qandn > 1, f7 is the left composition f} = f,_10---0 fp;in
particular, f! = fo (see §-. For n = 0, we set f0 = id. This is consistent with the notation
used in the previous sections. The same notation fg isused for £ € ¥ and n > 0. When n < 0,

we set f = ( fn) to---o(f_1)"!. With this definition the cocycle formula f"+m Fomeo &

holds for all (m,n) € Z2 and ¢ € 3. By definition, the skew products induced by the random
dynamical system (X, v) are the transformations F, : X1 — &, and F': X — X defined by

(7.1) Fy: (w,2) — (0w, fi())

(7.2) F: (&) — (0€, f¢ ().

If w: X — X, denotes the natural projection, then @ o F' = F; o w. Note that F' is invertible,
with F~1(x) = (971¢, feillg(m)), but F is not; indeed (X, F') is the natural extension of
(Xs, FY).

Lemma 7.1. The measure 1, on X is stationary if and only if the product measure
my = Z/N X

on X is invariant under F,.

Proof of Lemma The invariance of m, is equivalent to the equality

(7.3) mi(F7HC x A)) = my (C x A) <H v ) - (A,

for all cylinders C = Cjy x - -- x C in 2 and Borel sets A < X. By definition
(74)  FHCO x A)={(w,2) e Qx X ; fy € Cn_1,..., f1 € Co, fo(x) € A},
so clearly it is enough to check (7.3) for N = 1. Now by Fubini’s theorem

(v x 1) ({(fo2) ; folz) € A}) = f f 2) dv(fo) du(z)
(1.5) - f J n(fy  (A)) dvi(fo)

and the result follows. O

3Cylinders are products C' = [ [ C; of Borel sets, all of which are equal to Aut(X) except finitely many of them.
For simplicity, we denote a cylinder by C' = H;.V:O C; if C = Aut(X) for |k| > N.
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A stationary measure is said ergodic if it is an extremal point in the convex set of stationary
measures; hence,  is ergodic if and only if m is F; -ergodic. Actually p is ergodic if and only
if every v-almost surely invariant measurable subset A < X (that is a measurable subset such
that for v-almost every f, u(AAf~1(A)) = 0) has measure p(A) = 0 or 1. This is by no means
obvious since F;-invariant sets have no reason to be of product type. This statement is part of
the so-called random ergodic theorem (see Propositions 1.8 and 1.9 in [12]).

Proposition 7.2. There exists a unique F-invariant probability measure m on X projecting on
my under the natural projection X — X,. Moreover,

(1) the measure m is equal to the weak-* limit
. Z
m = JEI;O(F”)* (v* xp).

(2) the projections (x)«m and (7 x )« m are respectively equal to v% and i;
(3) the equality m = v% x p holds if and only if ju is f-invariant for v-almost every f;
4) (X, F,m) is ergodic if and only if (X, F+, my) is.

The existence and uniqueness of m, as well as the characterization of its ergodicity, follow
from the fact that (X, F') is the natural extension of (X5, Fy) (see [80, §1.2] for a detailed
explanation).

Proof of (1), (2), (3). Let us prove directely that the limit in (1) does exist, and show that this
limit m satisfies (2) and (3). Since w, (VZ X ,u) =N x uw=myandwo F' = F, ow, the
F, -invariance of m, gives @, (F")« (v% x p) = my for every n € Z. So if we prove that
the limit limy, o (F™). (VZ X u) exists, then this limit m will be an F'-invariant probability
measure projecting on my under o; hence it will coincide with the invariant measure m.

To prove this convergence, we consider a cylinder C = H;V:_ y Cj in ¥ and a Borel set

A < X, and we show that (vZ x p)(F~"(C x A)) stabilizes for n > N. Arguing as in
Lemma 7.1} we see that the set F~"(C x A) is equal to the set of points x = (£, x) satisfying
the constraints (6"¢); € Cjfor—N < j < Nandz € (fg)_l(A); for n > N, these constraints

are independent, and (1% x ) (F~"(C x A)) is equal to

16 VEOC) % (" % 1) (for- s fo1,8) 3 fa10---o fo(z) € A}).
Then the invariance of ©% under the shift and the the stationarity of 1 give (see Equation (7.3))

(77 (V% x p) (F7(C x A)) = v*(C) x fu (foto o filiA) v(fo) -+ v(fa1)
= V2(C) x p(A).

This proves Assertions (1) and (2). For Assertion (3) it will be enough for us to consider the
case where I is discrete. By Assertion (1) we see that »Z x y is F-invariant if and only if
m = v% x p. Now assume m = v% x p and let us show that j is I',-invariant. The reverse
implication is similar. Fix fo € Supp(v) and consider the cylinder C = Cy = {fp} (in 0"

position). If A < X is a Borel subset we have
(7.8) (V% x p) (F(C x A)) = (V% x p) (C x A) = v (Cp) x u(A).

On the other hand F'(C' x A) = 9(C') x fo(A) so the left hand side of is equal to v (Cp) x
w(fo(A)). Thus, pu(fo(A)) = u(A), which proves that 4 is ', -invariant. O
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7.1.2. Past, future, and partitions. Let F denote the o-algebra on X obtained by taking the m-
completion of B(X) ® B(X). It will often be important to detect objects depending only on the
“future” or on the “past”. To formalize this, we define two o-algebras on 3:

— Ftis the v%-completion of the o-algebra generated by the cylinders C' = Hé\fzo C;.
— F~is the vZ-completion of the o-algebra generated by the cylinders C' = 1—[;:1_ ~ G

To formulate it differently, we define local stable and unstable sets for the shift +J:

(7.9) X6 ={neX; Vi=0,n =&} and B (§) ={neX; Vi<, n =¢&}.

Then a subset of ¥ is *-measurable (resp. F~ measurable) if, up to a set of zero v%-measure,

it is Borel and saturated by local stable sets 37 (&) (resp. unstable sets Xi* (£)). The o-algebra

F* on X will be the m-completion of F* ® B(X). An F*-measurable object should be
understood as “depending only on the future”, thus it makes sense on X and on Xy . Actually F*
coincides with the completion of the pull-back of B(&X’;) under w : X — X;. The o-algebra
F~ of “objects depending only on the past” is defined analogously. Consider the partition into
the subsets F~ (x) := X} (&) x {z} (each of them can be naturally identified to €2). Then,

loc
modulo m-negligible sets, the elements of F are saturated by this partition.

For £ € ¥ we set X¢ = {¢} x X = m;'(€), which can be naturally identified with X via
wx. The disintegration of the probability measure m with respect to the partition into fibers of

y; gives rise to a family of conditional probabilities mg such that m = §m; dv?(€), because

(mg)sm = V2.

Lemma 7.3. The conditional measure mg on X satisfies vZ-almost surely
me = lim (foyo-0fon)p= lm (fine)ep.
In particular, the family of measures £ — mg is F~ -measurable.

Proof. It follows from the martingale convergence theorem that the limit

(7.10) fig := lHm (fo100 fop)up

n—

exists almost surely (see e.g. [12, §2.5] or [19, §I1.2]). Now F™ maps Xy-ne to X¢ and
FMxy e = f-10---0fp. 50

(7.11) (F™).(v? x ) (- |Xe) = (fo10--0 fn)ups

Identify fic with a measure on X¢. For every continuous function ¢ on A" the dominated conver-
gence theorem gives

112 (F).0% % ) () = j (L o) d(f_lo---of_nm(x)) a2 ()
3

(7.13) — (L () dﬂg(@) A2 (¢).
13

But ((F™)«(v% x p)) () converges to m(y), and the marginal of m with respect to the projec-
tion 7y : X — X is v#, so we get the result. O

N
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Since £ — myg is F~-measurable, the conditional measures of m on the atoms 7~ (x) =
U (&) x {x} of the partition generating 7~ are induced by the lifts of the conditionals of %
on the X} (&), via the natural projection 77y, : A — X. In addition we can simultaneously
identify 3% (€) to Qand vZ( - | X% ) to vN. In this way we get

(7.14) m(- | F(x)) = v2(- | Be(€) x 0 > v

loc

for m-almost every x = (£, x) € X. This corresponds to Equation (9) in [22]]. By [22| Prop.
4.6], this implies that F* n F~ is equivalent, modulo m-negligible sets, to {7, X} ® B(X).

7.2. Lyapunov exponents. Let i be a stationary measure for (X, v/); assume that p (or equiva-
lently m or m ) is ergodic. The upper and lower Lyapunov exponents A\™ > A\~ are respectively
defined by the almost sure limits

1 1 -1
(7.15) A = lim - log |Dyf"| and A\~ = lim — log H(Dxf;‘)’lu :

n—o N n—aoo n

the existence of these limits is guaranteed by Kingman’s subadditive ergodic theorem, thanks
to the moment condition (#.I]), and the convergence also holds on average. Let us now ap-
ply the Oseledets theorem successively to the tangent cocycle defined by the fiber dynamics
(X4, Fy,my), and then to the cocycle associated to (X, F, m).

7.2.1. The non-invertible setting. Define the tangent bundles TAX, := Q x T'X and TX :=
¥ xT'X, and denote by DF and DF’,. the natural tangent maps, thatis D¢ ,) F': {§} x T, X —
{0€} x Ty, ()X is induced by D f:

(7.16) DieoyF(v) = Do fi(v) (Vo€ Ty Xe = T, X)

For the non-invertible dynamics on X, the Oseledets theorem gives: for m,-almost every
(w, ), there exists a non-trivial complex subspace V'~ (w, z) of {w} x T, X such that

1
(7.17) Voe V™ (w,z)\{0}, lim —log|D,fl(v)|=A"
n—-+ao 1
— : 1 n _\7t
(7.18) Yo¢ V™ (w,z), nlj}JIrloo - log | Dy fo(v)] = A"
The field of subspaces V™ is measurable and almost surely invariant. Two cases can occur:
either \™ < A" and V'~ (w, ) is almost surely a complex line, or A\~ = A" and V™~ (w, ) =
{w} x T, X.

7.2.2. The invertible setting. For the dynamical system F': X — X, the statement is:

— if A= = A7 then for m-almost every x = (&, x), for every non-zero v € T, X¢ ~ T, X,
o1 ,
(7.19) Jim —log | Do fE)| = A5

— if A= < A then for m-almost every x there exists a decomposition T, X¢ = E~ (£, 2)@®
E* (&, ) such that for x € {—, +} and every v € E*(&, x)\ {0},

(7.20) lim 1 log || Dy fE (v)]| = X*.

n—toon
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Furthermore the line fields £+ are measurable and invariant, and log |/ (E~, ET)] is
integrable (here, the “angle” Z(FE~(x), E™(x)) is the distance between the two lines
E~(x)and E* (x) in P(T,X)).

7.2.3. Hyperbolicity. Tt can happen that A\~ and A have the same sign. If A~ and A" are both
negative, the conditional measures m, are atomic: this can be shown by adapting a classical
Pesin-theoretic argument (see e.g. [[76 Cor. S.5.2]) to the fibered dynamics of F' on X (see [84)
Prop. 2] for a direct proof and an example where the m; have several atoms). Such random dy-
namical systems are called proximal. For instance, generic random products of automorphisms
of P2(C), that is of matrices in PGL(3, C), are proximal; in such examples the stationary mea-
sure is not invariant. Other examples are given by contracting iterated function systems.

When A and A~ are both non-negative, we have the so-called invariance principle:

Theorem 7.4. Let (X, v) be a random holomorphic dynamical system satisfying the integrability
condition @), and let ;1 be an ergodic stationary measure. If \T () = A\~ (u) = 0 then u is
almost surely invariant.

This result was proven by Crauel, building on ideas of Ledrappier described below in §11.4
(see Theorem 5.1, Corollary 5.3 and Remark 5.6 in [41], and also Avila-Viana [2, Thm B]).

Remark 7.5. If \™ and A\t are both positive then i is atomic. Indeed, since y is almost surely
invariant we get m = % x . Reversing time, the Lyapunov exponents of m become negative,
so as explained above the measures m; are atomic. By invariance m¢ = p, so p is atomic too.

By definition, y is hyperbolic if A= < 0 < A™. In this case we rather use the conventional
superscripts s/u instead of —/+ for stable and unstable objects. We also have E* = V* in this
case (and more generally when A\~ < \™); so, it follows that the complex line field £* on T X
is F*-measurable. Conversely the unstable line field E* is F ~-measurable.

7.3. Invariant volume forms. Let us start with a well-known result.

Lemma 7.6. Let (X, v) be a random holomorphic dynamical system satisfying the integrability
condition (d.1)), and p be an ergodic stationary probability measure. Then

AN = [logldac f(a)]| du(w)iv (),
where Jac denotes the Jacobian determinant relative to any smooth volume form on X.

We omit the proof, since this result is a corollary of Proposition below. When X is an
Abelian, or K3, or Enriques surface, Remark provides an Aut(X)-invariant volume form
on X. Thus, we obtain:

Corollary 7.7. Assume that X is an Abelian, or K3, or Enriques surface. Let v be a probability
measure on Aut(X) satisfying the integrability condition [@.1)), and 1 be an ergodic v-stationary
measure. Then A\~ + AT = 0.

Let 7 be a non-trivial meromorphic 2-form on the surface X. There is a cocycle Jac,, with
values in the multiplicative group M (X )* of non-zero meromorphic functions, such that

(7.21) f*n = Jac,(f)n
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for every f € Aut(X). We say that 7 is almest invariant if |Jac,(f)(z)| = 1 for every z € X
and v-almost every f € Aut(X) (in particular Jac,(f) is a constant). We refer to for
examples with an invariant meromorphic 2-form.

Proposition 7.8. Let (X, v) be a random holomorphic dynamical system satisfying the integra-
bility condition [.1), and p be an ergodic stationary measure. Let 1 be a non-trivial meromor-
phic 2-form on X such that

() [1og" |Jacy (£) (@) dua)a( ) <+
(i1) p gives zero mass to the set of zeroes and poles of 1.
Then
AN = [log(ac, (@) )dua)d( )
in particular \= + At = 0 if n is almost invariant.

Proof. Fix a trivialization of the tangent bundle 7'X, given by a measurable family of linear
isomorphisms L(z): T,X — C? such that (a) det(L(z)) = 1 and (b) 1/C < |L(z)| +
||L(x)*1H < C, for some constant C' > 1; here, the determinant is relative to the volume
form vol on X and the standard volume form dz; A dzs on C2, and the norm is with respect
to the Kihler metric (ko). on T, X and the standard euclidean metric on C2. For (§,z) € X
and n > 0, the differential D, fg” is expressed in this trivialization as a matrix A" (¢, z) =
L(f¢(z)) o Dy ff o L(z)~'. Let x;; (£, ) < x;'(€,x) be the singular values of A (¢, x).
Then m-almost surely, = log x+ (¢, 2) — A* asn — +o0.

The form 7 A 77 can be written n A 7] = ¢(x)vol for some function ¢: X — [0, +00]. Locally,
one can write 7 = h(x)dz, A dxg where (z1,x2) are local holomorphic coordinates and A is

a meromorphic function; then @ (z)vol = |h(z)|* dz1 A daa A dZT A dT3. The jacobian Jac,,
satisfies
x

0.2 ey (NP = P goe )

p(x)
for every f € Aut(X) and x € X. Using det(L(z)) = 1, we get
(7.23) det (A" (¢, 7)) = Jacyo (f)(x),
and then

(7.24) " logxy (6:) + — log X (€,2) = lo [Jacy f2 (x)] — ~ log((fE (x)/o(x)).

By the Oseledets theorem, the left hand side of converges almost surely to A\~ + A", Since
the Jacobian Jac,, is multiplicative along orbits, i.e. Jacy f'(z) = Z;é Jacy fore( fé‘”‘x), the
integrability condition and the ergodic theorem imply that, almost surely,

(7.25) Jlggo%log |Jva7 fg(:n)| = Jlog |Jacn fg (:L’)| dm(§, x)
= Jlog |Jac,, fulj(ac)} dmy (w, z)

= flog |Jac, f(x)| dp(x)dv(f).
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Let div(n) be the set of zeroes and poles of 7. Since p is ergodic and does not charge div(7), we
deduce that for m-almost every (§, z), there is a sequence (7;) such that fg 7(x) stays at positive

distance from div(n); along such a sequence, log | ( fg 7(z))/¢(z)| stays bounded, and the right
hand side of (7.24) tends to 2 {log |Jac,, f(z)| du(z)dv(f). This concludes the proof. O

7.4. Intermezzo: local complex geometry. Recall that X is endowed with a Riemannian struc-
ture, hence a distance, induced by the Kéhler metric k9. For z € X, we denote by euc, the
translation-invariant Hermitian metric on 7, X (which is considered here as a manifold in its
own right) associated to the Riemannian structure induced by (kg),. Given any orthonormal
basis (e, e2) of T, X for this metric, we obtain a linear isometric isomorphism from 7, X to
C2, endowed respectively with euc, and the standard euclidean metric; we shall implicitly use
such identifications in what follows.

We denote by D(z; ) the disk of radius r around z in C, and set D(r) = D(0; 7).

7.4.1. Hausdorff and C*-convergence. LetU — C be adomain. If v: U — X is a holomorphic
curve, we can lift it canonically to a curve y(1): U — T'X by setting v (2) = (7(2),7/(2)) €
T, ()X, where +/(z) denotes the velocity of v at z. The Riemannian metric ¢ induces a Rie-
mannian metric and therefore a distance distrx on 7'X. We say that two parametrized curves
71 and 72 are §-close in the C!-topology if dist7x (7%1) (2), 'yél) (2)) < 0 uniformly on U. This
implies that v; (U) and 2 (U) are d-close in the Hausdorff sense, but the converse does not hold

(take U = D(1), 71(2) = (2,0), and 7o(2) = (2*,£2") with k and £ large while ¢ is small).

7.4.2. Good charts. Let Ry be the injectivity radius of xg. We fix once and for all a family of
charts ®,: U, c T, X — X with the following properties (for some constant CY):

(i) ®,(0) =z and (D ®,)p = id7, x;
(ii) @, is a holomorphic diffeomorphism from its domain of definition U, to an open subset
V. contained in the ball of radius R around x;
(iii) on Uy, the Riemannian metrics euc, and @, satisfy C; 1 < euc, / ®F ko < Co;
(iv) the family of maps @, depends continuously on x.

With rg < Ro/(v/2Cp), we can add:

(v) for every orthonormal basis (e1, ea) of T, X, the bidisk D(rg)e1 + D(rp)ez is contained in
U; in particular, the ball of radius ry centered at the origin for euc, is contained in U,.

To make assertion (iv) more precise, fix a continuous family of orthonormal basis (e (), e2(x))
on some open set V' of X: Assertion (iv) means that, if we compose ®, with the linear isomor-
phism (z1, 20) € C? — z1e1(z) + 2z2ea(x) € T, X we obtain a continuous family of maps. If
needed, we can also add the following property (see [69, pp. 107-109]):

(iii”) euc, osculates ®¥ k¢ up to order 2 at x.

7.4.3. Families of disks. A holomorphic disk A c X containing x is said to be a disk of size
(at least) r at x (resp. of size exactly r at x), for some r < rg, if there is an orthonormal basis
(e1,e2) of T, X such that ®!(A) contains (resp. is) the graph {ze; + p(2)es ; 2z € D(r)} for
some holomorphic map ¢: D(r) — D(r). By the Koebe distortion theorem if A has size r at
x, then its geometric characteristics around x at scale smaller than /2, say, are comparable to
that of a flat disk. An alternative definition for the concept of disks of size > r could be that
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A contains the image of an injective holomorphic map ~: D(r) — X such that v(dD(r)) <
X\Bx (z;r) and ||7/| < D, for some fixed constant D. Then, if A contains a disk of size r for
one of these definitions, it contains a disk of size g7 for the other definition, for some uniform
g0 > 0; in particular, there is a constant C' depending only on (X, k) such that a disk of size r
at  contains an embedded submanifold of Bx (x; Cr).

Let (x,,) be a sequence converging to x in X, and let r be smaller than the radius 7 introduced
in Assertion (v), §[7.4.2] Let A, be a family of disks of size at least r at z;,, and A be a disk of
size at least r at x. We say that A, converges towards A as a sequence of disks of size r, if
there is an orthonormal basis (e, e3) of T, X for euc, such that

(i) ®,'(A) contains the graph {ze; + ¢(z)ea;z € D(r)} for some holomorphic function
p: D(r) — D(r);
(ii) for every s < r, if n is large enough, the disk ®,'(A,) contains the graph {ze; +
©n(z)ea; z € D(s)} of a holomorphic function ,,: D(s) — D(r);
(iii) for every € > 0, we have |p(z) — vn(2)| < £ on D(s) if n is large enough.

By the Cauchy estimates, the convergence then holds in the C!-topology (see §. It follows
from the usual compactness criteria for holomorphic functions that the space of disks of size r
on X is compact (for the topology induced by the Hausdorff topology in X). Likewise, if a
sequence of disks of size r converges in the Hausdorff sense, then it also converges in the C'*
sense, at least as disks of size s < 7, because two holomorphic functions ¢ and 1 from D(r) to
D(r) whose graphs are e-close are also £(r — s)~!-close in the C'*-topology.

It may also be the case that the A,, are contained in different fibers X¢, of X'. By definition,
we say that the sequence A,, converges to A < X¢ if &, converges to { and the projections of
A, converge to A in X.

7.4.4. Entire curves. An entire curve in X is, by definition, a holomorphic map ¢: C — X.
The curve is immersed if its velocity 1)’ does not vanish. Our main examples of immersed
curves will, in fact, be injective and immersed entire curves. If ¢, and 12 are two immersed
entire curves with the same image, there exists a holomorphic diffeomorphism of C, i.e. a non-
constant affine map A: z — az + b, such that ¥5 = 1)1 o A. If 9 is an immersed entire curve
and [¢'| = n on D(zo, s), its image contains a disk of size C's at 1)(2), for some C' > 0 that
depends only on 7 and k.

7.5. Stable and unstable manifolds. By Lemma Condition implies similar moment
conditions for higher derivatives, so Pesin’s theory applies. The following proposition summa-
rizes the main properties of Pesin local stable and unstable manifolds. Recall that a function A
is e-slowly varying, relatively to some dynamical system g, if e ¢ < h(g(x))/h(z) < €° for
every . We view the stable manifold of x = (&, ) as contained in X¢; it can also be viewed
as a subset of X: whether we consider one or the other point of view should be clear from the
context. If x = (§,x) and y = (&, y) are points of the same fiber X¢, we denote by dist x (x, y)
the Riemannian distance between = and y computed in X.

Proposition 7.9. Let (X,v) be a random holomorphic dynamical system, and (i be an er-
godic and hyperbolic stationary measure. Then, for every 6 > 0, there exists measurable
positive d-slowly varying functions v and C on X (depending on §) and, for m-almost every
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x = (§,x) € X, local stable and unstable manifolds Wi x) and WY o )( ) in X¢ such that

m-almost surely:

M Wi ( ) and Wi (x) are holomorphic disks of size at least 2r(x) at x respectively tan-
gent to E°(x) and E"(x);
(2) forevery y € W:’(X) (x) and everyn = 0,

distx (F™(x), F"(y)) < C(x) exp((\* + &)n);

U

likewise for every y € Wi, )( x) and everyn = 0
distx (F~"(x), F~"(y)) < C(x) exp(—(\* — §)n);
(3) F(W3 () € Wy (F(x)) and FA W (F(x))) € W)

By Lusin’s theorem, for every € > 0 we can select a compact subset R. < X with m(R.) >
0 on which r(x) and C'(x) can be replaced by uniform constants (respectively denoted by r and
() and the following additional property holds:

(4) on R. the local stable and unstable manifolds Wf/ “(x) vary continuously for the C'-
topology (in the sense of § and )

The subsets R. are usually called Pesin sets, or regular sets. We also denote the local stable or
unstable manifolds by W/ “(x), or by Wy /u (x) when x is in a Pesin set on which r(-) = r. On

loc
several occasions we will have to deal with measurability issues for Wlf)/cu(x) as a function of x:
this will be done by exhausting R by Pesin sets and using their continuity on R..

The global stable and unstable manifolds of x are respectively defined by the following in-
creasing unions:

(726) W(x nL>JoF ( | (x))) and W(x UF" (W;‘(X)( —”(x))).

In particular, they are injectively immersed holomorphic curves in X¢. Pesin theory shows that:

(7.27) Wé(x) = {(f y) € X¢ ; limsup — ! logdistX(F"(ﬁ,y),F”(f,x)) < 0}

n—0o0

(7.28) W(x) = {(5 y) € Xe¢; hmsupﬁlogdlstx(F"(ﬁ, y), F"(&,x)) <O}.
n——ao

Proposition 7.10. Under the assumptions of Proposition W*(x) and W"(x) are biholo-

morphic to C for m-almost every x.

More precisely, W*(x) is parametrized by an injectively immersed entire curve ¢% : C — X
such that ¢%(0) = x and this parametrization is unique, up to an homothety z — az of C.
Likewise, W*(x) is parametrized by such an entire curve 1)¥.

Proof. By and Proposition (3), W#(x) is an increasing union of disks and is there-
fore a Riemann surface homeomorphic to R?; so, it is biholomorphic to C or D. Let A < X
be a set of positive measure on which 7 > 79 and C' < Cy. By Proposition [7.9](2), there
exists ng € N and mg > 0 such that if n > ng and if x and F"(x) belong to A, then
W2 (F™(&,x))\ (F"W2(&, x)) is an annulus of modulus > mg. Now for m-almost every x € X
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there is an infinite sequence (k;) such that F*i(x) € A and kj11 — k;j > ng. For such an x,
W#(x)\W?(x) contains an infinite nested sequence of annuli of modulus at least mg, namely
the F'—Fi+1 (W3 (F*i+1(x))\F*i+1=ki (W3 (F*i (x)). Thus, W*(x) is biholomorphic to C. [

If we are only interested in stable manifolds, there is a simplified version of Proposition
which takes place on X:

Proposition 7.11. Let (X, v) be a random holomorphic dynamical system and 1 an ergodic
stationary measure, whose Lyapunov exponents satisfy A\~ < 0 < \T. Then for m,-almost
every (w, x) the stable set

W) = {ure X timsup L log st (2. £5(0) < 0]

n—oo N

is an injectively immersed entire curve in X.

Indeed, stable manifolds can be obtained from a purely “one-sided” construction, that is,
by considering only positive iterates (see [91, Chap. III]). This also shows that local stable
manifolds in X’ are F ' -measurable, and may be viewed as living in X, .

7.6. Fibered entropy. Here we recall the definition of the metric fibered entropy of a station-
ary measure p (see [80, §2.1] or [91] Chap. 0 and I] for more details). If 7 is a finite measurable
partition of X, its entropy relative to y¢is Hy (1) = — X ce, #(C) log u(C'). Then, we set

n—1 o
029 W) = i |, (\/ (7%) 1(77)) N ©),
k=0

n
(7.30) hu(X,v) = sup {h,(X,v;n) ; n afinite measurable partition of X'} .

Actually h,(X,v;n) can be interpreted as a conditional (or fibered) entropy for the skew-
products F'; on X, and F' on X. Indeed, the so-called Abramov-Rokhlin formula holds [16]:

(7.31) h'u(X, v) = hVNXM(F+]nQ) = Nm, (Fy)—h,~(0)
(7.32) = hm(F|772) = hm(F) — hyz (79)7

where 7 (resp. ny) denotes the partition into fibers of the first projection mq: Xy — € (resp.
7y : X — ) and in the second and fourth equalities we assume h,~ (o) = h,z(¢) < 0. The
next result is the fibered version of the Margulis-Ruelle inequality.

Proposition 7.12. Let (X, v) be a random holomorphic dynamical system satisfying the moment
condition @.1)) and 11 be an ergodic stationary measure. If h,,(X,v) > 0 then i is hyperbolic
and min(X, —\*) > 3h, (X, v).

Proof. See [3]] or [91L Chap. I1] for the inequality \* > $h,,(X,v). For —A* > $h,(X,v), we
use the fact that h,, (F|ns) = hy(F~Yns) (see e.g. [01], 1.4.2]) and apply the Margulis-Ruelle
inequality to F'~1. Beware that there is a slightly delicate point here: (F~1, m) is not associated
to a random dynamical system in our sense; fortunately, the statement of the Margulis-Ruelle
inequality in [3] (see also [91, Appendix A]) covers this situation. O
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7.7. Unstable conditionals and entropy. Assume p is ergodic and hyperbolic. By definition,
an unstable Pesin partition 7" on X is a measurable partition of (X, F, 1) with the following
properties:

— n1is increasing: F~'n" refines n%;
— for m-almost every x, n"(x) is an open subset of W*(x) and

(7.33) U F" (" (F~"(x))) = W*(x);

n=0

- n“.is a generator, i.e. \/,_, F~"(n") coincides m-almost surely with the partition into
points.

Here, as usual, n%(x) denotes the atom of 5% containing x, and F'~'n% is the partition defined
by (F~n%)(x) = F~1(n*(F(x))). The definition of a stable Pesin partition 7° is similar. A
neat proof of the existence of such a partition is given by Ledrappier and Strelcyn in [88]], which
easily adapts to the random setting (see [91], §1V.2]).

Lemma 7.13. There exists a stable Pesin partition whose atoms are F+-measurable, that is,

saturated by local stable sets i . x {x}.

Proof. To justify the existence of such a partition, we briefly review the proof of Ledrappier
and Strelcyn [88] and show that it can be rendered F " -measurable. Let E be a set of positive
measure in X’ such that (a) 7x (F) is contained in a ball of radius o, (b) for every x = (§,x) €
E, and every 0 < r < 2rg, W#(x) contains a disk of size exactly r at x, denoted by A*(x,r)
and (c) for every 0 < r < 2rg, E 3 x — A®(x,r) is continuous for the C'! topology. Then for
0 < r < rp we define a measurable partition 7, whose atoms are the A®(x,r) for z € E as well
as X\ |J,cg A®°(x, 7). Since stable manifolds are F*-measurable, we can further require that
for every ¢’ € X (€), with 2" = (&', z), we have A®(x’,7) = A®(x,r). The argument of [88]
shows that for Lebesgue-almost every r € [0, 7], the partition n* = \/,"_, F~"™(n,) is a Pesin
stable partition. Thus with x and &’ as above we infer that

(7.34) P& = [ F e (F" (&) = () F " ne(F () = ()

n=0 n=0

where the middle equality comes from the fact that 9§’ € X7

(™€), and we are done. O

The existence of unstable partitions enables us to give a meaning to the unstable conditionals
of m. Indeed, first observe that if n* and (* are two unstable Pesin partitions, then m-almost
surely m(-|n*) and m(-|¢*) coincide up to a multiplicative factor on n*(x) n (*(x). Further-
more, there exists a sequence of unstable partitions 7 such that for almost every x, if K is a
compact subset of W*(x) for the intrinsic topology (i.e. the topology induced by the biholomor-
phism W"(x) ~ C) then K < n}*(x) for sufficiently large n: indeed by (7.33)), the sequence of
partitions F"n" does the job. Hence almost surely the conditional measure of m on W¥(x) is
well-defined up to scale; we define m¥ by normalizing so that m¥(n*(x)) = 1.

The next proposition is known as the (relative) Rokhlin entropy formula, stated here in our
specific context.

Proposition 7.14. Let (X, v) be a random holomorphic dynamical system satisfying the moment
condition 1)), and 1 be an ergodic and hyperbolic stationary measure. Let n* be an unstable
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Pesin partition. Then
hu(X,v) = Hp(F~'n"|n") = flog Ty (2)dm(x),
where Jyu(x) is the “Jacobian” of F relative to 0", that is
Ty () = m (F~H (" (F () | (%))

Sketch of proof. The argument is based on the following sequence of equalities, in which 7y, is
the partition into fibers of 7y, as before:

hu(X,v) = hi(Fns) = hn(F Y ns)
(7.35) = hn(F~ ' 0" v 15)
= Hp(n"|Fn* v ns) = Hy(n"|Fn®) = Hy(F~ 9" n")

-1

The equalities in the first and last line follow from the general properties of conditional entropy:
see [91, Chap. O] for a presentation adapted to our context (note that the conditional entropy
would be denoted by hy; there) or Rokhlin [104] for a thorough treatment. On the other hand
the equality is non-trivial. If n* were of the form \/;rioo 7, where 7 is a 2-sided generator
with finite entropy, this equality would follow from the general theory. For a Pesin unstable
partition the result was established for diffeomorphisms in [89) Cor 5.3] and adapted to random
dynamical systems in [91} Cor. V1.7.1]. g

Remark 7.15. It is customary to present the Rokhlin entropy formula using unstable partitions,
mostly because entropy is associated to expansion. Nonetheless, a similar formula holds in the
stable direction:
hu(X,v) = flog Jys (x)dm(x) where Jys (x) = m (F (nS(F_l(X))) | n® (;‘())71

The proof is identical to that of Proposition applied to I/, with however the same caveat
as in Proposition m (F~!,m) is not associated to a random dynamical system in our sense.
The only non-trivial point is to check that the key equality holds in this case. Fortunately,
the main purpose of [?] is to explain how to adapt [91) Chap. VI], hence the equality (7.33)), to a
more general notion of “random dynamical system” which covers the case of (F~1, m) (see in
particular the last lines of [?, §5] for a short discussion of the Rokhlin formula).

Corollary 7.16. Under the assumptions of the previous proposition, the following assertions are
equivalent:

(a) h‘H«(X7 V) = 0;
(b) m(:|n*(x)) = O, for m-almost every x;
(c) m(:|n*“(x)) is atomic for m-almost every x.

The same result holds for the stable Pesin partition n°.

Proof. In view of the definition of J,«, the entropy vanishes if and only if for m-almost every x,
m(-|n%(x)) is carried by a single atom of the finer partition F'~'n%. Now since H,(F~'n%|n%) =
%Hm(F*"n“\ n"), the same is true for F~"n", and finally since (F'~"n") is generating, we
conclude that (a)<(b). That (c) implies (a) follows from the same ideas but it is slightly more
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delicate, see [[111}, §2.1-2.2] for a clear exposition in the case of the iteration a single diffeomor-
phism, which readily adapts to our setting.

The result for the stable Pesin partition n° follows by changing F to F'~! (see Remark|7.15).
0

A further result is that if the fiber entropy vanishes there is a set of full m-measure which
intersects any global unstable leaf in only one point. This was originally shown for individual
diffeomorphisms in [89, Thm. B].

8. STABLE MANIFOLDS AND LIMIT CURRENTS

Let as before (X, v) be a non-elementary random holomorphic dynamical system on a com-
pact Kéhler (hence projective) surface, and assume w is an ergodic stationary measure admitting
exactly one negative Lyapunov exponent, as in Proposition Our purpose in this section is
to relate the stable manifolds W*(w, z) to the stable currents 7,5 constructed in According
to Proposition the stable manifolds are parametrized by injective entire curves; the link be-
tween these curves and the stable currents will be given by the well-known Ahlfors-Nevanlinna
construction of positive closed currents associated to entire curves.

8.1. Ahlfors-Nevanlinna currents. We denote by {V'} the integration current on a (possibly
non-closed, or singular) curve V. Let ¢ : C — X be an entire curve. By definition, if « is a
test 2-form, (¢, {D(0,1)}, ) = SD ) @, which accounts for possible multiplicities coming

from the lack of injectivity of ¢; ¢ {D(O t)} = {¢(ID(0,%))} when ¢ is injective. Set

(8.1) A(R) —f ¢* ko and T(R J At dt
D(0,R)

for R > 0. When ¢ is an immersion, A(R) is the area of ¢(ID(0, R)); in all cases, A(R) is the
mass of ¢, {(D(R))}.

Proposition 8.1 (see Brunella [23) §1]). If ¢ : C — X is a non-constant entire curve, there
exist sequences of radii (R,,) increasing to infinity such that the sequence of currents

1 B dt
T ), ¢« {D(0,2)} —

t
converges to a closed positive current T. If furthermore ¢(C) is Zariski dense, and T is
such a closed current, the class [T] € HY'(X,R) is nef. In particular {[T]|[T]) = 0 and
{TT|[C]) = 0 for every algebraic curve C = X.

N(Rn) =

Such limit currents 7" will be referred to as Ahlfors-Nevanlinna currents associated to the
entire curve ¢: C — X. If ¢(C) is not Zariski dense then ¢(C) is a (possibly singular) curve
of genus 0 or 1; if ¢ is injective, then ¢(C) is rational.

8.2. Equidistribution of stable manifolds. If . is hyperbolic, or more generally if it admits
exactly one negative Lyapunov exponent, then, for m, -almost every x = (w, z) € X, the stable
manifold W#(x), which is viewed here as a subset of X as in Proposition is parametrized
by an injectively immersed entire curve. Then we can relate the Ahlfors-Nevanlinna currents to
the limit currents 7;7; here are the three main results that will be proved in this section.
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Theorem 8.2. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kdhler surface, satisfying (4.1)). Let u be an ergodic stationary measure such that
A7 (1) < 0 < AT (). Then exactly one of the following alternative holds.

(a) For my.-almost every x, the stable manifold W*(x) is not Zariski dense. Then ji is supported
on a T -invariant curve Y < X and for m,.-almost every x, W*(x) < Y. In addition every
component of Y is a rational curve, and the intersection form is negative definite on the
subspace of H'(X; R) generated by the classes of components of Y .

(b) For my-almost every x the stable manifold W*(x) is Zariski dense and the only normalized
Ahlfors-Nevanlinna current associated to W*(x) is T},

Corollary 8.3. Under the assumptions of Theorem|[8.2] if in addition y is hyperbolic and non-
atomic, then the Alternative (b) is equivalent to

(b’) p is not supported on a I, -invariant curve.
Corollary 8.4. Under the assumptions of Theorem assume furthermore that v satisfies the

exponential moment condition (5.26). Then in Alternative (b) there exists 0 > 0 such that for
m -almost every x € X the Hausdorff dimension of W (x) equals 2 + 0.

8.3. Proof of Theorem [8.2] and its corollaries. We work under the assumptions of Theo-
rem[8.2]

Lemma 8.5. If there exists a proper Zariski closed subset of X with positive p-measure, then:

— either | is the uniform counting measure on a finite orbit of T',,;
— or u has no atom and it is supported on a U, -invariant algebraic curve, which is the
T',-orbit of an irreducible algebraic curve.

Proof. Consider the real number 69, (1) = maxgex p ({x}). If 62

max (1) > 0, there is a non-
empty finite set F' < X for which i ({x}) = 69, (1). By stationarity, F' is I, -invariant, and by
ergodicity y is the uniform measure on F'. Now, assume that ;1 has no atom. Let 51 (1) be the
maximum of x(D) among all irreducible curves D < X. If u(Z) > 0 for some proper Zariski
closed subset Z = X, then 51, (1) > 0. Since two distinct irreducible curves intersect in at
most finitely many points and p has no atom, there are only finitely many irreducible curves E

such that y(E) = 61 . (p). To conclude, we argue as in the zero dimensional case. O

If V < X is a smooth curve, possibly with boundary, if T is a closed positive (1, 1)-current
on X with a continuous normalized potential w7 (as in §[6.1.1)), then by definition

(8:2) (T AV}, )= f pOr+ f o dd“(urly),
v v
for every test function . Here is the key relation between stable manifolds and limit currents:

Lemma 8.6. For my-almost every x = (w,x), if A is a disk contained in W*(x), then T3 A
{A} =0.

Proof. With no loss of generality we assume that the boundary of the disk A in W#(x) ~ C is
smooth. We consider points x = (w, ) € X} which are generic in the following sense: they are
regular from the point of view of Pesin’s theory, and T}; satisfies the conclusions of
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By Pesin’s theory, for every € > 0, there is a set A. — N of density larger than 1 — &, such
that for n in A., the local stable manifold W?(F(x)) is a disk of size r = r(¢) at f(x) and
fI(A) is a disk contained in an exponentially small neighborhood of f/'(x). We have

(83)  M(Tiw, A {f2(A)}) = f

Lin(a) O1s,  + f Lpn(a)ddurs, .
W (F7 (%)

Wi (Fi(x))

Since M(T}n,,) = 1, Lemma shows that ©rs, ~is bounded by Aro; so the first integral
on the right hand side of (8.3 is bounded by a constant times the area of f]'(A), which is
exponentially small. By ergodicity, there exists AL — A, of density at least 1 — 2¢ such that if
n € AL, |lurs, o is bounded by some contant D. > 0. For such an n, let x be a test function
in W _(F(x)) such that y = 1in Wf/Q(F_’ﬁ(x)) We write

1fg(A)ddCUTjnw < J decuTjnw

JWS(FLL(X)) Wi (Fi(x))

(8-4) = UT;nW ddCX

f W (F (x))
< C)lxlee|urs,, |,

where C(r) bounds the area of W,?(F'}(x)); this last term is uniformly bounded because n € AL.

Thus we conclude that M(T%.,, A {f(A)}) is bounded along such a subsequence.

o"w

On the other hand, the relation (f]})*T3n,, = M((f2)*Tin,,)T gives
(8.5) Ty A L)} = M ((f2)* Ty ) (F)6(T5 1 {A)).
The mass M((f)«(TS A {A})) is constant, equal to the mass of the measure 75 A {A}; so
(8.6) M (T2u ) A SEA)E) = ML) T ) MIUTS A {A)).

By Lemma , M(( fﬁ)*Tjn(w)) goes exponentially fast to infinity. Since the left hand side is

bounded, this shows that M(T5 A {A}) = 0, as desired. O

With Lemma [2.14] the following statement takes care of the first alternative in Theorem

Lemma 8.7. If there is a Borel subset A — X of positive measure such that for every x € A,
the stable manifold W*(x) is contained in an algebraic curve, then y is supported on a T',,-
invariant algebraic curve. In addition, for m-almost every x, W (x) is an irreducible rational
curve of negative self-intersection.

Proof. For x € A, let D(x) be the Zariski closure of W*(x). Discarding a set of measure zero
if needed, W*(x) is biholomorphic to C so D(x) is a (possibly singular) irreducible rational
curve, and D(x)\W?#(x) is reduced to a point. By Lemma 15 ~ {A} = 0 for every
disk A < W#(x). Since TS has continuous potentials, 75 A {D(x)} gives no mass to points
(see e.g. [33l Lem. 10.13] for the singular case). It follows that 75 A {D(x)} = 0, hence
(elw) | [D(x)]) = 0.

By the Hodge index theorem, either [D(x)]? < 0 or [D(x)] is proportional to e(w), however
this latter case would contradict the fact that e(w) is v™N-almost surely irrational (see Theo-
rem|[5.8} one could also use that Cur(e(w)) is reduced to 7.%). Thus, [D(x)]? < 0.
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An irreducible curve with negative self-intersection is uniquely determined by its cohomology
class; since NS(X; Z) is countable, there are only countably many irreducible curves (Dg)reN
with negative self intersection. Since W} (x) < Dy if and only if D(x) = Dy, and since
local stable manifolds vary continuously on the Pesin regular set R. for every € > 0, we infer
that {x € A; D(x) = Dy} is measurable for every k. Hence there exists an index k such that
my ({x € A; [D(x)] = [Dg]}) > 0. Since = belongs to W}® _(x), Fubini’s theorem implies
that p(Dy,) > 0, and Lemma 8.5]shows that 4 is supported on the I',,-orbit of Dy.

Finally, this argument shows that the property W}’ (x) < J,en Dk Or equivalently that
W .(x) is contained in a rational curve of negative self intersection, is invariant and measurable,
so by ergodicity of m, it is of full measure. The proof is complete. O

We are now ready to conclude the proof of Theorem Let A be the set of Pesin regular
points such that W#(x) is contained in an algebraic curve. From the proof of Lemma X
belongs to A if and only if W}’ (x) is contained in one of the countably many irreducible curves
D, < X of negative self-intersection. This condition determines a countable union of closed
subsets in the Pesin sets R., hence A is Borel measurable. By Lemma if A has positive
m. -measure then Alternative (a) holds. So, if (a) is not satisfied, W*¥(x) is almost surely Zariski
dense. Pick such a generic x, which further satisfies the conclusion of Lemma|[8.6] and let IV be
an Ahlfors-Nevanlinna current associated to W*(x). By Proposition [INV] is a nef class so
[N]? = 0. Thus, if we are able to show that {{N]|[T:{]) = 0, we deduce from the Hodge index
theorem and M(N) = 1 that [N] = [T}5] = e(w), hence N = T3 by Theorem|[6.12] So, it only
remains to prove that ((N] | [T}5]) = 0, or equivalently

(8.7) N ATS =0.

This is intuitively clear because N is an Ahlfors-Nevanlinna current associated to the entire
curve W#(x) and TS A {A} = 0 for every bounded disk A < W#(x). However, there is a
technical difficulty to derive from T5 A {A} = 0, even if W#(x) is an increasing union of
such disks A.

At least two methods were designed to deal with this situation: the first one uses the geometric
intersection theory of laminar currents (see [[7,153]]), and the second one was developed by Dinh
and Sibony in the preprint version of [47] (details are published in [33} §10.4]). Unfortunately
these papers only deal with the case of currents of the form lim,, ﬁwm(o, R,)), instead of
the Ahlfors-Nevanlinna currents introduced in Section (8.1, which were designed to get the nef
property stated in Proposition So, we have to explain how to adapt the formalism of [[7, 53]
to the Ahlfors-Nevanlinna currents of Proposition 8.1

Following [56] we say that 7" is an Ahlfors current if there exists a sequence (A,,) of unions
of smoothly bounded holomorphic disks such that length(0A,,) = o (M(A,,)) and T is the limit
as n — oo of the sequence of normalized integration currents m {An}; here, length(0A,,)
is by definition the sum of the lengths of the boundaries of the disks constituting A,,, lengths
which are computed with respect to the Riemannian metric induced by xg. We say furthermore
that 7" is an injective Ahlfors current if the disks constituting A,, are disjoint or intersect
along subsets with relative non-empty interior. By discretizing the integral defining the currents
N(R;,) in Proposition (8.I)) we see that any Ahlfors-Nevanlinna current is an injective Ahlfors
current.
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Strongly approximable laminar currents are a class of positive currents introduced in [53]]
with geometric properties which are well suited for geometric intersection theory. In a nutshell, a
current 7' is a strongly approximable laminar current if for every r > 0, there exists a uniformly
laminar current 7,. (non closed in general) made of disks of size r, and such that M(T — T,.) =
O(r?). This mass estimate is crucial for the geometric understanding of wedge products of such
currents. Since these notions have been studied in a number of papers, we refer to [[7, 153} 28]
for definitions, the basic properties of these currents, and technical details. This presentation in
terms of disks of size r is from [54] §4]. The next lemma is a mild generalization of the methods
of [[7, §71, [25] §4.3] and [53] §4]. For completeness we provide the details in Appendix [B]

Lemma 8.8. Any injective Ahlfors current T on a projective surface X is a strongly approx-
imable laminar current: if T' = lim,, m {A,} where the disks A, have smooth boundaries

and length(0A,,) = o (M(A,)), one can construct a family of uniformly laminar currents T,,
whose constitutive disks are limits of pieces of the Ay, and such that if S is any closed positive
current with continuous potential on X, then S A T increases to S AT as r decreases to 0.

With this lemma at hand, let us conclude the proof of Theorem [8.2] Since X is projective,
we can apply the previous lemma to any Ahlfors-Nevanlinna current N associated to W*(x). In
this way we get a family of currents N, such that N, A T} increases to N A 15 as r decreases
to 0. On the other hand, by Lemma the intersection of 73 with every disk contained in
W#(x) vanishes, so again using the fact that 75 has a continuous potential, we infer that if A is
any disk subordinate to N,,, .5 A {A} = 0. Hence N, A T35 = 0 for every r > 0, and finally
N AT5 =0, as desired. O

Proof of Corollary[8.3] Since (b’) and (a) are contradictory, (b’) implies (b). Conversely assume
that s is hyperbolic, non atomic and supported on a I' -invariant curve C'. Since p has no atom,
it gives full mass to the regular set of C, hence ¥ x T'(Reg(C')) defines a D F-invariant bundle,
and by the Oseledets theorem the ergodic random dynamical system (C, v, ) must either have
a positive or a negative Lyapunov exponent. If this exponent were positive then p would be
atomic, as observed in Section Hence, the Lyapunov exponent tangent to C' is negative
and W*(x) is contained in C for m -almost every x. So (b) implies (b’). O

Proof of Corollary[8.4} Since v satisfies an exponential moment condition, Theorem pro-
vides a 8 > 0 such that us is Holder continuous of exponent 6 for vN-almost every w. This
implies that T gives mass 0 to sets of Hausdorff dimension < 2 + 6 (see [109, Thm 1.7.3]).

Since for m.-almost every z, Supp(T5) < W*(x), we infer that HDim (W*(x)) > 2 + 6.

To conclude the proof it is enough to show that x — HDim(WS (X)) is constant on a set of

full my-measure. Indeed, x +— HDim(VVS (X)) defines an F'; -invariant function, defined on
the full measure set R of Pesin regular points. If we show that this function is measurable, then
the result follows by ergodicity. This is a consequence of the following two facts:

(1) the assignment x — W$(x) defines a Borel map from R to the space K(X) of compact
subsets of X;
(2) the function K£(X) 5 K — HDim(K) is Borel (see [94, Thm 2.1]).

In both cases /(X)) is endowed with the topology induced by the Hausdorff metric. For the first
point, observe that R is the increasing union of the compact sets R. so it is Borel; then, on a
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Pesin set R, x — Wy(x) is continuous, so x — F~"(W$(F"(x))) is continuous as well.
Since F~"(Wy(F™(x))) converges to W#(x) in the Hausdorff topology, we infer that x —

W$(x) is a pointwise limit of continuous maps on R., hence Borel, and finally x — W#(x) is
Borel on R, as claimed. O

9. NO INVARIANT LINE FIELDS

As above, let (X, v) be a random holomorphic dynamical system satisfying the moment con-
dition @.T)), and p be an ergodic hyperbolic stationary measure. From and the local
stable manifolds and stable Oseledets directions are F " -measurable; so, E*(¢, x) is naturally
identified to E*(w, ) under the projection (§,z) € X — (w,z) € X, and the same property
holds for stable manifolds. Then, m. -almost every x € X has a Pesin stable manifold W*#(x)
(resp. direction E*(x)). Let V(x) = V(w, ) be such a measurable family of objects (stable
manifolds, or stable directions, etc); we say that V' (x) is non-random if for y-almost every x,
V (w, x) does not depend on w, that is, there exists V () such that V,,(x) = V() for vN-almost
every w. If V is not non-random, we say that V' depends non-trivially on the itinerary. Since
stable directions depend only on the future, the random versus non-random dichotomy can be
analyzed in X or in X. Our purpose in this section is to establish the following result.

Theorem 9.1. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kdihler surface satisfying the Condition (4.1). Let p be an ergodic and hyperbolic
stationary measure, not supported on a I, -invariant curve. Then the following alternative holds:

(a) either the Oseledets stable directions depend non-trivially on the itinerary;
(b) or p is v-almost surely invariant and h,(X,v) = 0.

We shall see that (a) often implies that 4 is invariant (see . In (b), the almost-sure in-
variance implies that 1 is in fact I', -invariant (see Remark {.2)). It turns out that (a) and (b) are
mutually exclusive. Indeed the main argument of [22] (ﬂ) implies that the fiber entropy is posi-
tive if the Oseledets stable directions depend non-trivially on the itinerary (see [22, Rmk 12.3]).
So we get the following:

Corollary 9.2. Let (X, v, p) be as in Theorem If i is not v-almost surely invariant, then its
fiber entropy is positive.

To motivate the following pages, let us give a heuristic explanation for the fact that h,, (X, v) =
0 when the stable directions are non-random. Fix a stable Pesin partition 1*; according to Corol-
lary we have to show that the conditional measures m(-|n®(x)) are atomic. Since the
stable directions are non-random, the stable manifolds W} (¢, x) and W} (&', z) are generi-
cally tangent at x. For simplicity, assume that they are tangent for p-almost all x and for all
pairs (£,§'), and that W2 (&, ) depends continuously on (€, x). Take such a generic point ;
if m(-|n®(&, )) is not atomic, there is a sequence of generic points z; € W}? (£, x) converging
to z in X ~ X¢. Fix {’ # £. Then by continuity W} (&', z;) converges towards W} (¢, x), is
disjoint from W} (¢, x), and is tangent to W*(&, z) at x;. This contradicts the following local
geometrical result: if C and D are local smooth irreducible curves through the origin in D?, with

4This actually requires checking that the whole proof of [22]] can be reproduced in our complex setting: we will
come back to this issue in a forthcoming paper. Since we are just using this remark here in Corollary[0.2] we take the
liberty to anticipate on that research.
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an order of contact equal to k, and if D,, = D? is a sequence of curves such that D,, n D = &
but D,, converges towards D in D2, then for n sufficiently large, D,, intersects C' transversally
in k points.

9.1. Intersection multiplicities. Let us start with some basics on intersection multiplicities for
curves. If V; and V5 are germs of curves at 0 € C2, with an isolated intersection at 0, the
intersection multiplicity intero (17, V5) is, by definition, the number of intersection points of
Vi and Vo + u in N for small generic © € C?, where N is a neighborhood of 0 such that
Vi n Vo n N = {0} (see [38] §12]). It is a positive integer, and intery(V7, V2) = 1 if and only
if V1 and V; are transverse at 0. We extend this definition by setting interg(Vy, Vo) = 0 if V}
or V5 does not contain 0 and interg(V7, Vo) = oo if 0 is not an isolated point of V; n V5, that
is locally Vj and V5 share an irreducible component. The intersection multiplicity extends to
analytic cycles (that is, formal integer combinations of analytic curves).

Lemma 9.3. The multiplicity of intersection interq (-, -) is upper semi-continuous for the Haus-
dorff topology on analytic cycles.

In our situation we will only apply this result to holomorphic disks with multiplicity 1, in
which case the topology is just the usual local Hausdorff topology.

Proof. Assume interg(Vy,V2) = kand Vy,, — Vi (resp. V5, — V5) as cycles; we have to
show that lim sup intero(Vi n, Vo) < k. If k = oo there is nothing to prove. Otherwise, {0} is
isolated in V7 n V4, so we can fix a neighborhood U of 0 such that V; n Vo n U = {0}; then,
the result follows from [38, Prop 2 p.141] (stability of proper intersections). O

9.2. Generic intersection multiplicity of stable manifolds. Recall from §7.3]that for m-almost
every x = (£, x) € X there exists a local stable manifold Wi (x) € X¢ ~ X, depending mea-
surably on x; we might simply denote it by W (x).

Let us cover a subset of full measure in X by Pesin subsets R.,. Take a point x € X,
and consider the set of points ((£,z),(¢,x)) € Re, x Re,,, for some fixed pair of indices
(n,m); Lemmal9.3|shows that the intersection multiplicity inter, (W (&, ), W (¢, x)) is an
upper semi-continuous function of ((£, ), (¢, z)) on that compact set. Thus, the intersection
multiplicity inter, (W} (£, z), W ({,x)) is a measurable function of (&, {). Recall that

— the o-algebra F~ on X is generated, modulo m-negligible sets, by the partition into

subsets of the form X! (&) x {z} (see §[7.1] Equation (7.9));

— § — mg is F-measurable, i.e m¢ = m¢ almost surely when ¢ € X} _(§);

— the conditional measures of m with respect to this partition satisfy (see Equation (7.14))
O.1) m( | F7(x)) = V(| Biee(§)) x 8a
The next lemma can be seen as a complex analytic version of [22, Lemma 9.9].

Lemma 9.4. Let k > 1 be an integer. Exactly one of the following assertions holds:
(a) for m-almost every x = (&, x) and for m( - | F~ (&, x))-almost every n

intery (Wig (€, ), Wie(n, ) = k +1;
(b) for m-almost every x = (£, x) and for m( - | F~ (&, x))-almost every n

intery (W5 (&, ), Wite(n, 2)) < k.
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Proof. The relation defined on X by (§,x) ~ (n,y) if x = y and W (&, x) and W} (n,y)
have order of contact at least £ + 1 at « is an equivalence relation which defines a partition
O of X. We shall see below that Qy is a measurable partition. Since F': X — X acts by
diffeomorphisms on the fibers X of X, we get that F'(Qx(x)) = Q(F(x)) for almost every
x € X. Then, the proof of [22, Lemma 9.9] applies verbatim to show that if

9.2) m ({x; m(Q(x)|F (x)) > 0}) >0,
then
(9.3) m ({x; m(Q(x)|F (x)) =1}) = 1.

This is exactly the desired statement. (This assertion says more than the mere ergodicity of m,
which only implies that m ({x, m(Qg(x)|F~(x)) > 0}) = 1.)

It remains to explain why Q. is a measurable partition. For this, we have to express the atoms
of Q. as the fibers of a measurable map to a Lebesgue space. As for the measurability of the
intersection multiplicity, we consider an exhaustion of X’ by countably many Pesin sets; then, it
is sufficient to work in restriction to some compact set £ — & on which local stable manifolds
have uniform size and vary continuously. Taking a finite cover of X by good charts (see §[7.4.2),
and restricting X again to keep only those local stable manifolds which are graphs over some
fixed direction, we can also assume that 7 x (K) is contained in the image of a chart ®,, : U, —
Vi, © X and there is an orthonormal basis (ej, e2) such that for every y € K the local stable
manifold 7y (W3 (y)) is a graph {ze1 + 17 (2)ez} in this chart, for some holomorphic function
15 on D(r). Now the map from K to C? x C* defined by

94) x— () (mx (), (03)(0), .., (03) M) (0))
is continuous. Since the fibers of this map are precisely the (intersection with /C of the) atoms
of Qy., we are done. O

The previous lemma is stated on X because its proof relies on the ergodic properties of F'.
However, since stable manifolds depend only on the future, it admits the following more ele-
mentary formulation on X:

Corollary 9.5. Let k > 1 be an integer. Exactly one of the following assertions holds:
(a) for p-almost every x € X and (vN)2-almost every (w,w'),
intery (W, (w, ), Wi (W', 2)) =k + 1;
(b) or for u-almost every x € X and (vN)2-almost every (w,w’),
inter, (Wi (w,z), W (w',2)) < k.

Combined with results from the previous sections, this alternative leads to the existence of a
finite order of contact ko between generic stable manifolds W _(w, ) and W} (o', x):
Lemma 9.6. There exists a unique integer kg = 1 such that for u-almost every x € X and

(v™N)2-almost every pair (w,w'), inter, (W*(w,z), W (W', z)) = ko.

Proof. Fix a small ¢ > 0 and consider a compact set R. < X} with m(R.) > 1 — ¢, along
which local stable manifolds have size at least r(¢) and vary continuously. Since by Theorem
for m,-a.e. x, the only Nevanlinna current associated to W*(x) is 7,5, we can further assume
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that this property holds for every x € R.. Let A X be a subset of full y-measure on which
the alternative of Corollary [9.5|holds for every k£ > 1. In X, consider the measurable partition
into fibers of the form © x {x}; it corresponds to the partition 7~ in Lemma Then, the
associated conditional measures m (- | x {z}) are naturally identified with v, Fix 2z € A
such that my (R x {z}) > 0. Since (X, v) is non-elementary, Theorems|[5.8|and[6.12|provide
pairs (w1, ws) in (mq(R.))? for which the currents 735 and T3, are not cohomologous. By
Theorem these currents describe respectively the asymptotic distribution of W*(wq, x) and
W#(we, z) so we infer that W*(wy, x) # W*(ws, x) and by the analytic continuation principle
it follows that W}? (w1, x) # WS (w2, ). Let k; < oo be the intersection multiplicity of these
manifolds at x. Since the intersection multiplicity is upper semi-continuous, we infer that for
wj € Re close to wj, j = 1,2, intery (Wi (wi, z), Wi (wy, ) < ki. Thus for k = ki we
are in case (b) of the alternative of Corollary [9.5] Applying then Corollary 9.5 successively for
k =1,..., k1, there is a first integer kg for which case (b) holds, and since (a) holds for kg — 1,
we conclude that generically inter, (W} (w,z), W (v, 2)) = ko. O

9.3. Transversal perturbations. The key ingredient in the proof of Theorem9.1|is the follow-
ing basic geometric lemma, which is a quantitative refinement of [[7, Lemma 6.4].

Lemma 9.7. Let k be a positive integer. If r and € are positive real numbers, then there are two
positive real numbers 6 = §(k,r,c) and o = ok, r, c) with the following property. Let My and
My be two complex analytic curves in D(r) x D(r) = C? such that
(i) My and My are graphs {(z, f;(2)) ; w € D} of holomorphic functions fj: D(r) — D(r);
(ii) My n Mo = {(0,0)}, and inter(o oy (M1, M2) = k;
(iii) the k-th derivative satisfies |(fi — fo)®) 0)] = e
If Ms < D(r) x D(r) is a complex curve that does not intersect My but is 6-close to My in the

Cl-topology , then My and M3 have exactly k transverse intersection points in D(ar) x D(ar)
(i.e. with multiplicity 1).

Proof. Without loss of generality we may assume that § < 1.

Step 1.— We claim that there exists oy = «(k, 7, ¢) such that for every o < «; and every
z € D(ar) the following estimates hold:

1|(fi = f2)M(0)] 3|(f1 = fo)P(0)]

05 o 2" < Ai(z) = fala)l < 57— 2"
= 2YO] r g 2 310 2O
00 IO it 1) - o) < S O e

Indeed put g = f1 — fo = 3},,~1 gm2™. Assumptions (i) and (iii) give|g(z)| < 27 on D(r),
and ¢(®)(0) # 0. By the Cauchy estimates, |g,,| < 2r'~" for all n. > 0. Then on D(ar) we get

(k) k+1 -1
9710) i < 2r <|Z’> <1 — M) < opl—k X |z|k
r T 11—«

9(2) = F %
There exists a1 (k,r,c) such that as soon as o < «j, the right hand side of this inequality
is smaller than ¢|z|* /2; hence Estimate (9.3) follows. The same argument applies for (9.6)
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because

g®(0) k1
k—1)!

<4(k+1) (’i’)k (1 - ‘fﬂ') - <4k + 1)#*@ Bl

Step 2.- Forevery a < o, if § < c¢(ar)*/2k!, My and M3 have exactly k intersection points,
counted with multiplicities, in D(ar) x D(ar).

Indeed, the intersection points of M3 and My correspond to the solutions of the equation
f3 = fa. To locate its roots, note that on the circle dD(ar), the Inequality implies

1lec
9.7 — > -
9.7) |f1 = ol 5 %]
Since | fi — f3| < d, the choice § < c(ar)*/2k! is tailored to assure that the hypothesis of the
Rouché theorem is satisfied in D(ar); so, counted with multiplicities, there are & solutions to
the equation f3 = fo on that disk. Furthermore by the Schwarz lemma | f2| < ar on D(ar) so
the corresponding intersection points between My and Ms are contained in D(ar) x D(ar).

(ar)k.

If £ = 1 the proof is already complete at this stage, so from now on we assume k > 2.
Step 3.— Set 69 = | f3(0)

, and note that 69 < J. Then for every o < 1/2, in D(ar) we have

©.8) b0 <) = fal2) < 67
/ / S
9.9) [f1(z) = f3(2)] < —0"*".

For this, recall the Harnack inequality: for any negative harmonic function in D
1-lcl _ Q) _ 141
1+ |¢] ~ w(0) ~1—¢]
Since f; — f3 does not vanish and |f; — f3| < ¢ < 1 in D(r), the function log |f; — f3] is
harmonic and negative there. Thus for v < 1/2, the Harnack inequality can be applied to
¢+ (f1 — f3)(r¢) in D: this gives (9.8). Likewise, we infer that

1+2a 1—2a

9.11) 8 2" < |fi(z) = fa(2)] < 6
in D(2ar), and follows from the Cauchy estimate [ g'[p,,) < (ar)™! 190 p2ar)-

(9.10)

Step 4.— We now conclude the proof. Fix a = a(k, 7, ¢) such that & < «; and
1-2a k-1 1+«

9.12 = —
©.12) fle) 14+ 2« k “1- o
(This will be our final choice for o) Fix § < c(ar)¥/2k! and consider a solution zo of the
equation fa(z) = f3(z) in D(ar) provided by Step 2. The transversality of My and Ms at
(20, f2(20)) is equivalent to f4(z0) # f5(20), so we only need
(9.13) |(fs = f1)'(20)| < |(f2 — f1)'(20)| -
Since (f1 — f3)(20) = (f1 — f2)(20), combining the right hand side of Inequality (9.3) and the
left hand side of Inequality 0.8 we get that

§’(f1 _ f2)(k)(0)’ 1ta

k T-a

> 0.

(9.14)
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thus
1
Lise (kI b -1
©.15) 0l =005 (30) o - o)
Hence by we get that
k-1
1 2k1\ F kfllte %
(9.16) |(f2 = f1) (20)| = 20— 1)1 <3> Gt e ‘(fl — f2)®(0)|"
1 2k! % k—1 1+
<R ita A
/Q(k—l)!<3> %" ek
On the other hand by Estimate (9.9))
1 1-2
(9.17) (s = 1) (z0)| < —0™*

Since dy < 4, we only need to impose one more constraint on J (together with § < c(ar)¥/2k!),
namely

k—1
1 2k! k 1
B(a) N ks ®
(9.18) 0 < 20— 1) < 3 > ckra,

to get the desired inequality |(f3 — f1)'(20)| < |(f2 — f1)'(20)]. O

Let A1 and A, be two disks of size r at z € X, which are tangent at x; let e; € T, X be a
unit vector in T, A1 = T,, A and e a unit vector orthogonal to e; for kg. Then, in the chart @,
Aj and Ay are graphs {ze; + 1;(z)ea} of holomorphic functions ¢;: D(r) — D(r), i = 1, 2,
such that 1;(0) = 0 and ¢}(0) = 0. If inter; (A1, Az) = k, thenfor j = 1,...,k — 1 one has

ngj)(O) = wéj) (0) and wgk)(O) # wgk)(O). We define the k-osculation of A; and Aj at  to be

©9.19) oscpa.r (A1, A2) = [v{7(0) - w7 (0)).

If s < r and we consider A and Ay as disks of size s, then oscy, z s(A1, Aa) = 05Ck 5 (A1, Ag).
Thus, oscy (A1, Az) does not depend on 7, so we may denote this osculation number by
oscy (A1, Ag). With this terminology, Lemma directly implies the following corollary.

Corollary 9.8. Let k be a positive integer, and r and c be positive real numbers. Then, there are
two positive real numbers § and o, depending on (k,r, c), satisfying the following property. Let
Ay and Ay be two holomorphic disks of size v through x, such that inter, (A1, Ag) = k and
osci o (A1, As)) = c. Let Ag be a holomorphic disk of size r such that Ag is 0-close to Ay in
the C'-topology but A3 n Ay = . Then Az intersects Ao transversely in exactly k points in
Bx (z,ar).

The following lemma follows directly from the first step of the proof of Lemma9.7

Lemma 9.9. Let k be a positive integer, and r and c be positive real numbers. Then there exists
a constant [ depending only on (r, k,c) such that if Ay and Ay are two holomorphic disks of
size 1 through x, such that k = intery(Aq, Ag) and oscy z(A1,A2)) = ¢, then x is the only
point of intersection between A1 and Ay in the ball Bx (z, 5r).
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9.4. Proof of Theorem 9.1} Before starting the proof, we record the following two facts from
elementary measure theory:

Lemma 9.10. Let (2, F,P) be a probability space, and § € (0, 1).
(1) If ¢ is a measurable function with values in [0, 1] and such that § ¢ dP > 1 — 6, then

P({x;gp(x)>1—\/5}>>1—\/5.

(2) If Aj is a sequence of measurable subsets such that P(A;) > 1 — 0 for every j, then
P(limsup A;) =1 —4.

Let us now prove Theorem[9.1] If the integer ko of Lemma[.6]is equal to 1, then Pesin stable
manifolds corresponding to different itineraries at a u-generic point x € X are generically
transverse; hence, we are in case (a) of the theorem —note that the conclusion is actually stronger
than mere non-randomness. So, we now assume kg > 1 and we prove that x is almost surely
invariant and that its entropy is equal to zero.

Step 1.- First, we construct a subset G, of “good points” in X.
As described in Section the atoms of 7~ are the sets 7~ (x) = X! ({) x {x} and the
measures m( - | F~(x)) can be naturally identified to v under the natural projections F~ (x) =
i (&) = Q. For notational simplicity we denote these measures by ml.

For a small ¢ > 0, let R. < X be a compact subset with m(R.) > 1 — &, along which local

stable manifolds have size at least 2r(¢) and vary continuously. Since {m{ (R.)dm(x) >
1—¢, by Lemma[9.10|(1) we can select a compact subset R. < R. with m(R.) > 1— /¢ such
that for every x € R. one has m{ (R.) = 1 — /.

By assumption, inter, (W (y1), WS .(y2)) = ko for m-almost every x = (§,z) € R, and
for (mf ® m{ )-almost every pair of points (y1,%0) € (F~(x) n R.)2. Then there exists

X
R” < R. of measure at least 1 — 24/ and a constant ¢(¢) > 0 such that

(9.20) Oscko,x,r(a)(m%c(yl)? I/Vlf)c(yQ)) = C(€>

for every x = (£,z) € R” and all pairs (y1,y2) in a subset A. , = (Fy N R.)? depending
measurably on x and of measure

(9.21) (ml @m] )(Acx) = 1—4v/e

(we justused (m? ™ @m? )((Fy nR:)?) = (1—+/€)? > 1—4,/2). Finally, Fubini’s theorem
and Lemma (1) provide a set G. = R such that
(@) m(G.) =1 — 21/4
(b) forevery x € G., W} (x) has size 2r(e);
(c) for every x € G, there exists a measurable set G. , < F, with mf N (Gex) = 1— 2el/4
such that for every y in G. ., W}? (y) has size > r(¢) and, viewed as a subset of X,
— it is tangent to W? (x) to order ko at x,

- OSCkO,IJ‘(E)(M/lf)C(X)? I/Vli)c(y» = C<E)'
Note that x ¢ R. ,: indeed, when the local stable manifolds vary continuously, one can think of
A¢ » as the complement of a small neighborhood of the diagonal in 2 x €.

Step 2.— To make the argument more transparent, we first show that the fiber entropy vanishes.
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W (&5, 25)

W) W ()

FIGURE 1. On the left, a generic point x with the local stable manifolds W} (&;, z)
for distinct (&;)i>0 (see Step 1). On the right, the choice of the sequence (¢, ;) gives
a family of local stable manifolds (see Step 2).

Let n° be a Pesin partition subordinate to local stable manifolds in X'. By Corollary
it is enough to show that for m-almost every x, m(:|n°(x)) is atomic (hence concentrated at
x). Assume by contradiction that this is not the case. Therefore for ¢ > 0 small enough there
exists ¥ = (£, x) € G such that m(-|n° (%)) s (x)~g. 1S non-atomic, and there exists an infinite
sequence of points x; = (&, z;) in G N n®(x) converging to x. Then with G, , as in Property (c)
of the definition of G, we have m]™ (Ger,) = 1 — 2e1/4 for every j.

Identifying all 7~ (x;) with X} (£), by Lemma (2) we can find ¢ € X (&) such that
(¢,x;) belongs to ga,(wj) for infinitely many j’s. Along this subsequence the local stable
manifolds WS (¢, ;) form a sequence of disks of uniform size r = 2r(¢) at ;. Two such local
stable manifolds are either pairwise disjoint or coincide along an open subset because they are
associated to the same itinerary .

Let us now use the notation from Corollary W and Lemma W We know that W:’( ) (¢, )
is tangent to W7, (€, ) at x; to order ko, with 0Scy 4. r(c) (Wf(a) x), Wi (¢,z5)) = c(e); so,
by Lemma W) (¢ @) and W (¢, @) are disjoint as soon as distx (z;,z5) < Br(e).
Finally, if j and j’ are large enough, then distx (z;,zj) < ar(c) and the C' distance between
W) (C,x;) and Wy (¢, z) is smaller than d; thus, Corollaryasserts that W (¢, z;) and
Wf(e)(g , ;) cannot both be tangent to Wf(a) (&, ). This is a contradiction, and we conclude

that the fiber entropy of m vanishes.

Step 3.— We now prove the almost sure invariance.

As in [22, Eq. (11.1)] we consider a measurable partition P of X with the property that for
m-almost every (§, x),

(922) Eigoc(g) X Wﬁ(g,x) (f,x) = ,P(é.al‘) < Eisoc(g) X WS(£>$)

The existence of such a partition is guaranteed, for instance, by Lemma By [22, Prop
11.1]@), to show that g is almost surely invariant it is enough to prove that:

(9.23) for m almost every £, m( - |P(&, z)) is concentrated on Xy (&) x {z}.

SBrown and Rodriguez-Hertz make it clear that this result holds for an arbitrary smooth random dynamical system
on a compact manifold.
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By contradiction, assume that (9.23) fails. By contraction along the stable leaves, it follows that

almost surely X7 (&) x {x} is contained in

(9.24) Supp (m('W’(& L)) [P(€0)\8s (g)x{w})

loc

(this is identical to the argument of Corollary [7.16). In particular for small € we can find x =
,x) € G- and a sequence of points x; = (£;,x;) € G. such that x; belongs to P(x) n G.,

j VR j
xj # x and (z;) converges to x in X. We can also assume that the z; are all distinct. By

definition of G., m)](T (gg,xj) > 1 — 2¢!/4 for every j. For (£,¢) € X2, set
(9.25) [57 C] = ﬁ)c(é) N Efoc(C)?

that is, [¢, (] is the itinerary with the same past as £ and the same future as (. As above, iden-
tifying the atoms of the partition 7~ with €2, Lemma (2) provides an infinite subsequence
(Je) and for every ¢ an itinerary (j, € Xj (§;,) such that y;, := ((j,,z;,) belongs to Ge »; and
all the (j, have the same future, that is (j, is of the form [&;,, (] for a fixed ¢. By definition,

(9.26) interzjz (VVIZC (ng); VVIZC(Z@Z)) = ko
9.27) OSCko,ij,r(e)(M/lf)c(Xjk)7 V[/lic(yje)) = C(E)'

In addition the disks mx (W (y;,)) are pairwise disjoint or locally coincide because the z;,
are distinct and the (j, have the same future. Moreover, since x;j, belongs to P(x), W#(x;,)
coincides with TW*(x). Therefore, the mx (W;?_.(y;,)) form a sequence of disjoint disks of size
2r(e) at x;, all tangent to mx (W (x)) to order ko, with osculation bounded from below by
c(e). Since this sequence of disks is continuous and (x;) converges towards x, Lemma[9.9 and
Corollary [9.8] provide a contradiction, exactly as in Step 2. This completes the proof of the
theorem. O

10. STIFFNESS

Here we study Furstenberg’s stiffness property for automorphisms of compact Kihler sur-
faces, thereby proving Theorem [A]l Our first results in deal with elementary subgroups
of Aut(X). The argument relies on the classification of such elementary groups together with
general group-theoretic criteria for stiffness; these criteria are recalled in §[10.1]and The-
orem concerns the much more interesting case of non-elementary subgroups; its proof
combines all results of the previous sections with the work of Brown and Rodriguez-Hertz [22].

10.1. Stiffness. Following Furstenberg [65], a random dynamical system (X, v) is stiff if any
v-stationary measure is almost surely invariant; equivalently, every ergodic stationary measure
is almost surely invariant. This property can conveniently be expressed in terms of v-harmonic
functions on I'. Indeed if £: X — R is a continuous function and p is v-stationary, then
I's g~ §&(gz)du(z) is a bounded, continuous, right v-harmonic function on I'; thus prov-
ing that p is invariant amounts to proving that such harmonic functions are constant. Stiffness
can also be defined for group actions: a group I" acts stiffly on X if and only if (X, v/) is stiff for
every probability measure v on I' whose support generates 1'; in this definition, the measures v
can also be restricted to specific families, for instance symmetric finitely supported measures, or
measures satisfying some moment condition. There are some general criteria ensuring stiffness
directly from the properties of I'. A first case is when G is a topological group acting continu-
ously on X and I' @ is relatively compact. Then I' acts stiffly on X: this follows from the
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maximum principle for harmonic functions on T (see also [65, Thm 3.5]). Another important
case for us is that of Abelian and nilpotent groups.

Theorem 10.1. Let G be a locally compact, second countable, topological group. Let v be a
probability measure on G. If G is nilpotent of class < 2, then any measurable, v-harmonic, and
bounded function p: G — R is constant; thus, every measurable action of such a group is stiff.

This is due to Dynkin-Malyutov and to Guivarc’h; we refer to [[72]] for a proof (ﬂ) The case of
Abelian groups is the famous Blackwell-Choquet-Deny theorem. We shall apply Theorem [10.1]
to subgroups A < Aut(X); what we implicitly do is first replace A by its closure in Aut(X) to
get a locally compact group, and then apply the theorem to this group.

10.2. Subgroups and hitting measures. A basic tool is the hitting measure on a subgroup,
which we briefly introduce now (see [12, Chap. 5] for details). Let G be a locally compact
second countable topological group. A notion of length can be defined in this context as follows:
given a neighborhood U of the unit element, for any g € G, length;;(g) is the least integer n > 1
such that g € U™. By definition a probability measure v on GG has a finite first moment (resp. a
finite exponential moment) if §length;;(g) dv(g) < oo (resp. if § exp(alengthy(g)) dv(g) <
oo for some o > 0). This condition does not depend on the choice of U.

Let v be a probability measure on (G, and consider the left random walk on G governed by v.
Given a subgroup H < G, for w = (g;) € G, define the hitting time

(10.1) T(w)=Ty(w):=min{n=>1; g,---q1 € H}.

If T" is almost surely finite we say that [ is recurrent and the distribution of gr () - - - g1 is by
definition the hitting measure of v on H, which will be denoted vf;. The key property of vy
is that if ¢ : G — R is a v-harmonic function, then |z is also vg-harmonic. Therefore, if 1
is a v-stationary measure, then it is also vg-stationary. Conversely, any bounded vzr-harmonic
function h on H admits a unique extension % to a bounded v-harmonic function on G this
extension is defined by the formula

(10.2) h(z) = Eo(h(gr, 4wy 917)) = Jh(ng.’H(w) - g1z) dvN (W)

where the stopping time T}, g is defined by T, y(w) = min{n >0; g,---g1x € H}. The
uniqueness comes from Doob’s optional stopping theorem, which asserts that if (M;);>¢ is
a bounded martingale and 7 is a stopping time which is almost surely finite then E(Mp) =
E(M)). Thus, any bounded v-harmonic function i on G satisfies Formula (10.2)).

If [G : H] < oo then H is recurrent and its stopping time admits an exponential moment. It
follows that vz has a finite first (resp. exponential) moment if and only if v does.

Likewise, assume that H is a normal subgroup of G’ with G/H isomorphic to Z, and that
v is symmetric with a finite first moment. Then, the projection 7 of v on G/H is symmetric
with a finite first moment, so the random walk governed by 7 on G/H ~ Z is recurrent (see the
Chung-Fuchs Theorem in [55} §5.4] or [39]) and H is recurrent.

5The proof in [102] is not correct, because Lemma 2.5 there is false. But the proof works perfectly, and is quite
short, if the support of v is countable or if the nilpotency class of the group is < 2.
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Lemma 10.2. Let v be a probability measure on Aut(X ) and T be a closed subgroup which is
recurrent for the random walk induced by v. Let V' be the induced measure on T". If (X, V') is
stiff then (X, v) is stiff as well. This holds in particular if:

(i) either [T}, : "] < o0
(i) or I is a normal subgroup of T, with T}, /T isomorphic to Z, and v is symmetric with a
finite first moment.

Proof. Let i be a v-stationary measure on X . Then p is v/-stationary, hence by stiffness it is
I"-invariant. Therefore for every Borel set B — X, the function I 5 g — (g~ 'B) is a bounded
v-harmonic function which is constant on I'” so by the uniqueness of harmonic extension it is
constant, and v is I'-invariant. O

10.3. Elementary groups. Recall that Aut(X) is a topological group for the topology of uni-
form convergence and is in fact a complex Lie group (with possibly infinitely many connected
components). Let Aut(X)° be the connected component of the identity in Aut(X') and

(10.3) Aut(X)# = Aut(X)/Aut(X)°.

Let p : Aut(X) — GL(H*(X;Z)) be the natural homomorphism; its image is Aut(X)* =
p(Aut(X)) (see §[2.1.1); is kernel contains Aut(X)° and a theorem of Lieberman [90] shows
that Aut(X)° has finite index in ker(p). If I" is a subgroup of Aut(X), we set I'* = p(I").

Theorem 10.3. Let X be a compact Kdhler surface. Let v be a symmetric probability measure
on Aut(X) satisfying the moment condition ¢.1). If T, is elementary and T}, is infinite, then
(X, v) is stiff-

Note that stiffness can fail when I'}, is finite: see Example below. The proof relies on the
classification of elementary subgroups of Aut(X) (see [28, Thm 3.2], [S9]): if I, is elementary
and I'}; is infinite there exists a finite index subgroup A* < I'}; which is

(a) either cyclic and generated by a loxodromic map;

(b) or a free Abelian group of parabolic transformations possessing a common isotropic line; in
that case, there is a genus 1 fibration 7: X — S, onto a compact Riemann surface S, such
that I', permutes the fibers of 7.

Denote by pr, : I', — I'}; the restriction of p to I',,. We distinguish two cases.

Proof when the kernel of pr,, is finite. Let A be the pre-image of A* in I'; it fits into an exact
sequence 1 — F' - A — A* — 0 with F finite, so a classical group theoretic lemma (see
Corollary 4.8 in [35])) asserts that A contains a finite index, free Abelian subgroup Ay, such that
pr, (Ao) has finite index in A*. Since Ay is Abelian, Theorem [10.1| shows that the action of
(Ao, v4,) on X is stiff. The index of A in I being finite, Lemma|10.2|concludes the proof. [J

Proof when the kernel of pr,, is infinite. In case (a), X is a torus C?/A and ker(pr, ) is a group
of translations of X (see Proposition [3.18). Let A T, be the pre-image of A*; setting K =
ker(pr, ), we obtain an exact sequence 0 > K — A — A* — 0, with A < I, of finite index,
A* ~ 7 generated by a loxodromic element, and K < X an infinite group of translations. Since
v is symmetric, the measure v/ 4 is also symmetric; since 4 satisfies the moment condition (4.1)),
its projection on A* has a first moment (note that if f is loxodromic, then log(||(f*)"[) = |n|).
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Since K is Abelian, its action on X is stiff; thus, as in Lemma[10.2](ii), the action of A on X is
stiff. Since A has finite index in I, the action of I" on X is stiff too by Lemma[10.2](i).

In case (b), we apply Proposition 2.19] So, either X is a torus, or the action of I', on the
base S of its invariant fibration 7: X — S has finite order. In the latter case, a finite index
subgroup I'y of I" preserves each fiber of 7; then, I'y contains a subgroup of index dividing 12
acting by translations on these fibers. This shows that I" is virtually Abelian; in particular, I"
is stiff. The last case is when the image of I' in Aut(S) is infinite and X is a torus C?/Ax.
Then, S = C/Ag is an elliptic curve and 7 is induced by a linear projection C? — C, say the
projection (x, %) + x. Lifting ' to C2, and replacing I" by a finite index subgroup if necesssary,
its action is by affine transformations of the form

(10.4) f:(x,y) = (z +a,y +mz +b)
with m in C*, and (a,b) in C2. This implies that T is a nilpotent group of length < 2; by
Theorem [T0.] it also acts stiffly and we are done. O

Example 10.4. If X = P?(C), its group of automorphism is PGL3(C) and for most choices of
v there is a unique stationary measure, which is not invariant; the dynamics is proximal, and this
is opposite to stiffness (see [65]). If X = P!(C) x C, for some algebraic curve C, then Aut(X)
contains PGL2(C) x Aut(C); if v is a probability measure on PGLy(C) x {id¢}, then in most
cases the stationary measures are again non invariant.

Proposition 10.5. Let X be a complex projective surface, and I' be a subgroup of Aut(X) such
that I'* is finite. If 1" preserves a probability measure, whose support is Zariski dense in X, then
the action of T on X is stiff.

The main examples we have in mind is when the invariant measure is given by a volume form,
or by an area form on the real part X (R) for some real structure on X, with X (R) # (.

Proof. Replacing I by a finite index subgroup we may assume that I' = Aut(X)°. Denote by
1 the invariant measure. Let G be the closure (for the euclidean topology) of I in the Lie group
Aut(X)?; then G is a real Lie group preserving .

Let ax: X — Ax be the Albanese morphism of X. There is a homomorphism of complex
Lie groups 7: Aut(X)® — Aut(Ax)° such that ax o f = 7(f) o ax forevery f in Aut(X)°.

Pick a very ample line bundle L on X, denote by PV (C) the projective space P(H°(X,L)"),
where N + 1 = h°(X, L), and by ¥: X — PV (C) the Kodaira-Titaka embedding of X given
by L. By hypothesis, (V1) is not supported by a hyperplane of PV (C).

Step 1.— Suppose 7(G) = 1. Since Pic’(X) and Ay are dual to each other, G acts trivially
on Pic®(X) and L is G-invariant, that is g* L = L for every g € G. Thus there is a homo-
morphism 3: G — PGLy41(C) such that Uy, o g = B(g) o ¥, for every g € L. If G is not
compact, there is a sequence of elements g,, € G going to infinity in PGLy1(C): in the KAK
decomposition g, = k,ay,k,,, the diagonal part a,, goes to co. Then, any probability measure on
PN (C) which is invariant under all g,, is supported in a proper projective subspace of PV (C),
and this contradicts our preliminary remark. So, G is compact in that case.

Step 2.— Now, assume that 7(G) is infinite. Identifying Aut(Ax)° with Ax, 7(Aut(X)®) is
a complex algebraic subgroup of the torus Ax, of positive dimension since it contains 7(G). If
the kernel of 7 is finite, then Aut(X ) is compact and virtually Abelian; thus, we may assume
dim(ker(7)) > 1. In particular the fibers of a.x have positive dimension, dim(ax (X)) < 1
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and ax (X)) is a curve, which is elliptic because it is invariant under the action of 7(Aut(X)®).
Then, the universal property of the Albanese morphism implies ax(X) = Ax. In particular,
ax is a submersion, for its critical values form a proper, 7(Aut(X)°)-invariant subset of Ax.
Thus, X is a IP’l(C)-bundle over Ax because the fibers of ovx are smooth, are invariant under
the action of ker(7), and can not be elliptic since otherwise X would be a torus. From [93] Thm
3] (see also [92, [100]] for instance), there are two cases:

(1) either X = Ax x P(C), Aut(X) = Aut(Ay) x PGLy(C) and we deduce as in the
first step that GG is a compact group;
(2) or Aut(X)° is Abelian.

In both cases stiffness follows, and we are done. OJ

Remark 10.6. Pushing the analysis further, it can be shown that, under the assumptions Propo-
sition [10.5} I" is relatively compact. Indeed in the last considered case, if I' is not bounded it
can be deduced from [93, Thm 3] that there are elements with wandering dynamics: all orbits
in some Zariski open subset converge towards a section of ay. This contradicts the invariance
of u.

10.4. Invariant algebraic curves II. Let us start with an example.

Example 10.7 (See also [32]). Consider an elliptic curve £ = C/A and the Abelian surface
A = E x E. The group GLy(Z) determines a non-elementary group of automorphisms of £ x E
of the form (z,y) — (ax + by, cx + dy). The involution = — id generates a central subgroup
of GL2(Z), hence PGL2(Z) acts on the (singular) Kummer surface A/n. Each singularity gives
rise to a smooth P! (C) in the minimal resolution X of A/, the group {B € PGLy(Z) ; B =id
mod 2} preserves each of these 16 rational curves, and its action on these curves is given by the
usual linear projective action of PGLy(Z) on P'(C). In particular, it is proximal and strongly
irreducible so it admits a unique, non-invariant, stationary measure.

The next result shows that when v is symmetric, every non-invariant stationary measure is
similar to the previous example.

Proposition 10.8. Let (X, v) be a random holomorphic dynamical system, with v symmetric.
Let 1 be an ergodic v-stationary measure giving positive mass to some proper Zariski closed
subset of X. Then p is supported on a I, -invariant proper Zariski closed subset and

(a) either p is invariant;

(b) or the Zariski closure of Supp(u) is a finite, disjoint union of smooth rational curves Cj,
the stabilizer of C; in T induces a strongly irreducible and proximal subgroup of Aut(C;) ~
PGLy(C), and pi(C;) "L | ¢, is the unique stationary measure of this group of Mobius trans-
Sformations.

Moreover, if (X, v) is non-elementary, the curves C; have negative self-intersection and can be
contracted on cyclic quotient singularities.

Note that no moment assumption is assumed here. Before giving the proof, let us briefly
discuss the question of stiffness for M6bius actions on P!(C). Let v be a symmetric measure on
PGL2(C). As already said, by Furstenberg’s theory, if I, is strongly irreducible and unbounded
it admits a unique stationary measure, and this measure is not invariant. Otherwise, any v-
stationary measure is invariant because
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— either I, is relatively compact and stiffness follows from [65, Thm. 3.5];

— or I', admits an invariant set made of two points, then '}, is virtually Abelian and stiff-
ness follows from Theorem [10.1}

— or I'), is conjugate to a subgroup of the affine group Aff(C) with no fixed point.

In the latter case after conjugating I",, to a subgroup of Aff(C) we can write any g € T', as
9(z) = a(g)z + b(g). If a(g) = 1 then T',, is Abelian and we are done. Otherwise I',, is merely
solvable and we apply the following lemma which follows from a result of Bougerol and Picard
(see [20, Thm. 2.4]).

Lemma 10.9. Let v be a symmetric probability measure on Aff(C). If no point of C is fixed by
v-almost every g, then the only v-stationary probability on P*(C) is the point mass at c.

Proof. Assume by contradiction that there exists a stationary measure j such that y(C) = 1 and
u({oo}) = 0. If T, is abelian, it is made of translations because it has no fixed point in C; on the
other hand if T',, is not abelian, its derived subgroup contains a non-trivial translation. Thus, in
any case [', contains a non-trivial translation, and we infer that I',, does not preserve any finite
measure on C. In particular y is not invariant.

Let now 7, be the right random walk associated to v on Aff(C). Put v® = Y;° 27 FF1p*k,
A classical martingale convergence argument (see [19, Lem. I1.2.1]) provides a measurable set
Qo with N () = 1 such that, for all w € Qq,

— 75 (w) .« converges toward a probability measure i, and g = § o, dv™N (w);
— for v®-almost every 7, 7, (w)«Vxp converges towards the same limit yi,,.

Since 1 = { pdv™N(w), we have 1, (C) = 1 almost surely. Now, assume that for some w € ,
7y (w) does not go to o in PGL2(C). Extracting a convergent subsequence 7,,; (w) — 7, we
infer that v, = vip = (r=1)sp, for (v™ x v™)-almost-every (y,~'); hence i is T, -invariant,
a contradiction. Thus r,,(w) goes to oo in PGLy(C) for almost every w.

Suppose that (a(r,(w)), b(rn(w))) is unbounded in C? for a subset Qf, = € of positive
measure. Set

1

10 Y ) [T

and extract a subsequence n; so that 7, (w) — f(w), where £(w) is an affine endomorphism
of C. If £(w)(z) # 0 then r,,; (w)(2) — 0. Since 7y, (W)« — pt, and p,(C) = 1, we deduce
that ;(¢(w)~1{0}) = 1. This is a contradiction because y is not concentrated at a single point.
Thus, (a(r,(w)),b(r,(w))) is almost surely bounded. Since r,(w) goes to oo in PGLy(C),
a(rp(w)) goes to 0 almost surely, in contradiction with the symmetry of v. This concludes the
proof. U

Proof of Proposition[I0.8 If 1 has an atom then, by ergodicity, £ is supported on a finite orbit
and it is invariant. So we now assume that 4 is atomless. By ergodicity, u gives full mass
to a I',-invariant curve D; let C1,...,C, be its irreducible components. Let IV be the finite
index subgroup of T',, stabilizing each C; and v/ be the hitting measure induced by v on I"; it is
symmetric, p is v/-stationary, and so are its restrictions y|c;, for each C;.

If the genus of (the normalization of) C is positive, then I'|c, < Aut(Ch) is virtually
Abelian, hence p|c, is IV-invariant. Since p is ergodic, I', permutes transitively the C;, and
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arguing as in Lemma [I0.2] we see that y is v-invariant as well. Now, assume that the normal-
ization C’l is isomorphic to IPl(C). If C; is not smooth, or if it intersects another I',,-periodic
curve, then the image of I in Aut(C}) ~ PGLy(C) is not strongly irreducible, and the discus-
sion preceding this proof shows that y is I'-invariant. Again, this implies that y is ', -invariant.
The same holds if I is a bounded subgroup of Aut(C’l). The only possibility left is that C is
smooth, disjoint from the other periodic curves, and I induces a strongly irreducible subgroup
of Aut(C7). Since I'), permutes transitively the C;, conjugating the dynamics of the groups
I'|¢,, the same property holds for each C;.

If I', is non-elementary, Lemma shows that C? = —m for some m > 0, which does not
depend on i because '), permutes the C; transitively. Then, the C; being disjoint, one can con-
tract them simultaneously, each of the contractions leading to a quotient singularity (C2,0)/{(n)
with n(z,y) = (ax, ay) for some root of unity « of order m (see [6 §IIL.5]). O

10.5. Non-elementary groups: real dynamics. We now consider general non-elementary ac-
tions. As explained in the introduction, so far our results are restricted to subgroups of Aut(X)
preserving a totally real surface Y. We further assume that there exists a I', -invariant volume
form on Y'; this is automatically the case if X is an Abelian, a K3, or an Enriques surface (see
Lemma[I1.3). Note that, a posteriori, the results of §I1)and[I2]suggest that measures supported
on a totally real surface and invariant under a non-elementary subgroup of Aut(X) tend to be
absolutely continuous, unless they are supported by a curve or a finite set. We saw in Exam-
ple[I0.7]that stiffness can fail in presence of invariant rational curves along which the dynamics
is that of a proximal and strongly irreducible random product of Mobius transformations. The
next theorem shows that for actions preserving a totally real surface, this obstruction to stiffness
is the only one.

Theorem 10.10. Let (X, v) be a non-elementary random holomorphic dynamical system satisfy-
ing the moment condition (4.1). Assume thatY < X is a T, -invariant totally real 2-dimensional
smooth submanifold such that the action of I on'Y preserves a probability measure voly equiv-
alent to the Riemannian volume on Y. Then, every ergodic stationary measure |1 on'Y is:

(a) either almost surely invariant,
(b) or supported on a I',-invariant algebraic curve.

In particular if there is no T, -invariant curve then (Y,v) is stiff. Moreover, if the fiber entropy
of 1 is positive, then p is the restriction of voly to a subset of positive volume.

Recall from Lemma that I', -invariant curves can be contracted. For the induced random
dynamical system on the resulting singular surface, stiffness holds unconditionally. If further-
more v is symmetric then the result can be made more precise by applying Proposition [10.§]

Proof of Theorem We split the proof in two steps.

Step 1.— Let i be an ergodic stationary measure supported on Y. We assume that y is not
invariant, and we want to prove that it is supported on a I',-invariant curve. Since the action
is volume preserving, its Lyapunov exponents satisfy A~ + A™ = 0 (see Lemma . The in-
variance principle (Theorem [7.4)) shows that y is hyperbolic: indeed p is almost surely invariant
when A~ > 0. We can therefore apply Theorem 3.4 of [22] to obtain the following trichotomy:

(1) either p has finite support, so it is invariant;
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(2) or the distribution of Oseledets stable directions is non-random;
(3) or p is almost surely invariant and absolutely continuous with respect to voly: even
more, it is the restriction of voly to a subset of positive volume.

Since (4 is not invariant, we are in case (2). Theorem [9.1] then implies that £ is supported on
an invariant algebraic curve. This concludes the proof of the first assertions in Theorem [10.10}
including the stiffness property when I' has no periodic curve.

Step 2.— It remains to prove the last assertion. Let then 1 be an ergodic stationary measure
with b, (X, ) > 0. In the above trichotomy, (1) is now excluded. To exclude the alternative (2),
by Theorem[9.1] it suffices to show that 1 is not supported on an invariant curve. By Proposition
(i.e. the fibered Margulis-Ruelle inequality), u is hyperbolic. If p is supported on an
algebraic curve, the proof of Corollary [8.3|1eads to the following alternative: either y is atomic
or the Lyapunov exponent along that curve is negative. In the latter case u is proximal along
that curve and its stable conditionals are points. In both cases the fiber entropy would vanish, in
contradiction with our hypothesis, so p is not supported on an algebraic curve, as desired. [

We conclude this section with a variant of Theorem [T0.10] for singular volume forms; it may
be applied to Blanc’s examples (see §[3.4).

Theorem 10.11. Let (X, v) be a non-elementary random holomorphic dynamical system sat-
isfying the moment condition (@.1), and preserving a totally real 2-dimensional submanifold
Y < X. Assume that there exists a meromorphic 2-form n which is almost invariant under
every f €I’y (i.e. f*n = Jacy(f)n with |Jacy,(f)| = 1). Then every v-stationary measure sup-
ported on'Y is either supported on a I ,-invariant algebraic curve or almost surely invariant.

Proof. The proof is identical to that of Theorem[10.10} except that we use Proposition[7.8]instead
of Lemma(7.6] Indeed by ergodicity if 1 is not supported on an invariant algebraic curve it gives
zero mass to the set of zeros and poles of (2 so, by Proposition we have \T + A7 =0. O

11. SUBGROUPS WITH PARABOLIC ELEMENTS

We say that I' = Aut(X) is twisting if it contains a parabolic automorphism (this terminology
is justified below). This section investigates the dynamics of (X, ) when T',, is non-elementary
and twisting. Under this assumption invariant measures can be classified (Theorem [TT.4)): they
are either hyperbolic or carried by some proper algebraic subset (Theorem[11.7)).

Remark 11.1. In many examples for which Aut(X') contains a non-elementary group, Aut(X)
contains also a parabolic automorphism (see the examples in §§3.1H3.4)). So, if we are interested
in random dynamical systems for which I, has finite index in Aut(X), the twisting assumption
is quite natural. Also, if Aut(X) is both twisting and non-elementary, then there are thin sub-
groups I' © Aut(X') with the same property: one can take two parabolics automorphisms g and
h generating a non-elementary group, and set I' = {(g"", h™*) for large integers m and n.

11.1. Dynamics of parabolic automorphisms. Recall from that if A is a parabolic auto-
morphism of a compact Kéhler surface X, it preserves a unique genus 1 fibration, given by the
fibers of a rational map 7, : X — B. In particular there is an automorphism hp of B such that

(11.1) moh = hpgom.
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Moreover, if X is not a torus there exists an integer m > 0 such that h™ preserves every fiber of
7 and acts by translation on every smooth fiber (Proposition[2.19). As shown in Lemma([I1.2] i
behaves like a “complex Dehn twist”, acting by translations along the fibers of 7, with a shearing
property in the transversal direction. This twisting property justifies the vocabulary introduced
for “twisting groups”. When X is rational, the invariant fibration comes from a Halphen pencil
of IP% (see [29]); this is why parabolic automorphisms are also called Halphen twists.

Let h be a parabolic automorphism with hg = idp. The critical values of 7 form a finite
subset Crit(m) < B; we denote its complement by B°. Each fiber X, := 7~ }(w), w € B°, is
a smooth curve of genus 1, isomorphic to C/L(w) for some lattice L(w) = Z ® Z7(w); and
h induces a translation h,,(z) = z + t(w) of X, for some t(w) € C/L(w). The points w for
which h,, is periodic are characterized by the relation t(w) € Q ® Q7 (w). If

(11.2) t(w) — (a + br(w)) e R+ (p + q7(w))

for some (a,b) € Q2 and (p, q) € Z2, the closure of Zt(w) in C/L(w) is an Abelian Lie group
of dimension 1, isomorphic to Z/kZ x R/Z for some k > 0; then, the closure of each orbit of
h is a union of £ circles. Locally in B° this occurs along a countable union of analytic curves
(Rj). Otherwise, the orbits of h,, are dense in X,,, and the unique h,, invariant probability
measure is the Haar measure on X .

Now, assume that Y < X is a real analytic subset of X of real codimension 2, and that h
preserves Y'; for instance h may preserve a real structure on X, and Y be a connected component
of X(R). Then, 7(Y') < B is (locally) contained in the curves R;. The smooth fibers 71";,1 (w),

for w € 7(Y')\Crit(r), are unions of circles along which the orbits of h,, are either dense (for
most w € 7(Y")) or finite (for countably many w € w(Y")).

Lemma 11.2. Assume that hp is the identity. Let U < B° be a simply connected open subset.
There is a countable union of analytic curves R; — U, such that

(1) h acts by translation on each fiber X,, = n~! (w), weU;

(2) for w € U\ u; Ry, the action of h in the fiber X,, is a totally irrational translation (it is
uniquely ergodic, and its orbits are dense in X,;,);

(3) for w in some countable subset of U, the orbits of h,, are finite;

(4) if the orbits of h,, are neither dense nor finite, then w € U;R; and the closure of each orbit
of hy, is dense in a finite union of circles;

(5) there is a finite subset Flat(h) < U such that for v ¢ = (Flat(h))

lim | Dyh"| — +o0
n—+0o0

locally uniformly in x; more precisely for every v € T, X \TxXﬂ(z),

Dhl(v)| grows lin-
early while 27, (Dyh"(v)) converges to 0.

Moreover, if h preserves a 2-dimensional real analytic subset Y < X, then

(6) 7 induces on'Y a singular fibration whose generic leaves are union of (one or two) circles,
and there exists an integer m € {1,2} such that k'™ preserves these circles and is uniquely
ergodic along these circles except countably many of them.

This lemma is proven in [26, [32]]; Property(5) is the above mentioned twisting property of h.
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11.2. Classification of invariant measures. In this paragraph, we review the classification of
invariant ergodic probability measures for twisting non-elementary groups of automorphisms;
we refer to [26) 32] for details and examples. If X is a real K3 or Abelian surface and X (R) #
(J there is a unique section of the canonical bundle of X which, when restricted to X (R), in-
duces a positive area form of total area 1; we denote this area form by volx(r). The associated
probability measure is invariant under the action of Aut(XR), the subgroup of Aut(X) preserv-
ing the real structure. In fact, such a smooth invariant probability measure exists on any totally
real invariant surface (see [32} §5]):

Lemma 11.3. Let X be an Abelian surface, or a K3 surface, or an Enriques surface with
universal cover X'. LetY < X be a (real) surface of class C1. Let Aut(X;Y') be the subgroup
of Aut(X) preserving Y. If Y is totally real, Qx (resp. Qx) induces a smooth Aut(X;Y)-
invariant probability measure voly on Y.

Note that there indeed exists examples of subgroups preserving a totally real surface Y < X
which is not a real form of X (see [32, §6]). The classification of invariant measures then reads
as follows.

Theorem 11.4. Let X be a compact Kihler surface. Let I" be a twisting non-elementary sub-
group of Aut(X). Let u be a I'-invariant ergodic probablity measure on X. Then, | satisfies
one and only one of the following properties.

(a) w is the average on a finite orbit of I';

(b) w is supported by a I'-invariant curve D < X;

(c) there is a I'-invariant proper algebraic subset Z of X, and a I'-invariant, totally real, real
analytic submanifold Y of X\Z such that (1) u(Z) = 0, (2) the support of 1 is a union of
finitely many connected components of Y, (3) u is absolutely continuous with respect to the
Lebesgue measure on'Y, and (4) the density of | with respect to any real analytic area form
on'Y is real analytic;

(d) there is a T-invariant proper algebraic subset Z of X such that (1) u(Z) = 0, (2) the
support of p is equal to X, (3) u is absolutely continuous with respect to the Lebesgue
measure on X, and (4) the density of p with respect to any real analytic volume form on X
is real analytic on X\Z.

If X is not a rational surface, then in case (c) (resp. (d)) we can further conclude that the
invariant measure is locally proportional to voly (resp. equal to volx ).

The reason why we say that y is proportional to voly (and not equal to it) in the last sentence
is because p may be equal to zero on some components of Y\ Z. This theorem is a combination
of Theorem 1.1 and § 5.3 of [32]. Let us also point out the following corollary of the proof.

Corollary 11.5. Let I' < Aut(X) be as in Theorem Assume furthermore that X and I’
are defined over R and I does not preserve any proper Zariski closed subset of X. Then any
I'-invariant ergodic measure supported on X (R) is supported by a union X(R)" = U;X(R);
of connected components X (R); of X (R), and is locally given by positive real analytic 2-forms
on X(R)". If X is not rational, 1 is equal to the restriction of volxw) to X (R)', up to some
normalizing factor.
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Using this classification we can now sharpen the conclusion of Theorem[I0.10]in the presence
of parabolic automorphisms. When ¥ = X (R), the statement can also be combined with
Corollary [TT.5]to get an even more precise result.

Corollary 11.6. Let (X, v) be a random holomorphic dynamical system on a compact Kdihler
surface, satisfying and such that T, is twisting and non-elementary. Let Y < X be a
I' -invariant, smooth, totally real surface such that, on 'Y, I, preserves a probability measure
voly equivalent to the Riemannian volume.

Then up to a positive multiplicative factor, every ergodic stationary measure [ supported on
Yis:
— either the counting measure on a finite orbit;
— or supported on a U ,-invariant algebraic curve;

— orthe restriction of voly to a T',,-invariant open subset of Y whose boundary is piecewise
smooth.

In the last alternative, the boundary is obtained by intersecting an algebraic curve D < X
with Y'; it may have a finite number of singularities.

Proof. We just have to repeat the proof of Theorem [10.10] by incorporating the classification
given in Theorem [I1.4] Note that Y is automatically real analytic in this case. O

11.3. Hyperbolicity of the invariant volume. It is a fundamental (and mostly open) problem
in conservative dynamics to show the typicality of non-zero Lyapunov exponents on a set of pos-
itive Lebesgue measure. In deterministic dynamics, a recent breakthrough is the work of Berger
and Turaev [13]]. Adding some randomness makes such a hyperbolicity result easier to obtain:
see [15] for random perturbation of the standard map, and [5, 99] for random conservative dif-
feomorphisms on (closed real) surfaces. The results of Barrientos and Malicet or Obata and
Poletti [5,[99] are perturbative in nature and do not give explicit examples. Here the high rigid-
ity of complex algebraic automorphisms will be sufficient to show that twisting, non-elementary,
random dynamical systems (X, v) automatically satisfy some non-uniform hyperbolicity with
respect to the volume.

Theorem 11.7. Let X be a compact Kdihler surface, and let I be a non-elementary, twisting
subgroup of Aut(X). Let i be an ergodic I'-invariant measure giving no mass to proper Zariski
closed subsets of X (ﬂ) Then for every probability measure v on Aut(X) satisfying the moment
condition @.1) and such that T',, = T, pu is hyperbolic and the fiber entropy h, (X, v) is positive.

The same argument leads to a variant of this result when I',, contains a Kummer example.
Before stating our next result, let us recall the definition of classical Kummer examples (see
also Example and [33] §1.3] for a more general definition). Let A = C2/A be a complex
torus and let 1 be the involution given by 7(z1, 22) = (—z1, —22), which has 16 fixed points.
Then A/{n) is a surface with 16 singular points, and resolving these singularities (each of them
requires a single blow-up) yields a so-called Kummer surface X: a K3 surface with 16 dis-
joint nodal curves. Let f4 be a loxodromic automorphism of A which is induced by a linear
transformation of C? preserving A; then f4 commutes to 77 and descends to an automorphism f
of X; such automorphisms will be referred to as classical Kummer examples. Of course, they

"Hence by Theorem , w is equivalent to vol x or voly for some real analytic invariant surface with boundary.
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preserve the canonical volume volx. Notice that the Kummer surface X also supports automor-
phisms which are not coming from automorphisms of A (see [79] and [49] for instance).

Theorem 11.8. Let (X, v) be a non-elementary random dynamical system on a Kummer K3
surface satisfying @.1) and such that T, contains a classical Kummer example. Then any er-
godic I -invariant measure giving no mass to proper Zariski closed subsets of X is hyperbolic
and has positive fiber entropy.

In this statement we do not assume that I',, contains a parabolic element. In Theorem @]
below, we classify invariant probability measures which are supported on an invariant, real ana-
lytic, and totally real surface Y, when I'), contains a Kummer example.

Theorems and will be proven in §11.5]

11.4. Ledrappier’s invariance principle and invariant measures on P7'X. This paragraph
contains preliminary results for the proof of Theorems and [IT.8] Our presentation is in-
spired by the exposition of [15]. It is similar in spirit to that of [99], which relies on the “pinching
and twisting” formalism of Avila and Viana (see [110] for an introductiorﬁ). Most of this dis-
cussion is valid for a random holomorphic dynamical system on an arbitrary complex surface
(not necessarily compact), satisfying (@.1)).

Let i be an ergodic v-stationary measure. We introduce the projectivized tangent bundles
PTXx, = Q xPI'X and PTX = ¥ x PT'X. The tangent bundles 7'X and P7T'X admit mea-
surable trivializations over a set of full measure. Consider any probability measure i on PT'X
that is stationary under the random dynamical system induced by (X, v) on PT'X and whose
projection on X coincides with p, i.e. m.fi = p where m: PI'X — X is the natural projection.
Such measures always exist. Indeed the set of probability measures on PT° X projecting to p is
compact and convex, and it is non-empty since it contains the measures Sé[v(z)]du(:p) for any
measurable section = — [v(x)] of PTX; thus, the operator { P(D f) dv(f) has a fixed point in
that set. The stationarity of /i is equivalent to the invariance of N x /i under the transformation
F.: QxPTX — Q x PTX defined by

(11.3) Fi(w,z,[v]) = (0(w), f1(2), P(DLf1)[v])

for any non-zero tangent vector v € T, X. We denote by [i, the family of probability measures
— on the fibers PT, X of m — given by the disintegration of fi with respect to 7; the conditional
measures of v x fi with respect to the projection PT'X — X are given by ji,, » = N X fig.

Remark 11.9. Even when p is I' -invariant, this construction only provides a stationary measure
on PTX. This is exactly what happens for twisting non-elementary subgroups: indeed we will
show in §11.5|that projectively invariant measures do not exist in this case.

The tangent action of our random dynamical system gives rise to a stationary product of
matrices in GL(2, C). To see this, fix a measurable trivialization P: TX — X x C2, given by
linear isomorphisms P, : T, X — C?2, which conjugates the action of DF, to that of a linear
cocycle A : X x C? — X, xC? over (X, Fy,vN x ). In this context, Ledrappier establishes
in [86]] the following “invariance principle”.

8Beware that the word “twisting” has a different meaning there.
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Theorem 11.10. If A\~ (u) = A1 (), then for any stationary measure [i on PT X projecting to
, we have P(D,. f)yfip = fif(z) for p-almost every x and v-almost every f.

From this point the second main ingredient of the proof is a classification of such projectively
invariant measures; this is where we follow [15]. To explain this result a bit of notation is required.
Let V and W be hermitian vector spaces of dimension 2. Endow the projective lines P(V') and
P(W) with their respective Fubini-Study metrics. If g: V' — W is a linear isomorphism, set

(11.4) [9] = IP(g)] e

where P(g): P(V)) — P(W) is the projective linear map induced by g and |- | -1 is the maximum
of the norms of D.P(g): T.P(V) — Ty \P(W) with respect to the Fubini-Study metrics. Let
us fix two isometric isomorphisms ¢ : V' — C? and uy: W — C? to the standard hermitian
space C2. If we denote by tyy 0 g o L;-l = kjaky the KAK decomposition of ¢y o g o L;l in

PSL(2,C), we get [g] = |a]* = |ew o go ot ||2where || is the matrix norm in PSL2(C) =
SL(C)/{# id) associated to the Hermitian norm in C?. In particular:

(a) [g] = 1if and only if P(g) is an isometry from P(V') to P(W);
(b) for a sequence (gy,) of linear maps V- — W, [g,] tends to +o0 as n goes to +oo if and
only if P(tyy o g o ¢3,) tends to o0 in PSLy(C).

We are now ready to state the classification of projectively invariant measures.

Theorem 11.11. Ler (X, v) be a random dynamical system on a complex surface and let | be
an ergodic stationary measure. Let [i be a stationary measure on PT X such that m.ji =
and (PDy f)«fie = fif(y) for p-almost every x and v-almost every f. Then, exactly one of the
following two properties is satisfied:

(1) For (vN x p)-almost every x = (w, ), the sequence [ D, f"] is unbounded and then:
(1.a) either there exists a measurable ' ,-invariant family of lines E(x) < T, X such that
fiz = O[p(x)) Jor p-almost every x;
(1.b) or there exists a measurable T, -invariant family of pairs of lines E1(x), Ea(x) < T, X
and positive numbers A1, Ay with A1 + Ay = 1 such that i, = MO[g, (z)] + A20[E,(2)]
for p-almost every x;
(2) The projectivized tangent action of I, is reducible to a compact group, that is there exists a
measurable trivialization of the tangent bundle (P, : T, X — C?),cx, such that for every
f el andevery x, P (Pf(x) oD,fo Pl?l) belongs to the unitary group PU2(C).

In assertion (1.b), the pair is not naturally ordered, i.e. there is no natural distinction of F;
and E», the random dynamical system may a priori permute these lines. The proof is obtained
by adapting the arguments of [5] to the complex case. Details are given in Appendix

11.5. Proofs of Theorems and

11.5.1. Proof of Theorem By Theorem w is either equivalent to the Lebesgue mea-
sure on X, or to the 2-dimensional Lebesgue measure on some components of an invariant
totally real surface Y < X. Let us assume, by contradiction, that x4 is not hyperbolic. Hence its
Lyapunov exponents vanish, and by Theorem and Theorem there is a measurable
set X’ X with u(X’) = 1 such that one of the following properties is satisfied along X":

(a) there is a measurable I',-invariant line field F(z);
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(b) there exists a measurable I',-invariant splitting E(z) @ E’(xz) = T, X of the tangent
bundle; here, the invariance should be taken in the following weak sense: an element f
of ', maps F(z) to E(f(x)) or E'(f(x));

(c) there exists a measurable trivialization P,: T, X — C? such that in the corresponding
coordinates the projectivized differential P(D f,), f € T',, takes its values in PU2(C).

Fix a small ¢ > 0. By Lusin’s theorem, there is a compact set K. with u(K.) > 1 — € such
that the data x — E(x), resp. « — (E(z), E'(z)) or x — P, in the respective cases (a,b,c)
are continuous on K. In particular, in case (c), the norms of P, and P, 1 are bounded by some
uniform constant C'(¢) on K,; hence, if g € '), and = and g(z) belong to K, [Dg,] is bounded
by C(e)2.

Fix a pair of Halphen twists g and h € I',, with distinct invariant fibrations 7,: X — B, and
7 X — By, respectively (see Lemma[2.20)). In a first stage assume that X is not a torus: then
by Proposition[2.19|we may assume that g and h preserve every fiber of their respective invariant
fibrations (see Section|11.1]).

First assume that p is absolutely continuous with respect to the Lebesgue measure on X,
with a positive real analytic density on the complement of some invariant, proper, Zariski closed
subset. Since the invariant fibration is holomorphic, the disintegration p, of p is absolutely
continuous on almost every fiber 7; *(b). Thus, there exists a fiber 7, ' (b) such that (1) the
Haar measure of K. n ;' (b) is positive, (2) b ¢ Flat(h)) and (3) the dynamics of  in 7, * (b)
is uniquely ergodic (see Lemma . Then we can pick € m, !(b) such that (h*(z))k=0
visits K infinitely many times. The fifth assertion of Lemma [T1.2] rules out case (c) because
the twisting property implies that the projectivized derivative [DhZ] tends to infinity, while it
should be bounded along the sequence of times n for which h"(z) € K.. Case (b) is also
excluded: under the action of A™, tangent vectors projectively converge to the tangent space of
the fibers, so the only possible invariant subspace is ker(Dy). Thus we are in case (a) and
moreover F(x) = ker D, 7y, for u-almost every x. But then, using g instead of h and the fact
that 4 does not charge the algebraic curve along which the fibrations 7, and 7, are tangent, we
get a contradiction. This shows that alternative (a) does not hold either, and this contradiction
proves that y is hyperbolic.

If p is supported by a 2-dimensional real analytic subset Y < X, the same proof applies,
except that we disintegrate ;. along the singular foliation of Y by circles induced by 7, and use
the fact that a generic leaf is a circle along which A is uniquely ergodic (see Lemma[I1.2}(6)).

If X is a torus, then its tangent bundle is trivial and the differential of an automorphism is
constant. In an appropriate basis, the differential of a Halphen twist A is of the form

1 « .
(11.5) (0 1> with a # 0.

Thus we are in case (a) with F(z) = ker D, for u-almost every x. Using another twist g
transverse to A we get a contradiction as before.

Since y is invariant then the invariant measure m on X is equal to v% x p. In both cases y «
volx and p « voly. The absolute continuity of the foliation by local Pesin unstable manifolds
implies that the unstable conditionals of m cannot be atomic (see the classical argument showing
that an absolutely continuous invariant measure has the SRB property, as in [87]]). Thus positivity
of the entropy follows from Corollary and the proof of Theorem [I1.7]is complete. O
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11.5.2. Proof of Theorem[I1.8] The proof is similar to that of Theorem so we only sketch
it. Assume by contradiction that p is not hyperbolic; since X is a K3 surface, Corollary
shows that the sum of the Lyapunov exponents of y vanishes; thus, each of them is equal to 0,
and one of the alternatives of Theorem [IT.T1] holds, referred to as (a), (b), (c) on page [85] By
assumption, I',, contains a map f which is uniformly hyperbolic in some Zariski open set U,
which is thus of full u-measure. We denote by « — E(z) @ E}(x) the associated splitting of

TX|y. Since f is uniformly expanding/contracting on E}L/ *, alternative (c) is not possible.

If alternative (a) holds, then E(x) being f-invariant on a set of full measure, it must coincide
with E}L or EJi, say with E}‘ By continuity any g € ', preserves E}L pointwise. On the
other hand, E}‘ is everywhere tangent to an f-invariant (singular) holomorphic foliation F*,
induced by a linear foliation on the torus A given by the Kummer structure. Every leaf of that
foliation, except for a finite number of them, is biholomorphically equivalent to C, and the
Ahlfors-Nevanlinna currents of these entire curves are all equal to the unique closed positive
current Tf that satisfies M(T]T) = 1 and f’“TJZ|r = )\(f)TJ?L with A\(f) > 1. Now, pick any
element g of I',.. Since g preserves the line field £, g preserves 7 as well, hence also the ray
R, [TJﬁr ], contradicting the non-elementary assumption.

Finally, if alternative (b) holds, any g € T',, preserves { E}(z), E'}()} on a set of full measure
so by the continuity of the hyperbolic splitting it must either preserve or swap these directions.
Passing to an index 2 subgroup both directions are preserved, and we are back to case (a). [

12. MEASURE RIGIDITY

In view of the results of Sections [I0] and [T1] it is natural to wonder whether a classification
of invariant measures is possible without assuming the existence of parabolic elements in I'.
The results in this section belong to a thread of measure rigidity results starting with Rudolph’s
theorem [106] on Furstenberg’s x2 x 3 conjecture. If y is a probability measure on X, we
denote by Aut, (X) the group of automorphisms of X preserving .

Theorem 12.1. Let f be an automorphism of a compact Kdahler surface X, preserving a totally
real and real analytic surface Y < X. Let i be an ergodic f-invariant measure on'Y with
positive entropy. Then

(a) either i is absolutely continuous with respect to the Lebesgue measure on'Y ;
(b) or Aut, (X)) is virtually cyclic.

If in addition the Lyapunov exponents of f with respect to p satisfy N°(f, ) + \*(f, ) # 0,
then case (a) does not occur, so Aut,,(X) is virtually cyclic.

This result, and its proof, may be viewed as a counterpart, in our setting, to Theorems 5.1
and 5.3 of [22]; again the possibility of invariant line fields is ruled out by using the complex
structure. As before the typical case to keep in mind is when X is a projective surface defined
over Rand Y = X (R). Observe that by ergodicity, if f preserves a smooth volume voly, then
in case (a) u will be the restriction of voly to an Autu(X )-invariant Borel set of positive volume.

Proof of Theorem|[I2.1] Since it admits a measure of positive entropy, f is a loxodromic trans-
formation. By the Ruelle-Margulis inequality g is hyperbolic with respect to f and it does not
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charge any point, nor any piecewise smooth curve: indeed, the entropy of a homeomorphism of
the circle or the interval is equal to zero.

We first assume that X is projective; non-projective surfaces will be studied at the end of
the proof. For p-almost every x € X, the stable manifold W*(f, z) is an entire curve in X
which is either transcendental or contained in a periodic rational curve (see [28, Thm. 6.2]).
Since f has only finitely many invariant algebraic curves (see [28, Prop. 4.1]) and p gives no
mass to curves, W¥(f, x) is u-almost surely transcendental; then, the only Ahlfors-Nevanlinna
current associated to W*(f, x) is T]ﬁr ; similarly, the Ahlfors-Nevanlinna currents of the unstable

manifolds give T]? . (This is the analogue in deterministic dynamics of Theorem ) Fix
g € Aut,(X) and set I' := (f, g). Our first goal is to prove the following:

Alternative: either I'* is virtually cyclic and preserves {P[ij], P[T} ]} < dHx; or pu is abso-
lutely continuous with respect to the Lebesgue measure on'Y .

Let Y’ < Y be the union of the connected components of Y of positive y-measure. The mea-
sure 1 does not charge any analytic subset of Y of dimension < 1; thus, by analytic continuation,
any h € T preserves Y’. So, without loss of generality we can replace Y by Y.

We divide the argument into several cases according to the existence or non-existence of
certain I'-invariant line fields. In the first two cases we will conclude that I" is elementary. In
the third case, ;1 will be absolutely continuous with respect to the Lebesgue measure on Y'; then
by the Pesin formula its Lyapunov exponents satisfy \*(f, n) = —A*(f, 1) = hu(f) so when
A(f, ) + A5(f, ) # 0, Case 3 is actually impossible.

Case 1.— There exists a I'-invariant measurable line field. Specifically, we mean a measurable
field of complex lines z — E(x) € P(T,X), defined on a set of full y-measure, such that
D,h(E(z)) = E(h(z)) for every h € I' and almost every = € X since u is supported on
the totally real surface Y, the field of real lines E(z) n T,Y < T,Y is also invariant, and
determines F(x). Now, u being ergodic and hyperbolic for f, the Oseledets theorem shows that
either E(z) = Ef(z) p-almost everywhere or E(z) = E}(z) pi-almost everywhere. Changing
f into f~1 if necessary, we may assume that E(z) = Ej(z).

Consider the automorphism h = g~!fg € Aut,(X). Since h is conjugate to f, p is also
ergodic and hyperbolic for h. Thus, either Ej(z) = E}(x) for u-almost every x or Ej(x) =
E7(z) for pi-almost every z.

Lemma 12.2. [f there is a measurable set A of positive measure along which Ej(x) = E}(z)
(resp. Ej(x) = E}(x)), then W?*(f,x) = W*(h,x) for almost every x in A (resp. W*(h, x) =
W2 (f,2))-

Let us postpone the proof of this lemma and conclude the argument. Suppose first that
Ej(z) = Ej(z) on a subset A with 1(A) > 0. Then TJ;" = T," because for y-almost every
x, the unique Ahlfors-Nevanlinna current associated to the (complex) stable manifold W*( f, x)
(resp. W#(h,x)) is T]T (resp. T}j). Since T} = M(g*T]ﬁr)_lg*T;r, we see that g, and there-
fore I itself, preserve the line R[T]ﬂ c HY(X). Since [T]ﬁr 1? = 0, T fixes a point IP[T;F]
of the boundary dH x, so it is elementary. Since in addition I" contains a loxodromic element,
Theorem 3.2 of [28] shows that I'* is virtually cyclic.
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Now, suppose that Ej)(z) = E}(x) on A. Then, T)" = T]T and the group generated by f
and h is elementary. Since it contains a loxodromic element [28, Thm 3.2] says that {f*, h*)
is virtually cyclic and fixes also IP’[Tf_ | € dHx. This implies that g, hence I', preserves the
pair of boundary points {IP’[TJT], P[T} ]} = dHx. Thus, in both cases I'* is virtually cyclic and
preserves {}P’[ij], P[T} ]} < oHx.

Proof of Lemma([I2.2] The argument is similar to that of Theorem [0.1] in a simplified setting,
so we only sketch it. For p-almost every xz, W*(f, x) and W*(h, z) are tangent at . Assume
by contradiction that there exists a measurable subset A’ of A of positive measure such that
Wse(f,x) # W?(h,z) for every x € A’. Then for small ¢ > 0 there exists two positive
constants = r(¢) and ¢ = ¢(¢), an integer k¥ > 2, and a measurable subset G. = A’ such that
1(Ge) > 0 and

- W .(f,x) and W _(h, x) are well defined and of size r for every = € G,
- W .(f,x) and W _(h,x) depend continuously on z on G. < X,
inter, (We (f, z), W.(f,x)) = k for every x € G.,

- and osc(y, 5 ) (W (f, ), W (h,x)) = c for every x € G..

Indeed, to get the first and second properties, one intersects A’ with a large Pesin set R.. On
A" "R, the multiplicity of intersection z — inter, (W} (f, z), Wt (f,x)) is semi-continuous,
so we can find k£ > 2 and a subset R, < (A’ n R.) of positive measure such that

(12.1) interﬁﬂ(VVlS(’)c(fvx)?Wlﬁc(f?‘r)) =k

for every 2 € RL. Thus, the k-th osculation number is well defined, and the last property holds
on a subset G. < R. of positive measure if ¢ is small.

Let n° be a Pesin partition subordinate to the local stable manifolds of f. Since h,(f) >
0 the conditional measures ((-|n°) are non-atomic. Thus there exists z € G. such that z is
an accumulation point of Supp (u(-[n*(2))|g. ~ns(x))- Fix a neighborhood N of z such that
W2 (f,z) n Wi(h,x) n N = {z}, and then pick a sequence (x;) of points in G. N n*(z) N N
converging to . The local stable manifolds W (h, z;) form a sequence of disks of size  at x;,
each of them tangent to W (f, x) (at z;), and all of them disjoint from W} (h,x) (because x;
does not belong to W (h, x)). This contradicts Corollary and the proof is complete. O

Case 2.— There is a pair of distinct measurable line fields { E1(x), E2(x)} invariant under T
Again by the Oseledets theorem applied to f, necessarily {E1(z), E2(2)} = {E}(2), £} ()}
For p-almost every z, g({E}(z), E}(2)}) = {E7(g9(z)), E}(g9(x))}. As before, consider h =
g ' fge Aut, (X). Since h is conjugate to f, it is hyperbolic and ergodic with respect to 1, and
{E}(x), E¥(z)} = {E}(2), B} (2)} for almost every z. Replacing h by h~! if necessary, there
exists a set A of positive measure for which Ej (z) = E}(x), and we conclude as in Case 1.

Case 3.— There is no U-invariant line field or pair of line fields. In other words, Cases 1 or 2
are now excluded. This part of the argument is identical to the proof of [22, Thm 5.1.a].

First, we claim that there exists g1,go € I' and a subset A of positive measure such that

Dyg1(Ej(z)) ¢ {E}(91(2)), Ef(g1(x))} and Daga(E} (x)) ¢ {E7(g2(x)), E¢(g2(x)} for ev-
ery x in A. Indeed since we are not in Case 2 (possibly switching E}‘ and E;’;) there exists g; € T’
and a set A of positive measure such that for z € A, Dyg1(E3(z)) ¢ E}(g1(z)) v E¥(g1(2)).
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Since we are not in Case 1, there exists g € I" and a set B of positive measure such that for
v € B, Dog(Ej(@) # Bjg(e). If Dag(F}(x)) € (E}(g(x)), Bf(g(x))} on a subset B'
of B of positive measure, then choose & > 0 and ¢ > 0 such that u(f*(A) n B’) > 0 and
w(fF(g(fE(A))) n A) > 0 and define go = g1 f*gf*; otherwise, set g = gf* with £ such that
u(fé(A) A B) > 0. Then change A into A = A n f~Y(B’) (resp. A n f~*(B)).

Denote by A the simplex {(a, bye,d)e RE) s a+b+c+d= 1}. For o = (a,b,c,d)
in A, let v, be the probability measure v, = ady + bds—1 + cdy + db,—1. Then p is v,-
stationary and since p is f-ergodic and v, ({f}) > 0, itis also ergodic as a v/, -stationary measure
(see [12] §2.1.3]). Since we are not in Cases 1 or 2 and y is hyperbolic for f, Theorems
and [IT.TT]imply that the Lyapunov exponents of y, viewed as a v,-stationary measure, satisfy
Ao (1) < AL (W)

Lemma 12.3. There exists a choice of o € A such that . is a hyperbolic v, -stationary measure,
Le. A (n) <0< A (p)

Proof. This is automatic when f and g are volume preserving because A, (1) = —\} (1) in that
case. For completeness, let us copy the proof given in [22, §13.2.4]. The assumptions of Case 3
and the strict inequality A~ (u) < A" (u) imply that

(12.2) ae A (AL (1), A\l () e R?

is continuous (see [22, Prop. 13.7] or [110, Chap. 9]). Since A, (1) < A (p) for every o € A,
one of A\, and A is non zero. Furthermore, x being invariant, the involution (a,b,c,d) —
(b, a, d, c) interchanges the Lyapunov exponents. It follows that P = {o« € A;\} > 0} and N =
{ae A, )\, < 0} are non-empty open subsets of A such that P U N = A. The connectedness
of A implies P n N # (f, as was to be shown. O

Fix o € A such that p is hyperbolic as a v,-stationary measure. The assumptions of Case 3
imply that the stable directions depend on the itinerary so the main result of [22] shows that
is fiberwise SRB (on the surface Y), that is, the unstable conditionals of the measures i, (here
Wy = p) are given by the Lebesgue measure (in some natural affine parametrizations of the
unstable manifolds by the real line R). Since y is invariant, we can revert the stable and unstable
directions by applying the argument to F'~!, and we conclude that the stable conditionals are
given by the Lebesgue measure as well. The absolute continuity property of the stable and
unstable laminations then implies that p is absolutely continuous with respect to the Lebesgue
measure on Y.

Conclusion.— Let us assume that p is not absolutely continuous with respect to the Lebesgue
measure on Y. The above alternative holds for all subgroups I' = {f, g), with g € Aut,(X)
arbitrary. Therefore, if X is projective, we deduce that Aut, (X )* preserves {IP[T’ Jj' LPIT ]} =
OHx, which implies that Aut,, (X)* is virtually cyclic. By Lemma [3.20] Aut,,(X)* is also vir-
tually cyclic when X is not projective. So the only remaining issue is to prove that Aut, (X)
itself is virtually cyclic. If this is not the case, then Aut(X)® is infinite, X must be a torus
C?/A (see Proposition , and Aut, (X) n Aut(X)° is a normal subgroup of Aut,,(X') con-
taining infinitely many translations. This group is a closed subgroup of the compact Lie group
Aut(X)° = C?/A; thus, the connected component of the identity of Aut,(X) n Aut(X)° is
a (real) torus H = C2/A of positive dimension. This torus is invariant under the action of f
by conjugacy. Since X = C?/A, f is a complex linear Anosov diffeomorphism of X, and it
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follows that dimg (H) > 2. Being H-invariant, y is then absolutely continuous with respect to
the Lebesgue measure of Y'; this contradiction completes the proof. O

Remark 12.4. Theorem can be extended to the case of singular analytic subsets Y, after
minor adjustments of the proof, because i cannot charge its singular locus.

It is natural to expect that the positive entropy assumption in Theorem [12.1|could be replaced
by a much weaker assumption, namely, “u gives no mass to proper Zariski closed subsets”. In
full generality this seems to exceed the scope of techniques of this paper, however we are able
to deal with a special case.

Theorem 12.5. Let f be a Kummer example on a compact Kdhler surface X. Let 1 be an
atomless, f-invariant, and ergodic probability measure that is supported on a totally real, real
analytic surface Y < X. If g € Aut(X) preserves p, then:

(a) either p is absolutely continuous with respect to voly;
(b) or {f, gy is virtually isomorphic to Z.

Thus, as in the case of subgroups containing parabolic transformations, the stiffness Theorem
10.10|takes a particularly strong form when Supp(v) contains a Kummer example.

Proof. Let us start with a preliminary remark. Assume that ;(C') > 0 for some irreducible curve
C < X; since p does not charge any point the support of /i is Zariski dense in C, and C' is an
f-periodic curve. But f being a Kummer example, such a curve is a rational curve C' ~ P!(C)
(obtained by blowing-up a periodic point of a linear Anosov map on a torus), on which f has a
north-south dynamics; thus, all f-invariant probability measures on C' are atomic, and we get a
contradiction. This means that the assumption “u has no atom” is equivalent to the assumption
“u gives no mass to proper Zariski closed subsets of X”.

Now, we follow step by step the proof of Theorem[I2.1] only insisting on the points requiring
modification. Since p does not charge any curve, we can contract all f-periodic curves, and lift
(f, ) to ( f,[), where f is a linear Anosov diffeomorphism of some compact torus C2 /A and
[i is an f-invariant probability measure (see [37] for details on Kummer examples). We deduce
that [ is hyperbolic for f and then, coming back to X, that x4 is hyperbolic for f. Case 3 of the
proof of Theorem [12.1] only requires hyperbolicity of p so it carries over in this case without
modification. In Cases 1 and 2 we have to show that if I' = (f, g) preserves a measurable
line field or a pair of measurable line fields then I'* is elementary. In either case we consider
h = gfg~" and up to possibly replacing E}L by E]Sc and h by h~!, we have that E]Sc (x) = Ej(x)
on a set of positive measure. But now f and h are Kummer examples so their respective stable
foliations F ]‘3 and F; are (singular) holomorphic foliations. From the previous reasoning ]ﬁ and
J, are tangent on a set of positive y-measure, so, since /4 gives no mass to subvarieties we infer
that 77 = F; and we conclude exactly as in Theorem O

Unlike most results in this paper, Theorem [I2.1] can be extended to a rigidity theorem for
polynomial automorphisms of R? with essentially the same proof.

Theorem 12.6. Let f be a polynomial automorphism of R2. Let 11 be an ergodic f-invariant
measure with positive entropy supported on R2. If g € Aut(R?) satisfies guji = p, then:

a) either f and g are conservative and 1 is the restriction of Lebgr2 to a Borel set of positive
g Y R p
measure invariant under [ and g;
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(b) or the group generated by f and g is solvable and virtually cyclic; in particular, there exists
(n,m) € Z2\{(0,0)} such that " = g™

Proof. We briefly explain the modifications required to adapt the proof of Theorem [I2.1] and
leave the details to the reader. We freely use standard facts from the dynamics of automorphisms
of C2. Let f and g be as in the statement of the theorem, and set I' = (£, g).

Since its entropy is positive, f is of Hénon type in the sense of [82]: this means that f is
conjugate to a composition of generalized Hénon maps, as in [62], Theorem 2.6. Thus, the
support of ;i is a compact subset of C?, because the basins of attraction of the line at infinity
for f and f~! cover the complement of a compact set; moreover, as in Theorem 4 cannot
charge any proper Zariski closed subset.

Let v be an arbitrary element of I'; then h := ! f~ is also of Hénon type. We run through
Cases 1, 2 and 3 as in the proof of Theorem [I2.1] Case 3 is treated exactly in the same way as
above and implies that y is absolutely continuous. This in turn implies that the Jacobian of f, a
constant Jac(f) € C* since f € Aut(C?), is equal to +1; and since y is ergodic for f, it must
be the restriction of Lebg2 to some I'-invariant subset. In Cases 1 and 2, arguing as before and
keeping the same notation, we arrive at W*(h,x) = W*(f, z) or W*(f,x) on a set of positive
measure. For a Hénon type automorphism of C2, the closure of any stable manifold is equal to
the forward Julia set J*, and J* carries a unique positive closed current 7" of mass 1 relative

to the Fubini Study form in P?(C) (see [109]). So we infer that T,j' = T;r or T,j =T;:asa

consequence, the Green functions of f and h satisfy G, = G or G; = G/, respectively.

Automorphisms of C2 act on the Bass-Serre tree of Aut(C?), each automorphism v € Aut(C?)
giving rise to an isometry u, of the tree. Hénon type automorphisms act as loxodromic isome-
tries; the axis of such an isometry u, will be denoted Geo(us): it is the unique w,-invariant
geodesic, and u. acts as a translation along its axis. Theorem 5.4 of [82] shows that G;{ = G;{
implies Geo(h,) = Geo(f); changing f into f~!, G} = G gives Geo(hy) = Geo(f; 1) =
Geo(f+) because the axis of f, and f; ! coincide. Since 7y, maps Geo(fy) onto Geo(hs), we
deduce that I" preserves the axis of f; so, all elements « of I of Hénon type satisfy Geo(u,) =
Geo( f). From [82, Prop. 4.10], we conclude that T" is solvable and virtually cyclic. U

Remark 12.7. With the techniques developed in [27]], the same result applies to the dynamics
of Out(Fy) acting on the real part of the character surfaces of the once punctured torus.
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APPENDIX A. GENERAL COMPACT COMPLEX SURFACES

Here, we study the concept of non-elementary groups of automorphisms on (non Kihler)
compact complex surfaces. We show that the two possible definitions of non-elementary group
are equivalent and force the surface to be Kéhler.

Let M be a compact manifold. We say that a group I' of homeomorphisms of M is coho-
mologically non-elementary if its image I'* in GL(H*(M;Z)) contains a non-Abelian free
subgroup, and that I" is dynamically non-elementary if it contains a non-Abelian free group I'
such that the topological entropy of every f € T'g\{id} is positive. When M is a compact Kihler
surface and I' = Aut(M ), Theorem 3.2 of [28] and the fact that parabolic automorphisms have
zero entropy imply that I' is non-elementary (in the sense of Section [2.3.3)) if and only if it is
cohomologically non-elementary, if and only if it is dynamically non-elementary.

Lemma A.1. Let M be a compact manifold, and T be a subgroup of Diff*(M). If T is coho-
mologically non-elementary, then U is dynamically non-elementary.

Proof. We split the proof in two steps, the first one concerning groups of matrices, and the
second one concerning topological entropy.

Step 1.- T'* contains a free subgroup T'}, all of whose non-trivial elements have spectral
radius larger than 1.

The proof uses basic ideas involved in Tits’s alternative, here in the simple case of subgroups
of GL,(Z). Let N be the rank of H}; (M Z), where ¢.f. stands for “torsion free”. Fix a basis of
this free Z-module. Then I'* determines a subgroup of GLy(Z). Our assumption implies that
the derived subgroup of I'* contains a non-Abelian free group I'j; of rank 2.

If all (complex) eigenvalues of all elements of I'; have modulus < 1, then by Kronecker’s
lemma all of them are roots of unity. This implies that I'ij; contains a finite index nilpotent
subgroup (see Proposition 2.2 and Corollary 2.4 of [8]]), contradicting the existence of a non-
Abelian free subgroup. Thus, there is an element f* in I'§; with a complex eigenvalue of modulus
a > 1. Let m be the number of eigenvalues of f* of modulus o, counted with multiplicities.
Consider the linear representation of I'j; on A" H*(M;C); the action of f* on this space
has a unique dominant eigenvalue, of modulus a'; the corresponding eigenline determines an
attracting fixed point for f* in the projective space P(A\™ H*(M; C)); the action of f* on this
topological space is proximal.

Let

(A.1) {0} =Wy Wi <o Wi © Wiy = \ H*(M; C)

be a Jordan-Holder sequence for the representation of I'*: the subspaces W; are invariant, and the
induced representation of I'* on W; 1 /Wi is irreducible for all 0 < ¢ < k. Let V' be the quotient
space W1/W; in which the eigenvalue of f* of modulus o' appears. Since I'j is contained
in the derived subgroup of I', the linear transformation of V" induced by f* has determinant 1;
thus, dim(V') > 2. Now, we can apply Lemma 3.9 of [8] to (a finite index, Zariski connected
subgroup of) T'§|y: changing f is necessary, both f*|y, and (f~1)*|y are proximal, and there
is an element g* in I'* that maps the attracting fixed points a;{ and a, € P(V) of f*[y and

(f*]v)~" to two distinct points (i.e. {a;,a;} N {g(a}),g(a;)} = &) ; then, by the ping-pong
lemma, large powers of f* and g* o f* o (g*)~! generate a non-Abelian free group I'f = T'*



94 SERGE CANTAT AND ROMAIN DUJARDIN

such that each element h* € I'7\{id} has an attracting fixed point in P(V"). This implies that
every element of I'7\{id} has an eigenvalue of modulus > 1 in H*(M; C).

Step 2.- Since I'] is free, there is a free subgroup I'y < I' such that the homomorphism
I'y — I'] is an isomorphism. By Yomdin’s theorem [115]], all elements of I';\{id} have positive
entropy, and we are done. U

Theorem A.2. Let M be a compact complex surface, and T be a subgroup of Aut(M). Then,
I" is cohomologically non-elementary if and only if it is dynamically non-elementary. If such a
subgroup exists, then M is a projective surface.

Proof. Indeed it was shown in [24] that every compact complex surface possessing an auto-
morphism of positive entropy is Kihler. Thus, the first assertion follows from Lemma [A.T| and
Theorem 3.2 of [28], and the second one follows from Theorem [El O

APPENDIX B. STRONG LAMINARITY OF AHLFORS CURRENTS

In this appendix, we sketch the proof of Lemma [8.8] explaining how to adapt arguments of
7,52, 53], written for X = P?(C), to our context.

Proof of Lemma Let (A,) be a sequence of unions of disks, as in the definition of injective
Ahlfors currents, such that m {A,} converges to T'. Since X is projective we can choose a

finite family of meromorphic fibrations w; : X --» P! such that

— the general fibers of w; are smooth curves of genus > 2;

— for every x € X, there are at least two of the fibrations w;, denoted for simplicity by wo;
and w9, which are well defined in some neighborhood U, of = (z is not a base point of
the corresponding pencils), satisfy (dwi A dws)(z) # 0 (the fibrations are transverse),
and for which the fibers o} ' (o), (2)) containing z are smooth.

If we blow-up the base points of @y, k = 1,2, we obtain a new surface X’ — X on which each
wy, lifts to a regular fibration =} ; the open neighborhood U, is isomorphic to its preimage in
X' so, when working on U, we can do as if the two fibrations o}, were local submersions with
smooth fibers of genus > 2.

To construct 7T}, we follow the proof of [53) Proposition 4.4] (see also [52, Proposition 3.4]).
The construction will work as follows: we fix a sequence (r;) converging to zero, and for every
J we extract from m {A,} a current T, r; made of disks of size ~ r; which are obtained
from A,, by only keeping graphs of size r; over one of the projections w;.

By a covering argument, it is enough to work locally near a point x, with two projections
and s as above. Let S = C be the unit square {x +iy; 0 <z <1, 0 <y <1} ~[0,1]% To
simplify the exposition, we may assume that

(B.1) wi(Uy) = S < CcPYC) (for k=1,2).

Set 7; = 277 and consider the subdivision Q; of S ~ [0,1]? into 4/ squares Q of size ;.
A connected component of A, N wk_l(Q), for such a small square (), is called a graph (with
respect to ) if it lifts to a local section of the fibration @) : X’ — P!(C) above Q. Then,
we fix j, intersect A, with ' (Q), and keep only the components of wgl(Q NA), Qe Q;
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which are graphs with respect to wy,. Such a family of graphs is normal because the fibers of w;,
have genus > 2 (compare to Lemma 3.5 of [52]).

This being done, we can copy the proof of [53, Proposition 4.4]. Letting n go to +0c0 and
extracting a converging subsequence, we obtain a uniformly laminar current Tg, , < T'. Away
from the base points of @y, Tg; i is made of disks of size = r; which are limits of disks
contained in the A,. Combining the two currents To, k, we geta current T,,, < T' which is
uniformly laminar in every cube @, ' (Q) N @, H(Q'), Q, Q" € Q;, and such that

(B.2) (T =Ty, @wikpr + @ihp) < (T —Tg; 1,1 kpr) + (T —Tg; 2, @3 kip1),

where kp1 is the Fubini-Study form. By definition, T will be strongly approximable if locally
M(T - T,,) < O(rjz-). Using the fact that w} kp:1 + wikpr = Cko and the Inequality (B.2),
it will be enough to show that (T' — Tg, i, wjkp1) = O(r?) for k = 1,2. This itself reduces
to counting (with multiplicity) the number of “good components” of A,, for the projections
wy : A, — Q; that is, the components above the squares () of (; that are kept in the above
contruction of TQj7 % (the graphs relative to wy,).

The counting argument is identical to [7, §7], except that we apply the Ahlfors theory of
covering surfaces to a union of disks, not just one. For notational ease, set @w = wy, r = r;
and Q = Q;; Q is a subdivision of S ~ [0, 1]2 by squares of size 277, We decompose Q as a
union of four non-overlapping subdivisions Q°, ¢ = 1,2, 3, 4; by this we mean that for each ¢,
the squares ) € Q° have disjoint closures Q. Fix such an £ and let ¢ = #Q° = 47~1. Applying
Ahlfors’ theorem to each of the disks constituting A,, and summing over these disks, we deduce
that the number of good components N (Q) satisfies (ﬂ)

(B.3) N(Q = (q — 4) areap: (Ay,) — hlengthp: (OA,,),

where areap: (resp. lengthp:) is the area of the projection w(A,,) (resp. length of w(0A,)),
counted with multiplicity, and A is a constant that depends only on the geometry of Qf. Divid-
ing by areapi (A,,), using lengthp: (0A,,) = o(areap:(4A,,)), which is guaranteed by Ahlfors’
construction, and letting n go to 400, we obtain

(B.4) (Tolge, @ kp1) = (g — 4)r* = areap (USeQ‘Z S> —ar

Finally, summing from ¢ = 1 to 4, we see that, relative to w™kp1, the mass lost by discarding
the bad components of size 7 in T is of order O(r?2): this is precisely the required estimate.

Let us now justify the geometric intersection statement, following step by step the proof of
(53] Thm. 4.2]: let S be a current with continuous normalized potential on X; we have to
show that S A T, increases to S A T as r decreases to 0. Again the result is local so we work
near x, use the projections w and ws, and keep notation as above. Given squares @, Q" € Q
and a real number A < 1, we denote by AQ the homothetic of ) of factor A with respect to
its center, and by C'(Q, Q') the cube w; ' (Q) N w, ' (Q’). Fix ¢ > 0. We want to show that
for r < r(e), the mass of (I' — T;.) A S is smaller than €. The first observation is that there
exists A(e) € (0,1), independent of r, such that translating Q if necessary, the mass of 7" A .S
concentrated in | g o C(Q, @ )\C(AQ, AQ') is smaller than /2 (see [53, Lem. 4.5]). Fix such
a A. It only remains to estimate the mass of (7' — T;) A S'in g o C(AQ, AQ’). In such a

9The term (q — 4) instead of (¢ — 2) in [[7] is due to the fact that we are projecting on P! and not on C.
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cube C'(AQ, A\Q') the argument presented in [53, pp. 123-124], based on an integration by parts,
gives the estimate

1
(B.5) (T —T,) A S < C(N)modc(ug, r)ﬁM (T —T)lew.o)) »

J CRAQ")
where modc(ug, ) is the modulus of continuity of the potential ug of S. To conclude, we sum
over all squares Q, ' and use the estimate M (T — T,.) = O(r?) to get that

(B6) M ((T — TT)‘UQ,Q/ C’(AQ,AQ’)) < C’w(us, ’f').

This is smaller than £/2 if r < r(e). O

APPENDIX C. PROOF OF THEOREM [11.11]

Let us consider a random dynamical system (X, ) and p an ergodic stationary measure, as

in Theorem[I1.11] We keep the notation from §11.4]

We say that a sequence of real numbers (uy,),>0 almost converges towards +oo if for every
K e R,theset L = {n € N ; u, < K} has an asymptotic lower density

L
(C.1) dens(Ly) = lim inf <W>

which is equal to 0: dens(Lg ) = 0 for all K.

Lemma C.1. The set of points x = (w,x) in X4 such that [ D, f]] almost converges towards
+00 on P(T, M) is Fy-invariant. In particular, by ergodicity,

(a) either [ Dy f] almost converges towards +ao for (VN x p)-almost every (w, );
(b) or;, for (VN x p)-almost every (w,x), there is a sequence (n;) with positive lower density
along which [ Dy f1'*] is bounded.

The proof is straightforward. We are now ready for the proof of Theorem Let us
first emphasize one delicate issue: in Conclusion (1) of the theorem, it is important that the
directions E (resp. F and F») only depend on z € X (and noton x = (z,w) € X ). Likewise
in Conclusion (2), the trivialization P, should depend only on x. This justifies the inclusion of
a detailed proof of Theorem [T1.11] since in the slightly different setting of [5]], the authors did
not have to check this point carefully.

We fix a measurable trivialization P: TX — X x C?2, given by linear isometries P, : T, X —
C?2, where T, X is endowed with the hermitian form (Ko)z, and C? with its standard hermitian
form. This trivialization conjugates the action of DF to that of a cocycle A: X, x C? —
X, x C? over Fy. We denote by A,: {x} x C? — {F, (x)} x C? the induced linear map;
observe that A, = A, ;) depends only on x and on the first coordinate fl = fo of w. Using P
we transport the measure /i to a measure, still denoted by /i, on the product space X x P!(C). By
our invariance assumption, its disintegrations ji, = fi, satisfy (PAy)«fix = fip, (x) = Hfi(z)-

The bounded case. — In this paragraph we show that in the essentially bounded case (b) of
Lemma [C.1] Conclusion (2) of Theorem [I1.T1] holds. We streamline the argument following

the proof of [5, Prop. 4.7] which deals with the more general case of GL(d, R)-cocycles, and is
itself a variation on previously known ideas (see e.g. [1,[116]).
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Set G = PGL(2, C), and define the G-extension F; of F, on X, x G by
(C2) Fy(x,9) = (Fi(x),P(A)g) = ((0(w), £5(2)), P(A(w.0))9)

for every x = (w, ) in X4 and g in G; thus F is given by F.. on X, and is the multiplication
by P(Ay) on G. Since P(A(, ;)) depends on w only through its first coordinate, F', can be
interpreted as the skew product map associated to a random dynamical system on X x GG. Denote
by P the convolution operator associated to this random dynamical system; thus P acts on
probability measures on X x G. Let Prob, (X x G) the set of probability measures on X x G
projecting to x under the natural map X x G — X. Since p is stationary, P maps Prob, (X x G)
to itself.

Recall that by assumption there is a set £ of positive measure in X’;, a compact subset K
of (7, and a positive real number ¢ such that

(C3) dens {n L P(AM) € KG} > e
for all x in F.

Lemma C.2. There exists an ergodic, stationary, Borel probability measure i on X x G with
marginal measure |, on X.

Proof. (See [55, Prop. 4.13] for details). Let jig be any cluster value of the sequence of proba-
bility measures

1 N—
(C.4) ~ ; (1 % 01,).

By the boundedness assumption, i has mass M > ¢o and is stationary (i.e. P-invariant).
Standard arguments show that its projection on the first factor is equal to M p:. We renormalize
it to get a probability measure and using the ergodic decomposition and the ergodicity of u, we
may replace it by an ergodic stationary measure in Prob, (X x G). 0

Denote by mg = N x Jig the }7} -invariant measure associated to fi. The action of F 4 on
X4 x G (resp. of the induced random dynamical system on X x () commutes to the action of
G by right multiplication, i.e. to the diffeomorphisms Ry, h € G, defined by

(C.5) Rh(X7g) = (Xagh)
Slightly abusing notation we also denote by Ry, the analogous map on X x (. The next lemma

combines classical arguments due to Furstenberg and Zimmer.

Lemma C.3. Let [ig be a Borel stationary measure on X x G with marginal p on X. Set
H ={heG; (Rp)«fc = et = {heG; (Rp)smg = mg}.

Then H is a compact subgroup of G and there is a measurable function Q: X — G such that
the cocycle B, = Q;ll(x) x P(Ay) x Q, takes its values in H for (VN x p)-almost every x.

Proof. Clearly, H is a closed subgroup of G. If H were not bounded then, given any compact
subset C' of G, we could find a sequence (h,,) of elements of H such that the subsets Ry, (C')
are pairwise disjoint. Choosing C such that X x C has positive jig-measure, we would get a
contradiction with the finiteness of fi. So H is a compact subgroup of G.
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We say that a point (z, g) in X x G is generic if for v’V -almost every w,

1 =1 - N

(C.6) N nZ::O ® <F+ (w,z, g)) e fX+XG o dmg
for every compactly supported continuous function on Ay x G. The Birkhoff ergodic theorem
provides a Borel set £ of full fig-measure made of generic points. Now if (x, g1) and (z, g2)
belong to &, writing go = g1h = Rp(¢g1) for h = gflgg, we get that A is an element of H.

Given g € G, define £, < G to be the set of elements g € G such that (x, g) is generic.
Then there exists a measurable section X 3 z — ), € G such that ), € &, for almost all x.
By definition of &;, (w, z, Q) satisfies for vV -almost every w. Then for v-almost every
fo = fL, by F-invariance of the set of Birkhoff generic points we infer that (f1(z), P(4.)Qx)
belongs to €. Since (f}(x), Qf1()) belongs to € as well, it follows that Q;il(x)]P’(AX)Qm is in

H. We conclude that the cocycle B, = Q]jll(x) x P(Ay) x Q. takes its values in H for almost
all x, as claimed. O

Note that the map = — @, lifts to a measurable map x — @', € GL(C). Conjugating H to a
subgroup of PU, by some element gg € G, we can now readily conclude from the two previous
lemmas that when [D,, f] is essentially bounded, Conclusion (2) of Theoremholds (the
P, are obtained by composing the @', with a lift of gy to GL2(C)).

The unbounded case. — Now, we suppose that [ D, f] is essentially unbounded (alternative
(a) of Lemmal|C.T]), and adapt the results of [5, §4.1] to the complex setting to arrive at one of
the Conclusions (1.a) or (1.b) of Theorem m The main step of the proof is the following
lemma.

Lemma C.4. Let A be a measurable GL(2, C) cocycle over (X, F,,vN x u) admitting a

projectively invariant family of probability measures (fiy),.~ Such that almost surely ﬂAE(n)]]
almost converges to infinity. Then for almost every x, [i, possesses an atom of mass at least 1/2;
more precisely:

— either [i has a unique atom [w(x)] of mass = 1/2, that depends measurably on x € X ;
— or [iy has a unique pair of atoms of mass 1/2, and this (unordered) pair depends mea-
surably on x € X.

For the moment, we take this result for granted and proceed with the proof. By ergodicity,
the number of atoms of /i, and the list of their masses are constant on a set of full measure.
A first possibility is that fi, is almost surely the single point mass d(,)]; this corresponds to
(1.a). A second possibility is that /i, is the sum of two point masses of mass 1/2; this corresponds
to (1.b). In the remaining cases, there is exactly one atom of mass 1/2 < o < 1 ata point [w(z)].
Changing the trivialization P, we can suppose that [w(z)] = [w] = [1 : 0]. Then we write
flz = Qp1.0)+ fil., and apply Lemmato the family of measures [/, (after normalization to get
a probability measure). We deduce that almost surely /!, admits an atom of mass > (1 — «)/2.
Two cases may occur:

— [il, has a unique atom of mass § > (1 — «)/2,
— [, has two atoms of mass (1 — «) /2.
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The second one is impossible, because changing the trivialization, we would have fi; = adj.0)+
152 (6-1.1] + [1:17)- and the invariance of the finite set {[1 : 0], [—1 : 1], 1 : 1]} would imply
that the cocycle P(A,) stays in a finite subgroup of PGL2(C), contradicting the unboundedness
assumption.

If /i, has a unique atom of mass § > (1 — «)/2, we change P, to put it at [0 : 1] (the
trivialization P, is not an isometry anymore). We repeat the argument with fi, = adj1.g) +
Bojo:1) + fiy- If B =1 — a, i.e. fi = 0, then we are done. Otherwise /i, has one or two atoms
of mass v = (1 — a — /3)/2, and we change P, to assume that one of them is [1 : 1] and the
second one —provided it exists—is [7(z) : 1]; here, z — 7(z) is a complex valued measurable
function. Endow the projective line P! (C) with the coordinate [z : 1]; then P(A,) is of the form
z +— a(x)z. Since P(A,) ({1,7(z)}) = ({1, 7(F}+(x))}), we infer that:

— either a(x)1 = 1 and P(A,) is the identity;
—ora(x)l = 7(mx(Fy(x))) and a(x)7(x) = 1 in which case 7(7x (F, (x))) = 7(x) L.

Thus we see that along the orbit of x, a(F7?(x)) takes at most two values 7(mx (F7(x)))*?, and
[[AL”)]] is bounded, which is contradictory. This concludes the proof. O

Proof of Lemma[C4] Let r and ¢ be small positive real numbers. Let Prob,. .(P}(C)) be the
set of probability measures m on P!(C) such that sup,cp1 m(B(z, 7)) < 1/2 — &, where the
ball is with respect to some fixed Fubini-Study metric. This is a compact subset of the space of
probability measures on P'. The set

(C7 Gr,e = {7 € PGL(27 C), dmq,mg € PrObr,s(Pl(C»v Y11 = m2}

is a bounded subset of PGL(2, C). Indeed otherwise there would be an unbounded sequence
vn together with sequences (m1,) and (ma,) in Prob,.(P1(C)) such that (v,)smi, =
ma,. Denote by v, = kpank|, the KAK decomposition of 7, in PGL(2, C), with k,, and
k!, two isometries for the Fubini-Study metric; since -, is unbounded, we can extract a sub-
sequence such that the measures (k/,)«m1, and (k;,!)«ms, converge in Prob, .(P1(C)) to
two measures m; and mg, while the diagonal transformations a,, converge locally uniformly on

PL(C)\ {[0 : 1]} to the constant map ~y : P*(C)\ {[0 : 1]} — {[1 : 0]}. Then
(C.8) Ve (ml‘[pl(c)\{[oﬂ]}) = ml(]P’l(C)\{[O : 1]})5a < ma;

since m1 belongs to Prob, . (P*(C)), m1 (P1(C)\ {[0 : 1]}) = 1/2+¢, hence ma > (1/2+¢)d,,
in contradiction with mg € Prob,. . (P!(C)). This proves that G, is bounded.

To prove the lemma, let us consider the ergodic dynamical system PDF',, and the family of
conditional probability measures fi, for the projection (w,z,v) — x = (w,x). If there exist
r,e > 0 such that /1, belongs to Prob,. . (P!(C)) for x in some positive measure subset B then,
by ergodicity, for almost every x € X there exists a set of integers L(x) of positive density

such that for n € L(x), F}'(x) belongs to B, hence A belongs to G, . From the above

claim we deduce that [[Afyn)]] is uniformly bounded for n € L(x), a contradiction. Therefore
for every r,e > 0, the measure of {x, i, € Prob,.(P'(C))} is equal to 0; it follows that for
almost every x, [i, possesses an atom of mass at least 1/2.

10We are slightly abusing here when the Fubini-Study metric depends on z, for instance when P, is not an
isometry; however restricting to subset of large positive measure the metric (Py)s(%0)< is uniformly comparable to
a fixed Fubini-Study metric.
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If there is a unique atom of mass > 1/2, this atom determines a measurable map x +—
[w(x)] € PT,X; since fi, does not depend on w, [w(x)] depends only on z, not on w. If there
are generically two atoms of mass > 1/2, then both of them has mass 1/2, and the pair of points
determined by these atoms depends only on . O
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