RANDOM DYNAMICS ON REAL AND COMPLEX PROJECTIVE SURFACES
SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We initiate the study of random iteration of automorphisms of real and complex
projective surfaces, as well as compact Kihler surfaces, focusing on the classification of station-
ary measures. We show that, in a number of cases, such stationary measures are invariant, and
provide criteria for uniqueness, smoothness and rigidity of invariant probability measures. This
involves a variety of tools from complex and algebraic geometry, random products of matrices,
non-uniform hyperbolicity, as well as recent results of Brown and Rodriguez Hertz on random
iteration of surface diffeomorphisms.

1. INTRODUCTION

1.1. Random dynamical systems. Consider a compact manifold M and a probability measure
v on Diff (M ); to simplify the exposition we assume throughout this introduction that the support
Supp(v) is finite. The data (M, v) defines a random dynamical system, obtained by randomly
composing independent diffeomorphisms with distribution v. In this paper, these random dy-
namical systems are studied from the point of view of ergodic theory, that is, we are mostly
interested in understanding the asymprotic distribution of orbits.

A probability measure p on M is v-invariant if f,u = p for v-almost every f € Diff (M),
and it is v-stationary if it is invariant on average: § fuudv(f) = p. A simple fixed point
argument shows that stationary measures always exist. On the other hand, the existence of an
invariant measure should hold only under special circumstances, for instance when the group I',
generated by Supp(v) is amenable, or has a finite orbit, or preserves an invariant volume form.

According to Breiman’s law of large numbers, for every 2 € M and vN-almost every ( fi) €
Diff(M)N, every cluster value of the sequence of empirical measures
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is a stationary measure. Thus, a classification of stationary measures gives an essentially com-
plete understanding of the distribution of random orbits as n goes to +00. Our goal is to combine
algebraic and holomorphic dynamics with recent results in random dynamics to study the case
when M is a real or complex projective surface and the action is by algebraic diffeomorphisms.

1.2. Stiffness. Let us present a few landmark results about stationary measures (for consistency
with the rest of the paper, most of the discussion is restricted to real dimension 2).

Let I" be a subgroup of GL,,(C). We say that he action of I on C™ is strongly irreducible
if the orbit of any subspace V' < C" with 0 < dim(V') < m is infinite; it is proximal if
there is an element v € I' with a unique eigenvalue of maximum modulus (the corresponding

eigenline provides an attracting fixed point in P"*~1(C)). This said, suppose that v is a finitely
1
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supported probability measure on SLo(C), and consider the action of SL2(C) on M = P!(C).
Suppose that the group I', generated by the support of v is non-elementary, that is, I', is
proximal and strongly irreducible. Then, there is a unique v-stationary (probability) measure p
on P1(C), and this measure is not invariant. This is one instance of a more general result due to
Furstenberg [50]. The non-invariance of p is due to the existence of proximal elements in I',,.

Now, let v be a finitely supported measure on SLy(Z), and consider the action of SLo(Z) on
the torus M = R?/Z2. In that case, the Haar measure of R2/Z2, as well as the atomic mea-
sures equidistributed on finite orbits I',(x,y), for (x,7) € Q?/Z?, are examples of I, -invariant
measures. By using Fourier analysis and additive combinatorics techniques, Bourgain, Furman,
Lindenstrauss and Mozes [15] proved that if I, is non-elementary, then every stationary mea-
sure pon R?/Z2 is T,-invariant and is a convex combination of the above mentioned invariant
measures. This property of automatic invariance of stationary measures was called stiffness (or
v-stiffness) by Furstenberg [51]], who conjectured it to hold in this setting. Soon after, Benoist
and Quint [7] gave an ergodic theoretic proof of this result and extended it to certain actions of
discrete groups on homogeneous spaces. They also derived the following equidistribution re-
sult: for every (x,y) ¢ Q?/Z2, the random trajectories of (x,y) determined by v almost surely
equidistribute towards the Haar measure on R?|Z>.

Finally, Brown and Rodriguez-Hertz [[16]], building on the work of Eskin and Mirzakhani [45]],
managed to recast these measure rigidity results in terms of Pesin theory to obtain a version of the
stiffness theorem of [[15] for general C diffeomorphisms of compact surfaces. We shall describe
their results in due time; for the moment we content ourselves with one illustrative consequence
of [16]. Let v = ;0 #; be a finitely supported probability measure on SL(Z) generating a

non-elementary subgroup. Consider perturbations {f; .} of the f; in the group Diff2,,(R?/Z?)
of C? diffeomorphisms of R?/Z? preserving the Haar measure. Set v = Y, ;o . Then,
for sufficiently small perturbations, any v.-stationary measure on R?/Z? is invariant and is a

combination of the Haar measure and measures supported on finite I',,_-orbits.

In this paper, we prove a stiffness theorem for groups of algebraic diffeomorphisms of real
algebraic surfaces. The work of Brown and Rodriguez-Hertz is our main source of inspiration
and a key ingredient for some of our main results.

1.3. Sample results: stiffness, classification, and rigidity. Let X be a smooth complex pro-
jective surface, or more generally a compact Kéhler surface. Denote by Aut(X) its group of
holomorphic diffeomorphisms, referred to in this paper as automorphisms. When X < PV (C)
is defined by polynomial equations with real coefficients, the complex conjugation induces an
anti-holomorphic involution s: X — X, whose fixed point set is the real part X (R) of X. We
denote by Xg the surface X viewed as an algebraic variety defined over R, and by Aut(Xg ) the
group of automorphisms defined over R; Aut(Xg) is the subgroup of Aut(X) centralizing s.
When X (R) # &, the elements of Aut(Xg) are the real-analytic diffeomorphisms of X (R)
admitting a holomorphic extension to X. Note that in stark contrast with groups of smooth dif-
feomorphisms, the groups Aut(Xg) and Aut(X) are typically discrete and at most countable.

The group Aut(X) acts on the cohomology H*(X;Z). By definition, a subgroup I' <
Aut(X) is non-elementary if its image I'* < GL(H*(X;C)) contains a non-Abelian free
group; equivalently, I'* is not virtually Abelian. By Yomdin’s theorem, when I' is non-elementary,
there exists a pair (f, g) € I'? generating a free group of rank 2 such that the topological entropy
of every element in that group is positive (see [27]).
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1.3.1. Stiffness. As before, if v is a finitely supported probability measure on Aut(X), we de-
note by I',, the subgroup generated by Supp(v).

Theorem A. Let Xr be a real projective surface and v be a finitely supported symmetric prob-
ability measure on Aut(XR). If I, preserves an area form on X (R), then every ergodic v-
stationary measure [ on X (R) is either invariant or supported on a proper T, -invariant sub-
variety. In particular if there is no I',-invariant algebraic curve, the random dynamical system
(X, v) is stiff.

This theorem is mostly interesting when I',, is non-elementary and we focus on this case in
the remainder of this introduction. Stationary measures supported on invariant curves are easily
analysed (see @ Moreover, if I',, is non-elementary, it is always possible to contract all ", -
invariant curves, creating a complex analytic surface X with finitely many singularities. Then
on Xy (R), stiffness holds unconditionally.

This result applies to many interesting examples, because Abelian, K3, and Enriques surfaces,
which concentrate most of the dynamically interesting automorphisms on compact complex
surfaces, admit a canonical Aut(X )-invariant 2-form.

1.3.2. Invariant measures. Once stiffness is established, the next step is to classify invariant
measures. A parabolic automorphism of a compact Kéhler surface is an automorphism g such
that the norm of (g")* on H?(X;R) grows quadratically (i.e. like an? for some o > 0); such
an automorphism automatically preserves a genus 1 fibration on X (see e.g. [26]). When I',
contains a parabolic automorphism, I',-invariant measures are classified in [19, 26]. A nice
consequence is that for a non-elementary group of Aut(Xg) containing parabolic elements and
preserving an area form, any invariant ergodic measure is either atomic, or concentrated on a
", -invariant algebraic curve, or is the restriction of the area form on some open subset of X (R))
bounded by a piecewise smooth curve.

Thus, if I',, contains a parabolic element, we get a fairly complete answer to the equidistribu-
tion problem raised in A widely studied example is the family of Wehler surfaces that is,
smooth surfaces X < P! x P! x P! defined by an equation of degree (2,2, 2). Then for each
i€ {1,2,3}, the projection 7;: X — P! x P! which “forgets the variable z;” has degree 2; thus,
there is an involution o; of X that permutes the two points in the generic fiber of 7;.

Corollary. Let Xg < P! x P! x P! be a real Wehler surface such that X (R) is non empty. If
XR is generic, then:

(1) the surface X is a K3 surface and there is a unique (up to choosing an orientation of X (R))
algebraic 2-form volxy, on X (R) such that SX(R) volx, = 1;

(2) the group Aut(XR) is generated by the three involutions o; and coincides with Aut(X);
furthermore it preserves the probability measure defined by volxy, ;

(3) if v is finitely supported and T',, has finite index in Aut(XR) then (X (R),v) is stiff; more-
over the only v-stationary measures on X (R) are convex combinations of the probability
measures defined by volx,, on the connected components of X (R).

Here by generic we mean that the equation of X belongs to the complement of at most count-
ably many hypersurfaces in the set of polynomial equations of degree (2,2,2) (see for
details). This result follows from Theorem @ Proposition Corollary B of [26], and the
generic non-existence of finite orbits established in [25]. If we do not assume X to be generic
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but assume only that X does not contain any fiber of the three projections 7;, then the set of
stationary measures supported in X (R) is a finite dimensional simplex (see [25])); the equidis-
tribution problem is further studied in [23]].

The techniques of [[19, 26] do not apply in the absence of parabolic automorphisms. In this
context, we establish the following rigidity result.

Theorem B. Let Xy be a real projective surface. Let I' be a non-elementary subgroup of
Aut(XR). If u is a T-invariant probability measure on X (R) and if u is ergodic and of positive
entropy for some f € T, then  is absolutely continuous with respect to any area form on X (R).

In particular if I' is a group of area preserving automorphisms, then up to normalization u
will be the restriction of the area form on some I'-invariant set.

1.4. Some ingredients of the proofs. The proofs of Theorems [A| and [B| rely on the deep re-
sults of Brown and Rodriguez-Hertz [16]. To be more precise, recall that an ergodic stationary
measure ;¢ on X admits two Lyapunov exponents AT () > A7 (u), and that p is called hy-
perbolic if AT(u) > 0 > A7 (u). In this case the (random) Oseledets theorem shows that for
p-almost every = and vN-almost every w = (f;)jen in Aut(X )N, there exists a stable direction
E?(z) € T, Xwr. In [16], stiffness is established under the condition that E? (x) < T, Xy de-
pends non-trivially on the random itinerary w = (f;) e, or equivalently that stable directions
do not induce a measurable I', -invariant line field. One of our main contributions is to take care
of this possibility in our setting: for this we study the dynamics on the complex surface X.

Theorem C. Let X be a complex projective surface and v be a finitely supported probability
measure on Aut(X). If T, is non-elementary, then any hyperbolic ergodic v-stationary measure
won X satisfies the following alternative:

(a) either yu is invariant, and its fiber entropy h,,(X;v) vanishes;

(b) or p is supported on a I',-invariant algebraic curve;

(c) or the field of Oseledets stable directions of p is not I',-invariant; in other words, it gen-
uinely depends on the itinerary w = (f;)j=0 € Aut(X)N.

As opposed to Theorems[A]and [B] this result applies to the dynamics on the complex manifold
X, without assuming the existence of an invariant volume form or an invariant real structure.
When p is not invariant, nor supported by a proper Zariski closed subset, Assertion (c) precisely
says that the condition on stable directions used in [16]] is satisfied. This is our key input to-
wards Theorems|A|and Bl The arguments leading to Theorem |C|involve an interesting blend of
Hodge theory, pluripotential analysis, and Pesin theory. They rely on the following well-known
principle in higher dimensional holomorphic dynamics. If u is ergodic and hyperbolic, almost
every point (w, x) provides a stable manifold W (z) biholomorphic to C. Then, according to a
construction going back to Ahlfors and Nevanlinna, to any entire curve ¢ : C — X is associated
a (family of) closed positive (1, 1)-current(s) describing the asymptotic distribution of ¢(C) in
X, hence also a (family of) cohomology class(es) in H 2 (X,R). These classes relate the stable
manifolds of 4 to the action of I',, on H?(X; R), which itself can be analyzed by combining
complex algebraic geometry with Furstenberg’s theory of random products of matrices.

Theorem D. Let X be a complex projective surface. Let v be a finitely supported probability
measure on Aut(X) such that T',, is non-elementary. Let kg be a fixed Kdhler form on X.
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(1) If k is any Kdéhler form on X, then for vN-almost every w := (f;);=0 € Aut(X)N the limit
1
T
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exists as a closed positive (1,1)-current. Moreover this current T, does not depend on k
and has Holder continuous potentials.

(2) If the v-stationary measure p is ergodic, hyperbolic (or more generally if \™(u) < 0 <
At (u)) and not supported on a T,,-invariant proper Zariski closed set, then for p-almost
every x and VN -almost every w, the only Ahlfors-Nevanlinna current of mass 1 (with respect
1o ko) associated to the stable manifold W (x) coincides with T5.

One might consider that the right setting for such a statement would be that of a compact
Kihler surface. We actually show in the companion paper [27] that any compact surface sup-
porting a non-elementary group of automorphisms is projective. The algebraicity of X is, in
fact, a crucial technical ingredient in the proof of assertion (2), because we use techniques of
laminar currents which are available only on projective surfaces. Theorem [D]enters the proof of
Theorem [C|as follows: since I', is non-elementary, Furstenberg’s description of the random ac-
tion on H?(X, R) implies that the cohomology class [T] depends non-trivially on w; therefore
for p-almost every x, W5(z) also depends non-trivially on w. Then, taking advantage of the
complex structure again, we show in Section[9] that E () depends non-trivially on w as well.

Remark 1.1. Beyond finitely supported measures, Theorem [Cl and[D]hold under optimal
moment conditions on v (this adds several technicalities, notably in Sections [5|and [6).

1.5. Organization of the article. Let X be a compact Kihler surface and v be a probability
measure on Aut(X).

— In Section 2| we describe the action of Aut(X) on H*(X;Z), in particular on H(X;R).
The Hodge index theorem endows it with a Minkowski structure, which is essential in our un-
derstanding of the dynamics of I', on the cohomology. This section |2| prepares the ground for
the analysis of random products of matrices done in Section [5 (and it is also used in [26] 25]).
A delicate point to keep in mind is that the action of a non-elementary subgroup of Aut(X) on
HY'(X;R) may be reducible.

— In Section 3| we briefly recall some constraints on X coming from the Enriques-Kodaira clas-
sification of surfaces, and gives some details on the example of Wehler surfaces.

— After a short Section [] introducing the vocabulary of random products of diffeomorphisms,
Furstenberg’s theory of random products of matrices is applied in Section [3]to the study of the
action on H!'(X;R). This, combined with the theory of closed positive currents, leads to the
proof of the first assertion of Theorem [D]in Section [6] (see Corollary and Theorems [6.14]
and [6.16). The continuity of the potentials of the currents T;5, which plays a key role in Section
relies on a recent result of Gouézel and Karlsson [53]].

— Pesin theory enters into play in Section [/} in which the basics of the smooth ergodic theory of
random dynamical systems are described in some detail for complex surfaces. This is used in
Section|§|to connect the stable manifolds to the currents 735, using techniques of laminar currents
(Theorem [8.2] gives the second part of Theorem D).

— Theorem|[Clis proven in Section[9]by combining ideas of [16] with TheoremD]and an elemen-
tary fact from local complex geometry inspired by a lemma from [3].
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— Theorem [A]is finally established in Section [I0] When I',, is non-elementary (Theorem [10.7)
it follows rather directly from [16l], Theorem and the invariance principle of Crauel [37]
and Avila-Viana [1]]. Elementary groups are handled separately by using the classification of
automorphism groups of compact Kihler surfaces (see Section [I0.3); note that the symmetry
assumption on v is used only in the elementary case.

— Theorem [Blis established in Section[I1] in a slightly more precise form (see Theorem[I1.1).

1.6. Further comments.

— This article is part of a series of papers dedicated to the dynamics of groups of automorphisms
of compact Kéhler surfaces. In [27] we discuss further examples and sharpen the classification of
surfaces admitting non-elementary groups of automorphisms. The article [26] classifies invariant
measures in presence of parabolic elements. In [23]], we study uniform expansion for random
complex dynamics and apply it to equidistribution. In [235]], finite orbits are analyzed with tools
from algebraic and arithmetic dynamics. Note that some results originally contained in the
preprint version of this paper are now in other papers of the series.

— After the first version of this paper and [25] were released, Filip and Tosatti [47] gave an
alternate approach of some of the results of Section|[6]

— In Theorem [A] one may wonder how the invariant measure p relates to the dynamics of indi-
vidual elements of I, in particular if it might coincide with the maximal entropy measure fi ¢
of some loxodromic element f of I';,. For simplicity, assume that X is a real Wehler surface and
', has finite index in Aut(XR) (see §. Then, according to [25, Thm. 5.12], I, contains a
loxodromic element i with 15, # . Moreover, if X (R) is connected, the coincidence p1 = (15
for some f € I', is equivalent to the existence of a loxodromic element f € Aut(Xgr) such that
fu¢ is the canonical area form on X (R). We conjecture that such an example does not exist. This
is reminiscent of, but different from, the Kummer rigidity results of [28], 48] (see [22] §3.5.2]).

— One may wonder what remains of our results in the real-analytic category. The proofs of Theo-
rems|[D|and[CJrely on global complex geometric arguments (via Ahlfors-Nevanlinna currents and
the Hodge index theorem) to show that stable manifolds depend on random itineraries; in partic-
ular Zariski dense (complex) stable and unstable manifolds always admit a transverse intersec-
tion in X (C). Such a global geometric argument does not carry over to the real-analytic setting;
indeed, there are real analytic diffeomorphisms of closed surfaces with two saddle fixed points x
and 2’ such that their stable and unstable manifolds are Zariski dense but W3 (z) n\Wi(2') = &.
Theorems [D] and [C] also rely on local properties of complex analytic disks to go from stable di-
rections to stable manifolds (see § [0). While some of the results of § [0.2] might persist in the
real-analytic category, the key Lemma[9.7does not (see Remark 0.8).

— Some of our techniques should be transposable to automorphism groups of certain affine sur-
faces, for example polynomial automorphisms of C?, a main issue in this case being to deal with
the lack of compactness. Another example is provided by the character variety of representations
of the free group F» = {a, b|&) into SLy(C), with a fixed trace of the commutator aba~'b~1;
this variety is a surface, and the outer automorphism group GLy(Z) of F acts by automorphisms
on it (see [20} 52, 36| for instance). As shown by Rebelo and Roeder [[75]], several dynamical
regimes coexist on the complex surface, which presumably makes a classification of stationary
measure quite elusive. However, looking at the real part (corresponding to representations in the
compact group SUs), we expect stiffness to hold.
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1.7. Conventions. Throughout the paper C' stands for a “constant” which may change from
line to line, independently of some asymptotic quantity that should be clear from the context
(typically an integer n corresponding to the number of iterations of a dynamical system). We
write a < bifa < Cbanda = bifa < b < a. Complex manifolds are considered to be
connected, so from now on “complex manifold” stands for “connected complex manifold”. For a
random dynamical system on a disconnected complex manifold, there is a finite index sugbroup
I of T', fixing each connected component, and an induced measure v/ on I with properties
qualitatively similar to those of v (see §10.2)), so the problem is reduced to the connected case.

Acknowledgments. We are grateful to Sébastien Gouézel, Francois Ledrappier, and Frangois
Maucourant for interesting discussions and insightful comments. We thank the referees for
constructive suggestions and criticisms. The first named author was partially supported by
the French Academy of Sciences (Del Duca foundation) and the European Research Council
(ERC) under the European Union’s Horizon 2020 programme (grant agreement No 101053021
- GOAT), and the second named author by a grant from the Institut Universitaire de France.

2. HODGE INDEX THEOREM AND MINKOWSKI SPACES

In this section we define the notion of a non-elementary group of automorphisms of a com-
pact Kéhler surface X. We study the action of such a group on the cohomology of X, and in
particular the question of (ir)reducibilty. We work in the Kihler setting because these results are
eventually useful to prove that a compact Kihler surface carrying a non-elementary action must
be projective (see [27], which also includes a discussion of the non-Kihler case).

2.1. Cohomology.

2.1.1. Hodge decomposition. Denote by H*(X; R) the cohomology of X with coefficients in
the ring R; we shall use R = Z, Q, R or C. The group Aut(X) acts on H*(X; C), preserving
the image of H*(X;Z); Aut(X)* will denote the image of Aut(X) in GL(H?(X;C)). The
Hodge decomposition
(2.1) H*(X;0)= P HP(X;C)

p+q=Fk
is Aut(X)-invariant. On H%°(X;C) and H*?(X; C), Aut(X) acts trivially. Throughout the
paper we denote by [«] the cohomology class of a closed differential form (or current) cv.

The intersection form on H?(X; Z) will be denoted by {- | -); the self-intersection {a|a) of a
class a will also be denoted by a? for simplicity. This intersection form is Aut(X)-invariant. By
the Hodge index theorem, it is positive definite on the real part of H>?(X;C) ® H"?(X;C)
and it is non-degenerate and of signature (1, h*!(X) — 1) on H!(X;R). Thus, we get:

Lemma 2.1. The restriction of Aut(X)* to the subspace H*°(X;C) (resp. H*?(X;C)) is
contained in a compact subgroup of GL(H?*?(X; C)) (resp. GL(H*?(X; C))).

The Néron-Severi group NS(X; Z) is, by definition, the intersection of H!(X; R) with the
image of H%(X;Z) in H%(X;R). The Lefschetz theorem on (1, 1)-classes identifies NS(X; Z)
with the subgroup of H'!(X;R) given by Chern classes of line bundles on X. The Néron-
Severi group is Aut(X)-invariant, as well as NS(X; R) := NS(X;Z) ®z Rfor R = Q, R, or
C. The dimension of NS(X; R) is the Picard number p(X).
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2.1.2. Norm of f*. Let|-| be any norm on the vector space H*(X; C). If L is a linear transfor-
mation of H*(X; C) we denote by || L| the associated operator norm and if W < H*(X; C) is
an L-invariant subspace of H*(X; C), we denote by | L|, the operator norm of L|yy .

If u is an element of H'?(X; C), then u A @ is an element of H1(X; R) such that |u|?> <
C'|u A u| for some constant C' that depends only on the choice of norm on the cohomology;
in particular, the norm of f* on H'?(X; C) is controlled by the norm of f* on H"!(X;C).
Using complex conjugation, the same results hold on H%!(X; C); by Poincaré duality we also
control | f* HH,),q(X;C) for p + g > 2. Together with Lemma we obtain:

Lemma 2.2. Let X be a compact Kihler surface. There exists a constant Cy > 1 such that

Co ' 1 * e (x:0) < 1l xemy < 1 * e x0

for every automorphism f € Aut(X).

2.2. The Kahler, nef, and pseudo-effective cones. (See [12, 162]] for details on the notions
introduced in this section.) Let Kah(X) < H'!(X;R) be the Kihler cone, i.e. the cone of
classes of Kihler forms. Its closure Kah(X) is a salient, closed, convex cone, and

(2.2) Kah(X) c Kah(X) c {ve H"Y(X;R); (v|v) = 0}.

The intersection NS(X; R) nKah(X) is the ample cone Amp(X), while NS(X; R) nKah(X)
is the nef cone Nef(X). They are all invariant under the action of Aut(X) on HY1(X;R). We
shall also say that the elements of Kah(X) are nef classes, but the notation Nef(X) will be
reserved for NS(X; R) n Kah(X). The set of classes of closed positive currents is the pseudo-
effective cone Psef(X). This cone is an Aut(X )-invariant, salient, closed, convex cone. It is
dual to Kah(X) for the intersection form (see [12, Lem. 4.1]):

(2.3) Kah(X) = {ue H"'(X;R) ; (u|v) =0 VYo e Psef(X)}

and vice-versa.

We fix once and for all a reference Kihler form g with [Ro]z = S/ﬁlo A ko = 1. Then we
define the mass of a pseudo-effective class a by M(a) = {a|[ko]), or equivalently the mass of
a closed positive current 7' by M(T') = § T A k; we may also extend this definition to any class,
pseudo-effective or not (but then M(a) = {a|[ro]) may be negative). By the compactness of
the set of closed positive currents of mass 1, there exists a constant C' such that

(2.4) Va € Psef(X), C!|a] < M(a) < Clal.

If v is an element of Psef(X) and v? > 0, the Hodge index theorem implies that (u | v) = 0
for every class u € H''(X;R) such that u? > 0 and {(u | [ro]) = 0 (see Equation (Z.3)). So, in
Equation (2.3), the most important constraints come from the classes v € Psef(X) with v? < 0.
If v is such a class, its Zariski decomposition expresses v as a sum v = p(v) + n(v) with the
following properties (see [12]):

(1) this decomposition is orthogonal: {p(v) |n(v)) = 0;

(2) p(v) is a nef class, i.e. p(v) € Kah(X);

(3) n(v) is negative: it is a sum n(v) = >, a;[D;] with positive coefficients a; € R of
classes of irreducible curves D; X such that the Gram matrix ((D; | D;)) is negative
definite.
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Proposition 2.3. If a ray R v of the cone Psef(X) is extremal, then either v?> = 0 or Riv =
R, [D] for some irreducible curve D such that D* < 0. The cone Psef(X) contains at most
countably many extremal rays R, v with v> < 0.

Let u be an isotropic element of Kah(X). If R u is not an extremal ray of Psef(X), then u
is proportional to an integral class v’ € NS(X; Z).

Proof. If R v is extremal, the Zariski decomposition v = p(v) + n(v) involves only one term.
If v = p(v) then v? > 0. Otherwise v = n(v) and by extremality n(v) = a[D] for some
irreducible curve D with D? < 0. The countability assertion follows, because NS(X; Z) is
countable. For the last assertion, multiply u by {(u|[ko])~! to assume (u|[ro]) = 1 and write u
as a convex combination u = {v da(v), where « is a probability measure on Psef(X) such that
a-almost every v satisfies

= (ul[ro]) = 1,

— R v is extremal in Psef(X) and does not contain w.

Since u is nef, (u|v) = 0 for each v; and u being isotropic, we get v € u\Ru for a-almost
every v. By the Hodge index theorem, v?> < 0 almost surely. Now, the first assertion of this
proposition implies that v € R [D,] for some irreducible curve D,, — X with negative self-
intersection; there are only countably many classes of that type, thus « is purely atomic, and u
belongs to Vect([D,]; a(v) > 0), a subspace of NS(X; R) defined over Q. On this subspace,
¢x is semi-negative, and by the Hodge index theorem its kernel is Ru. Since Vect([D,]; a(v) >
0) and gx are defined over Q, we deduce that u is proportional to an integral class. U

2.3. Non-elementary subgroups of Aut(X).

2.3.1. Isometries of Minkowski spaces. Consider the Minkowski space R™*!, endowed with
its quadratic form g of signature (1,m) defined by ¢(x) = 23 — >I* | 2. The corresponding
bilinear form will be denoted {:|-). For future reference, note the following reverse Schwarz

inequality:
(2.5) if q(x)=0andq(z') =0 then (z|z') > q(x)"?q(z')}/?

with equality if and only if = and 2’ are collinear. We say that a subspace W < R™*! is of
Minkowski type if the restriction gy is non-degenerate and of signature (1, dim(W) — 1).

In this section, we review some well-known facts concerning isometries of R™ = (R™*1, ¢)
(see e.g. [73| 158, 49] for details). We denote by |-| the Euclidean norm on R™*!, and by
P: R™1\{0} — P(R™"!) the projection on the projective space P(R™1) = P™(R)).

The hyperboloid {z ; g(x) = 1} has two components, and we denote by Oim(R) the sub-
group of the orthogonal group Oy ,,(R) that preserves the component Q = {g(z) = 1; z¢ >
0}. Endowed with the distance dg(z,y) = cosh™!(z|y), Q is a model of the real hyper-
bolic space H"™ of dimension m. The boundary at infinity of H™ will be identified with
oP(Q) = P(R™*1) and will be denoted by dH™. It is the set of isotropic lines of g.

Any isometry v of H™ is induced by an element of Oim(R), and extends continuously to
OH™: its action on OH™ is given by its linear projective action on P(R™*!). Isometries are
classified in three types, according to their fixed point set in H"* v 0H™:

— v is elliptic if « has a fixed point in H™;
— 7 is parabolic if  has no fixed point in H"" and a unique fixed point in 0H™;
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— ~v is loxodromic if v has no fixed point in H" and exactly two fixed points in 0H™.

A subgroup I of O, (R) is non-elementary if it does not preserve any finite subset of H™ U
JOH™. Equivalently I'is non-elementary if and only if it contains two loxodromic elements with
disjoint fixed point sets. The group Oim(R) admits a Cartan or KAK decomposition. To state
it, denote by eg = (1,0, ...,0) the first vector of the canonical basis of R™*1; it is an element
of H™, and its stabilizer in Ofm(R) is a maximal compact subgroup, isomorphic to O,,,_1(R).

Lemma 2.4 (See §1.5 of [49])). Every~ € Oim(R) can be written (non-uniquely) as v = kiaks,
where k; € Stab(eq) and a is a matrix of the form

coshr sinhr 0
sinhr coshr 0
0 0 id—1

with r = dg(ep, veo).

Corollary 2.5. If |-|| denotes the operator norm associated to the euclidean norm in R™ %!, then
vl = ||la|, where v = kiaks is any Cartan decomposition of ~y. In particular |~y| = ny_IH and

|7l = cosh d(eo, (o)) = |veo -
Furthermore for every e € H™ and any ~ € Oim(R)

‘|7H = cosh dH(ev 7(6»7

where the implied constant depends only on the base point e.

2.3.2. Irreducibility. A non-elementary subgroup of Oim(R) does not need to act irreducibly
on R™+1, Proposition below, clarifies the possible situations.

Lemma 2.6. Let I be a non-elementary subgroup of Oim (R) (resp. v be an element of Ofm(R) ).
Let W be a subspace of RM™.

(1) If W is T-invariant, then either (W, q|w ) is a Minkowski space and T'|yy is non-elementary,
or q|w is negative definite and I|yy is contained in a compact subgroup of GL(W).

(2) If W is ~y-invariant and contains a vector w with q(w) > 0, then ~y|w has the same type
(elliptic, parabolic, or loxodromic) as ; in particular, W contains the y-invariant isotropic
lines if vy is parabolic or loxodromic.

Proof. The restriction ¢y is either a Minkowski form or is negative definite. Indeed, it cannot
be positive definite, because W would then be a I'-invariant line intersecting the hyperbolic
space H" in a fixed point; and it cannot be degenerate, since otherwise its kernel would give a
[-invariant point on 0H™. If ¢|y is a Minkowski form and I'|yy is elementary, then I" preserves
a finite subset of (H™ u 0H™) n W and T itself is elementary. This proves the first assertion.
The proof of the second one is similar. ([

Let T' be a non-elementary subgroup of Oim(R). Let Zar(I') < Oy,,(R) be the Zariski

closure of I', and G = Zar(T')'™ the identity component of Zar(I'), for the Zariski topology.
Note that the Lie group G(R) is not necessarily connected for the euclidean topology.

Lemma 2.7 (see [30], §4.1). The group I n G(R) has finite index in T. If Ty is a finite index
subgroup of T, then Zar(I'y)"™ = G.
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Proposition 2.8. Let ' OIW(R) be non-elementary.

(1) The representation of I nG(R) (resp. of G(R)) on RY™ splits as a direct sum of irreducible
representations, with exactly one irreducible factor of Minkowski type:

RY™ =V, @ Vp;

here V. is of Minkowski type, and Vy is an orthogonal sum of irreducible representations
Vo,j on which the quadratic form q is negative definite.

(2) The restriction G|y, coincides with SO(V,; qlv, ).

(3) The subspaces V. and Vy are I'-invariant, and the representation of I' on V. is strongly
irreducible.

Proof. A group I' is non-elementary if and only if any of its finite index subgroups is non-
elementary. So, we can apply Lemma tol' n G(R): if W < RY™ is a non-trivial (I N
G(R))-invariant subspace, q|y is non-degenerate. As a consequence, R>™ is the direct sum
W @ W+, where W is the orthogonal complement of W with respect to ¢. This implies that
the representation of I' n G(R)) on R'™ splits as a direct sum of irreducible representations,
with exactly one irreducible factor of Minkowski type, as asserted in (1).

The group G preserves this decomposition, and by Proposition 1 of [6], the restriction Gy,
coincides with SO(V,; q|v, ); this group is isomorphic to the almost simple group SOy 1(R),
with 1 + k& = dim(V.). This proves the second assertion.

Since G is normalized by I', we see that for any v € I', YV * is a G-invariant subspace of
the same dimension as V" and on which ¢ is of Minkowski type. Hence V, as well as its
orthogonal complement Vj are I'-invariant. By Lemma the action of I' on V. is strongly
irreducible; indeed, if a finite index subgroup I'g in I' preserves a non-trivial subspace of V.
then, by Zariski density of I'y n G(R) in G(R), this subspace must be V, itself. On Vp, I'
permutes the irreducible factors Vj ;. U

Now, set V = R and assume that there is a lattice Viz < V such that

(i) Vz is I'-invariant;
(i1) the quadratic form ¢ is an integral quadratic form on Vz.

In other words, there is a basis of V' with respect to which ¢ and the elements of I' are given
by matrices with integer coefficients. In particular, V' has a natural Q-structure, with V' (Q) =
Vz ®z Q. This situation naturally arises for the action of automorphisms of compact Kihler
surfaces on NS(X; R). The next lemma will be useful in [23].

Lemma 2.9. If T contains a parabolic element, the decomposition V.. @ Vy is defined over Q,
L|v; is a finite group, and G is the subgroup SO(V,; q) x {idy,} of O(V; q).

Proof. If v € T is parabolic, it fixes pointwise a unique isotropic line, therefore this line is
defined over Q. In addition it must be contained in V. because (7" (u))n>0 converges to the
boundary point determined by this line for every u € H™. So, V. contains at least one non-zero
element of Vz. Since the action of I" on V. is irreducible, the orbit of this vector generates V.
and is contained in Vz, so V, is defined over Q. Its orthogonal complement Vj is also defined
over Q, because g itself is defined over Q. As a consequence, I'|y;, preserves the lattice Vj N Vz
and the negative definite form g|y;; hence, it is finite. Thus G|y, is trivial and the last assertion
follows from the above mentioned equality G|y, = SO(V;q|v, ). O
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In [24], an example is given which shows that the existence of parabolic element is necessary
for Lemma[2.9]to hold.

2.3.3. The hyperbolic space Hx. Let X be a compact Kihler surface. By the Hodge index
theorem, the intersection form on H ! (X, R) has signature (1, 2"'(X) — 1). The hyperboloid
{ue H"'(X,R), {u|uy} = 1 has two connected components, one of which intersecting the
Kihler cone. By definition, this component is the hyperbolic space Hx; it is a model of H™,
for m = h1!(X) — 1. We denote by dy the hyperbolic distance: as before, cosh(dg(u, v)) =
(u|v). From Lemma [2.2] and Corollary 2.5| we see that if |-| is any norm on H*(X, C), then
1% = | (f*)7Y] = ko] | f*[Ko]) (here kg is the fixed Kéhler form introduced in Section.
According to the classification of isometries of hyperbolic spaces, there are three types of
automorphisms: elliptic, parabolic and loxodromic. An important fact for us is that the type of
isometry is related to the dynamics on X; for instance, every parabolic automorphism preserves
a genus 1 fibration, every loxodromic automorphism has positive topological entropy (see [21]).
A subgroup I' of Aut(X) is said to be non-elementary if its action on Hy is non-elementary.

2.3.4. Automorphisms and Néron-Severi groups. Let X be a compact Kéhler surface and I be
a non-elementary subgroup of Aut(X). Let I'; , be the image of I in GL(H"4(X; C)), and I'*

be its image in GL(H?(X; C)). If we combine Proposition [2.8| together with Lemma [2.1| for
I'f 1, we get an invariant decomposition

(2.6) H"(X;R) = H"(X;R); ® HY(X;R)o.

Denote by H?(X;R)o the direct sum of H!(X;R)o and of the real part of H%°(X;C) ®
H%2(X;C); then

2.7) H*(X;R) = HY'(X;R)y @ H*(X;R)o

and ™| H2(X;R), 1S contained in a compact group (see Lemma . The Néron-Severi group is

I'-invariant, and since X is projective it contains a vector with positive self-intersection. Then
Proposition [2.8]and Lemma [2.6]imply:

Proposition 2.10. Let X be a compact Kiihler surface and I' be a non-elementary subgroup of
Aut(X). Then H"'(X;R); = NS(X;R), is a Minkowski space, and the action of T on this
space is non-elementary and strongly irreducible.

Since non-elementary groups of isometries of H"* occur only for m > 2, we get:

Corollary 2.11. Under the assumptions of Proposition the Picard number p(X) is greater
than or equal to 3. If equality holds then NS(X;R)y = NS(X;R) and the action of T on
NS(X; R) is strongly irreducible.

From now on we set:
(2.8) IIr := HY(X;R); = NS(X;R),.
This is a Minkowski space on which I acts strongly irreducibly; the intersection form is negative
definite on the orthogonal complement H% c H“'(X;R). By Proposition (2), the group

G = Zar(I)™ satisfies G(R)|;. = SO(IIr). If T' contains a parabolic element, then Il
is rational with respect to the integral structures of NS(X;Z) and H?(X;Z), and G(R) =

SO(IIr) x {idp.} (see Lemma.
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2.3.5. Invariant algebraic curves I. Assume that I' is non-elementary and let C < X be an ir-
reducible algebraic curve with a finite I"-orbit. Then the action of I" on Vectz { f*[C]; f e I'} <
NS(X; Z) factors through a finite group. From Propositions [2.8] and we deduce that the
intersection form is negative definite on Vectz(I'* - [C]), thus Vectg (I'™* - [C]) is one of the
irreducible factors of NS(X, R)o. This argument, together with Grauert’s contraction theorem,
leads to the following result (we refer to [21,160] for a proof; the result holds more generally for
subgroups containing a loxodromic element):

Lemma 2.12. Let X be a compact Kdhler surface and I' be a non-elementary group of au-
tomorphisms on X. Then, there are at most finitely many 1'-periodic irreducible curves. The
intersection form is negative definite on the subspace of NS(X; Z) generated by the classes of
these curves. There is a compact complex analytic surface Xq and a I'-equivariant bimeromor-
phic morphism X — X that contracts these curves and is an isomorphism in their complement.

2.3.6. The limit set. LetT' c Aut(X) be non-elementary. The limit set of I" is the closed subset
Lim(T') « 0Hy < P (H"*(X;R)) defined by one of the following equivalent assertions:

(a) Lim(T") is the smallest, non-empty, closed, and I'-invariant subset of P(Hx);

(b) Lim(T") = dHx is the closure of the set of fixed points of loxodromic elements of T" in
OHlx;

(c) Lim(T") is the accumulation set of any T-orbit I'(P(v)) = P(H!(X;R)), for any
vé H%.

We refer to [58,[73]] for a study of such limit sets. From the second characterization we get:

Lemma 2.13. The limit set Lim(I") of a non-elementary group is contained in P(Ilr) n dHx.

From the third characterization, Lim(I") is contained in the closure of I'(P([x])) for every
Kihler form  on X. Since X must be projective, we can chose [+] in NS(X;Z). As a conse-
quence, Lim(T") is contained in Nef(X):

Lemma 2.14. Let X be a compact Kiihler surface. If T is a non-elementary subgroup of Aut(X)
its limit set satisfies Lim(I") < P(Nef(X)) < P(NS(X;R)).

2.4. Parabolic automorphisms. The facts collected here will be used in Section Let f be
a parabolic automorphism of a compact Kihler surface. Then f* preserves a unique point on
JHx, and f preserves a unique genus 1 fibration 7;: X — B onto some Riemann surface B; the
fixed point of f* on 0Hx is given by the class [F'] of any fiber of 7 ¢ (see [21]). The fibers of 7
are the elements of the linear system |F'|, 7s is uniquely determined by [F'], and if g is another
automorphism of X that preserves a smooth fiber of 7y (resp. the point P[F'] € PNS(X;R)),
then g preserves the fibration and is elliptic or parabolic.

Proposition 2.15. Let X be a compact Kihler surface and let f be a parabolic automorphism
of X, preserving the genus 1 fibration 7: X — B. Consider the group Aut(X;7) := {g €
Aut(X) ; g € Aut(B), T o g = gp o T}, and assume that the image of the homomorphism
g € Aut(X;7) — gp € Aut(B) is infinite. Then, X is a torus C?/A.

This result directly follows from the proof of Proposition 3.6 in [29]. In particular the auto-
morphism fp € Aut(B) such that 7o f = fpon has finite order when X is a K3, an Enriques,
or a rational surface.



14 SERGE CANTAT AND ROMAIN DUJARDIN

3. EXAMPLES AND CLASSIFICATION

Here, after a few remarks on the classification of surfaces admitting non-elementary groups
of automorphisms, we describe the main properties of Wehler examples, sufficient to derive the
Corollary of Section[I.3.2]from our main theorems. Further examples are described in [27].

3.1. Surfaces admitting non-elementary groups of automorphisms.

3.1.1. Minimal models. We refer to Theorem 10.1 of [21] for the following result:

Theorem 3.1. Let X be a compact Kdihler surface with a loxodromic automorphism. Either X
is a rational surface, and there is a birational morphismw: X — ]P%. Or the Kodaira dimension
of X is equal to 0, and there is an Aut(X)-equivariant bimeromorphic morphism w: X — X
such that X is a compact torus, a K3 surface, or an Enriques surface. In particular, h*>°(X)
equals 0 or 1.

Remark 3.2. If X is a torus or K3 surface, there is a holomorphic 2-form 2x on X that does
not vanish and satisfies { < Qx A Qx = 1. Itis unique up to multiplication by a complex number
of modulus 1. A consequence of utmost importance to us is that the volume form Qx A Qx
is Aut(X)-invariant. If X is an Enriques surface, and X — X is its universal cover, then X
is a K3 surface: the volume form Q¢ A Qij( determines an Aut(X)-invariant volume form on
X. So, if X is not rational, the dynamics of Aut(X) is conservative: it preserves a canonical
volume form determined by the complex structure of X. Furthermore, if Y < X is a totally
real surface invariant by some subgroup I' < Aut(X), the invariant volume form induces a
['-invariant volume form on Y (see [26, Rem. 2.3] for details). This holds in particular for
Y = X(R) when X is defined over R.

It follows from Theoremthat, in most cases, Aut(X) is countable (see [21, Rem. 3.3]):

Proposition 3.3. Ler X be a compact Kdhler surface. If Aut(X) contains a loxodromic element,
then the kernel of the homomorphism Aut(X) — Aut(X)* < GL(NS(X; Z)) is finite unless X
is a torus. So, if Aut(X) is non-elementary, then Aut(X) is discrete or X is a torus.

3.1.2. Projectivity. The next theorem is established in [27] (see also [24]).

Theorem 3.4. Let X be a compact Kdahler surface such that there exists a non-elementary
subgroup I' < Aut(X). Then X is projective.

3.2. Wehler surfaces (see [32, [76, 79, [80]). Consider the variety M = P! x P! x P! and
let 711, 72, and 73 be the projections on the first, second, and third factor: 7;(21, 22, 23) = z;.
Denote by L; the line bundle 7¥(O(1)) and set L = L2 ® L3 ® L3 = 7} (0(2)) @ 3 (0(2)) ®
5 (0(2)). Since Kp1 = O(—2), this line bundle L is the dual of the canonical bundle K ;. Let
X be an irreducible surface in the linear system |L| ~ P(H°(M, L)); using affine coordinates
(w1, 22,23) on M = P! x P! x P!, it is defined by a polynomial equation P(x1,z2,23) = 0
whose degree with respect to each variable is < 2 (see [[18, [71] for explicit examples). These
surfaces will be referred to as Wehler surfaces or (2,2,2)-surfaces; modulo Aut(M), they form
a family of dimension 17. Fix k € {1, 2, 3} and denote by 7 < j the other indices. If we project
X to P! x P! by mi; = (m;,mj), we get a 2 to 1 cover (but some fibers may be rational curves).
If X is smooth, it is a K3 surface and any birational self-map of X is an automorphism; in
particular, the involution o}, that permutes the two points in each (general) fiber of 7;; is an
involutive automorphism of X.
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Proposition 3.5. There is a countable union of proper Zariski closed subsets (W;)i=o in |L|
such that

(1) if X is an element of |L|\Wy, then X is a smooth K3 surface and X does not contain any
fiber of the projections m;;;

(2) if X is an element of |L|\(\J; W5), the restriction morphism Pic(M) — Pic(X) is surjec-
tive. In particular its Picard number is p(X) = 3.

See [32] for the proof of this proposition, as well as that of Lemma From the second
assertion, we deduce that for a very general X, Pic(X) is isomorphic to Pic(M): it is the free
Abelian group of rank 3, generated by the classes ¢; := [(L;)|x]. The elements of [(L;) x| are
the curves of X given by the equations z; = « for some o € P'. Their arithmetic genus is equal
to 1: the projection (7;)|x: X — P! is a genus 1 fibration. The intersection form is given by
c? = 0and (c;|cj;y = 2if i # j.

Lemma 3.6. Assume that X does not contain any fiber of the projection m;;. Then, the involution
o} preserves the subspace Zcy @ Zcy @ Zcs of NS(X;Z) and ojic; = ¢;, oj¢j = ¢j, opcp =
—ck + 2¢; + 2¢;. Equivalently, the action of o;; on Vectr(c1, co, c3) preserves the classes c¢; and
c; and acts as a reflection with respect to the hyperplane Vect(c;,c;) < NS(X;R). In other
words, setting uj, = (c1 + ca2 + ¢3) — 2¢k, o (v) = v+ %<v|uk>ukfor allvinZcy ®@Zcy @ Zcs.

We can now combine this lemma with the previous proposition to obtain:

Proposition 3.7. If X is a very general Wehler surface then:

(1) X is a smooth K3 surface with Picard number 3;

(2) Aut(X) is equal to {01,092, 03), it is a free product of three copies of Z/2Z, and Aut(X)*
is a finite index subgroup in the group of integral isometries of NS(X; Z);

(3) Aut(X)* acts strongly irreducibly on NS(X;R);

(4) Aut(X) does not preserve any algebraic curve D < X;

(5) the limit set of Aut(X)* is equal to 0H x;

(6) the compositions 0;00; and o; 0000y, are respectively parabolic and loxodromic for every
triple (i, 7, k) with {1, 5, k} = {1, 2, 3}.

Proof. The first three assertions follow from Proposition [3.5] [18, §1.5] and [32, Thm 3.6]. For
the fourth one, note that any invariant curve D would yield a non-trivial fixed point [D] in
NS(X; Z), contradicting assertion (3). The fifth one follows from the second because the limit
set of a lattice in Isom(NS(X; R)) is always equal to dHx. The last assertion follows from
explicit linear algebra calculations (see [18]]). U

4. GLOSSARY OF RANDOM DYNAMICS, I

We now initiate the random iteration by introducing a probability measure on Aut(X). In this
section we introduce a first set of ideas from the theory of random dynamical systems.

4.1. Random holomorphic dynamical systems. Let X be a compact Kéhler surface, such that
Aut(X) is non-elementary. Note that Aut(X) is locally compact for the topology of uniform
convergence —in many interesting cases it is actually discrete (see Proposition [3.3)— so it admits
a natural Borel structure. We fix some Riemannian structure on X, for instance the one induced
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by the Kihler form x¢. For f € Aut(X'), we denote by || f| -1 the maximum of || D f, | where the
norm of D fy: Ty M — T'y,)M is computed with respect to this Riemannian metric.

We consider a probability measure v on Aut(X) satisfying the moment condition (or inte-
grability condition)

@1 J (108 e ) + 108 £ gy ) () <+

The finiteness of the integral in (4.1) does not depend on our choice of Riemannian metric.
When the support of v is finite, the integrability (.1)), as well as stronger moment conditions
which will appear later (see Conditions (5.23) and (5.24)), are obviously satisfied.

Lemma 4.1. The measure v satisfies the moment condition (4.1)) if and only if, for all k > 1, it
satisfies the higher moment conditions

| (081 lor ) + 108 15w ) dvt) <

This lemma follows from the Cauchy estimates. In particular, if v satisfies (4.1)), then it
satisfies a similar moment condition for the C? norm, a property required to apply Pesin’s theory.

Given v, we shall consider independent, identically distributed sequences ( f;,)n>0 of random
automorphisms of X with distribution v, and study the dynamics of random compositions of the
form f,,_10--- o fy. The data (X, v) will be referred to as a random holomorphic dynamical
system on X . Many properties of (X, /) depend on the properties of the subgroup

4.2) ['=T, :=(Supp(v))

generated by the support of v in Aut(X). If T', is non-elementary, we say that (X, v) is non-
elementary.

4.2. Invariant and stationary measures. Let G be a topological group and v be a probability
measure on G. Consider a measurable action of G’ on some measurable space (M, .A). Every
f € G determines a push-forward operator . — f,u, acting on positive (resp. probability)
measures 4 on (M, A). By definition, a probability measure p on (M, A) is v-stationary if

@3) ff*u (f) =

and it is v-almost surely invariant if f,u = p for v-almost every f. Let us stress that we
only deal with probability measures in this definition. A stationary measure is ergodic if it is an
extremal point of the closed convex set of stationary measures (see [8, §2.1.3]). If w is almost
surely invariant then it is stationary. If M is compact, the action G x M — M is continuous, and
A is the Borel o-algebra, the Kakutani fixed point theorem implies the existence of at least one
stationary measure. On the other hand the existence of an invariant measure is a very restrictive
property (see Sections[I.2]and[5.3)). Following Furstenberg [51]] we say that an action is stiff (or
v-stiff) if any v-stationary measure is v-almost surely invariant.

We shall consider several measurable actions of Aut(X): its tautological action on X, but
also its action on the projectivized tangent bundle P(7'X'), on cohomology groups of X and
their projectivizations, on spaces of currents, etc. In all cases, M will be a locally compact
space and A its Borel o-algebra, which will be denoted by B(M).
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Remark 4.2. Since X is compact and the action Aut(X) x X — X is continuous, a probability
measure p on (X, B(X)) is v-almost surely invariant if and only if it is invariant under the action
of the closure of I',, in Aut(X); this follows from the dominated convergence theorem.

4.3. Random compositions. Set @ = Aut(X)N, endowed with its product topology. The
associated Borel o-algebra coincides with the product o-algebra and is generated by cylinders
(see § . We endow €2 with the product measure vN. For w € Q, we set f0 = id and for
n > 0 we denote by f the left composition of the n first terms of w, that is

4.4) fo = fn-10---0 fo.

In particular f1 = fo. Let us record for future reference the following consequence of the
Borel-Cantelli lemma. We denote by o: ) — () the unilateral shift.

Lemma 4.3. If (X, v) is a random dynamical system satisfying the moment condition {@.1)), then
for vN-almost every sequence w = (f,,) € 9,

1
— (log [ fuller +log | £ ) —2 0.

n—0o0

5. FURSTENBERG THEORY IN H (X R)

Consider a non-elementary random holomorphic dynamical system (X,») on a compact
Kihler surface, satisfying the moment condition (.1). In this section, we analyze the linear
action of (X, ) on H1 (X, R) by using the theory of random products of matrices. The books
by Bougerol and Lacroix [[13] and by Benoist and Quint [[8] are good references to this theory.

5.1. Moments and cohomology. Let M be a compact connected manifold of dimension m,
endowed with some Riemannian metric g. If f: M — M is a smooth map, | f||-: denotes the
maximum norm of its tangent action, computed with respect to g (see Sectiond.1)). Thus, f is a
Lipschitz map with Lip(f) = | f|: for the distance determined by g; in particular || f| > 1
whenever f is onto. Fix a norm |-| ;;x on each cohomology group H*(M;R.), for 0 < k < m.

Lemma 5.1. There is a constant C > 0, that depends only on M, g, and the norms || Tk
such that |f*[o]| e < CELip(f)¥|[a]| g for every class [a] € H*(M;R) and every map
f: M — M of class C*. In other words, the operator norm | f*| « is controlled by the
Lipschitz constant:

1F* ] e < C*Lip(£)* < C| f]%0.

Proof. Pick a basis of Hy(M;R) ~ H*(M;R)* given by smoothly immersed, compact, k-
dimensional manifolds ¢;: N; — M, and a basis of H¥(M;R) given by smooth k-forms Q;.
The integral § ~, 4 (f*a;) is bounded from above by Ck|f Hléq for some constant C, because

k

(51) |(f*a])m(v17 cee 7Uk)| = ‘aj(f*vh .. '7f*vk)‘ < CJHfHIél H ‘Uf‘g

{=1

for every x € M and every k-tuple of tangent vectors v, € T, M; here, c; is the supremum of
the norm of the multilinear map (o), over z € M. O
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If v is a probability measure on Diff (1) satisfying the moment condition (4.1]), then
62 visksm | log (s lge) +log (1)) (S < +eo
Diff(M)
If we specialize this to automorphisms of compact Kéhler surfaces we get
(5.3) J 10g (/1 gr1.1) +1og (|(F7)* [ ua) dv(f) < +oo,
Aut(X)

which is actually equivalent to (5.2) by Lemma We saw in that L g = | (f7H* ||H171 ,
so this last condition is in turn equivalent to

(5.4) f log (|f* 1) dv(f) < +o0.
Aut(X)

5.2. Cohomological Lyapunov exponent. Asin §[2.1.2] we denote by |-| anormon H!(X,R)
and by |-| the associated operator norm. The linear action induced by the random dynamical
system (X, v) on H'1 (X, R) defines a random product of matrices. Since the moment condi-
tion (5.4) is satisfied, we can define the upper Lyapunov exponent Aj1,1 (or Ag1,1(v)) by

55 e —ngrfoonjlog(ll(fw) i)
(5.6) ~ lim_ > log|(f2)°]

n—+w n

where the second equality holds almost surely, i.e. for vN-almost every w € €. This conver-
gence follows from Kingman’s subadditive ergodic theorem, since ||-|| being an operator norm,
(w,n) — log(||(f2)*|) defines a subadditive cocycle (see [8, Thm 4.28] or [13} Thm 1.4.1]).

Proposition 5.2. Let (X, v) be a non-elementary holomorphic dynamical system on a compact
Kiihler surface, satisfying the moment condition (.1)), or more generally (5.4). Then the coho-
mological Lyapunov exponent g1 is positive and the other Lyapunov exponents of the linear
action on HY (X, R) are — g1, with multiplicity 1, and 0, with multiplicity h*'(X) — 2.

Proof. Consider the I', -invariant decomposition Il (—BH#U given by Proposition and Equa-
tion (2.8)). Since the intersection form is negative definite on HL , the group I'} ‘HJ_ is bounded
and all Lyapunov exponents of F*|HL vanish. The linear action of I', on Il is strongly ir-

reducible and non-elementary, hence not relatively compact. Therefore Furstenberg’s theorem
asserts that Ag1,1 > 0 (see e.g. 13, Thm III.6.3] or [8, Cor 4.32]). The remaining proper-
ties of the Lyapunov spectrum on Il follow from the KAK decomposition in Ofm(R), with
1 +m = dim(Ilr, ) (see Lemma 2.4). O

Lemma 5.3. Ifa € HY'(X;R) satisfies a*> > 0, for instance if a is a Kéhler class, then
) 1
Jim —log|(f5) al = A
for vN-almost every w.

Proof. Corollary [2.5]implies that if a € H then for every f € Aut(X), |f*a| = | f*|, where
the implied constants depend only on a. Thus the result follows from Equation (5.6). U
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If the order of compositions is reversed (which is less natural from the point of view of iterated
pull-backs), then Lemmaindeed holds for any a in Il (see [13} Cor. I11.3.4.i]):

Lemma 5.4. For any a € I\ {0} and for vN-almost every w = (fy)n=0 € 2 we have

. 1
Jim log| £ fal = A
5.3. The measure 1. By Furstenberg’s theory the linear projective action of the random dy-
namical system (X,v) on PIIp, ¢ PH ' (X;R) admits a unique stationary measure upri,. ;
this measure does not charge any proper projective subspace of PIIr, . Recall that the mass of a

class a is defined by M(a) = {a|[ro]) (see § 2.2).

Lemma 5.5. For vN-almost every w, there exists a unique nef class e(w) such that M(e(w)) = 1
and

6.7

(/M) — e(w)

M((f5)*a) %"~ now

for any pseudo-effective class a with a*> > 0 (in particular for any Kdihler class). In addition,

the class e(w) is almost surely isotropic and P(e(w)) is a point of the limit set Lim(T",,)) < dHy.

Before starting the proof, note that '} 1. is proximal in the sense of [8, §4.1]; equivalently,
F,"j|HFV is contracting in the sense of [13 Def III.1.3]. In other words, there are sequences of

elements g, € I',, such that || g* [~ gn 1y, converges to a matrix of rank 1: for instance one can
take g, = f", where f € ', is any loxodromic automorphism.

Proof. For f € Aut(X), we use the notation f* for its action on PH}(X; R). Since the action
of T', on IIr, is strongly irreducible and proximal, its projective action satisfies the following
contraction property (see [13} Thm III.3.1]): there is a measurable map w € Q — e(w) € PIlp,
such that for almost every w, any cluster value L(w) of

1
5.8 L pELLLfE
69 HfS‘---fifoo n

in End(Ilr, ) is an endomorphism of rank 1 whose range is equal to Re(w).

Let e(w) be the unique vector of mass 1 in the line Re(w). If a € Ip, satisfies a®> >

0 and M(a) > 0, then any cluster value of M((f*)*a)~(f?)*a must coincide with e(w)
because by Corollary[2.5|the mass M((f)*a) is comparable to the norm || f§ - - - f¥||. Thus, the
convergence is satisfied. Furthermore e(w) is nef, because we can apply this convergence
to a nef class a and Aut(X) preserves the nef cone. Also, e(w) belongs to Lim(I",), hence it is
isotropic. Now, let a and @’ be two classes of Hy with a € Il . Since the hyperbolic distance
between (f*)*(a) and (f)*(a’) remains constant and the convergence holds for a, it
also holds for a’. This concludes the proof, for every class with positive self-intersection is
proportional to a unique class in Hx. (]

Here is a summary of the properties of the stationary measure ppryy. ; from now on, we view
it as a measure on PH ! (X; R) and rename it as y5 because it is supported on 0H x.

Theorem 5.6. The probability measure defined on PH'(X; R) by

(5.9) o = Jéﬂ”(e(w)) dv™ (w)
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is v-stationary and ergodic. It is the unique stationary measure on PHV(X;R) such that
po(P(If ) = 0. The measure g has no atoms and is supported on Lim(T',,); in particular, if
A < Lim(T,) is such that pa(A') > 0 then A is uncountable.

The top Lyapunov exponent satisfies the so-called Furstenberg formula:

(5.10) Agii = flog (’J;ﬂ?’> dv(f) dus(u),

where @ € H'(X,R)\ {0} denotes any lift of u € Lim(T',) c PHY (X, R).

Proof. The ergodicity of 115 = pipr;., as well as its representation (5.9) follow from the proper-
ties of the action of I'), on P(IIr) (see [[13, Chap. III]). Also, we know that A1,1 is equal to the
top Lyapunov exponent of the restriction of the action to P(Il, ), so the formula follows
from the strongly irreducible case (see [[13, Cor I11.3.4]).

Let now / be a stationary measure on PH 51 (X; R) such that ,u(IP’H%U) = 0. A martingale
convergence argument shows that ( S7)*p converges to some measure f, for almost every w
(see [13| Lem. I1.2.1]). Since I, preserves the decomposition I, & HI%V and [ (f2)*| tends to
infinity while || (f)* |H% || stays uniformly bounded, we get that ( f*)*u converges to PII,, for
p-almost every u and N -almost every w; thus i, is almost surely supported on PIIr,. Since by
stationarity p = § y1,,dv™N (w) we conclude that  gives full mass to P(II, ), hence 1 = pp. O

Remark 5.7. If Supp(v) generates I, as a semi-group, then Supp(uo) = Lim(T', ), otherwise
the inclusion can be strict: take a Schottky group I' = (f, g) < PSL(2,R) and v = (§¢ + d,)/2.

Remark 5.8. Since Lim(I",) < Psef(X), for every u € Lim(T",) there exists a unique @ such
that P4 = w and (@ | [ko]) = M(@) = 1. Then the following formula holds:

. M(f*u
GAD A = [log (M) dv(f) dialu) = [ 1og <1\§fu))) v (f) dpia(w).
Indeed set r(w) = M(w)/ |w|. On the limit set this function satisfies 1/C < r(a) < C, where
C is the positive constant from Equation (2.4)). Then, for all m > 1,the stationarity of 1, implies

[10n <’“(f *a)) () dnatu) = [10g (f(f”% - fot) ) A (fn) -~ di(fo) dpou).

r(i) (f1 - 130)
Summing from m = 0 to n — 1, telescoping the sum, and dividing by n gives
r(f*a) 1 f r(fao1--- fou)

1 d d =—11 —— ] d ~1)---d d .
[roe (") dnthy ot = - 1o (LI a0 ) det
Finally since 1/C' < r < C, the right hand side tends to zero as n — oo. Hence the integral of
log(r o f*/r) vanishes, and (5.11)) follows from Furstenberg’s formula. O

Proposition 5.9. The point P(e(w)) is vN-almost surely extremal in P(Kah(X)) and in P(Psef(X)).

Proof. The class e(w) almost surely belongs to Kah(X ) and to the isotropic cone. By the Hodge
index theorem —more precisely, by the case of equality in the reverse Schwarz Inequality (2.5)—
e(w) cannot be a non-trivial convex combination of classes with non-negative intersection and
mass 1; so P(e(w)) is an extremal point of the convex set P(Kah(X)) c PH(X;R).

From Proposition there are at most countably many points P(u) in P(Kah (X)) such that
u? = 0 and P(u) is not extremal in P(Psef(X)). Therefore the second assertion follows from
the fact that pp is atomless. U



RANDOM DYNAMICS ON COMPLEX SURFACES 21

5.4. Some estimates for random products of matrices. The aim of this section is to establish
some technical facts which will play a crucial role in our study of the closed positive currents
T3 in Section[6] The key results are Theorem and Lemma [5.12]

5.4.1. Sequences of good times. Let us describe a theorem of Gouézel and Karlsson, specialized
to our context. Fix a point ey in Hx, for instance ey = [r¢] with k¢ a fixed Kéhler form, as in
Section[2.2] Consider the two functions of (n,w) € N x €2 defined by

(5.12) T(n,w) = duleo, (f5)*e0), N(n,w)=Ilog|(f5)].
They satisfy the subadditive cocycle property
(5.13) a(n +m,w) < a(n,w) + a(m, o™ (w)),

where o is the unilateral shift on Q (see § 4.3). Let a(n,w) be such a subadditive cocycle; if
a(1,w) is integrable the asymptotic average is defined to be the limit

o1 N
(5.14) A= nl_l)I}_lOC - fa(n,w) dv (w);
it exists in [—00, +00), and we say it is finite if A # —co. From Theorem Remark and
Corollary the asymptotic average of the cocycles T" and N are both equal to Ag1,1.
Following [53], we say that a subadditive cocycle a(n,w) is tight along the sequence of
positive integers (n;) if there is a sequence of real numbers (d;) = (d¢(w))e=o such that

(1) &y converges to 0 as £ goes to +00;
(ii) for every 4, and for every 0 < £ < n;, |a(n;, w) — a(n; — £, 0% (w)) — Al| < €8y;
(iii) for every i and for every 0 < ¢ < n;, a(n;,w) — a(n; — L,w) = (A — §y)L.

Theorem 5.10 (Gouézel and Karlsson [53]). Let a(n,w) be an ergodic subadditive cocycle, with
a finite asymptotic average A. Then, for almost every w, the cocycle is tight along a subsequence
(ni(w)) of positive upper density.

Recall that the (asymptotic) upper density of a subset S of N is the non-negative number
defined by dens(S) = limsup,_,,,, (3|5 n [0,k — 1]|). A sequence (n;);>o is said to have

positive upper density if the set of its values S = {n; ; i > 0} satisfies dens(.S) > 0.

Proof. Let us explain how this result follows from [53]]. First, fix a small positive real number
p > 0, and apply Theorem 1.1 and Remark 1.2 of [53] to get a set {2, of measure 1 — p such
that the first two properties (i) and (ii) are satisfied for every w € {2, with respect to a sequence
(0¢) that does not depend on w, and for a sequence of times (n;(w)) of upper density = 1 — p.
To get (iii), we apply Lemma 2.3 of [53] to the sub-additive cocycle a(n,w) (not to the cocycle
b(n,w) = a(n,oc ™(w)) as done in [53]). For every £ > 0, there is a subset Q. < Q and a
sequence (dy)/>0 such that

(a) YN(QL) > 1 — ¢, and & converges towards 0 as £ goes to +00;
(b) for every w € 2L, there is a set of bad times B(w) — N such that for every & > 0
|B(w) n [0,k — 1]| < €k, and for every n ¢ B(w) and every 0 < ¢ < n,

a(n,w) —a(n —liw) = (A — 5))L.

If w belongs to ©2, N €L, the set of indices 7 for which n;(w) ¢ B(w) is infinite. More precisely,
the set S(w) = {n;(w) ; nj(w) ¢ B(w)} has asymptotic upper density > 1 — p — . Along
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this subsequence, the three properties (i), (ii), and (iii) are satisfied. Since this holds for all
w € Q. N Q, and the measure of this set is > 1 — p — ¢, this holds for vN-almost every w. [

Corollary 5.11. For vN-almost every w € Aut(X )N, there is an increasing sequence of integers
(ni(w)) going to +0 and a real number A(w) such that

ni(w) H f] H ni(w) \ £ w> J) H
> oy <4 Z < Aw)
j=0 H RN ” j=0 H

for all indices i = 0.

Proof. Apply Theorem to the subadditive cocyle N (n,w) and note that

U ) e
(5.15) 1 = A1 =00)
S ety & 1T - & e < L
which is bounded as n;(w) — oo. The second estimate is similar. O

5.4.2. A mass estimate for pull-backs. Assume that (X, ) is non-elementary and satisfies the
condition (#.1)). Recall from Lemma [5.4] that M((f?)*a)~'(f")*a converges to the pseudo-
effective class e(w) for almost every w and every Kihler class a. Thus, on a set of total »N-
measure, this convergence holds for all 0% (w), k > 0. Since M(e(w)) = 1, we obtain

(5.16) foelow) = M(fge(ow))e(w);

more generally, for every k£ > 1

(5.17) (f5)*e(o"w) = M((f5)*e(0"w))e(w).

Lemma 5.12. For vN-almost every w, we have +log M((f2)*e(o™w)) — Agu.1.

n—0o0
This does not follow from Lemma because e(c"w) depends on n.

Proof. For almost every w, for every k > 1, and for every Kihler class a, e(o*

M(ff - fr_qja)~ fF - fF_ja asn goes to +00. So

18 fie fielotW) = (Lﬂgo Mﬁﬁk — : i) e(w) = C(k,w)e(w)

where ((k, w) is both equal to M((f¥)*e(o%(w))) and to the limit

w) is the limit of

(5.19) ¢(k,w) = lim (f?k : ST —((fw) a)
n—o M(fF - 1a) n=e M((f, ok () " )*a)
We want to show that, vN-almost surely, (1/k) log ¢(k,w) converges to Ag1.1.
Before starting the proof, note that ¢ is a multiplicative cocycle: ((k,w) = H];:l ¢(1,0w);
in particular, log {(k,w) is equal to the Birkhoff sum Z?:l log (1, 0%w). Since

(5.20) CH o g < M(fFe(o(w))) < Clf5 s

our moment condition shows that log({(1,w)) is integrable. So, by the ergodic theorem of
Birkhoff, limy, % log ¢ (k,w) exists vN-almost surely.
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Pick a sequence (n;) of good times for w, as in Theorem If we compute the limit in
Equation (5.19) along the subsequence (n;) we see that (k,w) = Cexp((Ag1,1 — d(k))k) for
some constant C' > 0, and some sequence (k) converging to 0 as k goes to +c0. This gives

1
(5.21) limsup — log ((k,w) = Ag1.
k—+c0 k
Now, consider the linear cocycle T : Q x H!(X,R) — Q x H!'(X,R) defined by
(5.22) T(w,u) = (o(w), (f2)xu)

and let PY be the associated projective cocycle on Q x PHY!(X,R). The Lyapunov expo-
nents of Y are +Az1.1, each with multiplicity 1, and 0, with multiplicity 2 (X) — 2. Since
P((f))*e(o(w))) = P(e(w)), the measurable section {(w,P(e(w))) ; w € Q} is PY-invariant.
Therefore, by ergodicity of o with respect to v™N, m = Sép(e(w)) dvN(w) defines an invariant
and ergodic measure for PY. It follows from the invariance of the decomposition into character-
istic subspaces in Oseledets’ theorem that e(w) is contained in a given characteristic subspace
of the cocycle T; thus, if A denotes the Lyapunov exponent of T in that characteristic subspace,
we get (as in Remark [5.8) that

_ |(fd)su| _ M((f5)«(e(w)) _ -
A= Jlog ] dm(w,u) = logW dvN(w) = flogC(l,w) LN (w)

(see Ledrappier [64, §1.5]). Birkhoff’s ergodic theorem implies that limy, % log ((k,w) = =\,
with A € {£ 1.1, 0}, therefore the Inequality (5.21)) concludes the proof. (]

5.4.3. Exponential moments. The result of this section will only be used in Theorem [6.16] so
this paragraph may be skipped on a first reading. Consider the exponential moment condition

(5.23) Ir > 0, f(mc1 + )" dv(f) < +o0.
As in Section this upper bound implies the cohomological moment condition
(5.24) ir >0, J(|f*H1,1 ] )" dv(f) < +oo.

Proposition 5.13. Assume that v satisfies the Condition (5.23). Let D: Aut(X) — Ry be a
measurable function such that § D(f)™ dv(f) < oo for some 7' > 0. Then, there is a measurable
function B: Q0 — R satisfying

f log™ (B(w)) dvN(w) < o

such that for vN-almost every w = (f,,) and everyn = 0

n—1 * - R
IS B P e S )
pu] R a Sy

This is a refined version of Corollary

Proof. We are grateful to Sébastien Gouézel for explaining this argument to us. We temporarily
use the notation PP(-) for probability with respect to ™ or v (instead of projectivisation).

ny*'“f:—IH < B(w).

First Estimate.— We start with the first estimate: >}7~ 1 D(f; —1)m R
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Step 1.— For every 0 < ¢ < Ag1,1 there exists constants ¢, C' > 0 such that
(5.25) P(|(f2)*b|] <€) < Ce™ .

for every b € Il with |b| = 1. This large deviation result, which is uniform in n and b, follows
from condition (5.24) (see for instance [13, §V.6], and [8] §12]).

Step 2.— Let us prove that

(5.26) P (W > e_aj> < Ce .
[ fxal
For this, fix f;,..., fn—1. Then, thereis a point a € IIp with |a| = 1 such that ’ [ fae 1H =
FERER la‘ Hence, if | fg - fi | < |fF--- fr_y]e™, we infer that
(5.27) |f6k“‘ ;‘_1a| < Hf;‘ :_IHGEJ = |f]’F :_1a|eej

Thus, if we set

1
(5.28) = *—f* faoaa,
|5 - Faaal ™
we obtain that ]*_1b’ < €%, this happens with (conditional) probability < Ce~% (rela-
tive to v/*/), for the uniform constants given in Step 1. Averaging over fjr--+y fn_1, we get the
result.

Step 3.— The moment condition satisfied by D and Markov’s inequality imply P(D > K) <
C’lK*T/ for some constant C'; > 0. Fix € € R small with respect to Ay1.1 and 7'. Then, on a
set (e, J) of measure

(5.29) YN, J)) = 1 — Cye”ETRT 4 gmeedy,
for some Cy = C3(¢) > 0, we have both D(f;_1) < e/? and M <e I forallj > J.
0 n—1
Forw = (fy) in Q(e, J), we get
n—1 * J *
j=1 ”fO 1” HfO 1“ j=J+1

J
< z D(fj_1>H<f;_ﬁ>* S

= +2Hfou I

The moment condition (5.23) gives P(| f*| > K ) < C4K ™7 and as already noticed, we also
have P(D(f) > K) < C1K~". So, with = min(7, 7'), there is a set of probability at least
1 — C5JK~" on which

(5.31) Z DS 5] < CoT K72,
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Taking K = J3/”, we have JK " = J2, and we obtain
J—1

(532) P <Z DI £ > J1+3<J+2>/”> <CrJ 2
j=0

Also, note that J1TG/+6)/1 < exp (CJ3/2).

By the Borel-Cantelli lemma, the sum in (5.30)) is almost surely bounded by some constant
B(w) which satisfies P’ (log B > J3/2) < CJ~?;in particular E (log™ B) < 0.

Second Estimate.— To obtain the second estimate of Proposition we apply the above
proof to the reversed random dynamical system, induced by © : f — v(f~!). Indeed, the core
of the argument is the inequality (5.30) which is not sensitive to the order of compositions. [J

6. LIMIT CURRENTS

In this section, we establish the counterpart of the convergence at the level of closed
positive currents on X . Throughout this section we fix a non-elementary random holomorphic
dynamical system (X, v) satisfying the moment condition (4.1)), so that all results of §5|apply.
We refer the reader to [38] and [56] (in particular Chapter 8) for basics on pluripotential theory.

6.1. Potentials and cohomology classes of positive closed currents. Let us fix once and for
all a family of Kihler forms (k;)1<;<p1.1(x) such that [x;]* = 1 and the [r;] form a basis of
HY1(X;R); in addition we require that the x; satisfy

(6.1) Ko = BZM

for some 8 > 0, where kg is the Kdhler form chosen in Section (note that necessarily
B < 1). We also fix a smooth volume form volx on X, normalized by {  vol = 1. On tori, K3
and Enriques surfaces, we choose vol x to be the canonical Aut(X )-invariant volume form (see
Remark [3.2)). It is convenient to assume in all cases that volx is also the volume form associated
with the Kéhler metric ¢ (up to scaling).

Unless otherwise specified, the currents we shall consider will be of type (1,1). The action
of a current T on a test form ¢ will be denoted by (T', ) or { T' A . If T'is closed, we denote
its cohomology class by [T]; so, if ¢ is a closed form, (T, ¢) = {[T']|[¢]). By definition the
mass of a current is the quantity M(T") = (T A ro; so M(T) = {[T]|[ro]) when T is closed.

6.1.1. Normalized potentials. If a is an element of H"'(X; R)), we denote by (c;i(a))1<i<pr1 (x)
its coordinates in the basis ([~;]), so that a = ), ¢;(a)[x;]. Then, we set

(6.2) O(a) = Z ci(a)k;.

1
Likewise, given a closed (1, 1)-form « or a closed current of bidegree (1,1), we set ¢;(a) =
¢i([a]) and ©(a) = O([a]); hence, [©(a)] = [«]. It is worth keeping in mind that some
coefficients ¢;(«) can be negative and ©(«) need not be semi-positive, even if « is a Kéhler
form. If T'is a closed positive current of bidegree (1, 1) on X we define its normalized potential
to be the unique function ur € L'(X) such that

©63) T — O(T) + dd*(ur) and J wp vol = 0
X
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(see [156) §8.1]). The function uy is locally given as the difference v — w of a psh potential v of
T and a smooth potential w of ©(T").

Lemma 6.1. There is a constant A > 0 such that the following properties are satisfied for every
closed positive current T of mass 1

(1) —A<¢(T) < Aforalll <i<hb(X), and —Arg < O(T) < Arp.
(2) the function ur is (Ako)-psh: dd°(ur) + Ak is a positive current.

Proof. Since the coefficients 7' — ¢;(T") are continuous functions on the space of currents and
closed positive currents of mass 1 form a compact set K, the functions |¢;| are bounded by
some uniform constant A’ on K. Setting A = A’S~!, with 3 as in Equation (6.1)), we get
—Ako < O(T) < Akp forall T € K. Then dd°ur =T — O(T') = —Akp and (2) follows. [

Corollary 6.2. The set of potentials {up | T is a closed positive current of mass 1 on X} is a
compact subset of L' (X ; vol).

Proof. Since this is a set of (Ak)-psh functions which are normalized with respect to a smooth
volume form, the result follows from Proposition 8.5 and Remark 8.6 in [56]. |

Remark 6.3. Another usual normalization is sup,.x ur(z) = 0; by compactness this only
changes ur by some uniformly bounded constant. Since many of our dynamical examples
preserve a natural volume form it is more convenient for us to normalize as in (6.3).

6.1.2. The diameter of a pseudo-effective class. For a class a € Psef(X) we define
(6.4) Cur(a) = {T"; T'is a closed positive current with [T'] = a},
This is a compact convex subset of the space of currents. If S and 7" are two elements of Cur(a),
then ©(S) = O(T) = O(a) and T — S = dd*(ur — ug). We set
(6.5) dist(S,T) = f |lus — up|vol .
b'e

This is a distance that metrizes the weak topology on Cur(a): this follows for instance from the
fact that by Corollary 6.2 (Cur(a), dist) is compact. By definition, the diameter of a is

(6.6) Diam(a) = Diam(Cur(a)) = sup{dist(S,T) ; S, T'in Cur(a)},
If a € Psef(X), then Diam(a) is a non-negative real number which is finite by Corollary
If Cur(a) = &, we set Diam(a) = —oo. Note that Diam is homogeneous of degree 1:

Diam(ta) = t Diam(a) for every a € Psef(X) and ¢ > 0.

Lemma 6.4. On Psef(X), a — Diam(a) is upper semi-continuous, hence measurable.

Proof. Let (ay) be a sequence of pseudo-effective classes converging to a. For every n we
choose a pair of currents (S, 7},) in Cur(a,)? such that dist(S,,T;,) = Diam(a,) — 1/n.
The masses of .S, and T;, are uniformly bounded because they depend only on a,. By Corol-
lary we can extract a subsequence such that .S, and 7}, converge towards closed positive
currents S, T' € Cur(a), and ug, and ug, converge towards their respective potentials ug and
wp in L'(X, vol). Then, dist(S,T) = { |ug — ur|vol = limy, dist(Sy, T},), which shows that
Diam(a) > limsup,, (Diam(ay)). O

6.2. Action of Aut(X).
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6.2.1. A volume estimate. Let X be a compact, complex manifold, and let vol be a C°-volume
form on X with vol(X) = 1. If f is an automorphism of X, let Jac(f): X — R denote its
Jacobian determinant with respect to the volume form vol: f*vol = Jac(f)vol. The following
lemma is a variation on well-known ideas in holomorphic dynamics (see for instance [55]]).

Lemma 6.5. Let k be a hermitian form on X. Let h be a k-psh function on X such that
SX hvol = 0, and let | be an automorphism of X. Then,

JX |ho f| vol < C’log(CHJac(fﬁl)Hoo)

for some positive constant C' that depends on (X, k) but neither on f nor on h.

Proof. We first observe that there is a constant ¢ > 0 such that vol{|h| > ¢t} < cexp(—t/c); this
follows from Lemma 8.10 and Theorem 8.11 in [56]], together with Chebychev’s inequality (see
Remark [6.3] for the normalization). Then, we get

(6.7) f|hof|vo| = fovol{hof|>t}dt
X 0

f:o vol(f~H|h| = t})dt

N

JS vol(X)dt + HJac(f_l)Hoo foo cexp(—t/c)dt
0

S

(6.8) svol(X) + HJac(f_l)HOO02 exp(—s/c)

A

where the inequality in the third line follows from the change of variable formula. Now, we
minimize (6-8) by choosing s = clog(c|Jac(f~) Hoo/voI(X)) and we infer that

c|Jac(f~1
(6.9) JX |h o f|vol < cvol(X) <1 + log <W®>> '

Since the total volume is invariant, |Jac(f)|,, = 1, and the asserted estimate follows. O

6.2.2. Equivariance. Let us come back to the study of (X,v). If f is an automorphism of
X, then f*Cur(a) = Cur(f*(a)) for every class a € HY'(X,R). If a € Psef(X) and
T € Cur(a), then T' = O(a) + dd°(ur) and

(6.10) [T = f*6(a) + dd°(ur o f) = O(f*a) + dd“(usxgq) + ur © f).

This shows that the normalized potential of f*T is given by

(6.11) UfxT = UfxQ(q) T UT O f+E(f,T)

where E(f,T) € R is the constant for which the integral of u ¢+ vanishes; since u 7%0(a) has
mean 0, we get

(6.12) E(f,T) = —f (uf*@(a) —i—uTof) vol = —f up o fvol.
X b's

Remark 6.6. If vol is f-invariant, for instance if it is the canonical volume on a K3 or Enriques
surface, then E(f,T) = 0, which simplifies a little bit the analysis of the potentials below.
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Lemma 6.7. On the set of closed positive currents of mass 1, the function (f,T) — E(f,T)
satisfies

|E(f,T)| < Clog (C|[Jac(f1)].,)

where the implied positive constant C' depends neither on f noronT.

Proof. From Lemma|6.1] the potentials up are uniformly (Axg)-psh, so the conclusion follows
from Equation (6.12) and Lemmal6.5] O

Lemma 6.8. There exists a constant C such that if a is any pseudo-effective class of mass 1,
and f is any automorphism of X, then

Diam(f*a) < C'log (C’HJac(f_l)Hoo) .
Proof. Indeed, if S and T belong to Cur(a), by Equation (6.11) we have upsr — upsg =
(ur —us)o f+ E(f,T) = E(f,5). s0
(6.13) dist(f*T, f*S) < JuT o f] vol + j|us o f|lvol + |E(f,T)| + |E(f,S)|;
and the result follows from Lemmas|[6.5)and[6.7} since ug and uy are uniformly (Arg)-psh. O

6.2.3. An estimate for canonical potentials.

Lemma 6.9. For any Kdhler form k on X there exists a positive constant C'(k) such that for
every f € Aut(X),
2
lupen|cn < C)fllen
In addition C (k) < C'|k|,, where ||, is the sup norm of the coefficients of r in a system of
coordinate charts, and C' depends only on X (and the choice of these coordinate charts).

Recall the choice of Kihler forms (x;) from §[6.1]and the definition of O(-) from §

Corollary 6.10. If k = Y. c¢;k; in Lemma then the constant C(k) satisfies C(k) <
C"M(k). Likewise, uf*@(a)Hcl < C"M(a)||f|cn for all a € Psef(X).

Indeed C(r) < C'||k],, < C" Y leil and upxgq) = X ci(a)upsy, .

Proof of Lemma[6.9] By definition f*x — ©(f*k) = dd° (uy#,). The desired estimate will be
obtained by constructing a solution ¢ to the equation

(6.14) dd°¢ = f*rk — O(f*k)

which satisfies @1 < CHfH%l. Then, since u s+, and ¢ differ by a constant and w+, is
known to vanish at some point, it follows that u s« satisfies the same estimate. To construct
the potential ¢, we follow the method of Dinh and Sibony [39, Prop. 2.1] which is itself based
on [L1]] (we keep the notation from [39]). Let o be a closed (2, 2)-form on X x X which is
cohomologous to the diagonal A. In [11], Bost, Gillet and Soulé construct an explicit (1, 1)-
form K on X x X such that dd°K = [A] — «; they refer to it as the “Green current”. It is C*
outside the diagonal, and along A, it satisfies the estimates

1 — 1 —
(6.15) K(z,y) =0 (W) and VK (z,y) = O (W)
|z —y| |z —y|
(here we mean that these estimates hold for the coefficients of K and V K in local coordinates).
These estimates are easily deduced from the explicit expression of K as 7, (pn — ) given in the
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proof of Proposition 2.1 of [39], where 7 : X x X - X x X is the blow-up of the diagonal,
n and 8 are smooth (1,1) forms on X x X and @ is a function with logarithmic singularities
along the proper transform of A in X x X. It is shown in [39, Prop. 2.1] that a solution to
Equation is given by

(6.16) ox) = K(z,y) » (f*5(y) — O(fK)(y))
yeX

(in the notation of [39], f*~ and ©(f*k) correspond to Q1 and Q~ respectively). The co-
efficients of the smooth (1,1)-forms f*x and ©(f*x) have their uniform norms bounded by
C| f|%:, where C = C(r) < C"|].. The first estimate in implies that the coefficients of
K belong to L}, for p < 2, so it follows from the Holder inequality that | ¢[| -0 < C”[k|, Hf”%l
(for some constant C” depending only on X). A similar estimate for V¢ is obtained from
derivation under the integral sign and the fact that VK € L? for p < 4/3. This concludes the
proof. (]

6.3. Convergence and extremality.

Theorem 6.11. Let (X, v) be a non-elementary random holomorphic dynamical system on a
compact Kihler surface X, satisfying the moment condition @.1). Then for pa-almost every
point a € Lim(T"), the following properties hold:

(1) there is a unique nef and isotropic class a € H''(X;R) of mass 1 with P(a) = a;
(2) the convex set Cur(a) is a singleton {T,};
(3) the class a is an extremal point of P(Kah(X)) and of P(Psef(X));

(4) the current T is extremal in the convex set of closed positive currents of mass 1.

With Lemma 5.5)and Equation (5.9), this theorem gives the first and second assertions of the
following corollary; the third one follows from the first and the equivariance relation (5.16).

Corollary 6.12. The following properties are satisfied for vN-almost every w:

(1) there exists a unique closed positive current TS in the cohomology class e(w);
(2) for every Kdhler form k,

1
——(f] — T7.
M) )
(3) the currents T satisfy the equivariance property
S M((fw)*TUS(UJ)) s S S
(fw)*TO'(w) = WTN = M((fw)*To'(w))Tw

Proof of Theorem|[6.11] The first and third properties were already established, respectively in
Lemma [2.13] and [2.14] and Proposition [5.9] Property (4) follows from (2) and (3). It remains
to prove (2). For this, we denote by f* the projective action of f* on PH'!(X;R). For
a € Lim(T"), let us set diam (a) = Diam(a), where a is the unique pseudo-effective class of
mass 1 such that P(a) = g; this defines a measurable function on Lim(T'), by Lemma[6.4] Our
purpose is to show that diam (a) = 0 for p-almost every a. The stationarity of 1, reads

(6.17) | diomn @) dne @) = [ [ diam (7% @) v F)do @)
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and iterating this relation gives

(6.18) Jdiam (a) dug (a) = Jdiam (i: e f (Q)) dv(fy)---dv(fn)dus (a)

(notice the order of compositions chosen here). Since the diameter is upper-semicontinuous it is
uniformly bounded on Lim(I"). So, if we prove that

(6.19) lim_diam(f*--- f*(a)) =0

n—-+0o0

for vN-almost every (f,,) and every a, then we can apply the dominated convergence theorem
to infer that diam (a) = 0 pp-almost surely. To derive the convergence (6.19), note that

_ Diam (fy--- f{a)
- M(fi- fa)

because Diam is homogeneous. Applying Lemma [6.8] and the multiplicativity of the Jacobian
we get that

(6.20) diam (ﬁ; Sy (@))

— —1 —
Clog (CHJaC(fl o0 fn) 1”00) < CZ;‘LO log “fz chl
M (f5 - fia) M(f5 -+ ffa)
We conclude with two remarks. Firstly, the moment condition (4.1)) implies that the sequence

% 2?;01 log H f;l H o1 is almost surely bou;llded. Secondly, Lemma shows that MI(f - - f{fa)

6:21) diam (f*-+ /7 (a)) <

goes exponentially fast to infinity for v -almost every w = (f,,) (this is where the order of
compositions matters). Thus diam oo f (a)) — 0 almost surely, and we are done. O

Remark 6.13. The uniqueness of 7 in its cohomology class implies that 7;, depends measur-
ably on a. Indeed there is a set £ < Lim(I") of full measure along which the map a — T, is
continuous (recall that the space Cury(X) of positive closed currents of mass 1 on X is a com-
pact metrizable space). This implies that @ — Ty, is a measurable map from Lim(I"), endowed
with the pg-completion of the Borel o-algebra, to Cur; (X ), endowed with its Borel o-algebra.

6.4. Continuous potentials. We now study the limit currents 7;5 introduced in Corollary [6.12]

Theorem 6.14. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kdhler surface X, satisfying the moment condition @1)). Then for vN-almost every w
the current T} has continuous potentials.

Lemma 6.15. Let s be any Kiihler form on X. For vN-almost every w, there exists an increas-
ing sequence of integers (n;)i=0 = (n;(w)) such that the potentials of the pull-back currents
M((fgi)*/f)*lu(fni)*ﬁ are uniformly bounded.

If furthermore the exponential moment condition (5.23)) holds, this assertion holds for all n

(i.e. extracting a subsequence (n;) is not necessary), and the function w +— log™ HUT; o IS

vN-integrable.

Proof of the Lemma. Recall the notation w = (f,,)n>0. First,
(622) :;_1:% = ;:_1@(KI) + ddc (u,iofn,l)

= @<f;:—1"€) + dd° (uf:fil@(n) + uliofn—1>
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(For the moment, we do not introduce the constants F( f,,; <) in the computation). We obtain
faafnak = fa20(f 1K) + dd° (uf;"_le(n)ofn—Z + ko (fn1 Ofn—?))
= O(fr_afr_1K) +dd° (uf:72®(f:711@) +upx o()0fn2+ Uno(fn—lofn—2)> :

Setting G, = fy—10---ofj, for j < k — 1, (so in particular Gy ; = fZ, forall j > 1) and
G;; = idyx, we get

n—1
(623)  (f1)%k = O((f)w) + dd° <uﬁofz; + Y uprect,, 0 © Goa) -

7=0

Let u,, denote the function in the parenthesis. We want to estimate the sup-norm |uy,|| .. Lemma
[6.9)and Corollary [6.10] provide successively the following upper bounds

(6.24) luprear., | < CLAIZM(G 1 00) < CMEIF12: 65
el H

6.25 ———Up, < —————— +CM =

(623 ‘M((fﬁ)*ﬁ)u LS M((f) Z Ifsller N myeny

To estimate this sum we apply Theoremmto the subadditive cocycle N (n,w) = log||(f2)*|,
as we did for Corollary there exists a sequence (d;) of positive numbers converging to 0,
an increasing sequence n; = n;(w) of integers, and a constant C’(w) such that

(626) HG;iFl‘,ni — || ;;1 e :i—IH < C,eXp(—()\l _ 5)])
M((fﬁl)*ﬁ) 17 fr ’

foralli > 1and all 0 < j < n,;. Fix any real number € with 0 < £ < A;. Then from Lemma
we know that, for almost every w, there is a constant C”'(w) such that | f; H2CI < " exp(ej). So

from (6.23) we get
TLi—l

[ S " N
S ——mo—+C"(WwM(k exp(—(A\1 —e—46(4))Jj
S R O M) T expl— (3))3)
This inequality shows that | VL((f14)*K) ™ up, HOO is uniformly bounded.
Now, note that u(fnyx, = un + E, with B, = — §u,vol. Since HM((fL“)*/@)_luni o, 18
uniformly bounded, so is M((f™)*k) ™! E,,, and the first assertion of the lemma is established.
Now if the exponential moment condition (5.23) holds, we follow the same argument and

apply Proposition — instead of Theorem —to (6:23), with D(f) = | f[|2:. O

(6.27)

Proof of Theorem|[6.14) First, we prove that the normalized potential urs is bounded, for N
almost every w. To see this, recall that M((f?)*x)~1(f7)*k converges to T as n — 0.
From Lemma we know that the normalized potentials M (( ffj)*m)*lu( ny# Of the cur-
rents M((f7)*k)~! (f?)* k are uniformly bounded along some subsequence n; = n;(w). These
potentials are Aro-psh functions on X so, by compactness, they converge to urs in L' (X;vol).
Thus, urs is essentially bounded. We conclude that urs is bounded because quasi-plurisubhar-
monic functions are upper semi-continuous and have a value (in R U {—00}) at every point.
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Now, we show that urs is continuous. Here, the argument is similar to the one used to prove
Theorem [6.11] If 7" is a positive closed current with bounded potential on X, we define

(6.28) Jump(7T) = max (lim sup ur(y) — liminf up(y )) .
e

y—x y—x
Then 0 < Jump(T') < 2|ur|,,, and Jump(T") = 0 if and only if u7 is continuous. In addition
Jump(f*T) = Jump(T) for every f € Aut(X ) because f*T' = O(f*a) + dd°(up+g(q) +ur ©
f) and ugxg([7)) is continuous (see Equation (6.10)). From the equivariance relation

1
(6.29 TS = Tine»
) ((fn) (f”w)

which follows from the third assertion of Corollary[6.12] we get
1
M ((fw) Tos”w)
Remark says that w +— T} is measurable; hence, w — wugs is measurable. If C' is large
enough, the first step of the proof gives a subset 2 < € such that v(2¢) > 0 and HUTg o, <C
for all w € Q¢. By ergodicity of the shift, c"w € ()¢ for almost every w and infinitely many n;
for such an n, - HOO < Cand Jump (T}.,,) < 2C. By Lemma- M ((f™)* Tsn,,) goes
to infinity almost surely. So, Jump (7}5) = 0, and the proof is complete. O

(6.30) Jump (7)) = Jump (T35.,,) -

Theorem 6.16. Let (X, v) be a non-elementary random holomorphic dynamical system on a
compact Kéihler surface X, satisfying the exponential moment condition (5.23). Then there exists
0 > 0 such that for vN-almost every w the potential urs is Holder continuous of exponent 0.

Proof. The initial computations are similar (but not identical) to those used to reach Lemma
Keeping the notation Gj,, = f,—1 0 --- o fj, a descending induction starting from

6.31) T = O Tons) + dd (ups ory) + urs, © fos )

yields

o'nw

(6.32) (fw) a"w - ((fw) a"w + dd° (Z uf*@(G]+1n Ts © f:f; + urs,  © f;l) :

Thus, there is a constant of normalization £ = F(w;n) such that

(6.33) urs = ((f”) ) (Z Upre(GE, | Tén,,) ofi +urs, Ofﬁ) +F

Note that the additional term E does not affect the modulus of continuity of u7s. Since Lip(f;) <
I fjl o for all j, Lemma @ and Corollary |6.10{imply Lip(uf;_k@(a)) < C|f; H2011\/I(a) for every

class a € Psef(X); hence

630 Lip(uper,, 1)) < CLHIZMGE 1 Ti) < CliIE Gl

(6.35) <mm%lﬂuﬁmm<cfmw3-
t=j

t=j+1
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Finally, since 1 < Lip(f;) for every 0 < j < n — 1, we obtain

n—1
(6.36) Lip (upreqer,, 2,0 f5) <Lip (upros,, 1o, ) )]_[Llp fo) < CTTIfeln-
£=0

Denoting the modulus of continuity by modc(u, ) = Sup(y 4 <, [u(z) — u(2')|, we infer from
Equation (6.33) that

1 n—1
(6.37) modc(urs,r) < M) (7o) (Cng) Hngél T+ ’uT;nw’oo> :

To ease notation set A = Ay1,1. Fix a small € > 0. By Lemma for almost every w there
exists C' = C.(w) such that M ((f7)*(T%,,,)) " < Ce ™*~9) for every n. Fix M larger than
but close to exp (E (log || ] 1))- Applied to the vN-integrable function w = (f,) — log | foll 1.
the Birkhoff ergodic theorem gives

n—1

n—1
(6.38) [T1fl2 < CM™ aswellas n [ ] [ el < OM™
=0

for some C' = C)y(w) (increase M to deduce the second inequality from the first). Thus,

(6.39) mode(ury,r) < Cre ") (M "1 fury,, Hoo>

for some C7 > 0. By the last assertion of Lemma , w > log™ HUTg -, 1s integrable, so for
almost every w there exists Co = C.(w) such that urs, HOO < (9€®™ holds for all n, and we
infer that

(6.40) modc(ugs,r) < Cye ") (M + ) = Cye A —2) (Me™®)"r +1).

Choosing n so that r = (Me™%)™" we get modc(urs,r) < Cyr? with § = lo/g\ﬁia and the

proof of the theorem is complete. U

7. GLOSSARY OF RANDOM DYNAMICS, II

In this section we consider a random holomorphic dynamical system (X, ) on a compact
Kihler surface, satisfying the moment condition (@.I). We collect a number of facts from the
ergodic theory of random dynamical systems, including the associated skew products, fibered
entropy and Lyapunov exponents of stationary measures, stable and unstable manifolds, and
various measurable partitions. Here the group I', may a priori be elementary; also, the com-
pactness assumption on X can be dropped in most of these results if is strengthened to a
C?-moment condition. Since some subsequent arguments rely on the work [16] of Brown and
Rodriguez-Hertz, we have tried to make notation consistent with that paper as much as possible.

7.1. Skew products and stationary measures associated to (X, ). Define:

— Q= Aut(X)N, whose elements are denoted by w = (f5,)n=0. On €2, the one-sided shift
is denoted by o: 2 — Q.

— ¥ = Aut(X)Z, whose elements are denoted by & = (f;,)ncz. On X, the two-sided shift
is denoted by ¥: ¥ — X
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- X =¥ x Xand Xy = Q x X, whose elements are denoted by x = (£, x) and
x = (w,z) respectively. The natural projections are denoted by 75, : X — X (resp.
o Xy > Qandwx : X - X (resp. mx : X1 — X, using the same notation).

Recall that the product o-algebra on €2 (resp. X)) is generated by cylinders , and that it
coincides with the Borel o-algebra B(£2) (resp. B(X)) (see [9, Lem. 6.4.2]).

7.1.1. Skew products. Forw € Qandn > 1, f is the left composition f} = f,_10---0 fp;in
particular, f1 = fo (see §. For n = 0, we set f0 = id. This is consistent with the notation
used in the previous sections. The same notation fg‘ isused for £ € X andn = 0. Whenn < 0,
we set f' = (fn)~to---o(f_1)~'. With this definition the cocycle formula f?*m = fmeo f"
holds for all (m,n) € Z? and ¢ € ¥. By definition, the skew products induced by the random
dynamical system (X, v/) are the transformations F'y : X1 — X, and F': X — X defined by

(7.1) Fy:(w,2) — (ow, fi(x))  and  F: (&) — (9, f¢ (2)).

If w: X — X, denotes the natural projection, then w o F' = F', o w. Note that F' is invertible,
with F~1(x) = (971, fﬂ_,llg(x)), but F; is not; indeed (X, F) is the natural extension of
(XJrv F+)

Lemma 7.1. The measure 1, on X is stationary if and only if the product measure

my =N x p

on X, is invariant under F .

A stationary measure is said to be ergodic if it is an extremal point in the convex set of
stationary measures; hence, y is ergodic if and only if m is F'; -ergodic. Actually p is ergodic
if and only if every v-almost surely invariant measurable subset A < X (that is a measurable
subset such that (AAf~1(A)) = 0 for v-almost every f) has measure ji(A) = 0 or 1. This
statement is part of the so-called random ergodic theorem (see [8, Propositions 1.8 and 1.9]).

Proposition 7.2. There exists a unique F-invariant probability measure m on X projecting on
my under the natural projection X — X.. Moreover,

(1) the measure m is equal to the weak-x limit

R T n Z
m—nh_r)rgo(F )« (V7 x ).
(2) the projections (s)xm and (7x )«m are respectively equal to V% and p;
(3) the equality m = v% x p holds if and only if yu is f-invariant for v-almost every f;
4) (X, F,m) is ergodic if and only if (X4, Fy, my) is.

The existence and uniqueness of m, as well as the characterization of its ergodicity, follow
from the fact that (X, F) is the natural extension of (X, F) (see [61, §1.2] for a detailed
explanation). See [69) §1.1] for the proof of Assertions (1), (2) and (3).

1Cylinders are products C' = [ | C; of Borel sets, all of which are equal to Aut(X) except finitely many of them.
For simplicity, we denote a cylinder by C = H;V:o C; if C = Aut(X) for |k| > N.
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7.1.2. Past, future, and partitions. Let F denote the o-algebra on X obtained by taking the m-
completion of B(X) ® B(X). It will often be important to detect objects depending only on the
“future” or on the “past”. To formalize this, we define two o-algebras on 3::

— F* is the vZ-completion of the o-algebra generated by the cylinders C' = HjV: 0 Cj.
— F~ is the v%-completion of the o-algebra generated by the cylinders C' = ]_[J_:lf ~ Cj.
To formulate it differently, we define local stable and unstable sets for the shift 1J:

(7.2) &) ={neX;Vi=0,n =¢§} and X (&) ={neX; Vi<0, n =&}.

Then a subset of ¥ is F*-measurable (resp. F~ measurable) if, up to a set of zero v%4-measure,

it is Borel and saturated by local stable sets 37 (&) (resp. unstable sets X{! (£)). The o-algebra
F* on X will be the m-completion of F* ® B(X). An F*-measurable object should be
understood as “depending only on the future”, thus it makes sense on X’ and on X, . Actually F+
coincides with the completion of the pull-back of B(X’;) under w : X — X. The o-algebra
F~ of “objects depending only on the past” is defined analogously. Consider the partition into
the subsets F~ (x) := X' (£) x {x} (each of them can be naturally identified to €2). Then,

loc
modulo m-negligible sets, the elements of F~ are saturated by this partition.

For £ € ¥ we set X¢ = {&} x X = m;'(¢), which can be naturally identified with X via
mx. The disintegration of the probability measure m with respect to the partition into fibers of
Ty, gives rise to a family of conditional probabilities mg such that m = {m; dv?(€), because

(mg)sm = V2.

Lemma 7.3. The conditional measure m¢ on X¢ satisfies vZ-almost surely
me = lim (foyo--ofon)p= Tm (fing)sp.
In particular, the family of measures £ — mg is F~ -measurable.

Indeed, the convergence is a consequence of the martingale convergence theorem (see [18}
§2.5] for details) and the second assertion easily follows.

Since { — mg is F~-measurable, the conditional measures of m on the atoms F~ (x) =
¥U (&) x {z} of the partition generating F~ are induced by the lifts of the conditionals of 1%
on the X (&), via the natural projection 7y, : X — X. In addition we can simultaneously
identify X% _(€) to Qand vZ( - | 2% ) to vN. In this way we get

loc
(7.3) m(-| F(x) = v2(- | Diee(€)) x 6, = N

for m-almost every x = (£, x) € X. This corresponds to Equation (9) in [16]]. By [16 Prop.
4.6], this implies that F* n F~ is equivalent, modulo m-negligible sets, to {2, ¥} ® B(X).

7.2. Lyapunov exponents. Let u be a stationary measure for (X, v); assume that y (or equiva-
lently m or m. ) is ergodic. The upper and lower Lyapunov exponents A™ > A\~ are respectively
defined by the almost sure limits

1 1 -
(7.4) AT = lim —log||D,f}| and A~ = lim —log H(D‘Tf‘:b)_lH :
n—om n n—o N

the existence of these limits is guaranteed by Kingman’s subadditive ergodic theorem, thanks
to the moment condition (4.I]), and the convergence also holds on average. Let us now ap-
ply the Oseledets theorem successively to the tangent cocycle defined by the fiber dynamics
(X4, Fy, my), and then to the cocycle associated to (X, F, m).
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7.2.1. The non-invertible setting. Define the tangent bundles TX, := Q@ x TX and TX :=
¥ x T'X, and denote by DF and DF'; the natural tangent maps, thatis D¢ .y F : {£} x T, X —

{96} x T}, ()X is induced by Dl,fflz
(71.5) DieyF(v) = Dofi(v)  (VveTpXe = T, X)

For the non-invertible dynamics on X, the Oseledets theorem gives: for m,-almost every
(w, x), there exists a non-trivial complex subspace V~ (w, x) of {w} x T, X such that

1
(7.6) Voe V7 (w,z)\{0}, lim —log|Dsfl(v)||=A"
n—+w n
- : 1 n +
.7) Vo Vo(w.a), lim -~ log|[Defi()| = A
The field of subspaces V'~ is measurable and almost surely invariant. Two cases can occur:
either A\~ < AT and V'~ (w, ) is almost surely a complex line, or A\~ = A" and V~ (w, z) =
{w} x T, X.
7.2.2. The invertible setting. For the dynamical system F': X — X, the statement is:
— if A= = A" then for m-almost every x = (&, x), for every non-zero v € T, X¢ ~ T, X,
1 .
(7.8) im ~log [ Dy f(v)] = A7

— if A= < A" then for m-almost every x there exists a decomposition 7, X¢ = E~ (£, 2)®
E* (&, x) such that for x € {—, +} and every v € E*(&, z)\ {0},

. 1 n *
(7.9) lim —log | Do fE(0)] =A™

n

Furthermore the line fields E+ are measurable and invariant, and log |/ (E~, E™)| is
integrable (here, the “angle” Z(E~(x), E™(x)) is the distance between the two lines
E~(x) and E* (x) in P(T,X)).

7.2.3. Invariant volume forms. When there is an invariant volume form, it is well-known that
the sum of Lyapunov exponents vanishes. So from Remark 3.2 we obtain:

Corollary 7.4. Assume that X is an Abelian, or K3, or Enriques surface. Let v be a probability
measure on Aut(X) satisfying the integrability condition (4.1)), and 1 be an ergodic v-stationary
measure. Then A\~ + AT = 0.

7.2.4. Hyperbolicity. It can happen that A~ and \™ have the same sign. If \™ and A" are both
negative, the conditional measures mg are atomic: this can be shown by adapting a classical
Pesin-theoretic argument (see e.g. [59) Cor. S.5.2]) to the fibered dynamics of F' on X (see [63}
Prop. 2] for a direct proof and an example where the m have several atoms). Such random dy-
namical systems are called proximal. For instance, generic random products of automorphisms
of P?(C), that is of matrices in PGL(3, C), are proximal; in such examples the stationary mea-
sure is not invariant. Other examples are given by contracting iterated function systems.

When A\t and A\~ are both non-negative, we have the so-called invariance principle:
Theorem 7.5. Let (X, v) be a random holomorphic dynamical system satisfying the integrability

condition @), and let | be an ergodic stationary measure. If X™ () = X\~ (u) = 0 then p is
almost surely invariant.
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This result was proven by Crauel, building on ideas of Ledrappier (see Theorem 5.1, Corollary
5.3 and Remark 5.6 in [37]], and also Avila-Viana [1, Thm B]).

Remark 7.6. If \™ and \* are both positive then i is atomic. Indeed, since 1 is almost surely
invariant we get m = v% x u. Reversing time, the Lyapunov exponents of m become negative,
so as explained above the measures my are atomic. By invariance mg = p, so p is atomic too.

By definition, y is hyperbolic if A= < 0 < A™. In this case we rather use the conventional
superscripts s/u instead of —/+ for stable and unstable objects. We also have E* = V* in this
case (and more generally when A~ < A™); so, it follows that the complex line field E* on TX
is F*-measurable. Conversely the unstable line field E* is F~-measurable.

7.3. Intermezzo: local complex geometry. Recall that X is endowed with a Riemannian struc-
ture, hence a distance, induced by the Kéhler metric k9. For x € X, we denote by euc, the
translation-invariant Hermitian metric on 7, X (which is considered here as a manifold in its
own right) associated to the Riemannian structure induced by (kg),. Given any orthonormal
basis (e1,e2) of T, X for this metric, we obtain a linear isometric isomorphism from 7, X to
C2, endowed respectively with euc, and the standard euclidean metric; we shall implicitly use
such identifications in what follows.

We denote by D(z; r) the disk of radius r around z in C, and set D(r) = D(0; 7).

7.3.1. Hausdorff and C'-convergence. Let U — Cbe adomain. If y: U — X is a holomorphic
curve, we can lift it canonically to a curve v(1): U — T'X by setting v(1) (2) = (y(2),7/(2)) €
T, ()X, where v/ (z) denotes the velocity of ~y at z. The Kihler form x( induces a Riemannian
metric and therefore a distance dist7x on T'X. We say that two parametrized curves y; and o
are d-close in the C''-topology if distTX(ygl) (2), fyél)(z)) < ¢ uniformly on U. This implies
that 1 (U) and ~2(U) are d-close in the Hausdorff sense, but the converse does not hold (take

U =D(1), 71(2) = (2,0), and y2(2) = (2, e2%) with k and ¢ large while ¢ is small).

7.3.2. Good charts. Let Ry be the injectivity radius of k. We fix once and for all a family of
maps ®,: U, < T, X — X satisfying the following properties (for some uniform Cy > 0):

(i) U, is an open neighborhood of 0 in 7;; X and ®, is a holomorphic diffeomorphism from
U to an open subset V,, of X contained in the ball of radius Ry around x;
(i) ©,(0) =z and (D ®,)o = idr, x3
(iii) on U,, the Riemannian metrics euc, and ®} x satisfy C’O_1 < euc,/ P ko < Co;
(iv) the family of maps @, depends continuously on .

With rg < Ro/(v/2Cp), we can add:

(v) for every orthonormal basis (e, e2) of T, X, the bidisk D(rg)e; + D(rg)es is contained in
U; in particular, the ball of radius 7y centered at the origin for euc, is contained in U,;.

To make assertion (iv) more precise, fix a continuous family of orthonormal basis (e (z), e2(x))
on some open set V' of X: Assertion (iv) means that, if we compose ¥, with the linear isomor-
phism (z1, 20) € C? — zje1(x) + z2ea(x) € T, X we obtain a continuous family of maps. If
needed, we can also add the following property (see [54, pp. 107-109]):

(iii”) euc, osculates @} k(o up to order 2 at x.

The maps ®, have to be thought of as “holomorphic exponential maps”; they are used in the
next paragraph to get a definite notion of local orthogonal projection in X.
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7.3.3. Families of disks. A holomorphic disk A < X containing x is said to be a disk of size
(at least) r at x (resp. of size exactly r at x), for some r < ry, if there is an orthonormal basis
(e1,e2) of T, X such that ®,1(A) contains (resp. is) the graph {ze; + p(2)es ; z € D(r)}
for some holomorphic map ¢: D(r) — D(r). By the Koebe distortion theorem its geometric
characteristics around x at scale r are then comparable to that of a flat disk. An alternative
definition for the concept of disks of size > r could be that A contains the image of an injective
holomorphic map ~v: D(r) — X such that v(éD(r)) < X\Bx(z;r) and |7'| < D, for some
fixed constant D. Then, if A contains a disk of size r for one of these definitions, it contains a
disk of size egr for the other one, for some uniform €y > 0; in particular, there is a constant C'
depending only on (X, ko) such that a disk of size r at z contains an embedded submanifold of
Bx (z;Cr).

Let (z,) be a sequence converging to x in X, and let r be smaller than the radius r( introduced
in Assertion (v), §[7.3.2] Let A,, be a family of disks of size at least r at z,, and A be a disk of
size at least r at z. We say that A, converges towards A as a sequence of disks of size r, if
there is an orthonormal basis (e, e) of T, X for euc, such that

(i) ®,'(A) contains the graph {ze; + ¢(2)ea;z € D(r)} for some holomorphic function
o: D(r) — D(r);
(ii) for every s < r, if n is large enough, the disk ®,*(A,) contains the graph {ze; +
©n(2)es; z € D(s)} of a holomorphic function ¢, : D(s) — D(r);
(iii) for every € > 0, we have |¢(z) — pp(2)| < € on D(s) if n is large enough.

By the Cauchy estimates, the convergence then holds in the C'!-topology (see §. It follows
from the usual compactness criteria for holomorphic functions that the space of disks of size r
on X is compact (for the topology induced by the Hausdorff topology in X). Likewise, if a
sequence of disks of size r converges in the Hausdorff sense, then it also converges in the C*
sense, at least as disks of size s < r, because two holomorphic functions ¢ and 1) from D(r) to
D(r) whose graphs are e-close are also £(r — s)~!-close in the C'*-topology.

It may also be the case that the A,, are contained in different fibers X¢, of X'. By definition,
we say that the sequence A,, converges to A c X¢ if &, converges to £ and the projections of
A,, converge to A in X.

7.3.4. Entire curves. An entire curve in X is a holomorphic map ¢: C — X. Itis immersed if
its velocity ¢’ does not vanish. Our main examples of immersed curves will, in fact, be injective
and immersed entire curves. If 11 and 1, are two immersed entire curves with the same image,
there exists a holomorphic diffeomorphism of C, i.e. a non-constant affine map A: z — az + b,
such that ¢ = 11 o A. If ¢ is an immersed entire curve and || > n on D(zp, s), its image
contains a disk of size C's at ¢(z), for some C' > 0 that depends only on 7 and xo.

7.4. Stable and unstable manifolds. By Lemma[.1] Condition (.I) implies similar moment
conditions for higher derivatives, so Pesin’s theory applies. The following proposition summa-
rizes the main properties of Pesin local stable and unstable manifolds. Recall that a function i
is e-slowly varying, relatively to some dynamical system g, if e ¢ < h(g(x))/h(z) < €° for
every x. We view the stable manifold of x = (£, ) as contained in X¢; it can also be viewed
as a subset of X: whether we consider one or the other point of view should be clear from the
context. If x = (§,x) and y = (&, y) are points of the same fiber X¢, we denote by distx (x, y)
the Riemannian distance between z and y computed in X.
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Proposition 7.7. Let (X,v) be a random holomorphic dynamical system, and 11 be an er-
godic and hyperbolic stationary measure. Then, for every § > 0, there exists measurable
positive d-slowly varying functions v and C on X (depending on §) and, for m-almost every
x = (§{,x) € X, local stable and unstable manifolds Wi (x) and Wi (x) in X¢ such that
m-almost surely:

(1) WTS(X)( x) and WT‘(X)( x) are holomorphic disks of size at least 2r(x) at x respectively tan-

gent to E*(x) and E"(x);
(2) foreveryy € W (x) and every n = 0,

distx (F"(x), F"(y)) < C(x) exp((A~ + 0)n);
likewise for every y € W. (X)( x) and everyn = (0
distx (F~"(x), F"()) < C(x) exp(—(AT = d)n);
T(X)( x)) c W (F(X>) and F~ (WT(F(X))(F(X))) < W;L(X)( x).
By Lusin’s theorem, for every € > 0 we can select a compact subset R. < X with m(R.) >

1 — &, on which r(x) and C(x) can be replaced by uniform constants (respectively denoted by
r and C') and the following additional property holds:

3) F(

(4) on R. the local stable and unstable manifolds W, / “(x) vary continuously for the C'-
topology (in the sense of §[7.3.1|and[7.3.3).

The subsets R are usually called Pesin sets, or regular sets. We also denote the local stable or

unstable manifolds by Wlf)/cu( ), or by W’ / “(x) when x is in a Pesin set on which 7(-) = r. On

several occasions we will have to deal with measurability issues for I/Vlf)/cu(x) as a function of x:

this will be done by exhausting X" by Pesin sets and using their continuity on R..

The global stable and unstable manifolds of x are respectively defined by the following in-
creasing unions:

(7.10) Wix) = | F™ ( (X))) and W(x) = | F" ( o *"(X))> .
n=0 n=0
In particular, they are injectively immersed holomorphic curves in X,. Pesin theory shows that:

(7.11) W (x) = {(5 y) € Xe; hmsup—logdlstX(F”(g y), F"(&,x)) < O}

n—o0

1
(7.12) W(x) = {(5 y) € X¢ ; limsup l logdistx (F"(&,y), F™(§,x)) < O} :
n——aoo
Proposition 7.8. Under the assumptions of Proposztlon- 7.7} W*(x) and W"(x) are biholomor-
phic to C for m-almost every x.

More precisely, W#(x) is parametrized by an injectively immersed entire curve 15 : C — X
such that ¢3(0) = x and this parametrization is unique, up to an homothety z — az of C.
Likewise, W"(x) is parametrized by such an entire curve ¢%.

Proof. By (7-10) and Proposition [7.7}(3), W*(x) is an increasing union of disks and is there-
fore a Riemann surface homeomorphic to R?; so, it is biholomorphic to C or D. Let A — X
be a set of positive measure on which » > 79 and C' < Cy. By Proposition [7.7}(2), there
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exists ng € N and my > 0 such that if n > ng and if x and F"(x) belong to A, then
W2(F™(&, x))\ (F"W;: (£, x)) is an annulus of modulus > mg. Now for m-almost every x € X
there is an infinite sequence (k;) such that F%i(x) € A and kj+1 — k; > ng. For such an x,
W (x)\W2(x) contains an infinite nested sequence of annuli of modulus at least m, namely
the F'—Fi+1 (W3(F*i+1(x))\F*i+1=ki (W3(F*i (x)). Thus, W*(x) is biholomorphic to C. [

If we are only interested in stable manifolds, there is a simplified version of Proposition
which takes place on X:

Proposition 7.9. Let (X,v) be a random holomorphic dynamical system and 1 an ergodic
stationary measure, whose Lyapunov exponents satisfy A\~ < 0 < \T. Then for m-almost
every (w, x) the stable set

W (w, 2) — {y €X: limsup%logdistx(fﬁ(y),fg(:v)) < o}

n—0o0

is an injectively immersed entire curve in X.

Indeed, stable manifolds can be obtained from a purely “one-sided” construction, that is,
by considering only positive iterates (see [69, Chap. III]). This also shows that local stable
manifolds in X are F'-measurable, and may be viewed as living in X

7.5. Fibered entropy. Here we recall the definition of the metric fibered entropy of a station-
ary measure p (see [61) §2.1] or [69, Chap. 0 and I] for more details). If n is a finite measurable
partition of X, its entropy relative to y1is Hy(n) = — X ce, #(C)log u(C). Then, we set

' 1 n—1 _1
a1y b = i [ 8, (M () (n)) awN(©),
(7.14) hu(X,v) = sup {h,(X,v;n) ; n afinite measurable partition of X} .

Actually h,(X,v;n) can be interpreted as a conditional (or fibered) entropy for the skew-
products F; on X and F' on X. Indeed, the so-called Abramov-Rokhlin formula holds [10]:

(7.15) h,u(X7 V) = huqu(F+|77§2) = hm+(F+) - huN(U)
(7.16) = hm(Flng) = hp(F) = h,z(0),

where 7 (resp. 7y) denotes the partition into fibers of the first projection 7w : Xy — § (resp.
71 X — ¥) and in the second and fourth equalities we assume h,~(0) = h,z () < co. The
next result is the fibered version of the Margulis-Ruelle inequality.

Proposition 7.10. Ler (X, v) be a random holomorphic dynamical system satisfying the moment
condition @.1) and pv be an ergodic stationary measure. If hy,(X,v) > 0 then 1 is hyperbolic
and min(AT, —A7) = 1h,(X,v).

Proof. See [2] or [69, Chap. II] for the inequality A* > $h,,(X,v). For =\~ > 1h,(X,v), we
use the fact that h,,, (F|ns) = hy (F~Yns) (see e.g. [69, 1.4.2]) and apply the Margulis-Ruelle
inequality to F'~!. Beware that there is a slightly delicate point here: (F~!, m) is not associated
to a random dynamical system in our sense; fortunately, the statement of the Margulis-Ruelle
inequality in [2] (see also [69, Appendix A]) covers this situation. U
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7.6. Unstable conditionals and entropy. Assume u is ergodic and hyperbolic. By definition,
an unstable Pesin partition 7" on X is a measurable partition of (X', F, 1) with the following
properties:

— nis increasing: F~1n" refines n¥;

— for m-almost every x, n"(x) is an open subset of W*(x) and

(7.17) U F* (*(F(x))) = W*(x);
nz=0
— n" is a generator, i.e. \/,_, F~"(n") coincides m-almost surely with the partition into
points.

Here, as usual, %(x) denotes the atom of 5% containing x, and F'~'n" is the partition defined
by (F~1n*)(x) = F~1(n*(F(x))). The definition of a stable Pesin partition 7° is similar. A
neat proof of the existence of such a partition is given by Ledrappier and Strelcyn in [66], which
easily adapts to the random setting (see [69, §IV.2], and [24]]).

Lemma 7.11. There exists a stable (resp. unstable) Pesin partition whose atoms are F -
measurable (resp. F~-measurable), that is, saturated by local stable (resp. unstable) sets
Y5 x A{x} (resp. X x {x}).

loc loc

The existence of unstable partitions enables us to give a meaning to the unstable conditionals
of m. Indeed, first observe that if n* and (" are two unstable Pesin partitions, then m-almost
surely m(-|n*) and m(-|¢*) coincide up to a multiplicative factor on n*(x) n ¢*(x). Further-
more, there exists a sequence of unstable partitions 7, such that for almost every x, if K is a
compact subset of W*(x) for the intrinsic topology (i.e. the topology induced by the biholomor-
phism W*(x) ~ C) then K < n}(x) for sufficiently large n: indeed by (7.17), the sequence of
partitions F"'n* does the job. Hence almost surely the conditional measure of m on W*(x) is
well-defined up to scale; we define m¥ by normalizing so that m¥(n*(x)) = 1.

The next proposition is known as the (relative) Rokhlin entropy formula, stated here in our
specific context.

Proposition 7.12. Let (X, v) be a random holomorphic dynamical system satisfying the moment
condition (4.1), and . be an ergodic and hyperbolic stationary measure. Let n* be an unstable
Pesin partition. Then

hu(X.0) = Hon(F 1) = [ log Ty (),
where Jyu(x) is the “Jacobian” of F relative to 1", that is
1w wr o —1
T () = m (F~1 (" (F(2))) [ (x)) .

Sketch of proof. The argument is based on the following sequence of equalities, in which 7y is
the partition into fibers of 7y, as before:

hu(X,v) = hin(Flns) = hin(F~ns)
(7.18) = hm(F 0" v nx)
i= Hp(n"[Fn" v ns) = Hyp(n"|Fn®) = Hyu(F~'n"n")

The equalities in the first and last line follow from general properties of conditional entropy
(see [69, Chap. 0], the conditional entropy is denoted by h7; there). The Equality (7.18) is
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non-trivial. If n* were of the form \/:ioo 7, where n is a 2-sided generator with finite entropy, it
would follow from the general theory. For a Pesin unstable partition the result is established for
diffeomorphisms in [67, Cor 5.3] and for random dynamics in [69, Cor. VL.7.1]. O

Remark 7.13. A similar formula holds in the stable direction:
hu(X,v) = flog Jys (x)dm(x) where Jps(x) = m (F (nS(F_l(X))) ]ns(x))

The proof is identical to that of Proposition applied to F~!, with the same caveat as in
Proposition m (F~!,m) is not associated to a random dynamical system in our sense. The
non-trivial point is to check that Equality holds. Fortunately, the main purpose of [3] is to
explain how to adapt [69, Chap. VI], hence Equality (7.18), to a more general notion of “random
dynamical system” which covers the case of (F~!, m) (see the last lines of [3, §5] for a short
discussion of the Rokhlin formula).

-1

The following consequence of the Rokhlin formula will play an important role in Section [9]

Corollary 7.14. Under the assumptions of the previous proposition, the following assertions are
equivalent:

(@) hy(X,v) =0;
(b) m(:|n*(x)) = O, for m-almost every x;
(c) m(-|n"(x)) is atomic for m-almost every x.

The same result holds for the stable Pesin partition n°.

Proof. In view of the definition of J,«, the entropy vanishes if and only if for m-almost every x,
m(-|n%(x)) is carried by a single atom of the finer partition F'~'n%. Now since H,(F~'n%|n") =
%Hm(F*”n“| n"), the same is true for F~"n", and finally since (F~"n") is generating, we
conclude that (a)<(b). That (c) implies (a) follows from the same ideas but it is slightly more
delicate, see [78l, §2.1-2.2] for a clear exposition in the case of the iteration a single diffeomor-
phism, which readily adapts to our setting.

The result for the stable partition n° follows by changing F' to F~! (see Remark[7.13). O

8. STABLE MANIFOLDS AND LIMIT CURRENTS

Let (X, v) be a non-elementary random holomorphic dynamical system on a Kéhler surface.
Assume that p is an ergodic stationary measure admitting exactly one negative Lyapunov expo-
nent, as in Proposition[7.9] Our purpose in this section is to relate the stable manifolds W*(w, x)
to the stable currents T;5 constructed in §6] According to Proposition the stable manifolds
are parametrized by injective entire curves; the link between these curves and the stable currents
will be given by the well-known Ahlfors-Nevanlinna construction of positive closed currents
associated to entire curves.

8.1. Ahlfors-Nevanlinna currents. We denote by {V'} the integration current on a (possibly
non-closed, or singular) curve V. Let ¢ : C — X be an entire curve. By definition, if « is a
test 2-form, (¢, {ID(0,%)}, ) = SD(O » @, which accounts for possible multiplicities coming

from the lack of injectivity of ¢; ¢, {D(O t)} = {¢(D(0,t))} when ¢ is injective. Set

(8.1) A(R)zJ ¢*ko and T(R fA &
(0,R)



RANDOM DYNAMICS ON COMPLEX SURFACES 43

for R > 0. When ¢ is an immersion, A(R) is the area of ¢(ID(0, R)); in all cases, A(R) is the
mass of ¢, {(D(0, R))}.

Proposition 8.1 (see Brunella [17, §1]). If ¢ : C — X is a non-constant entire curve, there
exist sequences of radii (R,,) increasing to infinity such that the sequence of currents

Rn
N(Ra) = g | om0} G

converges to a closed positive current T. If furthermore ¢(C) is Zariski dense, the class [T] €
HYY (X, R) is nef. In particular {[T]|[T]) = 0 and {[T]|[C])> = O for every algebraic curve
CcX.

Such limit currents 7" will be referred to as Ahlfors-Nevanlinna currents associated to the
entire curve ¢: C — X. If ¢(C) is not Zariski dense then the closure ¢(C) (for the euclidean
topology) is a (possibly singular) curve of genus 0 or 1; if ¢ is injective, then ¢(C) is rational.

8.2. Equidistribution of stable manifolds. If y is hyperbolic, or more generally if it admits
exactly one negative Lyapunov exponent, then, for m, -almost every x = (w, z) € X'}, the stable
manifold W#*(x), which is viewed here as a subset of X as in Proposition is parametrized
by an injectively immersed entire curve. Then we can relate the Ahlfors-Nevanlinna currents to
the limit currents 775; here are the three main results that will be proved in this section.

Theorem 8.2. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kdihler surface, satisfying @.1). Let i be an ergodic stationary measure such that
A" () <0< AT (). Then exactly one of the following alternative holds.

(a) For my.-almost every x, the stable manifold W*(x) is not Zariski dense. Then y is supported
on a I',-invariant curve Y < X and for my.-almost every x, W*(x) < Y. In addition every
component of Y is a rational curve, and the intersection form is negative definite on the
subspace of H'(X; R) generated by the classes of components of Y .

(b) For my-almost every x the stable manifold W*(x) is Zariski dense and the only normalized
Ahlfors-Nevanlinna current associated to W*(x) is T}3.

Corollary 8.3. Under the assumptions of Theorem if in addition p is hyperbolic and non-
atomic, then the Alternative (b) is equivalent to

(®’) w is not supported on a I',-invariant curve.

The next corollary follows from Theorem [6.16|and an ergodicity argument (see [24]).

Corollary 8.4. Under the assumptions of Theorem assume furthermore that v satisfies the
exponential moment condition (5.23). Then in Alternative (b) there exists 0 > 0 such that for
m-almost every x € X the Hausdorff dimension of W*(x) equals 2 + 6.

8.3. Proof of Theorem [8.2]and its corollary. We work under the assumptions of Theorem 8.2]

Lemma 8.5. If there exists a proper Zariski closed subset of X with positive y-measure, then:

— either i is the uniform counting measure on a finite orbit of I',,;
— or p has no atom and it is supported on a U, -invariant algebraic curve, which is the
I',-orbit of an irreducible algebraic curve.
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Proof. Consider the real number 6. (1) = maxzex p ({x}). If 62 (1) > 0, there is a non-

empty finite set F' = X for which p ({z}) = 69, (1). By stationarity, F is I',-invariant, and by
ergodicity j is the uniform measure on F. Now, assume that ;2 has no atom. Let 51 (u) be the
maximum of x(D) among all irreducible curves D < X. If u(Z) > 0 for some proper Zariski
closed subset Z < X, then 61, (1) > 0. Since two distinct irreducible curves intersect in at

most finitely many points and g has no atom, there are only finitely many irreducible curves £

such that u(E) = 1. (). To conclude, we argue as in the zero dimensional case. (]

If V < X is a smooth curve, possibly with boundary, if T is a closed positive (1, 1)-current
on X with a continuous normalized potential ur (as in § [6.1.1)), then, by definition of ©(T)

(see (6.2))),
8.2) (T AV}, ) = fv 2O(T) + fv o dd(urlv),

for every test function . Here is the key relation between stable manifolds and limit currents:

Lemma 8.6. For m_-almost every x = (w, ), if A is a disk contained in W*(x), then T A
{A} =0.

Proof. Without loss of generality we assume that the boundary of the disk A in W*(x) ~ C is
smooth. We consider points x = (w,x) € X, which are generic in the following sense: they
are regular from the point of view of Pesin’s theory, and 75 satisfies the conclusions of §6 By
Pesin’s theory, for every € > 0, there is a set A. < N of density larger than 1 — &, such that for
n in A, the local stable manifold W7 (F7}(x)) is a disk of size r = r(¢) at fJ}(x) and fJ(A) is
a disk contained in an exponentially small neighborhood of f(x). We have

83 M(T3 (2 = |

Wi (F (%))
Since M(T%n,,) = 1, Lemmal6.1] shows that ©(T,,,) is bounded by Ako; so the first integral
on the right hand side of (8.3) is bounded by a constant times the area of f(A), which is
exponentially small. By ergodicity, there exists AL < A, of density at least 1 — 2¢ such that if
n € AL, |urs, |« is bounded by some contant D, > 0. For such an n, let x be a test function
in W?(F(x)) such that x = 1in Wj/Q(Ff(X)) and vanishing near 0W;?(F}(x)). Note that
since W (F"(x)) is of size r, the C*-norm of x depends only on r. We write

Lina) O(T5n,) + f Lyp(ayddturs, -
W (7 (x))

J lfg,(A)ddCuT;nw < J decuTjnw
WE(Fp(x)) WE(FT(x))

+

(8-4) = UTjnwddCX

fWg(F’;(X))
< C(n)xleelurs, |,

where C'(r) bounds the area of W,?(F}(x)); this last term is uniformly bounded because n € A~.
Thus we conclude that M(72.,, A {fZ(A)}) is bounded along such a subsequence.

On the other hand, the relation (f)*T5n, = M((f2)*Tin,,)T5 gives

(8.5) Sy A B = M (1) T ) (T3 A {AD),



RANDOM DYNAMICS ON COMPLEX SURFACES 45

The mass M((f")« (T2 A {A})) is constant, equal to the mass of the measure T3 A {A}; so

(8.6) M (T3 A LF2(A)}) = ML) T )M(TS A {A).
By Lemma M((f5)*Ts. (w)) goes exponentially fast to infinity. Since the left hand side is
bounded, this shows that M((T5 A {A}) = 0, as desired. O

With Lemma [2.12] the following statement takes care of the first alternative in Theorem 8.2

Lemma 8.7. If there is a Borel subset A — X of positive measure such that for every x € A,
the stable manifold W*(x) is contained in an algebraic curve, then p is supported on a T'}-
invariant algebraic curve. In addition, for m. -almost every x, W (x) is an irreducible rational
curve of negative self-intersection.

Proof. For x € A, let D(x) be the Zariski closure of W*(x). Discarding a set of measure zero
if needed, W*(x) is biholomorphic to C so D(x) is a (possibly singular) irreducible rational
curve, and D(x)\W?(x) is reduced to a point. By Lemma T35 ~ {A} = 0 for every
disk A < W#(«x). Since T} has continuous potentials, 7;5 A {D(x)} gives no mass to points
(see e.g. [28, Lem. 10.13] for the singular case). Therefore 7.5 A {D(x)} carries no mass on
D(x) = W#(x) u (D(x)\W?#(x)), hence T3 A {D(x)} = 0, and taking cohomology classes
we infer that {e(w) | [D(x)]) = 0. Then, by the Hodge index theorem, either [D(x)]? < 0 or
[D(x)] is proportional to e(w), however this latter case would contradict the fact that e(w) is
vN-almost surely irrational (see Theorem one could also use that Cur(e(w)) is reduced to
T3). Thus, [D(x)]? < 0, as asserted.

An irreducible curve with negative self-intersection is uniquely determined by its cohomology
class; since NS(X; Z) is countable, there are only countably many irreducible curves (Dy)geN
with negative self intersection. Since W} (x) < Dy if and only if D(x) = Dy, and since
local stable manifolds vary continuously on the Pesin regular set R, for every € > 0, we infer
that {x € A; D(x) = Dy} is measurable for every k. Hence there exists an index k such that
my ({x € A; [D(x)] = [Dr]}) > 0. Since z belongs to W} (x), Fubini’s theorem implies
that (D) > 0, and Lemma shows that p is supported on the I', -orbit of Dy.

Finally, this argument shows that the property W} (x) < |Jien Dk or equivalently that
W .(x) is contained in a rational curve of negative self intersection, is invariant and measurable,
so by ergodicity of m; it is of full measure. The proof is complete. U

We are now ready to conclude the proof of Theorem [8.2] Let A be the set of Pesin regular
points such that W#(x) is contained in an algebraic curve. From the proof of Lemma x
belongs to A if and only if W}J (x) is contained in one of the countably many irreducible curves
Dy < X of negative self-intersection. This condition determines a countable union of closed
subsets in the Pesin sets R., hence A is Borel measurable. By Lemma if A has positive
m. -measure then Alternative (a) holds. So, if (a) is not satisfied, W*(x) is almost surely Zariski
dense. Pick such a generic x, which further satisfies the conclusion of Lemma@ and let NV be
an Ahlfors-Nevanlinna current associated to W*(x). By Proposition [IV] is a nef class so
[N]? = 0. Thus, if we are able to show that {[N]|[T:{]) = 0, we deduce from the Hodge index
theorem and M(N) = 1 that [N] = [T5] = e(w), hence N = T3 by Theorem|6.11] So, it only
remains to prove that {{N] | [T;5]) = 0, or equivalently

(8.7) N ATE =0.
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This is intuitively clear because N is an Ahlfors-Nevanlinna current associated to the entire
curve W#(x) and T;5 A {A} = 0 for every bounded disk A < W#(x). However, there is a
technical difficulty to derive from 75 A {A} = 0, even if W#(x) is an increasing union of
such disks A.

To deal with this situation we use the geometric intersection theory of laminar currents (see
[S./41]]). Unfortunately these papers only deal with currents of the form lim,, mqﬁ(ﬂ)((), R,)),
instead of the Ahlfors-Nevanlinna currents introduced in Section (8.1, which were designed to
get the nef property (Proposition [8.I). Let us explain how the formalism of [5| 41]] can be
adapted to the Ahlfors-Nevanlinna currents of Proposition Following [44]] we say that T" is
an Ahlfors current if there exists a sequence (A,,) of unions of smoothly bounded holomorphic
disks such that length(0A,) = o(M(A,)) and T is the limit as n — oo of the sequence
of normalized integration currents m {An}; here, length(0A,,) is by definition the sum
of the lengths of the boundaries of the disks constituting A,,, computed with respect to the
Riemannian metric induced by «g. We say furthermore that 7" is an injective Ahlfors current if
the disks constituting A,, are disjoint or intersect along subsets with relative non-empty interior.
By discretizing the integral defining the currents N(R,,) in Proposition (8.1) we see that any
Ahlfors-Nevanlinna current is an Ahlfors current.

Strongly approximable laminar currents are a class of positive currents introduced in [41]]
which are well suited for geometric intersection theory. In a nutshell, a current 7" is a strongly
approximable laminar current if for every » > 0, there exists a uniformly laminar current 7.
(non closed in general) made of disks of size 7, and such that M(T — T.) = O(r?). Since these
notions have been studied in a number of papers, we refer to [15, 41} 21]] for definitions, the basic
properties of these currents, and technical details. This presentation in terms of disks of size r is
from [42] §4]. The next lemma is a mild generalization of the methods of [S, §7], [18, §4.3] and
(41} §4]. For completeness we provide the details in Appendix [A]

Lemma 8.8. Any injective Ahlfors current T' on a projective surface X is a strongly approx-
imable laminar current: if T = lim,, m {A,} as above, there exists a family of uniformly

laminar currents T, increasing to T whose constitutive disks are C limits of pieces of the A,
and such that if S is any closed positive current with continuous potential on X, S AT, increases
to S AT as r decreases to 0.

We can now conclude the proof of Theorem [8.2] Since by Theorem [3.4] X is projective, we
can apply the previous lemma to any Ahlfors-Nevanlinna current N associated to W#(x). In
this way we get a family of currents N, such that N, A T} increases to N A 15 as r decreases
to 0. On the other hand, by Lemma [8.6] the intersection of T;5 with every disk contained in
W#(x) vanishes, so again using the fact that 7} has a continuous potential, we infer that if A is
any disk subordinate to N,,, .5 A {A} = 0. Hence N, A T = 0 for every r > 0, and finally
N A T35 =0, as desired. (]

Proof of Corollary Since (b’) and (a) are contradictory, (b’) implies (b). Conversely assume
that i is hyperbolic, non atomic and supported on a I -invariant curve C'. Since p has no atom,
it gives full mass to the regular set of C, hence > x T'(Reg(C')) defines a D F'-invariant bundle,
and by the Oseledets theorem the ergodic random dynamical system (C, v, 1) must either have
a positive or a negative Lyapunov exponent. If this exponent were positive then u would be
atomic, as observed in Section Hence, the Lyapunov exponent tangent to C' is negative
and W*(x) is contained in C for m, -almost every x. So (b) implies (b’). U
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9. NO INVARIANT LINE FIELDS

As above, let (X, ) be a random holomorphic dynamical system satisfying the moment con-
dition (.1)), and i be an ergodic hyperbolic stationary measure. From and the local
stable manifolds and stable Oseledets directions are F " -measurable; so, F*(&, x) is naturally
identified to E*(w, x) under the projection (§,z) € X — (w,x) € X, and the same property
holds for stable manifolds. Then, m -almost every x € X, has a Pesin stable manifold W*(x)
(resp. direction E*(x)). Let V(x) = V(w,z) be such a measurable family of objects (stable
manifolds, or stable directions, etc); we say that V' (x) is non-random if for p-almost every x,
V(w, z) does not depend on w, that is, there exists V() such that V(w,z) = V(z) for vN-
almost every w. If V' is not non-random, we say that V' depends non-trivially on the itinerary.
Since stable directions depend only on the future, the random versus non-random dichotomy can
be analyzed in X} or in X'. Our purpose in this section is to establish the following result.

Theorem 9.1. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kéhler surface, satisfying the Condition @.1). Let u be an ergodic and hyperbolic
stationary measure, not supported on a ' ,-invariant curve. Then the following alternative holds:

(a) either the Oseledets stable directions depend non-trivially on the itinerary;
(b) or pis I'-invariant and h,(X,v) = 0.

In fact, the stiffness theorems of §I0|imply that y is often also invariant in case (a).

Remark 9.2. It turns out that unless g is atomic, (a) and (b) are mutually exclusive. Indeed the
main argument of [[16] () implies that if the Oseledets stable directions depend non-trivially on
the itinerary and p is not atomic then its fiber entropy is positive (see also [16, Rmk 12.3]). This
implies that for (X, v, u) as in Theorem if v is not T'y-invariant, then its fiber entropy is
positive.

9.1. Intersection multiplicities. If 1} and V5 are germs of curves at 0 € C?2, with an isolated
intersection at 0, the intersection multiplicity intery (17, V5) is, by definition, the number of
intersection points of V; and V5 + u in N for small generic v € C?, where N is a neighborhood
of O such that Vi nVon N = {0} (see [34}, §12]). Itis a positive integer, and intero(V7, Vo) = 1if
and only if V; and V5 are transverse at 0. We extend this definition by setting inter(V3, V2) = 0
if V1 or V4 does not contain 0 and interg(V7, V) = oo if 0 is not an isolated point of V} n V3,
that is locally V; and V5 share an irreducible component. The intersection multiplicity extends
to analytic cycles (that is, formal integer combinations of analytic curves).

Lemma 9.3. The multiplicity of intersection intery (-, -) is upper semi-continuous for the Haus-
dorff topology on analytic cycles.

In our situation we will only apply this result to holomorphic disks with multiplicity 1, in
which case the topology is just the usual local Hausdorff topology.

Proof. Assume intero(V1,V2) = k and Vi, — Vi (resp. Vo, — V3) as cycles; we have to
show that lim sup intero(V1 p, Va,) < k. If k = oo there is nothing to prove. Otherwise, {0} is
isolated in V; n V4, so we can fix a neighborhood U of 0 such that Vi n Vo n U = {0}; then,
the result follows from [34, Prop 2 p.141] (stability of proper intersections). U

2This actually requires checking that the whole proof of [16] can be reproduced in our complex setting: we will
come back to this issue in a forthcoming paper. Since this remark is not used in this paper, we take the liberty to
anticipate on that research.
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9.2. Generic intersection multiplicity of stable manifolds. Recall from §7.4]that for m-almost
every x = (£, ) € X there exists a local stable manifold W (x¥) € X¢ ~ X, depending mea-
surably on x; we might simply denote it by W} (x).

Let us cover a subset of full measure in X by Pesin subsets R.,. Take a point z € X,
and consider the set of points ((¢,z),(¢,z)) € R, x Re,,, for some fixed pair of indices
(n,m); Lemmal9.3|shows that the intersection multiplicity inter, (W} (&, ), W (¢, x)) is an
upper semi-continuous function of ((£,z), (¢, z)) on that compact set. Thus, the intersection
multiplicity inter, (W} (&, x), W ((,)) is a measurable function of (£, (). Recall that

— the og-algebra 7~ on X is generated, modulo m-negligible sets, by the partition into

subsets of the form ¢ () x {x} (see §[7.1} Equation (7.2));

— & — mg is F~-measurable, i.e m¢ = m¢ almost surely when ¢ € X} (€);

— the conditional measures of m with respect to this partition satisfy (see Equation (7.3)))
CAY m( - | F(x)) = v2(- | Biee (&) % 0a-
The next lemma can be seen as a complex analytic version of [[16, Lemma 9.9].

Lemma 9.4. Let k > 1 be an integer. Exactly one of the following assertions holds:

(a) for m-almost every x = (&, x) and for m( - | F~ (&, x))-almost every n
inter, (Wite(§, @), Wite(n,2)) = k + 1;
(b) for m-almost every x = (&, x) and for m( - | F~ (&, x))-almost every n
intery (Wi5. (&, 2), Wite(n, ) < k.

Proof. The relation defined on X" by (§,x) ~ (n,y) if x = y and W} (£, x) and W} (1, y)
have order of contact at least k¥ + 1 at x is an equivalence relation which defines a partition
Oy of X. We shall see below that Q, is a measurable partition. Since F': X — X acts by
diffeomorphisms on the fibers X of X, we get that F'(Qy(x)) = Qi(F(x)) for almost every
x € X. Then, the proof of [16, Lemma 9.9] applies verbatim to show that if

9.2) m ({X ; m(Qp(x)|F (%)) > O}) >0,
then
(9.3) m ({x; m(Qp(x)|F~(x)) =1}) = 1.

This is exactly the desired statement. (This assertion says more than the mere ergodicity of m,
which only implies that m ({x; m(Qg(x)|F~(x)) > 0}) = 1.)

It remains to explain why Qj is a measurable partition. For this, we have to express the atoms
of Q. as the fibers of a measurable map to a Lebesgue space. As for the measurability of the
intersection multiplicity, we consider an exhaustion of X’ by countably many Pesin sets; then, it
is sufficient to work in restriction to some compact set I < X on which local stable manifolds
have uniform size and vary continuously. Taking a finite cover of X by good charts (see §[7.3.2),
and restricting X again to keep only those local stable manifolds which are graphs over some
fixed direction, we can also assume that 7 x (K) is contained in the image of a chart &, : U, —
Vz, © X and there is an orthonormal basis (ej, e2) such that for every y € K the local stable
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manifold 7y (Wi (y)) is a graph {ze1 + 1y (2)e2} in this chart, for some holomorphic function
by on D(r). Now the map from K to C? x CF defined by

94) x— (03 (mx (), (W2 (0), ., (W) M (0))
is continuous. Since the fibers of this map are precisely the (intersection with /C of the) atoms
of Qy., we are done. O

The previous lemma is stated on X’ because its proof relies on the ergodic properties of F'.
However, since stable manifolds depend only on the future, it admits the following more ele-
mentary formulation on X:

Corollary 9.5. Let k > 1 be an integer. Exactly one of the following assertions holds:
(a) for u-almost every x € X and (vN)2-almost every (w,w'),

inter, (Wi (w,z), W (w',2)) =k + 1;
(b) or for p-almost every x € X and (vN)2-almost every (w,w'),

inter, (VV]ZC(Wa .’E), VVlf)c(w/? .ZL')) <k

Combined with results from the previous sections, this alternative leads to the existence of a
finite order of contact ko between generic stable manifolds W (w,z) and W} (w',x). Note
that the assumption that 4 is not supported on an invariant curve is used exactly here.

Lemma 9.6. There exists a unique finite integer 1 < kg < 400 such that for p-almost every
x € X and (vN)2-almost every pair (w,w'), inter, (W*(w, z), W* (W', z)) = ko.

Proof. Fix a small ¢ > 0 and consider a compact set R. < X, with m; (R.) = 1 — ¢, along
which local stable manifolds have size at least r(¢) and vary continuously. Since by Theorem
for my-a.e. x, the only Nevanlinna current associated to W*(x) is 7,5, we can further assume
that this property holds for every x € R.. Let A € X be a subset of full y-measure on which
the alternative of Corollary[9.5holds for every k£ > 1. In X, consider the measurable partition
into fibers of the form Q x {x}; it corresponds to the partition F~ in Lemma Then, the
associated conditional measures m (-|Q x {z}) are naturally identified with . Fix z € A
such that m, (R.|Q x {z}) > 0. Since (X, v) is non-elementary, Theorems|5.6|and[6.11|provide
pairs (w1, ws) in (mo(R:))? for which the currents 75 and T%, are not cohomologous. By
Theorem [8.2) these currents describe respectively the asymptotic distribution of W* (w1, z) and
W (w2, x) so we infer that W*(wy, ) # W#(wa, ) and by the analytic continuation principle
it follows that W} (w1, x) # W} (w2, ). Let k1 < oo be the intersection multiplicity of these
manifolds at x. Since the intersection multiplicity is upper semi-continuous, we infer that for
w} € Re close to wj, j = 1,2, intery (Wi (w), ), W (w, ) < k1. Thus for k = k; we
are in case (b) of the alternative of Corollary [9.5] Applying then Corollary 9.5 successively for
k=1,...,k;, there is a first integer ko for which case (b) holds, and since (a) holds for ky — 1,
we conclude that generically inter, (W (w,z), W (W', x)) = ko. O

9.3. Transversal perturbations. The key ingredient in the proof of Theorem[9.1]is the follow-
ing basic geometric lemma, which is a quantitative refinement of [5, Lemma 6.4].
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Lemma 9.7. Let k be a positive integer. If r and c are positive real numbers, then there are two
positive real numbers 6 = §(k,r,c) and o = ok, r, c) with the following property. Let My and
My, be two complex analytic curves in D(r) x D(r) = C? such that

(i) My and My are graphs {(z, f;(2)) ; w € Dy} of holomorphic functions f;: D(r) — D(r);
(11) M1 (@ M2 = {(0,0)}, and inter(o’o) (Ml, Mg) =k;

(iii) the k-th derivative satisfies |(fi — f2)*)(0)| = c.

If M3 < D(r) x D(r) is a complex curve that does not intersect My but is d-close to My in the

Cl-topology , then My and M3 have exactly k transverse intersection points in D(ar) x D(ar)
(i.e. with multiplicity 1).

Proof. Without loss of generality we may assume that § < 1.

Step 1.- We claim that there exists a; = aq(k, 7, ¢) such that for every @ < «1 and every
z € D(ar) the following estimates hold:

— £5)(k) — fy) (k)

o  SIZEION g ) - ) < BB RITO
— £y (k) — f5) (k)

00 IO i) - ey < SO IO e

Indeed put g = f1 — fo = >}~ 9m2"™. Assumptions (i) and (iii) give|g(z)| < 27 on D(r),
and ¢(¥)(0) # 0. By the Cauchy estimates, |g,,| < 2r'~" for all n. > 0. Then on D(ar) we get

(k) k+1 -1
970 < 2r <|z|> (1 — |Z|> < opl—k % |z|k
r r 11—«

9(2) = F—%
There exists a1 (k,r, c) such that as soon as « < «y, the right hand side of this inequality is
smaller than ¢ |z|* /(2k!); hence Estimate (9.3) follows. The same argument applies for (9.6)
because

9" (0) 1
(= 1)

k —2
<4(k+1) <|Z|> <1 — M) <Ak + )ikt

r r (1—a«)?

Step 2.— For every a < o, if § < c¢(ar)*/2k!, M, and M3 have exactly k intersection points,
counted with multiplicities, in D(ar) x D(ar).

Indeed, the intersection points of M3 and Ms correspond to the solutions of the equation
f3 = fa. To locate its roots, note that on the circle dD(ar), the Inequality (9.5) implies

1c

Qa(ar)k.

9.7) [fi = fal =
Since | f1 — f3| < d, the choice § < c(ar)*/2k! is tailored to assure that the hypothesis of the
Rouché theorem is satisfied in D(ar); so, counted with multiplicities, there are k solutions to
the equation f3 = f5 on that disk. Furthermore by the Schwarz lemma | f2| < ar on D(ar) so
the corresponding intersection points between M5 and M3 are contained in D(ar) x D(ar).

If k£ = 1 the proof is already complete at this stage, so from now on we assume k > 2.
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Step 3.— Set 09 = | f3(0)|, and note that 6y < J. Then for every o < 1/2, in D(«r) we have

©.8) 5% < 1fi(2) — fa(2) < 637
/ / 1 552
9.9) [f1() = f3(2)] < —d 7"

For this, recall the Harnack inequality: for any negative harmonic function in D

L-ld _w(© _1+1d
L+¢l  u(0) 1=
Since fi — f3 does not vanish and |f; — f3| < & < 1 in D(r), the function log |f; — f3] is

harmonic and negative there. Thus for o < 1/2, the Harnack inequality can be applied to
¢ (f1 — f3)(r¢) in D: this gives (9.8). Likewise, we infer that

142 1-2a

©.11) 532 < |fi(2) — f3(2)| < 5>

(9.10)

in D(2ar), and (9.9) follows from the Cauchy estimate [ g'[|p(,,) < (ar)~t 1920

Step 4.— We now conclude the proof. Fix o = «(k, r, ¢) such that &« < «; and

©.12) Blay.e 120 k=1 l+a

= — X > 0.
1+ 2« k 11—«

(This will be our final choice for a.) Fix § < c(ar)¥/2k! and consider a solution zy of the
equation f2(z) = f3(z) in D(ar) provided by Step 2. The transversality of My and Mj at
(20, f2(20)) is equivalent to f5(z0) # f5(z0), so we only need

(9.13) (fs = f1)'(z0)| < |(f2 = 1)/ (20)] -

Since (f1 — f3)(z0) = (f1 — f2)(20), combining the right hand side of Inequality (9.3) and the
left hand side of Inequality we get that

3|(f1— f2)™(0) ==
(9.14) 2| X | |20 = 6077
thus
1lta (9| % -1
©.15 o =55 (30) (- 0
Hence by we get that
1 2k! % k=1 1+« 1
(9.16) [(fa = f1)/ (20)] = 20— 1) <3> G ’(fl — )0
1 (2R F ki
= l—a =
/2(I<:—1)!(3> o ek

9.17) |(Fs = 1) (20)] < —
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Since dy < d, we only need to impose one more constraint on § (together with § < c(ar)¥/2k!),
namely

k-1
1 21\ F 1
B(a) il %
(9.18) 0 < 30— 1), < 3 ) ckro,
to get the desired inequality |(f3 — f1)"(20)] < |(f2 — f1)(20)|- O

Remark 9.8. Lemma does not hold in the real analytic setting. Indeed, take an integer
n = 1 mod [4] and consider the n-th Chebychev polynomial 7;,, defined by T}, (cosf) =
cos(nf); it satisfies |T,,| < 1 on [—1,1], |T},| < 2n on [-1/2,1/2], and T (0) = n. Then,
set Po(z) = 187 (z — 2) + 2. This function satisfies P,(5/n) = 10/n, P,(5/n) = (5/n)?,
and 15/n* < P, < 35/n? on [—1, 1]. Now, if n is large, M1 = {y = 0}, My = {y = z*} and
M3 = {y = P,(x)} are three smooth algebraic curves in (—1,1)? = R? such that Mj is disjoint
from M; but close to it in the C'! topology, and M3 is tangent to My at (5/n,25/n?). Similar
arguments can be used to show that the semi-continuity of Lemma fails for real analytic
curves (though Corollary 0.5 may still be valid for real analytic random dynamical systems).

Let A1 and Ag be two disks of size r at z € X, which are tangent at x; let e; € T, X be a
unit vector in T,, A1 = T,, A and e5 a unit vector orthogonal to e; for kg. Then, in the chart ®,,
A and Ay are graphs {ze; + ¥;(z)ea} of holomorphic functions ;: D(r) — D(r), i = 1, 2,
such that ¢;(0) = 0 and ¢;(0) = 0. If inter, (A, Ag) = k, then for j = 1,...,k — 1 one has

1/19) (0) = éj)(O) and W“ (0) # wék) (0). We define the k-osculation of A; and As at z to be
9.19) 05k, (A1, A2) = [v{7(0) = 07 (0)).

If s < r and we consider A and Ay as disks of size s, then oscy, 5 s (A1, A2) = 05Ck 5 (A1, Ag).
Thus, oscy . (A1, Ag) does not depend on r, so we may denote this osculation number by
osci 5 (A1, Ag). With this terminology, Lemma directly implies the following corollary.

Corollary 9.9. Let k be a positive integer, and r and c be positive real numbers. Then, there are
two positive real numbers § and o, depending on (k,r, c), satisfying the following property. Let
A1 and Ay be two holomorphic disks of size r through x, such that inter, (A1, As) = k and
osci 5 (A1, Ag)) = c. Let Ag be a holomorphic disk of size r such that A3 is 0-close to Ay in
the C'-topology but A3 n Ay = . Then Az intersects Ao transversely in exactly k points in
Bx (z,ar).

The following lemma follows directly from the first step of the proof of Lemma(9.7

Lemma 9.10. Let k be a positive integer, and r and c be positive real numbers. Then there exists
a constant [3 depending only on (r, k,c) such that if A1 and Ay are two holomorphic disks of
size T through x, such that k = inter,(Ay, Ag) and oscy (A1, A2)) = ¢, then x is the only
point of intersection between Ay and Ag in the ball Bx (x, Or).

9.4. Proof of Theorem Before starting the proof, we record the following two facts from
elementary measure theory:

Lemma 9.11. Let (2, F,P) be a probability space, and 6 € (0, 1).
(1) If ¢ is a measurable function with values in [0, 1] and such that § ¢ dP > 1 — §, then

P({x; 4,0(30)21—\/3}) >1-+/0.
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(2) If Aj is a sequence of measurable subsets such that P(A;) > 1 — § for every j, then
P(limsup 4;) =1 —4.

Let us now prove Theorem If the integer ko of Lemma[9.6]is equal to 1, then the Pesin
stable manifolds corresponding to different itineraries at a u-generic point x € X are generically
transverse and we are in case (a) of the theorem. So, we now assume kg > 1 and we prove that i
is almost surely invariant (hence I', -invariant by Remark [4.2)) and that its fiber entropy vanishes.

Step 1.- First, we construct a subset G, of “good points” in X

As described in Section the atoms of 7~ are the sets F~ (x) = 3! (£) x {«} and the
measures m( - | F~(x)) can be naturally identified to v under the natural projections F~ (x) >
3 (&) = Q. For notational simplicity we denote these measures by ml.

For a small ¢ > 0, let R. < X be a compact subset with m(R.) > 1 — ¢, along which local
stable manifolds have size at least 2r(¢) and vary continuously. Since Smf (Ro)dm(x) =
1—¢, by Lemma[9.11](1) we can select a compact subset R, < R. with m(R.) > 1— /¢ such
that for every x € R. one has my  (R.) = 1 — /e

By assumption, inter, (W (y1), W (y2)) = ko for m-almost every x = (§,z) € R and
for (m~ ® mJ~)-almost every pair of points (y,22) € (F~(x) n R.)%. Then there exists

R” < R of measure at least 1 — 24/ and a constant ¢(¢) > 0 such that
(9.20) OSCkq z,7(e) (I/Vlf)c(yl)v vvli)c(@ﬁ)) = C(E)

for every x = (£, z) € R” and all pairs (1, 3») in a subset A. , = (F~(x) n R.)? depending
measurably on x and of measure

(9.21) (ml @m] )(Acx) =1 —4v/e
(we justused (my @ mf )(F~(x) n R:)?) = (1 — /2)?> > 1 — 24/¢). Finally, Fubini’s

X
theorem and Lemma (1) provide a set G. < R” such that
@ m(Ge) = 1 —2e/
(b) for every x € G, WS _(x) has size 2r(¢);
(c) for every x € G., there exists a measurable set G. , = F~(x) with mJ (G.,) = 1 — 2/*
such that for every y in G, ., W}? .(y) has size > r(e) and, viewed as a subset of X,

— itis tangent to W}? (x) to order kyq at ,

— OSCly 2,7 (e) (I/Vlf)c (X)a VV]ic(y)) = C(S)‘
Note that x ¢ G ,: indeed, when the local stable manifolds vary continuously, one can think of
A. . as the complement of a small neighborhood of the diagonal in €2 x €.

Step 2.— To make the argument more transparent, we first show that the fiber entropy vanishes.

Let ® be a Pesin partition subordinate to local stable manifolds in X. By Corollary
it is enough to show that for m-almost every x, m(:|n°(x)) is atomic (hence concentrated at
x). Assume by contradiction that this is not the case. Therefore for € > 0 small enough there
exists ¥ = (§,z) € Ge such that m(:[n°(x)) s (x)~g. is non-atomic, and there exists an infinite
sequence of pairwise distinct points x; = (£, z;) in G- N n°(x) converging to x. Then with G, .
as in Property (c) of the definition of G., we have mxfj (Geny) =1 — 2¢1/4 for every j.

Identifying all 7~ (x;) with ¥}’ (£), by Lemma (2) we can find ¢ € X} () such that
(¢,x;) belongs to QE,(C,IJ.) for infinitely many j’s. Along this subsequence the local stable
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We(&, ;)

W () W* (x)

FIGURE 1. On the left, a generic point x with the local stable manifolds W} _(&;, x)
for distinct (&;)i>0 (see Step 1). On the right, the choice of the sequence (¢, x;) gives
a family of local stable manifolds (see Step 2).

manifolds W (¢, z;) form a sequence of disks of uniform size r = 2r(¢) at ;. Two such local
stable manifolds are either pairwise disjoint or coincide along an open subset because they are
associated to the same itinerary (.

Let us now use the notation from Corollary[9.9|and Lemma We know that W) (¢, xj)
is tangent to W) (€, z) at z; to order ko, with 08Cy 4. r(c) (Wf(a) (x), Wi, xj)) = c(e); so,
by Lemma Wj(a)((, xj) and WTS(E)(C, x ;) are disjoint as soon as distx (xj, ;) < Br(e).
Finally, if j and j' are large enough, then dist x (z;, z;/) < ar(e) and the C' distance between
Wi (¢,x;) and Wi (¢, xj) is smaller than d; thus, Corollaryasserts that W7, (¢,x;) and
Wi (¢, zj) cannot both be tangent to Wi (&, x). This is a contradiction, and we conclude
that the fiber entropy of m vanishes.

Step 3.— We now prove the almost sure invariance.

As in [16 Eq. (11.1)] we consider a measurable partition P of X with the property that for
m-almost every (£, x),

(922) isoc(é) X Wﬁ({,az) (f,l’) < 77(5,90) < Zfoc(§> X Ws(fﬁx)

The existence of such a partition is guaranteed, for instance, by Lemma By [16} Prop
11.1], to show that p is almost surely invariant it is enough to prove that:

(9.23) for m almost every &, m( - |P (¢, x)) is concentrated on 3 (&) x {xz}.

By contradiction, assume that (9.23) fails. By contraction along the stable leaves, it follows that

almost surely 37 (&) x {x} is contained in

(9.24) Supp (m('|77(€, x))\ﬁ(g,x)\zfoc(g)x{x})

(this is identical to the argument of Corollary [7.14). In particular for small ¢ we can find x =
(§&,x) € Gc and a sequence of points x; = (£;,2;) € G. such that x; belongs to P(x) n G,
xzj # x and (z;) converges to = in X. We can also assume that the x; are all distinct. By
definition of G., m£7 (gg,xj) > 1 — 2¢'/* for every j. For (£,¢) € X2, set

(9.25) [57 C] = ﬁ)c(g) M Efoc(()?

3Brown and Rodri guez-Hertz make it clear that this result holds for an arbitrary smooth random dynamical system
on a compact manifold.
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that is, [£, (] is the itinerary with the same past as ¢ and the same future as ¢. As above, iden-
tifying the atoms of the partition 7~ with €2, Lemma (2) provides an infinite subsequence
(Je) and for every ¢ an itinerary (j, € Xj (§j,) such that y;, := ((j,,zj,) belongs to Gc », and
all the (j, have the same future, that is (j, is of the form [}, (] for a fixed ¢. By definition,

(9.26) interx]‘e (Wlf)c (Xje ) ) Wlf)c (yjé ))
9.27) 08Cko,a;, ,r(s)(vvlf)c(xje)v Wlﬁc(yjz))

ko
c(e).

A\

In addition the disks mx (W (y;,)) are pairwise disjoint or locally coincide because the x;,
are distinct and the (;, have the same future. Moreover, since x;, belongs to P(x), W*(x;,)
coincides with W¥(x). Therefore, the mx (W} .(y;,)) form a sequence of disjoint disks of size
2r(e) at x;, all tangent to wx (W (x)) to order ko, with osculation bounded from below by
c(e). Since this sequence of disks is continuous and (z;) converges towards z, Lemma
and Corollary [0.9] provide a contradiction, exactly as in Step 2. This completes the proof of the
theorem. (]

10. STIFFNESS

Here we study Furstenberg’s stiffness property for automorphisms of compact Kihler sur-
faces, thereby proving Theorem [A]l Our first results in §10.3] deal with elementary subgroups
of Aut(X). The argument relies on the classification of such elementary groups together with
general group-theoretic criteria for stiffness; these criteria are recalled in § and The-
orem concerns the much more interesting case of non-elementary subgroups; its proof
combines all results of the previous sections with the work of Brown and Rodriguez-Hertz [16].

10.1. Stiffness. As said in Section a random dynamical system (X, v) is stiff if any v-
stationary measure is almost surely invariant; equivalently, every ergodic stationary measure
is almost surely invariant. This property can be expressed in terms of v-harmonic functions
on I'. Indeed if £: X — R is a continuous function and p is v-stationary, then I' 5 g —
§x £(gz) dp(x) is a bounded, continuous, right v-harmonic function on I'; thus proving that x
is invariant amounts to proving that such harmonic functions are constant. Stiffness can also be
defined for group actions: a group I" acts stiffly on X if and only if (X, v) is stiff for every
probability measure v on I' whose support generates I'; in this definition, the measures v can
also be restricted to specific families, for instance symmetric finitely supported measures, or
measures satisfying some moment condition. There are some general criteria ensuring stiffness
directly from the properties of I". For instance, if G x X — X is a continuous action of a
topological group and I' G is relatively compact, then I' acts stiffly on X (this follows from
the maximum principle for harmonic functions on T, see also [51, Thm 3.5]). Another important
case is that of Abelian and nilpotent groups:

Theorem 10.1. Let G be a locally compact, second countable, topological group. Let v be a
probability measure on G. If G is nilpotent of class < 2, then any measurable, v-harmonic, and
bounded function p: G — R is constant; thus, every measurable action of such a group is stiff.
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This is a special case of results of Dynkin-Malyutov and Guivarc’h, see [57, [74] for the proof
(ﬂ). When applying Theorem to subgroups A < Aut(X), we implicitly first replace A by
its closure in Aut(X) then apply the theorem to this locally compact group.

10.2. Subgroups and hitting measures. A basic tool is the hitting measure on a subgroup,
which we briefly introduce now (see [8, Chap. 5] for details). Let GG be a locally compact second
countable topological group. A notion of length can be defined in this context as follows: given
a neighborhood U of the unit element, for any g € G, length;;(g) is the least integer n > 1 such
that g € U"™. By definition a probability measure v on G has a finite first moment (resp. a finite
exponential moment) if §lengthy;(g) dv(g) < oo (resp. if §exp(alengthy;(g)) dv(g) < oo for
some « > (). This condition does not depend on the choice of U.

Let v be a probability measure on (5, and consider the left random walk on G governed by v.
Given a subgroup H < G, for w = (g;) € GY, define the hitting time

(10.1) T(w)=Ty(w) :==min{n>1; g, ---g1 € H}.

If T is almost surely finite we say that H is recurrent and the distribution of g7, - - - g1 is by
definition the hitting measure of v on H, which will be denoted by vy . The key property of vy
is that if ¢ : G — R is a v-harmonic function, then | is also vg-harmonic. Therefore, if
is a v-stationary measure, then it is also vg-stationary. Conversely, any bounded vg-harmonic
function h on H admits a unique extension h to a bounded v-harmonic function on G; this
follows from Doob’s optional stopping theorem.

If [G : H] < oo then H is recurrent and its stopping time admits an exponential moment.
It follows that vy has a finite first (resp. exponential) moment if and only if v does. Likewise,
assume that H is a normal subgroup of G with G/H isomorphic to Z, and that v is symmetric
with a finite first moment. Then, the projection 7 of v on G/H is symmetric with a finite first
moment, so the random walk governed by 7 on G/H ~ Z is recurrent (see the Chung-Fuchs
Theorem in [43] §5.4] or [35]]) and H is recurrent.

Lemma 10.2. Let v be a probability measure on Aut(X ) and T be a closed subgroup which is
recurrent for the random walk induced by v. Let V' be the induced measure on T". If (X, V) is
stiff then (X, v) is stiff as well. This holds in particular if:

(i) either [T, : T'] < o0
(ii) or I is a normal subgroup of T, with T,,/T" isomorphic to Z, and v is symmetric with a
finite first moment.

Proof. Let 1 be a v-stationary measure on X. Then p is v/-stationary, hence by stiffness it is
I-invariant. Therefore for every Borel set B — X, the function T 3 g — (g~ !B) is a bounded
v-harmonic function which is constant on IV so by the uniqueness of harmonic extension it is
constant, and v is I'-invariant. O

10.3. Elementary groups. Recall that Aut(X) is a topological group for the topology of uni-
form convergence and is in fact a complex Lie group (with possibly infinitely many connected
components). Let Aut(X)° be the connected component of the identity in Aut(X') and

(10.2) Aut(X)¥ = Aut(X)/Aut(X)°.

“The proof in [74] is not correct (Lemma 2.5 there is false) but it works perfectly, and is quite short, if the support
of v is countable or if the nilpotency class is < 2. See the introduction of [[74] for a summary of previous results.
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Let p : Aut(X) — GL(H*(X;Z)) be the natural homomorphism; its image is Aut(X)* =
p(Aut(X)) (see §[2.1.1); is kernel contains Aut(X)° and a theorem of Lieberman [68] shows
that Aut(X)® has finite index in ker(p). If " is a subgroup of Aut(X), we set I'* = p(T").

Theorem 10.3. Let X be a compact Kiihler surface. Let v be a symmetric probability measure
on Aut(X) satisfying the moment condition @.1). If T, is elementary and '}, is infinite, then
(X, v) is stiff.

Note that stiffness can fail when I'} is finite: see Example below. The proof relies on the
classification of elementary subgroups of Aut(X) (see [21, Thm 3.2], [46]): if T, is elementary
and I'}; is infinite there exists a finite index subgroup A* < I'} which is

(a) either cyclic and generated by a loxodromic map;

(b) or a free Abelian group of parabolic transformations possessing a common isotropic line; in
that case, there is a genus 1 fibration 7: X — S, onto a compact Riemann surface S, such
that I',, permutes the fibers of 7.

Denote by pr,: '), — I'}} the restriction of p to I',. We distinguish two cases.

Proof when the kernel of pr,, is finite. Let A be the pre-image of A* in I',; it fits into an exact
sequence 1| - FF — A — A* — 0 with F finite, so a classical group theoretic lemma (see
Corollary 4.8 in [31]]) asserts that A contains a finite index, free Abelian subgroup Ay, such that
pr, (Ap) has finite index in A*. Since Ay is Abelian, Theorem [10.1| shows that the action of
(Ao, v4,) on X is stiff. The index of Ay in I being finite, Lemma|10.2|concludes the proof. [J

Proof when the kernel of pr,, is infinite. In case (a), X is a torus C?/A and ker(pr, ) is a group
of translations of X (see Proposition[3.3). Let A — T, be the pre-image of A*; setting K =
ker(pr, ), we obtain an exact sequence 0 - K — A — A* — 0, with A c T, of finite index,
A* ~ Z generated by a loxodromic element, and K < X an infinite group of translations. Since
v is symmetric, the measure /4 is also symmetric; since v4 satisfies the moment condition (@.1)),
its projection on A* has a first moment (note that if f is loxodromic, then log(|(f*)"|) = |n|).
Since K is Abelian, its action on X is stiff; thus, as in Lemma (ii), the action of 4 on X is
stiff. Since A has finite index in I', the action of I" on X is stiff too by Lemma[10.2}(i).

In case (b), we apply Proposition So, either X is a torus, or the action of I';, on the
base S of its invariant fibration 7: X — S has finite order. In the latter case, a finite index
subgroup I'y of I" preserves each fiber of 7; then, I'y contains a subgroup of index dividing 12
acting by translations on these fibers. This shows that I" is virtually Abelian; in particular, I"
is stiff. The last case is when the image of I' in Aut(.S) is infinite and X is a torus C?/Ax.
Then, S = C/Ag is an elliptic curve and 7 is induced by a linear projection C* — C, say the
projection (x, %) +> z. Lifting ' to C2, and replacing I by a finite index subgroup if necesssary,
its action is by affine transformations of the form f: (x,%) — (z + a,y + ma + b) with m in
C*, and (a, b) in C2. This implies that I is a nilpotent group of length < 2; by Theorem it
also acts stiffly and we are done. U

Example 10.4. If X = P2(C), its group of automorphisms is PGL3(C) and for most choices of
v there is a unique stationary measure, which is not invariant; the dynamics is proximal, and this
is opposite to stiffness (see [51]). If X = P}(C) x C, for some algebraic curve C, then Aut(X)
contains PGL2(C) x Aut(C); if v is a probability measure on PGL2(C) x {id¢}, then in most
cases the stationary measures are again non invariant.
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Proposition 10.5. Let X be a compact Kihler surface and T be a subgroup of Aut(X) such
that T* is finite. If I preserves a probability measure whose support is Zariski dense in X, then
the action of I on X is stiff.

Proof. Let i be the invariant measure. Replacing I by a finite index subgroup we may assume
that I' = Aut(X)°. Let G be its closure (for the euclidean topology) in the Lie group Aut(X)®;
it is a real Lie group preserving p. We can assume that G is not compact, since otherwise
stiffness is automatic. According to [33, Lem. 5.7], X is ruled, hence projective (since X is a
compact Kihler surface). Pick an ample line bundle L on X, denote by PV (C) the projective
space P(HO(X,L)V), with N + 1 = h%(X, L), and by ¥ : X — PV (C) the Kodaira-Iitaka
embedding of X given by L. By hypothesis, (¥r,). is not supported by a hyperplane of PV (C).

Step 1.— Suppose G acts trivially on Pic’(X). Then L is G-invariant and there is a homo-
morphism 8: G — PGLy41(C) such that ¥y o g = ((g) o ¥, for every g € L. If G is not
compact, there is a sequence of elements g,, € G going to infinity in PGLy 41 (C): in the KAK
decomposition g,, = kya,k,,, the diagonal part a,, goes to c0. Then, any probability measure on
PN (C) which is invariant under all g, is supported in a proper projective subspace of PV (C),
and this contradicts our preliminary remark. So, GG is compact and the action is stiff.

Step 2.— Suppose the action of G on Pic(X)? is non-trivial. Then, the base of the ruling
a: X — B has genus > 1, and the homomorphism Aut(X)? — Aut(B)? has positive dimen-
sional image. So, B is an elliptic curve on which Aut(X)? acts transitively. According to [70,
Thm 3] and [72} §3], there are two cases: either X = BxP!(C), Aut(X) = Aut(B) x PGLy(C)
and we deduce, as in the first step, that G is a compact group; or Aut(X)® is Abelian. In all
cases stiffness follows, and we are done. |

10.4. Invariant algebraic curves II. If I, admits a smooth invariant rational curve C' such that
the induced action on C' ~ P!(C) comes from a non-elementary subgroup of PGLy(C), then
there is a unique, non-invariant, stationary measure on C'. The next result shows that when v is
symmetric, every non-invariant stationary measure is essentially of this kind.

Proposition 10.6. Let (X, v) be a random holomorphic dynamical system, with v symmetric.
Let 1 be an ergodic v-stationary measure giving positive mass to some proper Zariski closed
subset of X. Then p is supported on a Iy, -invariant proper Zariski closed subset and

(a) either i is invariant;

(b) or the Zariski closure of Supp(u) is a finite, disjoint union of smooth rational curves C;,
the stabilizer of C; in T induces a strongly irreducible and proximal subgroup of Aut(C;) ~
PGLy(C), and p(C;) "L il c, is the unique stationary measure of this group of Mobius trans-
formations.

Moreover, if (X, v) is non-elementary, the curves C; have negative self-intersection and can be
contracted on cyclic quotient singularities.

Note that no moment assumption is assumed here. Before giving the proof, let us briefly
discuss the question of stiffness for Mobius actions on P!(C). Let v be a symmetric measure on
PGL2(C). As already said, by Furstenberg’s theory, if I, is strongly irreducible and unbounded
it admits a unique stationary measure, and this measure is not invariant. Otherwise, any v-
stationary measure is invariant because

— either I, is relatively compact and stiffness follows from [S1, Thm. 3.5];



RANDOM DYNAMICS ON COMPLEX SURFACES 59

— or I', admits an invariant set made of two points, then I',, is virtually Abelian and stift-
ness follows from Theorem [10.1
— or I}, is conjugate to a subgroup of the affine group Aff(C) with no fixed point.

In the latter case after conjugating I',, to a subgroup of Aff(C) we can write any g € T', as
g(z) = a(g)z + b(g). If a(g) = 1 then T',, is Abelian and we are done. Otherwise I',, is merely
solvable and we apply the following lemma which follows from a result of Bougerol and Picard:
let v be a symmetric probability measure on Aff(C). If no point of C is fixed by v-almost every
g, then the only v-stationary probability on P'(C) is the point mass at o (see [14, Thm. 2.4]; a
self-contained proof is provided in [24]).

Proof of Proposition[10.6] If ;1 has an atom then, by ergodicity, 4 is supported on a finite orbit
and it is invariant. So we now assume that p is atomless. By ergodicity, p gives full mass
to a ', -invariant curve D; let C, ..., C, be its irreducible components. Let I be the finite
index subgroup of T',, stabilizing each C; and v/ be the hitting measure induced by v on I"; it is
symmetric, p is v//-stationary, and so are its restrictions u|c;, for each C;.

If the genus of (the normalization of) C; is positive, then I'|¢, < Aut(Ch) is virtually
Abelian, hence ¢, is IV-invariant. Since p is ergodic, '), permutes transitively the C;, and
arguing as in Lemma [10.2] we see that p is v-invariant as well. Now, assume that the normal-
ization C’l is isomorphic to Pl(C). If C is not smooth, or if it intersects another I, -periodic
curve, then the image of I in Aut(C}) ~ PGLy(C) is not strongly irreducible, and the discus-
sion preceding this proof shows that y is I'-invariant. Again, this implies that y is ', -invariant.
The same holds if I is a bounded subgroup of Aut(C’l). The only possibility left is that C' is
smooth, disjoint from the other periodic curves, and I induces a strongly irreducible subgroup
of Aut(C}). Since I'), permutes transitively the C;, conjugating the dynamics of the groups
|, the same property holds for each C;.

If ', is non-elementary, Lemma shows that C? = —m for some m > 0, which does not
depend on ¢ because '), permutes the C; transitively. Then, the C; being disjoint, one can con-
tract them simultaneously, each of the contractions leading to a quotient singularity (C2,0)/{n)
with n(z,y) = (ax, ay) for some root of unity « of order m (see [4, §11L.5]). O

10.5. Non-elementary groups: real dynamics. We now consider the action of general non-
elementary subgroup of Aut(X) on an invariant, totally real surface Y'; as in Theorem |A] we
further assume the existence of an invariant volume form on Y'; this is automatic when X is an
Abelian, K3, or Enriques surface (see Remark [3.2]and [26]).

Theorem 10.7. Let (X,v) be a non-elementary random holomorphic dynamical system on a
compact Kihler surface, satisfying the moment condition (4.1)). Assume that Y < X is a
I',-invariant totally real 2-dimensional smooth submanifold such that the action of I', on Y
preserves a probability measure voly equivalent to the Riemannian volume on Y. Then, every
ergodic stationary measure pLon'Y is:

(a) either almost surely invariant,
(b) or supported on a ' ,-invariant algebraic curve.

In particular if there is no I',,-invariant curve then (Y, v) is stiff. Moreover, if the fiber entropy
of w is positive, then p is the restriction of voly to a subset of positive volume.
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Recall from Lemma [2.12]that ", -invariant curves can be contracted. For the induced random
dynamical system on the resulting singular surface, stiffness holds unconditionally. If further-
more v is symmetric then the result can be made more precise by applying Proposition[10.6]

Proof of Theorem[10.7} We split the proof in two steps.

Step 1.— Let 1 be an ergodic stationary measure supported on Y. We assume that u is not
invariant, and we want to prove that it is supported on a I -invariant curve. Since the action is
volume preserving, its Lyapunov exponents satisfy A\~ + AT = 0 (see § . The invariance
principle (Theorem shows that p is hyperbolic: indeed p is almost surely invariant when
A~ = 0. We can therefore apply Theorem 3.4 of [[16] to obtain the following trichotomy:

(1) either 4 has finite support, so it is invariant;

(2) or the distribution of Oseledets stable directions is non-random;

(3) or p is almost surely invariant and absolutely continuous with respect to voly: even
more, it is the restriction of voly to a subset of positive volume.

Since p is not invariant, we are in case (2). Theorem [9.1] then implies that y is supported on
an invariant algebraic curve. This concludes the proof of the first assertions in Theorem [10.7]
including the stiffness property when I' has no periodic curve.

Step 2.— It remains to prove the last assertion. Let then i be an ergodic stationary measure
with h, (X,v) > 0. In the above trichotomy, (1) is now excluded. To exclude the alternative (2),
by Theorem 9.1} it suffices to show that p is not supported on an invariant curve. By Proposition
(i.e. the fibered Margulis-Ruelle inequality), w is hyperbolic. If w is supported on an
algebraic curve, the proof of Corollary [8.3]leads to the following alternative: either p is atomic
or the Lyapunov exponent along that curve is negative. In the latter case p is proximal along
that curve and its stable conditionals are points. In both cases the fiber entropy would vanish, in
contradiction with our hypothesis, so w is not supported on an algebraic curve, as desired. ~ [J

11. MEASURE RIGIDITY

Invariant measures are classified in [26] when I' is non-elementary and contains a parabolic
element. Thus, in view of the results of Section [10] it is natural to ask for such a classification
when I' does not contain parabolic elements. If y is a probability measure on X, we denote by
Aut,, (X)) the group of automorphisms of X preserving .

Theorem 11.1. Let f be an automorphism of a complex projective surface X, preserving a
totally real and real analytic surface Y < X. Let  be an ergodic f-invariant measure on'Y
with positive entropy. Then

(a) either  is absolutely continuous with respect to the Lebesgue measure on 'Y ;
(b) or Aut,,(X) is virtually cyclic.

If in addition the Lyapunov exponents of f with respect to p satisfy X\~ (f, ) + AT (f, ) # 0,
then case (a) does not occur, so Aut,,(X) is virtually cyclic.

This result, and its proof, may be viewed as a counterpart, in our setting, to Theorems 5.1
and 5.3 of [[16]]; again the possibility of invariant line fields is ruled out by using the complex
structure. As before the typical case to keep in mind is when X is a projective surface defined
over Rand Y = X (R). Observe that by ergodicity, if f preserves a smooth volume voly, then
in case (a) o will be the restriction of voly to an Aut,, (X )-invariant Borel set of positive volume.
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Remark 11.2. Theorem|[I1.1/holds more generally for compact Kéhler surfaces (see [24]).

Proof of Theorem[I1.1] Since it admits a measure of positive entropy, f is a loxodromic trans-
formation. By the Ruelle-Margulis inequality y is hyperbolic with respect to f and it does not
charge any point, nor any piecewise smooth curve: indeed, the entropy of a homeomorphism of
the circle or the interval is equal to zero.

For p-almost every x € X, the stable manifold W*(f, x) is an entire curve in X which is
either transcendental or contained in a periodic rational curve (see [21, Thm. 6.2]). Since f has
only finitely many invariant algebraic curves (see [21}, Prop. 4.1]) and p gives no mass to curves,
W#(f,x) is u-almost surely transcendental; then, the only Ahlfors-Nevanlinna current associ-
ated to W*(f,x) is T ];" ; similarly, the Ahlfors-Nevanlinna currents of the unstable manifolds

give TJT . (This is the analogue in deterministic dynamics of Theorem ) Fix g € Aut,(X)
and set I" := (f, g). Our first goal is to prove the following:

Alternative: either I'* is virtually cyclic and preserves {IP’[T;F], P[T} ]} < Hx; or pu is abso-
lutely continuous with respect to the Lebesgue measure on'Y .

Let Y’ < Y be the union of the connected components of Y of positive y-measure. The mea-
sure 1 does not charge any analytic subset of Y of dimension < 1; thus, by analytic continuation,
any h € T preserves Y. So, without loss of generality we can replace Y by Y.

We divide the argument into several cases according to the existence or non-existence of
certain ['-invariant line fields. In the first two cases we will conclude that I' is elementary. In
the third case, p will be absolutely continuous with respect to the Lebesgue measure on Y'; then
by the Pesin formula its Lyapunov exponents satisfy A*(f, 1) = —A7(f, ) = hyu(f) so when
AT(f, 1) + A (f, ) # 0, Case 3 is actually impossible.

Case 1.— There exists a I'-invariant measurable line field. Specifically, we mean a measurable
field of complex lines = — E(x) € P(T,X), defined on a set of full y-measure, such that
D, h(E(x)) = E(h(z)) for every h € T and almost every = € X since y is supported on
the totally real surface Y, the field of real lines E(z) n T,Y < T.Y is also invariant, and
determines E(x). Now, u being ergodic and hyperbolic for f, the Oseledets theorem shows that
either E(x) = Ef(x) p-almost everywhere or E(z) = E}(x) p-almost everywhere. Changing
f into £~ if necessary, we may assume that E(z) = E3(z).

Consider the automorphism h = g~ fg € Aut,(X). Since h is conjugate to f, u is also
ergodic and hyperbolic for h. Thus, either Ej(x) = E}(x) for p-almost every x or Ej(z) =
E}(z) for p-almost every .

Lemma 11.3. [f there is a measurable set A of positive measure along which Ej(z) = Ef(x)
(resp. E}(x) = E}(x)), then W*(f,x) = W*(h, x) for almost every x in A (resp. W*(h, x) =
We(f, ).

Let us postpone the proof of this lemma and conclude the argument. Suppose first that
Ej(x) = E3(x) on a subset A with u(A) > 0. Then T = T, because for u-almost every
x, the unique Ahlfors-Nevanlinna current associated to the (complex) stable manifold W*( f, x)
(resp. W*(h,x)) is T]ﬁr (resp. T})). Since T, = M(g*T;r)_lg*ij, we see that g, and there-
fore I itself, preserve the line R[Tf*] c HY(X). Since [T]fr]2 = 0, I fixes a point IP’[T;F]
of the boundary dH x, so it is elementary. Since in addition I" contains a loxodromic element,
Theorem 3.2 of [21] shows that I'* is virtually cyclic.
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Now, suppose that Ej}(z) = E}(z) on A. Then, T} = T]T and the group generated by f
and h is elementary. Since it contains a loxodromic element [21, Thm 3.2] says that {f*, h*)
is virtually cyclic and fixes also }P’[Tf_ | € 0Hx. This implies that g, hence I', preserves the
pair of boundary points {IP’[T];*], P[T} ]} = dHx. Thus, in both cases I'* is virtually cyclic and
preserves {]P’[TJT], P[T} ]} < oHx.

Proof of Lemmal[I1.3] The argument is similar to that of Theorem 9.1] in a simplified setting,
so we only sketch it. For p-almost every x, W*(f, ) and W¥(h, x) are tangent at x. Assume
by contradiction that there exists a measurable subset A’ of A of positive measure such that
Ws(f,z) # W?(h,z) for every x € A’. Then for small ¢ > 0 there exists two positive
constants 7 = r(¢) and ¢ = ¢(¢), an integer k£ > 2, and a measurable subset G. < A’ such that
1(G:) > 0 and

- W (f,x) and W} _(h,x) are well defined and of size r for every x € G.,
- W .(f,x) and W} _(h,x) depend continuously on z on G, < X,

- inter:r(Vsz,C(fa $)> ngc(fa IE)) = k for every z € G,

- and osc g, o ) (WS (f, ), W (h,x)) = cforevery z € G..

Indeed, to get the first and second properties, one intersects A’ with a large Pesin set R.. On
A’ "R, the multiplicity of intersection & — inter, (W} (f, z), W%.(f, x)) is semi-continuous,
so we can find k£ > 2 and a subset R. < (A’ n R.) of positive measure such that

(111) interﬂU(Wlf)c<f7x)aVVlzéc(fax)) =k

for every 2 € R.. Thus, the k-th osculation number is well defined, and the last property holds
on a subset G. < R. of positive measure if ¢ is small.

Let n° be a Pesin partition subordinate to the local stable manifolds of f. Since h,(f) >
0 the conditional measures u(-|n®) are non-atomic. Thus there exists x € G. such that z is
an accumulation point of Supp (u(-|n%(z))]g. ms(x)). Fix a neighborhood N of = such that
Wi (f,z) n W2(h,x) n N = {x}, and then pick a sequence (x;) of points in G. N n*(z) N N
converging to z. The local stable manifolds W,?(h, ;) form a sequence of disks of size r at z'j,
each of them tangent to W?(f, x) (at =), and all of them disjoint from W}?(h, z) (because z;
does not belong to W2 (h, x)). This contradicts Corollary and the proof is complete. (]

Case 2.— There is a pair of distinct measurable line fields { E1(x), Eo(x)} invariant under T
Again by the Oseledets theorem applied to f, necessarily {E1(z), E2(2)} = {E}(2), £} ()}
For p-almost every z, g({E}(z), Ef(2)}) = {E7(g9(2)), E}(g9(x))}. As before, consider h =
g fge Aut,,(X). Since h is conjugate to f, it is hyperbolic and ergodic with respect to y, and
{E}(2), E}(2)} = {E}(2), E}(2)} for almost every . Replacing h by h~1 if necessary, there
exists a set A of positive measure for which Ej (z) = E}(x), and we conclude as in Case 1.

Case 3.— There is no U-invariant line field or pair of line fields. In other words, Cases 1 or 2
are now excluded. This part of the argument is identical to the proof of [16, Thm 5.1.a].

First, we claim that there exists g1,g2 € 1" and a subset A of positive measure such that
Degi(Ej(x)) ¢ {E}(91(2)), E}(91(2))} and Daga(EF (x)) ¢ {Ef(g2(x)), Ef(g2(x)} for ev-
ery x in A. Indeed since we are not in Case 2 (possibly switching EY and E%) there exists g; € I'
and a set A of positive measure such that for z € A, D,g1(E}(2)) ¢ E}(g1(2)) v Ef(g1(2)).
Since we are not in Case 1, there exists g € I' and a set B of positive measure such that for
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z € B, Dyg(EY(z)) # E}(g9(x)). If Dyg(Ef(2)) € {E}(9()), E¥(9(2))} on a subset B’
of B of positive measure, then choose k¥ > 0 and ¢ > 0 such that x(f(A) n B’) > 0 and
w(fF(g(f4(A))) n A) > 0 and define go = g1 f*gf*; otherwise, set go = gf* with £ such that
p(f¢(A) n B) > 0. Then change A into A = A n f~4(B’) (resp. A n f~*(B)).

Denote by A the simplex {(a,b,c,d) € (R%)*; a+b+c+d=1}. Fora = (a,b,c,d) in
A, let v, be the probability measure v, = ady + bds-1 + cdg + ddy-1. Then i is v,-stationary
and since p is f-ergodic and v ({f}) > 0, it is also ergodic as a v, -stationary measure (see [8]
§2.1.3]). Since we are not in Cases 1 or 2 and p is hyperbolic for f, the invariance principle of
Ledrappier [63] implies that the Lyapunov exponents of u, viewed as a v,-stationary measure,

satisfy A\ (1) < AL (i) (see Section 13.2.2 of [16]; more precise statements and proofs can be
found in [23, §7]).

Lemma 11.4. There exists a choice of o € A such that p is a hyperbolic v,-stationary measure,
e A () <0< A(w)

Proof. This is automatic when f and g are volume preserving because A\, (1) = —A () in that
case. For completeness, let us copy the proof given in [[16 §13.2.4]. The assumptions of Case 3
and the strict inequality A~ (u) < A1 (u) imply that

(11.2) ae A (A;(n), A (n) e R

is continuous (see [16, Prop. 13.7] or [77, Chap. 9]). Since A\, (1) < AZ () for every o € A,
one of A, and A} is non zero. Furthermore, u being invariant, the involution (a, b, c,d) —
(b, a, d, ) interchanges the Lyapunov exponents. It follows that P = {« € A; A\l > 0} and N =
{ae A, A\, < 0} are non-empty open subsets of A such that P U N = A. The connectedness
of A implies P n N # (¥, as was to be shown. O

Fix a € A such that y is hyperbolic as a v, -stationary measure. The assumptions of Case 3
imply that the stable directions depend on the itinerary so the main result of [16] shows that u
is fiberwise SRB (on the surface Y), that is, the unstable conditionals of the measures i, (here
Wy = p) are given by the Lebesgue measure (in some natural affine parametrizations of the
unstable manifolds by the real line R). Since y is invariant, we can revert the stable and unstable
directions by applying the argument to F'~!, and we conclude that the stable conditionals are
given by the Lebesgue measure as well. The absolute continuity property of the stable and
unstable laminations then implies that p is absolutely continuous with respect to the Lebesgue
measure on Y.

Conclusion.— Assume that 4 is not absolutely continuous with respect to the Lebesgue measure
on Y. The above alternative holds for all subgroups I' = (f, g), with g € Aut,(X) arbitrary.
Therefore, Aut,,(X)* preserves {IP)[T;F],IP’[Tf_]} c 0Hy, which implies that Aut,, (X )* is vir-
tually cyclic. It remains to prove that Aut,(X) itself is virtually cyclic. If not, then Aut(X)°
is infinite, X is a torus C2/A (see Proposition , and Aut,(X) n Aut(X)® is a normal sub-
group of Aut, (X)) containing infinitely many translations. This group is a closed subgroup of
the compact Lie group Aut(X)° = C2/A; thus, its connected component of the identity is a
(real) torus H < C? /A of positive dimension. This torus H is invariant under the action of f
by conjugacy. Since X = C2/A, f is a complex linear Anosov diffeomorphism of X, and it
follows that dimg (H) > 2. Being H-invariant, 4 is then absolutely continuous with respect to
the Lebesgue measure of Y'; this contradiction completes the proof. U
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It is natural to expect that the positive entropy assumption in Theorem[IT.T|could be replaced
by a much weaker assumption, namely, “u gives no mass to proper Zariski closed subsets”. The
case when Supp(v) contains a Kummer example is successfully treated in [24]. Also, a version
of Theorem can be established for polynomial automorphisms of R?, with essentially the
same proof (see [24]).

APPENDIX A. STRONG LAMINARITY OF AHLFORS CURRENTS

In this appendix, we sketch the proof of Lemma|[8.8] by explaining how to adapt the arguments
of [3, 40, 411, written for X = P?(C), to our context.

Proof of Lemma Let (A,) be a sequence of unions of disks, as in the definition of injective
Ahlfors currents, such that m {A,,} converges to T Since X is projective we can choose a

finite family of meromorphic fibrations ; : X --» P! such that

— the general fibers of w; are smooth curves of genus > 2;

— for every x € X, there are at least two of the fibrations w;, denoted for simplicity by
and wy, which are well defined in some neighborhood U, of = (x is not a base point of
the corresponding pencils), satisfy (dwi A dws)(z) # 0 (the fibrations are transverse),
and for which the fibers @, ' (wy(z)) containing x are smooth.

If we blow-up the base points of @y, k = 1, 2, we obtain a new surface X’ — X on which each
wy, lifts to a regular fibration =) ; the open neighborhood U, is isomorphic to its preimage in
X’ so, when working on Uy, we can do as if the two fibrations o, were local submersions with
smooth fibers of genus > 2.

To construct 7}, we follow the proof of [41), Proposition 4.4] (see also [40, Proposition 3.4]).
The construction works as follows: we fix a sequence (r;) converging to zero, and for every j
we extract from m {A,} acurrent Tnﬂ«j made of disks of size ~ r; which are obtained from
A, by only keeping graphs of size r; over one of the projections ;.

By a covering argument, it is enough to work locally near a point x, with two projections
and w5 as above. Let S < C be the unit square {z +iy; 0 <z <1, 0 <y <1} ~[0,1]% To
simplify the exposition, we may assume that

(A1) wp(Uy) =S < CcPHC) (for k=1,2).

Set 7; = 277 and consider the subdivision Q; of S ~ [0,1]? into 4/ squares Q of size 7;.
A connected component of A, N wk_l(Q), for such a small square @, is called a graph (with
respect to wy,) if it lifts to a local section of the fibration @} : X’ — P!(C) above Q. Then,
we fix 7, intersect A,, with wgl (Q), and keep only the components of w,gl QN A, Qe Q;
which are graphs with respect to wj,. Such a family of graphs is normal because the fibers of w;,
have genus > 2 (compare to Lemma 3.5 of [40]).

This being done, we can copy the proof of [41, Proposition 4.4]. Letting n go to +o0 and
extracting a converging subsequence, we obtain a uniformly laminar current Tg; , < 7. Away
from the base points of wy, Tg; ) is made of disks of size = r; which are limits of disks
contained in the A,. Combining the two currents Tg; k, we get a current 7, < T" which is
uniformly laminar in every cube ;' (Q) N @, (Q'), Q, Q" € Q;, and such that

(A.2) (T —T,,,wikpr +w@ikp) < (T —To, 1,7 kpr) + (T —Tg, 2, @5 kp1 ),
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where kp1 is the Fubini-Study form. By definition, 7" will be strongly approximable if locally
M(T - T;,) < O(rjg-). Using the fact that w} kp1 + wikp1 = Cko and the Inequality (A.2),
it will be enough to show that (T' — T, x, @} kp1) = O(TJQ-) for £ = 1,2. This itself reduces
to counting (with multiplicity) the number of “good components” of A,, for the projections
wy : A, — Q; that is, the components above the squares ) of @; that are kept in the above
contruction of ng, & (the graphs relative to wy,).

The counting argument is identical to [5, §7], except that we apply the Ahlfors theory of
covering surfaces to a union of disks, not just one. For notational ease, set w = wy, r = 7;
and Q = Q;; Q is a subdivision of S ~ [0, 1]2 by squares of size 277, We decompose Q as a
union of four non-overlapping subdivisions Qf, ¢ = 1,2, 3, 4; by this we mean that for each ¢,
the squares Q € Q° have disjoint closures Q. Fix such an ¢ and let ¢ = #Q° = 47=1. Applying
Ahlfors’ theorem to each of the disks constituting A,, and summing over these disks, we deduce
that the number of good components N (Q) satisfies (El)

(A.3) N(QY) = (q — 4) areap: (A,,) — hlengthp: (0A,,),

where areap: (resp. lengthp:) is the area of the projection w(A,,) (resp. length of w(0A,,)),
counted with multiplicity, and A is a constant that depends only on the geometry of Q°. Divid-
ing by areapi (A,,), using lengthp: (0A,,) = o(areap: (4A,,)), which is guaranteed by Ahlfors’
construction, and letting n go to 400, we obtain

(A4) (Tg|ge,w*kp1) = (q — 4)r* = areap (USEQ[ S) — 42

Finally, summing from ¢ = 1 to 4, we see that, relative to w™kp1, the mass lost by discarding
the bad components of size 7 in T is of order O(r?2): this is precisely the required estimate.

Let us now justify the geometric intersection statement, following step by step the proof of
[41, Thm. 4.2]: let S be a current with continuous normalized potential on X; we have to
show that S A T, increases to S A T as r decreases to 0. Again the result is local so we work
near x, use the projections w, and @y, and keep notation as above. Given squares QQ, Q' € Q
and a real number A < 1, we denote by AQ) the homothetic of Q) of factor A with respect to
its center, and by C(Q, Q') the cube w; ' (Q) N @, ' (Q'). Fix ¢ > 0. We want to show that
for r < r(e), the mass of (I' — T;.) A S is smaller than €. The first observation is that there
exists A(e) € (0, 1), independent of r, such that translating Q if necessary, the mass of 7' A S
concentrated in | g o C(Q, @)\C(AQ, AQ') is smaller than /2 (see [41, Lem. 4.5]). Fix such
a A. It only remains to estimate the mass of (7' — 7}) A Sin g o C(AQ, AQ"). In such a
cube C(A\Q, AQ’) the argument presented in [41}, pp. 123-124], based on an integration by parts,
gives the estimate

1
(A.5) (T —T,) A~ S <C(Nmodc(ug, r)r—2M (T - TM)lew.o)) »

JC(/\Q)\Q’)

where modc(ug, ) is the modulus of continuity of the potential ug of S. To conclude, we sum
over all squares @, Q' and use the estimate M (T — T,) = O(r?) to get that

(A6) M ((T - TT)’UQ,Q’ C()\Q)\Q/)) < Cw(ug, 7”).

This is smaller than £/2 if r < r(e). O

3The term (q — 4) instead of (¢ — 2) in [3] is due to the fact that we are projecting on P* and not on C.
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