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ABSTRACT. We initiate the study of random iteration of automorphisms of real and complex
projective surfaces, as well as compact Kähler surfaces, focusing on the classification of station-
ary measures. We show that, in a number of cases, such stationary measures are invariant, and
provide criteria for uniqueness, smoothness and rigidity of invariant probability measures. This
involves a variety of tools from complex and algebraic geometry, random products of matrices,
non-uniform hyperbolicity, as well as recent results of Brown and Rodriguez Hertz on random
iteration of surface diffeomorphisms.

1. INTRODUCTION

1.1. Random dynamical systems. Consider a compact manifold M and a probability measure
ν on DiffpMq; to simplify the exposition we assume throughout this introduction that the support
Supppνq is finite. The data pM,νq defines a random dynamical system, obtained by randomly
composing independent diffeomorphisms with distribution ν. In this paper, these random dy-
namical systems are studied from the point of view of ergodic theory, that is, we are mostly
interested in understanding the asymptotic distribution of orbits.

A probability measure µ on M is ν-invariant if f˚µ “ µ for ν-almost every f P DiffpMq,
and it is ν-stationary if it is invariant on average:

ş

f˚µdνpfq “ µ. A simple fixed point
argument shows that stationary measures always exist. On the other hand, the existence of an
invariant measure should hold only under special circumstances, for instance when the group Γν
generated by Supppνq is amenable, or has a finite orbit, or preserves an invariant volume form.

According to Breiman’s law of large numbers, for every x P M and νN-almost every pfjq P
DiffpMqN, every cluster value of the sequence of empirical measures

(1.1)
1

n

n´1
ÿ

j“0

δfj˝¨¨¨˝f0pxq

is a stationary measure. Thus, a classification of stationary measures gives an essentially com-
plete understanding of the distribution of random orbits as n goes to`8. Our goal is to combine
algebraic and holomorphic dynamics with recent results in random dynamics to study the case
when M is a real or complex projective surface and the action is by algebraic diffeomorphisms.

1.2. Stiffness. Let us present a few landmark results about stationary measures (for consistency
with the rest of the paper, most of the discussion is restricted to real dimension 2).

Let Γ be a subgroup of GLmpCq. We say that he action of Γ on Cm is strongly irreducible
if the orbit of any subspace V Ă Cm with 0 ă dimpV q ă m is infinite; it is proximal if
there is an element γ P Γ with a unique eigenvalue of maximum modulus (the corresponding
eigenline provides an attracting fixed point in Pm´1pCq). This said, suppose that ν is a finitely
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supported probability measure on SL2pCq, and consider the action of SL2pCq on M “ P1pCq.
Suppose that the group Γν generated by the support of ν is non-elementary, that is, Γν is
proximal and strongly irreducible. Then, there is a unique ν-stationary (probability) measure µ
on P1pCq, and this measure is not invariant. This is one instance of a more general result due to
Furstenberg [50]. The non-invariance of µ is due to the existence of proximal elements in Γν .

Now, let ν be a finitely supported measure on SL2pZq, and consider the action of SL2pZq on
the torus M “ R2{Z2. In that case, the Haar measure of R2{Z2, as well as the atomic mea-
sures equidistributed on finite orbits Γνpx, yq, for px, yq P Q2{Z2, are examples of Γν-invariant
measures. By using Fourier analysis and additive combinatorics techniques, Bourgain, Furman,
Lindenstrauss and Mozes [15] proved that if Γν is non-elementary, then every stationary mea-
sure µ on R2{Z2 is Γν-invariant and is a convex combination of the above mentioned invariant
measures. This property of automatic invariance of stationary measures was called stiffness (or
ν-stiffness) by Furstenberg [51], who conjectured it to hold in this setting. Soon after, Benoist
and Quint [7] gave an ergodic theoretic proof of this result and extended it to certain actions of
discrete groups on homogeneous spaces. They also derived the following equidistribution re-
sult: for every px, yq R Q2{Z2, the random trajectories of px, yq determined by ν almost surely
equidistribute towards the Haar measure on R2{Z2.

Finally, Brown and Rodriguez-Hertz [16], building on the work of Eskin and Mirzakhani [45],
managed to recast these measure rigidity results in terms of Pesin theory to obtain a version of the
stiffness theorem of [15] for generalC2 diffeomorphisms of compact surfaces. We shall describe
their results in due time; for the moment we content ourselves with one illustrative consequence
of [16]. Let ν “

ř

αjδfj be a finitely supported probability measure on SL2pZq generating a
non-elementary subgroup. Consider perturbations tfi,εu of the fi in the group Diff2

volpR
2{Z2q

of C2 diffeomorphisms of R2{Z2 preserving the Haar measure. Set νε “
ř

αjδfj,ε . Then,
for sufficiently small perturbations, any νε-stationary measure on R2{Z2 is invariant and is a
combination of the Haar measure and measures supported on finite Γνε-orbits.

In this paper, we prove a stiffness theorem for groups of algebraic diffeomorphisms of real
algebraic surfaces. The work of Brown and Rodriguez-Hertz is our main source of inspiration
and a key ingredient for some of our main results.

1.3. Sample results: stiffness, classification, and rigidity. Let X be a smooth complex pro-
jective surface, or more generally a compact Kähler surface. Denote by AutpXq its group of
holomorphic diffeomorphisms, referred to in this paper as automorphisms. WhenX Ă PN pCq
is defined by polynomial equations with real coefficients, the complex conjugation induces an
anti-holomorphic involution s : X Ñ X , whose fixed point set is the real part XpRq of X . We
denote byXR the surfaceX viewed as an algebraic variety defined over R, and by AutpXRq the
group of automorphisms defined over R; AutpXRq is the subgroup of AutpXq centralizing s.
When XpRq ‰ H, the elements of AutpXRq are the real-analytic diffeomorphisms of XpRq
admitting a holomorphic extension to X . Note that in stark contrast with groups of smooth dif-
feomorphisms, the groups AutpXRq and AutpXq are typically discrete and at most countable.

The group AutpXq acts on the cohomology H˚pX;Zq. By definition, a subgroup Γ Ă

AutpXq is non-elementary if its image Γ˚ Ă GLpH˚pX;Cqq contains a non-Abelian free
group; equivalently, Γ˚ is not virtually Abelian. By Yomdin’s theorem, when Γ is non-elementary,
there exists a pair pf, gq P Γ2 generating a free group of rank 2 such that the topological entropy
of every element in that group is positive (see [27]).
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1.3.1. Stiffness. As before, if ν is a finitely supported probability measure on AutpXq, we de-
note by Γν the subgroup generated by Supppνq.

Theorem A. Let XR be a real projective surface and ν be a finitely supported symmetric prob-
ability measure on AutpXRq. If Γν preserves an area form on XpRq, then every ergodic ν-
stationary measure µ on XpRq is either invariant or supported on a proper Γν-invariant sub-
variety. In particular if there is no Γν-invariant algebraic curve, the random dynamical system
pX, νq is stiff.

This theorem is mostly interesting when Γν is non-elementary and we focus on this case in
the remainder of this introduction. Stationary measures supported on invariant curves are easily
analysed (see §10.4). Moreover, if Γν is non-elementary, it is always possible to contract all Γν-
invariant curves, creating a complex analytic surface X0 with finitely many singularities. Then
on X0pRq, stiffness holds unconditionally.

This result applies to many interesting examples, because Abelian, K3, and Enriques surfaces,
which concentrate most of the dynamically interesting automorphisms on compact complex
surfaces, admit a canonical AutpXq-invariant 2-form.

1.3.2. Invariant measures. Once stiffness is established, the next step is to classify invariant
measures. A parabolic automorphism of a compact Kähler surface is an automorphism g such
that the norm of pgnq˚ on H2pX;Rq grows quadratically (i.e. like αn2 for some α ą 0); such
an automorphism automatically preserves a genus 1 fibration on X (see e.g. [26]). When Γν
contains a parabolic automorphism, Γν-invariant measures are classified in [19, 26]. A nice
consequence is that for a non-elementary group of AutpXRq containing parabolic elements and
preserving an area form, any invariant ergodic measure is either atomic, or concentrated on a
Γν-invariant algebraic curve, or is the restriction of the area form on some open subset of XpRq
bounded by a piecewise smooth curve.

Thus, if Γν contains a parabolic element, we get a fairly complete answer to the equidistribu-
tion problem raised in §1.1. A widely studied example is the family of Wehler surfaces that is,
smooth surfaces X Ă P1 ˆ P1 ˆ P1 defined by an equation of degree p2, 2, 2q. Then for each
i P t1, 2, 3u, the projection πi : X Ñ P1ˆP1 which “forgets the variable xi” has degree 2; thus,
there is an involution σi of X that permutes the two points in the generic fiber of πi.

Corollary. Let XR Ă P1 ˆ P1 ˆ P1 be a real Wehler surface such that XpRq is non empty. If
XR is generic, then:

(1) the surfaceX is a K3 surface and there is a unique (up to choosing an orientation ofXpRq)
algebraic 2-form volXR

on XpRq such that
ş

XpRq volXR
“ 1;

(2) the group AutpXRq is generated by the three involutions σi and coincides with AutpXq;
furthermore it preserves the probability measure defined by volXR

;
(3) if ν is finitely supported and Γν has finite index in AutpXRq then pXpRq, νq is stiff; more-

over the only ν-stationary measures on XpRq are convex combinations of the probability
measures defined by volXR

on the connected components of XpRq.

Here by generic we mean that the equation of X belongs to the complement of at most count-
ably many hypersurfaces in the set of polynomial equations of degree p2, 2, 2q (see §3.2 for
details). This result follows from Theorem A, Proposition 3.7, Corollary B of [26], and the
generic non-existence of finite orbits established in [25]. If we do not assume X to be generic
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but assume only that X does not contain any fiber of the three projections πi, then the set of
stationary measures supported in XpRq is a finite dimensional simplex (see [25]); the equidis-
tribution problem is further studied in [23].

The techniques of [19, 26] do not apply in the absence of parabolic automorphisms. In this
context, we establish the following rigidity result.

Theorem B. Let XR be a real projective surface. Let Γ be a non-elementary subgroup of
AutpXRq. If µ is a Γ-invariant probability measure on XpRq and if µ is ergodic and of positive
entropy for some f P Γ, then µ is absolutely continuous with respect to any area form on XpRq.

In particular if Γ is a group of area preserving automorphisms, then up to normalization µ
will be the restriction of the area form on some Γ-invariant set.

1.4. Some ingredients of the proofs. The proofs of Theorems A and B rely on the deep re-
sults of Brown and Rodriguez-Hertz [16]. To be more precise, recall that an ergodic stationary
measure µ on X admits two Lyapunov exponents λ`pµq ě λ´pµq, and that µ is called hy-
perbolic if λ`pµq ą 0 ą λ´pµq. In this case the (random) Oseledets theorem shows that for
µ-almost every x and νN-almost every ω “ pfjqjPN in AutpXqN, there exists a stable direction
Esωpxq Ă TxXR. In [16], stiffness is established under the condition that Esωpxq Ă TxXR de-
pends non-trivially on the random itinerary ω “ pfjqjPN, or equivalently that stable directions
do not induce a measurable Γν-invariant line field. One of our main contributions is to take care
of this possibility in our setting: for this we study the dynamics on the complex surface X .

Theorem C. Let X be a complex projective surface and ν be a finitely supported probability
measure on AutpXq. If Γν is non-elementary, then any hyperbolic ergodic ν-stationary measure
µ on X satisfies the following alternative:

(a) either µ is invariant, and its fiber entropy hµpX; νq vanishes;
(b) or µ is supported on a Γν-invariant algebraic curve;
(c) or the field of Oseledets stable directions of µ is not Γν-invariant; in other words, it gen-

uinely depends on the itinerary ω “ pfjqjě0 P AutpXqN.

As opposed to Theorems A and B, this result applies to the dynamics on the complex manifold
X , without assuming the existence of an invariant volume form or an invariant real structure.
When µ is not invariant, nor supported by a proper Zariski closed subset, Assertion (c) precisely
says that the condition on stable directions used in [16] is satisfied. This is our key input to-
wards Theorems A and B. The arguments leading to Theorem C involve an interesting blend of
Hodge theory, pluripotential analysis, and Pesin theory. They rely on the following well-known
principle in higher dimensional holomorphic dynamics. If µ is ergodic and hyperbolic, almost
every point pω, xq provides a stable manifold W s

ωpxq biholomorphic to C. Then, according to a
construction going back to Ahlfors and Nevanlinna, to any entire curve φ : CÑ X is associated
a (family of) closed positive p1, 1q-current(s) describing the asymptotic distribution of φpCq in
X , hence also a (family of) cohomology class(es) in H2pX,Rq. These classes relate the stable
manifolds of µ to the action of Γν on H2pX;Rq, which itself can be analyzed by combining
complex algebraic geometry with Furstenberg’s theory of random products of matrices.

Theorem D. Let X be a complex projective surface. Let ν be a finitely supported probability
measure on AutpXq such that Γν is non-elementary. Let κ0 be a fixed Kähler form on X .
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(1) If κ is any Kähler form on X , then for νN-almost every ω :“ pfjqjě0 P AutpXqN the limit

T sω :“ lim
nÑ`8

1
ş

X κ0 ^ pfn ˝ ¨ ¨ ¨ ˝ f0q
˚κ
pfn ˝ ¨ ¨ ¨ ˝ f0q

˚κ

exists as a closed positive p1, 1q-current. Moreover this current T sω does not depend on κ
and has Hölder continuous potentials.

(2) If the ν-stationary measure µ is ergodic, hyperbolic (or more generally if λ´pµq ă 0 ď
λ`pµq) and not supported on a Γν-invariant proper Zariski closed set, then for µ-almost
every x and νN-almost every ω, the only Ahlfors-Nevanlinna current of mass 1 (with respect
to κ0) associated to the stable manifold W s

ωpxq coincides with T sω.

One might consider that the right setting for such a statement would be that of a compact
Kähler surface. We actually show in the companion paper [27] that any compact surface sup-
porting a non-elementary group of automorphisms is projective. The algebraicity of X is, in
fact, a crucial technical ingredient in the proof of assertion (2), because we use techniques of
laminar currents which are available only on projective surfaces. Theorem D enters the proof of
Theorem C as follows: since Γν is non-elementary, Furstenberg’s description of the random ac-
tion on H2pX,Rq implies that the cohomology class rT sωs depends non-trivially on ω; therefore
for µ-almost every x, W s

ωpxq also depends non-trivially on ω. Then, taking advantage of the
complex structure again, we show in Section 9, that Esωpxq depends non-trivially on ω as well.

Remark 1.1. Beyond finitely supported measures, Theorem A, B, C, and D hold under optimal
moment conditions on ν (this adds several technicalities, notably in Sections 5 and 6).

1.5. Organization of the article. Let X be a compact Kähler surface and ν be a probability
measure on AutpXq.
– In Section 2 we describe the action of AutpXq on H˚pX;Zq, in particular on H1,1pX;Rq.
The Hodge index theorem endows it with a Minkowski structure, which is essential in our un-
derstanding of the dynamics of Γν on the cohomology. This section 2 prepares the ground for
the analysis of random products of matrices done in Section 5 (and it is also used in [26, 25]).
A delicate point to keep in mind is that the action of a non-elementary subgroup of AutpXq on
H1,1pX;Rq may be reducible.
– In Section 3 we briefly recall some constraints on X coming from the Enriques-Kodaira clas-
sification of surfaces, and gives some details on the example of Wehler surfaces.
– After a short Section 4 introducing the vocabulary of random products of diffeomorphisms,
Furstenberg’s theory of random products of matrices is applied in Section 5 to the study of the
action on H1,1pX;Rq. This, combined with the theory of closed positive currents, leads to the
proof of the first assertion of Theorem D in Section 6 (see Corollary 6.12 and Theorems 6.14
and 6.16). The continuity of the potentials of the currents T sω, which plays a key role in Section
8, relies on a recent result of Gouëzel and Karlsson [53].
– Pesin theory enters into play in Section 7, in which the basics of the smooth ergodic theory of
random dynamical systems are described in some detail for complex surfaces. This is used in
Section 8 to connect the stable manifolds to the currents T sω, using techniques of laminar currents
(Theorem 8.2 gives the second part of Theorem D).
– Theorem C is proven in Section 9 by combining ideas of [16] with Theorem D and an elemen-
tary fact from local complex geometry inspired by a lemma from [5].
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– Theorem A is finally established in Section 10. When Γν is non-elementary (Theorem 10.7)
it follows rather directly from [16], Theorem C, and the invariance principle of Crauel [37]
and Avila-Viana [1]. Elementary groups are handled separately by using the classification of
automorphism groups of compact Kähler surfaces (see Section 10.3); note that the symmetry
assumption on ν is used only in the elementary case.
– Theorem B is established in Section 11, in a slightly more precise form (see Theorem 11.1).

1.6. Further comments.
– This article is part of a series of papers dedicated to the dynamics of groups of automorphisms
of compact Kähler surfaces. In [27] we discuss further examples and sharpen the classification of
surfaces admitting non-elementary groups of automorphisms. The article [26] classifies invariant
measures in presence of parabolic elements. In [23], we study uniform expansion for random
complex dynamics and apply it to equidistribution. In [25], finite orbits are analyzed with tools
from algebraic and arithmetic dynamics. Note that some results originally contained in the
preprint version of this paper are now in other papers of the series.
– After the first version of this paper and [25] were released, Filip and Tosatti [47] gave an
alternate approach of some of the results of Section 6.
– In Theorem A, one may wonder how the invariant measure µ relates to the dynamics of indi-
vidual elements of Γν , in particular if it might coincide with the maximal entropy measure µf
of some loxodromic element f of Γν . For simplicity, assume that X is a real Wehler surface and
Γν has finite index in AutpXRq (see § 1.3.2). Then, according to [25, Thm. 5.12], Γν contains a
loxodromic element h with µh ‰ µ. Moreover, if XpRq is connected, the coincidence µ “ µf
for some f P Γν is equivalent to the existence of a loxodromic element f P AutpXRq such that
µf is the canonical area form onXpRq. We conjecture that such an example does not exist. This
is reminiscent of, but different from, the Kummer rigidity results of [28, 48] (see [22, §3.5.2]).
– One may wonder what remains of our results in the real-analytic category. The proofs of Theo-
rems D and C rely on global complex geometric arguments (via Ahlfors-Nevanlinna currents and
the Hodge index theorem) to show that stable manifolds depend on random itineraries; in partic-
ular Zariski dense (complex) stable and unstable manifolds always admit a transverse intersec-
tion in XpCq. Such a global geometric argument does not carry over to the real-analytic setting;
indeed, there are real analytic diffeomorphisms of closed surfaces with two saddle fixed points x
and x1 such that their stable and unstable manifolds are Zariski dense butW s

f pxqXW
u
f px

1q “ H.
Theorems D and C also rely on local properties of complex analytic disks to go from stable di-
rections to stable manifolds (see § 9). While some of the results of § 9.2 might persist in the
real-analytic category, the key Lemma 9.7 does not (see Remark 9.8).
– Some of our techniques should be transposable to automorphism groups of certain affine sur-
faces, for example polynomial automorphisms of C2, a main issue in this case being to deal with
the lack of compactness. Another example is provided by the character variety of representations
of the free group F2 “ xa, b|Hy into SL2pCq, with a fixed trace of the commutator aba´1b´1;
this variety is a surface, and the outer automorphism group GL2pZq of F2 acts by automorphisms
on it (see [20, 52, 36] for instance). As shown by Rebelo and Roeder [75], several dynamical
regimes coexist on the complex surface, which presumably makes a classification of stationary
measure quite elusive. However, looking at the real part (corresponding to representations in the
compact group SU2), we expect stiffness to hold.
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1.7. Conventions. Throughout the paper C stands for a “constant” which may change from
line to line, independently of some asymptotic quantity that should be clear from the context
(typically an integer n corresponding to the number of iterations of a dynamical system). We
write a À b if a ď Cb and a — b if a À b À a. Complex manifolds are considered to be
connected, so from now on “complex manifold” stands for “connected complex manifold”. For a
random dynamical system on a disconnected complex manifold, there is a finite index sugbroup
Γ1 of Γν fixing each connected component, and an induced measure ν 1 on Γ1 with properties
qualitatively similar to those of ν (see §10.2), so the problem is reduced to the connected case.

Acknowledgments. We are grateful to Sébastien Gouëzel, François Ledrappier, and François
Maucourant for interesting discussions and insightful comments. We thank the referees for
constructive suggestions and criticisms. The first named author was partially supported by
the French Academy of Sciences (Del Duca foundation) and the European Research Council
(ERC) under the European Union’s Horizon 2020 programme (grant agreement No 101053021
- GOAT), and the second named author by a grant from the Institut Universitaire de France.

2. HODGE INDEX THEOREM AND MINKOWSKI SPACES

In this section we define the notion of a non-elementary group of automorphisms of a com-
pact Kähler surface X . We study the action of such a group on the cohomology of X , and in
particular the question of (ir)reducibilty. We work in the Kähler setting because these results are
eventually useful to prove that a compact Kähler surface carrying a non-elementary action must
be projective (see [27], which also includes a discussion of the non-Kähler case).

2.1. Cohomology.

2.1.1. Hodge decomposition. Denote by H˚pX;Rq the cohomology of X with coefficients in
the ring R; we shall use R “ Z, Q, R or C. The group AutpXq acts on H˚pX;Cq, preserving
the image of H˚pX;Zq; AutpXq˚ will denote the image of AutpXq in GLpH2pX;Cqq. The
Hodge decomposition

(2.1) HkpX;Cq “
à

p`q“k

Hp,qpX;Cq

is AutpXq-invariant. On H0,0pX;Cq and H2,2pX;Cq, AutpXq acts trivially. Throughout the
paper we denote by rαs the cohomology class of a closed differential form (or current) α.

The intersection form on H2pX;Zq will be denoted by x¨ | ¨y; the self-intersection xa|ay of a
class a will also be denoted by a2 for simplicity. This intersection form is AutpXq-invariant. By
the Hodge index theorem, it is positive definite on the real part of H2,0pX;Cq ‘ H0,2pX;Cq
and it is non-degenerate and of signature p1, h1,1pXq ´ 1q on H1,1pX;Rq. Thus, we get:

Lemma 2.1. The restriction of AutpXq˚ to the subspace H2,0pX;Cq (resp. H0,2pX;Cq) is
contained in a compact subgroup of GLpH2,0pX;Cqq (resp. GLpH0,2pX;Cqq).

The Néron-Severi group NSpX;Zq is, by definition, the intersection ofH1,1pX;Rqwith the
image ofH2pX;Zq inH2pX;Rq. The Lefschetz theorem on p1, 1q-classes identifies NSpX;Zq
with the subgroup of H1,1pX;Rq given by Chern classes of line bundles on X . The Néron-
Severi group is AutpXq-invariant, as well as NSpX;Rq :“ NSpX;Zq bZ R for R “ Q, R, or
C. The dimension of NSpX;Rq is the Picard number ρpXq.



8 SERGE CANTAT AND ROMAIN DUJARDIN

2.1.2. Norm of f˚. Let |¨| be any norm on the vector space H˚pX;Cq. If L is a linear transfor-
mation of H˚pX;Cq we denote by }L} the associated operator norm and if W Ă H˚pX;Cq is
an L-invariant subspace of H˚pX;Cq, we denote by }L}W the operator norm of L|W .

If u is an element of H1,0pX;Cq, then u ^ u is an element of H1,1pX;Rq such that |u|2 ď
C |u^ u| for some constant C that depends only on the choice of norm on the cohomology;
in particular, the norm of f˚ on H1,0pX;Cq is controlled by the norm of f˚ on H1,1pX;Cq.
Using complex conjugation, the same results hold on H0,1pX;Cq; by Poincaré duality we also
control }f˚}Hp,qpX;Cq for p` q ą 2. Together with Lemma 2.1, we obtain:

Lemma 2.2. Let X be a compact Kähler surface. There exists a constant C0 ą 1 such that

C´1
0 }f˚}H˚pX;Cq ď }f

˚}H1,1pX;Rq ď }f
˚}H˚pX;Cq

for every automorphism f P AutpXq.

2.2. The Kähler, nef, and pseudo-effective cones. (See [12, 62] for details on the notions
introduced in this section.) Let KahpXq Ă H1,1pX;Rq be the Kähler cone, i.e. the cone of
classes of Kähler forms. Its closure KahpXq is a salient, closed, convex cone, and

(2.2) KahpXq Ă KahpXq Ă tv P H1,1pX;Rq ; xv | vy ě 0u.

The intersection NSpX;RqXKahpXq is the ample cone AmppXq, while NSpX;RqXKahpXq
is the nef cone NefpXq. They are all invariant under the action of AutpXq on H1,1pX;Rq. We
shall also say that the elements of KahpXq are nef classes, but the notation NefpXq will be
reserved for NSpX;Rq XKahpXq. The set of classes of closed positive currents is the pseudo-
effective cone PsefpXq. This cone is an AutpXq-invariant, salient, closed, convex cone. It is
dual to KahpXq for the intersection form (see [12, Lem. 4.1]):

(2.3) KahpXq “ tu P H1,1pX;Rq ; xu | vy ě 0 @v P PsefpXqu

and vice-versa.
We fix once and for all a reference Kähler form κ0 with rκ0s

2 “
ş

κ0 ^ κ0 “ 1. Then we
define the mass of a pseudo-effective class a by Mpaq “ xa | rκ0sy, or equivalently the mass of
a closed positive current T by MpT q “

ş

T^κ0; we may also extend this definition to any class,
pseudo-effective or not (but then Mpaq “ xa | rκ0sy may be negative). By the compactness of
the set of closed positive currents of mass 1, there exists a constant C such that

(2.4) @a P PsefpXq, C´1 |a| ďMpaq ď C |a| .

If v is an element of PsefpXq and v2 ě 0, the Hodge index theorem implies that xu | vy ě 0
for every class u P H1,1pX;Rq such that u2 ě 0 and xu | rκ0sy ě 0 (see Equation (2.5)). So, in
Equation (2.3), the most important constraints come from the classes v P PsefpXq with v2 ă 0.
If v is such a class, its Zariski decomposition expresses v as a sum v “ ppvq ` npvq with the
following properties (see [12]):

(1) this decomposition is orthogonal: xppvq |npvqy “ 0;
(2) ppvq is a nef class, i.e. ppvq P KahpXq;
(3) npvq is negative: it is a sum npvq “

ř

i airDis with positive coefficients ai P R˚` of
classes of irreducible curves Di Ă X such that the Gram matrix pxDi |Djyq is negative
definite.
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Proposition 2.3. If a ray R`v of the cone PsefpXq is extremal, then either v2 ě 0 or R`v “
R`rDs for some irreducible curve D such that D2 ă 0. The cone PsefpXq contains at most
countably many extremal rays R`v with v2 ă 0.

Let u be an isotropic element of KahpXq. If R`u is not an extremal ray of PsefpXq, then u
is proportional to an integral class u1 P NSpX;Zq.

Proof. If R`v is extremal, the Zariski decomposition v “ ppvq ` npvq involves only one term.
If v “ ppvq then v2 ě 0. Otherwise v “ npvq and by extremality npvq “ arDs for some
irreducible curve D with D2 ă 0. The countability assertion follows, because NSpX;Zq is
countable. For the last assertion, multiply u by xu|rκ0sy

´1 to assume xu|rκ0sy “ 1 and write u
as a convex combination u “

ş

v dαpvq, where α is a probability measure on PsefpXq such that
α-almost every v satisfies

– xv|rκ0sy “ 1,
– R`v is extremal in PsefpXq and does not contain u.

Since u is nef, xu | vy ě 0 for each v; and u being isotropic, we get v P uKzRu for α-almost
every v. By the Hodge index theorem, v2 ă 0 almost surely. Now, the first assertion of this
proposition implies that v P R`rDvs for some irreducible curve Dv Ă X with negative self-
intersection; there are only countably many classes of that type, thus α is purely atomic, and u
belongs to VectprDvs;αpvq ą 0q, a subspace of NSpX;Rq defined over Q. On this subspace,
qX is semi-negative, and by the Hodge index theorem its kernel is Ru. Since VectprDvs;αpvq ą
0q and qX are defined over Q, we deduce that u is proportional to an integral class. �

2.3. Non-elementary subgroups of AutpXq.

2.3.1. Isometries of Minkowski spaces. Consider the Minkowski space Rm`1, endowed with
its quadratic form q of signature p1,mq defined by qpxq “ x2

0 ´
řm
i“1 x

2
i . The corresponding

bilinear form will be denoted x¨|¨y. For future reference, note the following reverse Schwarz
inequality:

(2.5) if qpxq ě 0 and qpx1q ě 0 then xx |x1y ě qpxq1{2qpx1q1{2

with equality if and only if x and x1 are collinear. We say that a subspace W Ă Rm`1 is of
Minkowski type if the restriction q|W is non-degenerate and of signature p1, dimpW q ´ 1q.

In this section, we review some well-known facts concerning isometries of R1,m “ pRm`1, qq
(see e.g. [73, 58, 49] for details). We denote by |¨| the Euclidean norm on Rm`1, and by
P : Rm`1zt0u Ñ PpRm`1q the projection on the projective space PpRm`1q “ PmpRq.

The hyperboloid tx ; qpxq “ 1u has two components, and we denote by O`1,mpRq the sub-
group of the orthogonal group O1,mpRq that preserves the component Q “ tqpxq “ 1 ; x0 ą

0u. Endowed with the distance dHpx, yq “ cosh´1xx | yy, Q is a model of the real hyper-
bolic space Hm of dimension m. The boundary at infinity of Hm will be identified with
BPpQq Ă PpRm`1q and will be denoted by BHm. It is the set of isotropic lines of q.

Any isometry γ of Hm is induced by an element of O`1,mpRq, and extends continuously to
BHm: its action on BHm is given by its linear projective action on PpRm`1q. Isometries are
classified in three types, according to their fixed point set in Hm Y BHm:

– γ is elliptic if γ has a fixed point in Hm;
– γ is parabolic if γ has no fixed point in Hm and a unique fixed point in BHm;
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– γ is loxodromic if γ has no fixed point in Hm and exactly two fixed points in BHm.

A subgroup Γ of O`1,mpRq is non-elementary if it does not preserve any finite subset of Hm Y

BHm. Equivalently Γ is non-elementary if and only if it contains two loxodromic elements with
disjoint fixed point sets. The group O`1,mpRq admits a Cartan or KAK decomposition. To state
it, denote by e0 “ p1, 0, . . . , 0q the first vector of the canonical basis of Rm`1; it is an element
of Hm, and its stabilizer in O`1,mpRq is a maximal compact subgroup, isomorphic to Om´1pRq.

Lemma 2.4 (See §I.5 of [49]). Every γ P O`1,mpRq can be written (non-uniquely) as γ “ k1ak2,
where ki P Stabpe0q and a is a matrix of the form

¨

˝

cosh r sinh r 0
sinh r cosh r 0

0 0 idm´1

˛

‚

with r “ dHpe0, γe0q.

Corollary 2.5. If }¨} denotes the operator norm associated to the euclidean norm in Rm`1, then
}γ} “ }a}, where γ “ k1ak2 is any Cartan decomposition of γ. In particular }γ} “

›

›γ´1
›

› and

}γ} — cosh dHpe0, γpe0qq — |γe0| .

Furthermore for every e P Hm and any γ P O`1,mpRq

}γ} — cosh dHpe, γpeqq,

where the implied constant depends only on the base point e.

2.3.2. Irreducibility. A non-elementary subgroup of O`1,mpRq does not need to act irreducibly
on Rm`1. Proposition 2.8, below, clarifies the possible situations.

Lemma 2.6. Let Γ be a non-elementary subgroup of O`1,mpRq (resp. γ be an element of O`1,mpRq).
Let W be a subspace of R1,m.

(1) If W is Γ-invariant, then either pW, q|W q is a Minkowski space and Γ|W is non-elementary,
or q|W is negative definite and Γ|W is contained in a compact subgroup of GLpW q.

(2) If W is γ-invariant and contains a vector w with qpwq ą 0, then γ|W has the same type
(elliptic, parabolic, or loxodromic) as γ; in particular, W contains the γ-invariant isotropic
lines if γ is parabolic or loxodromic.

Proof. The restriction q|W is either a Minkowski form or is negative definite. Indeed, it cannot
be positive definite, because W would then be a Γ-invariant line intersecting the hyperbolic
space Hm in a fixed point; and it cannot be degenerate, since otherwise its kernel would give a
Γ-invariant point on BHm. If q|W is a Minkowski form and Γ|W is elementary, then Γ preserves
a finite subset of pHm Y BHmq XW and Γ itself is elementary. This proves the first assertion.
The proof of the second one is similar. �

Let Γ be a non-elementary subgroup of O`1,mpRq. Let ZarpΓq Ă O1,mpRq be the Zariski
closure of Γ, and G “ ZarpΓqirr the identity component of ZarpΓq, for the Zariski topology.
Note that the Lie group GpRq is not necessarily connected for the euclidean topology.

Lemma 2.7 (see [30], §4.1). The group Γ X GpRq has finite index in Γ. If Γ0 is a finite index
subgroup of Γ, then ZarpΓ0q

irr “ G.
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Proposition 2.8. Let Γ Ă O`1,mpRq be non-elementary.

(1) The representation of ΓXGpRq (resp. ofGpRq) on R1,m splits as a direct sum of irreducible
representations, with exactly one irreducible factor of Minkowski type:

R1,m “ V` ‘ V0;

here V` is of Minkowski type, and V0 is an orthogonal sum of irreducible representations
V0,j on which the quadratic form q is negative definite.

(2) The restriction G|V` coincides with SOpV`; q|V`q.
(3) The subspaces V` and V0 are Γ-invariant, and the representation of Γ on V` is strongly

irreducible.

Proof. A group Γ is non-elementary if and only if any of its finite index subgroups is non-
elementary. So, we can apply Lemma 2.6 to Γ X GpRq: if W Ă R1,m is a non-trivial pΓ X
GpRqq-invariant subspace, q|W is non-degenerate. As a consequence, R1,m is the direct sum
W ‘WK, where WK is the orthogonal complement of W with respect to q. This implies that
the representation of Γ X GpRq on R1,m splits as a direct sum of irreducible representations,
with exactly one irreducible factor of Minkowski type, as asserted in (1).

The group G preserves this decomposition, and by Proposition 1 of [6], the restriction G|V`
coincides with SOpV`; q|V`q; this group is isomorphic to the almost simple group SO1,kpRq,
with 1` k “ dimpV`q. This proves the second assertion.

Since G is normalized by Γ, we see that for any γ P Γ, γV ` is a G-invariant subspace of
the same dimension as V ` and on which q is of Minkowski type. Hence V`, as well as its
orthogonal complement V0 are Γ-invariant. By Lemma 2.7, the action of Γ on V` is strongly
irreducible; indeed, if a finite index subgroup Γ0 in Γ preserves a non-trivial subspace of V`
then, by Zariski density of Γ0 X GpRq in GpRq, this subspace must be V` itself. On V0, Γ
permutes the irreducible factors V0,j . �

Now, set V “ R1,m and assume that there is a lattice VZ Ă V such that

(i) VZ is Γ-invariant;
(ii) the quadratic form q is an integral quadratic form on VZ.

In other words, there is a basis of V with respect to which q and the elements of Γ are given
by matrices with integer coefficients. In particular, V has a natural Q-structure, with V pQq “
VZ bZ Q. This situation naturally arises for the action of automorphisms of compact Kähler
surfaces on NSpX;Rq. The next lemma will be useful in [25].

Lemma 2.9. If Γ contains a parabolic element, the decomposition V` ‘ V0 is defined over Q,
Γ|V0 is a finite group, and G is the subgroup SOpV`; qq ˆ tidV0u of OpV ; qq.

Proof. If γ P Γ is parabolic, it fixes pointwise a unique isotropic line, therefore this line is
defined over Q. In addition it must be contained in V` because pγnpuqqně0 converges to the
boundary point determined by this line for every u P Hm. So, V` contains at least one non-zero
element of VZ. Since the action of Γ on V` is irreducible, the orbit of this vector generates V`
and is contained in VZ, so V` is defined over Q. Its orthogonal complement V0 is also defined
over Q, because q itself is defined over Q. As a consequence, Γ|V0 preserves the lattice V0XVZ
and the negative definite form q|V0 ; hence, it is finite. Thus G|V0 is trivial and the last assertion
follows from the above mentioned equality G|V` “ SOpV`; q|V`q. �
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In [24], an example is given which shows that the existence of parabolic element is necessary
for Lemma 2.9 to hold.

2.3.3. The hyperbolic space HX . Let X be a compact Kähler surface. By the Hodge index
theorem, the intersection form on H1,1pX,Rq has signature p1, h1,1pXq ´ 1q. The hyperboloid
 

u P H1,1pX,Rq, xu |uy
(

“ 1 has two connected components, one of which intersecting the
Kähler cone. By definition, this component is the hyperbolic space HX ; it is a model of Hm,
for m “ h1,1pXq ´ 1. We denote by dH the hyperbolic distance: as before, coshpdHpu, vqq “
xu | vy. From Lemma 2.2 and Corollary 2.5 we see that if |¨| is any norm on H˚pX,Cq, then
}f˚} —

›

›pf˚q´1
›

› — xrκ0s | f
˚rκ0sy (here κ0 is the fixed Kähler form introduced in Section 2.2).

According to the classification of isometries of hyperbolic spaces, there are three types of
automorphisms: elliptic, parabolic and loxodromic. An important fact for us is that the type of
isometry is related to the dynamics on X; for instance, every parabolic automorphism preserves
a genus 1 fibration, every loxodromic automorphism has positive topological entropy (see [21]).
A subgroup Γ of AutpXq is said to be non-elementary if its action on HX is non-elementary.

2.3.4. Automorphisms and Néron-Severi groups. Let X be a compact Kähler surface and Γ be
a non-elementary subgroup of AutpXq. Let Γ˚p,q be the image of Γ in GLpHp,qpX;Cqq, and Γ˚

be its image in GLpH2pX;Cqq. If we combine Proposition 2.8 together with Lemma 2.1 for
Γ˚1,1, we get an invariant decomposition

(2.6) H1,1pX;Rq “ H1,1pX;Rq` ‘H
1,1pX;Rq0.

Denote by H2pX;Rq0 the direct sum of H1,1pX;Rq0 and of the real part of H2,0pX;Cq ‘
H0,2pX;Cq; then

(2.7) H2pX;Rq “ H1,1pX;Rq` ‘H
2pX;Rq0

and Γ˚|H2pX;Rq0 is contained in a compact group (see Lemma 2.1). The Néron-Severi group is
Γ-invariant, and since X is projective it contains a vector with positive self-intersection. Then
Proposition 2.8 and Lemma 2.6 imply:

Proposition 2.10. Let X be a compact Kähler surface and Γ be a non-elementary subgroup of
AutpXq. Then H1,1pX;Rq` “ NSpX;Rq` is a Minkowski space, and the action of Γ on this
space is non-elementary and strongly irreducible.

Since non-elementary groups of isometries of Hm occur only for m ě 2, we get:

Corollary 2.11. Under the assumptions of Proposition 2.10, the Picard number ρpXq is greater
than or equal to 3. If equality holds then NSpX;Rq` “ NSpX;Rq and the action of Γ on
NSpX;Rq is strongly irreducible.

From now on we set:

(2.8) ΠΓ :“ H1,1pX;Rq` “ NSpX;Rq`.

This is a Minkowski space on which Γ acts strongly irreducibly; the intersection form is negative
definite on the orthogonal complement ΠKΓ Ă H1,1pX;Rq. By Proposition 2.8.(2), the group
G “ ZarpΓqirr satisfies GpRq|ΠΓ

“ SOpΠΓq. If Γ contains a parabolic element, then ΠΓ

is rational with respect to the integral structures of NSpX;Zq and H2pX;Zq, and GpRq “
SOpΠΓq ˆ tidΠKΓ

u (see Lemma 2.9).
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2.3.5. Invariant algebraic curves I. Assume that Γ is non-elementary and let C Ă X be an ir-
reducible algebraic curve with a finite Γ-orbit. Then the action of Γ on VectZ tf

˚rCs; f P Γu Ă
NSpX;Zq factors through a finite group. From Propositions 2.8 and 2.10 we deduce that the
intersection form is negative definite on VectZpΓ

˚ ¨ rCsq, thus VectRpΓ
˚ ¨ rCsq is one of the

irreducible factors of NSpX,Rq0. This argument, together with Grauert’s contraction theorem,
leads to the following result (we refer to [21, 60] for a proof; the result holds more generally for
subgroups containing a loxodromic element):

Lemma 2.12. Let X be a compact Kähler surface and Γ be a non-elementary group of au-
tomorphisms on X . Then, there are at most finitely many Γ-periodic irreducible curves. The
intersection form is negative definite on the subspace of NSpX;Zq generated by the classes of
these curves. There is a compact complex analytic surface X0 and a Γ-equivariant bimeromor-
phic morphismX Ñ X0 that contracts these curves and is an isomorphism in their complement.

2.3.6. The limit set. Let Γ Ă AutpXq be non-elementary. The limit set of Γ is the closed subset
LimpΓq Ă BHX Ă P

`

H1,1pX;Rq
˘

defined by one of the following equivalent assertions:

(a) LimpΓq is the smallest, non-empty, closed, and Γ-invariant subset of PpHXq;
(b) LimpΓq Ă BHX is the closure of the set of fixed points of loxodromic elements of Γ in

BHX ;
(c) LimpΓq is the accumulation set of any Γ-orbit ΓpPpvqq Ă PpH1,1pX;Rqq, for any

v R ΠKΓ .

We refer to [58, 73] for a study of such limit sets. From the second characterization we get:

Lemma 2.13. The limit set LimpΓq of a non-elementary group is contained in PpΠΓq X BHX .

From the third characterization, LimpΓq is contained in the closure of ΓpPprκsqq for every
Kähler form κ on X . Since X must be projective, we can chose rκs in NSpX;Zq. As a conse-
quence, LimpΓq is contained in NefpXq:

Lemma 2.14. LetX be a compact Kähler surface. If Γ is a non-elementary subgroup of AutpXq
its limit set satisfies LimpΓq Ă PpNefpXqq Ă PpNSpX;Rqq.

2.4. Parabolic automorphisms. The facts collected here will be used in Section 10. Let f be
a parabolic automorphism of a compact Kähler surface. Then f˚ preserves a unique point on
BHX , and f preserves a unique genus 1 fibration πf : X Ñ B onto some Riemann surfaceB; the
fixed point of f˚ on BHX is given by the class rF s of any fiber of πf (see [21]). The fibers of πf
are the elements of the linear system |F |, πf is uniquely determined by rF s, and if g is another
automorphism of X that preserves a smooth fiber of πf (resp. the point PrF s P PNSpX;Rq),
then g preserves the fibration and is elliptic or parabolic.

Proposition 2.15. Let X be a compact Kähler surface and let f be a parabolic automorphism
of X , preserving the genus 1 fibration τ : X Ñ B. Consider the group AutpX; τq :“ tg P
AutpXq ; DgB P AutpBq, τ ˝ g “ gB ˝ τu, and assume that the image of the homomorphism
g P AutpX; τq Ñ gB P AutpBq is infinite. Then, X is a torus C2{Λ.

This result directly follows from the proof of Proposition 3.6 in [29]. In particular the auto-
morphism fB P AutpBq such that πf ˝f “ fB ˝πf has finite order whenX is a K3, an Enriques,
or a rational surface.
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3. EXAMPLES AND CLASSIFICATION

Here, after a few remarks on the classification of surfaces admitting non-elementary groups
of automorphisms, we describe the main properties of Wehler examples, sufficient to derive the
Corollary of Section 1.3.2 from our main theorems. Further examples are described in [27].

3.1. Surfaces admitting non-elementary groups of automorphisms.

3.1.1. Minimal models. We refer to Theorem 10.1 of [21] for the following result:

Theorem 3.1. Let X be a compact Kähler surface with a loxodromic automorphism. Either X
is a rational surface, and there is a birational morphism π : X Ñ P2

C. Or the Kodaira dimension
of X is equal to 0, and there is an AutpXq-equivariant bimeromorphic morphism π : X Ñ X0

such that X0 is a compact torus, a K3 surface, or an Enriques surface. In particular, h2,0pXq
equals 0 or 1.

Remark 3.2. If X is a torus or K3 surface, there is a holomorphic 2-form ΩX on X that does
not vanish and satisfies

ş

X ΩX^ΩX “ 1. It is unique up to multiplication by a complex number
of modulus 1. A consequence of utmost importance to us is that the volume form ΩX ^ ΩX

is AutpXq-invariant. If X is an Enriques surface, and X̃ Ñ X is its universal cover, then X̃
is a K3 surface: the volume form ΩX̃ ^ ΩX̃ determines an AutpXq-invariant volume form on
X . So, if X is not rational, the dynamics of AutpXq is conservative: it preserves a canonical
volume form determined by the complex structure of X . Furthermore, if Y Ă X is a totally
real surface invariant by some subgroup Γ Ă AutpXq, the invariant volume form induces a
Γ-invariant volume form on Y (see [26, Rem. 2.3] for details). This holds in particular for
Y “ XpRq when X is defined over R.

It follows from Theorem 3.1 that, in most cases, AutpXq is countable (see [21, Rem. 3.3]):

Proposition 3.3. LetX be a compact Kähler surface. If AutpXq contains a loxodromic element,
then the kernel of the homomorphism AutpXq Ñ AutpXq˚ Ă GLpNSpX;Zqq is finite unless X
is a torus. So, if AutpXq is non-elementary, then AutpXq is discrete or X is a torus.

3.1.2. Projectivity. The next theorem is established in [27] (see also [24]).

Theorem 3.4. Let X be a compact Kähler surface such that there exists a non-elementary
subgroup Γ ď AutpXq. Then X is projective.

3.2. Wehler surfaces (see [32, 76, 79, 80]). Consider the variety M “ P1 ˆ P1 ˆ P1 and
let π1, π2, and π3 be the projections on the first, second, and third factor: πipz1, z2, z3q “ zi.
Denote by Li the line bundle π˚i pOp1qq and set L “ L2

1 bL
2
2 bL

2
3 “ π˚1 pOp2qq b π˚2 pOp2qq b

π˚3 pOp2qq. Since KP1 “ Op´2q, this line bundle L is the dual of the canonical bundle KM . Let
X be an irreducible surface in the linear system |L| » PpH0pM,Lqq; using affine coordinates
px1, x2, x3q on M “ P1 ˆ P1 ˆ P1, it is defined by a polynomial equation P px1, x2, x3q “ 0
whose degree with respect to each variable is ď 2 (see [18, 71] for explicit examples). These
surfaces will be referred to as Wehler surfaces or (2,2,2)-surfaces; modulo AutpMq, they form
a family of dimension 17. Fix k P t1, 2, 3u and denote by i ă j the other indices. If we project
X to P1 ˆ P1 by πij “ pπi, πjq, we get a 2 to 1 cover (but some fibers may be rational curves).
If X is smooth, it is a K3 surface and any birational self-map of X is an automorphism; in
particular, the involution σk that permutes the two points in each (general) fiber of πij is an
involutive automorphism of X .
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Proposition 3.5. There is a countable union of proper Zariski closed subsets pWiqiě0 in |L|
such that

(1) if X is an element of |L|zW0, then X is a smooth K3 surface and X does not contain any
fiber of the projections πij;

(2) if X is an element of |L|zp
Ť

iWiq, the restriction morphism PicpMq Ñ PicpXq is surjec-
tive. In particular its Picard number is ρpXq “ 3.

See [32] for the proof of this proposition, as well as that of Lemma 3.6. From the second
assertion, we deduce that for a very general X , PicpXq is isomorphic to PicpMq: it is the free
Abelian group of rank 3, generated by the classes ci :“ rpLiq|Xs. The elements of |pLiq|X | are
the curves of X given by the equations zi “ α for some α P P1. Their arithmetic genus is equal
to 1: the projection pπiq|X : X Ñ P1 is a genus 1 fibration. The intersection form is given by
c2
i “ 0 and xci|cjy “ 2 if i ‰ j.

Lemma 3.6. Assume thatX does not contain any fiber of the projection πij . Then, the involution
σ˚k preserves the subspace Zc1 ‘ Zc2 ‘ Zc3 of NSpX;Zq and σ˚kci “ ci, σ

˚
kcj “ cj , σ

˚
kck “

´ck`2ci`2cj . Equivalently, the action of σ˚k on VectRpc1, c2, c3q preserves the classes ci and
cj and acts as a reflection with respect to the hyperplane Vectpci, cjq Ă NSpX;Rq. In other
words, setting uk “ pc1` c2` c3q´ 2ck, σkpvq “ v` 1

2xv|ukyuk for all v in Zc1‘Zc2‘Zc3.

We can now combine this lemma with the previous proposition to obtain:

Proposition 3.7. If X is a very general Wehler surface then:

(1) X is a smooth K3 surface with Picard number 3;
(2) AutpXq is equal to xσ1, σ2, σ3y, it is a free product of three copies of Z{2Z, and AutpXq˚

is a finite index subgroup in the group of integral isometries of NSpX;Zq;
(3) AutpXq˚ acts strongly irreducibly on NSpX;Rq;
(4) AutpXq does not preserve any algebraic curve D Ă X;
(5) the limit set of AutpXq˚ is equal to BHX ;
(6) the compositions σi ˝σj and σi ˝σj ˝σk are respectively parabolic and loxodromic for every

triple pi, j, kq with ti, j, ku “ t1, 2, 3u.

Proof. The first three assertions follow from Proposition 3.5, [18, §1.5] and [32, Thm 3.6]. For
the fourth one, note that any invariant curve D would yield a non-trivial fixed point rDs in
NSpX;Zq, contradicting assertion (3). The fifth one follows from the second because the limit
set of a lattice in IsompNSpX;Rqq is always equal to BHX . The last assertion follows from
explicit linear algebra calculations (see [18]). �

4. GLOSSARY OF RANDOM DYNAMICS, I

We now initiate the random iteration by introducing a probability measure on AutpXq. In this
section we introduce a first set of ideas from the theory of random dynamical systems.

4.1. Random holomorphic dynamical systems. LetX be a compact Kähler surface, such that
AutpXq is non-elementary. Note that AutpXq is locally compact for the topology of uniform
convergence –in many interesting cases it is actually discrete (see Proposition 3.3)– so it admits
a natural Borel structure. We fix some Riemannian structure on X , for instance the one induced
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by the Kähler form κ0. For f P AutpXq, we denote by }f}C1 the maximum of }Dfx} where the
norm of Dfx : TxM Ñ TfpxqM is computed with respect to this Riemannian metric.

We consider a probability measure ν on AutpXq satisfying the moment condition (or inte-
grability condition)

(4.1)
ż

´

log }f}C1pXq ` log
›

›f´1
›

›

C1pXq

¯

dνpfq ă `8.

The finiteness of the integral in (4.1) does not depend on our choice of Riemannian metric.
When the support of ν is finite, the integrability (4.1), as well as stronger moment conditions
which will appear later (see Conditions (5.23) and (5.24)), are obviously satisfied.

Lemma 4.1. The measure ν satisfies the moment condition (4.1) if and only if, for all k ě 1, it
satisfies the higher moment conditions

ż

´

log }f}CkpXq ` log
›

›f´1
›

›

CkpXq

¯

dνpfq ă 8.

This lemma follows from the Cauchy estimates. In particular, if ν satisfies (4.1), then it
satisfies a similar moment condition for theC2 norm, a property required to apply Pesin’s theory.

Given ν, we shall consider independent, identically distributed sequences pfnqně0 of random
automorphisms of X with distribution ν, and study the dynamics of random compositions of the
form fn´1˝ ¨ ¨ ¨ ˝f0. The data pX, νq will be referred to as a random holomorphic dynamical
system on X . Many properties of pX, νq depend on the properties of the subgroup

(4.2) Γ “ Γν :“ xSupppνqy

generated by the support of ν in AutpXq. If Γν is non-elementary, we say that pX, νq is non-
elementary.

4.2. Invariant and stationary measures. Let G be a topological group and ν be a probability
measure on G. Consider a measurable action of G on some measurable space pM,Aq. Every
f P G determines a push-forward operator µ ÞÑ f›µ, acting on positive (resp. probability)
measures µ on pM,Aq. By definition, a probability measure µ on pM,Aq is ν-stationary if

(4.3)
ż

f›µdνpfq “ µ,

and it is ν-almost surely invariant if f›µ “ µ for ν-almost every f . Let us stress that we
only deal with probability measures in this definition. A stationary measure is ergodic if it is an
extremal point of the closed convex set of stationary measures (see [8, §2.1.3]). If µ is almost
surely invariant then it is stationary. IfM is compact, the actionGˆM ÑM is continuous, and
A is the Borel σ-algebra, the Kakutani fixed point theorem implies the existence of at least one
stationary measure. On the other hand the existence of an invariant measure is a very restrictive
property (see Sections 1.2 and 5.3). Following Furstenberg [51] we say that an action is stiff (or
ν-stiff) if any ν-stationary measure is ν-almost surely invariant.

We shall consider several measurable actions of AutpXq: its tautological action on X , but
also its action on the projectivized tangent bundle PpTXq, on cohomology groups of X and
their projectivizations, on spaces of currents, etc. In all cases, M will be a locally compact
space and A its Borel σ-algebra, which will be denoted by BpMq.
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Remark 4.2. SinceX is compact and the action AutpXqˆX Ñ X is continuous, a probability
measure µ on pX,BpXqq is ν-almost surely invariant if and only if it is invariant under the action
of the closure of Γν in AutpXq; this follows from the dominated convergence theorem.

4.3. Random compositions. Set Ω “ AutpXqN, endowed with its product topology. The
associated Borel σ-algebra coincides with the product σ-algebra and is generated by cylinders
(see § 7.1). We endow Ω with the product measure νN. For ω P Ω, we set f0

ω “ id and for
n ą 0 we denote by fnω the left composition of the n first terms of ω, that is

(4.4) fnω “ fn´1 ˝ ¨ ¨ ¨ ˝ f0.

In particular f1
ω “ f0. Let us record for future reference the following consequence of the

Borel-Cantelli lemma. We denote by σ : Ω Ñ Ω the unilateral shift.

Lemma 4.3. If pX, νq is a random dynamical system satisfying the moment condition (4.1), then
for νN-almost every sequence ω “ pfnq P Ω,

1

n

`

log }fn}C1 ` log
›

›f´1
n

›

›

C1

˘

ÝÑ
nÑ8

0.

5. FURSTENBERG THEORY IN H1,1pX;Rq

Consider a non-elementary random holomorphic dynamical system pX, νq on a compact
Kähler surface, satisfying the moment condition (4.1). In this section, we analyze the linear
action of pX, νq on H1,1pX,Rq by using the theory of random products of matrices. The books
by Bougerol and Lacroix [13] and by Benoist and Quint [8] are good references to this theory.

5.1. Moments and cohomology. Let M be a compact connected manifold of dimension m,
endowed with some Riemannian metric g. If f : M Ñ M is a smooth map, }f}C1 denotes the
maximum norm of its tangent action, computed with respect to g (see Section 4.1). Thus, f is a
Lipschitz map with Lippfq “ }f}C1 for the distance determined by g; in particular }f}C1 ě 1

whenever f is onto. Fix a norm |¨|Hk on each cohomology group HkpM ;Rq, for 0 ď k ď m.

Lemma 5.1. There is a constant C ą 0, that depends only on M , g, and the norms |¨|Hk ,
such that |f˚rαs|Hk ď Ck Lippfqk |rαs|Hk for every class rαs P HkpM ;Rq and every map
f : M Ñ M of class C1. In other words, the operator norm }f˚}Hk is controlled by the
Lipschitz constant:

}f˚}Hk ď Ck Lippfqk ď Ck}f}kC1 .

Proof. Pick a basis of HkpM ;Rq » HkpM ;Rq˚ given by smoothly immersed, compact, k-
dimensional manifolds ιi : Ni Ñ M , and a basis of HkpM ;Rq given by smooth k-forms αj .
The integral

ş

Ni
ι˚i pf

˚αjq is bounded from above by Ck}f}kC1 for some constant C, because

(5.1) |pf˚αjqxpv1, . . . , vkq| “ |αjpf˚v1, . . . , f˚vkq| ď cj}f}
k
C1

k
ź

`“1

|v`|g

for every x P M and every k-tuple of tangent vectors v` P TxM ; here, cj is the supremum of
the norm of the multilinear map pαjqx over x PM . �
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If ν is a probability measure on DiffpMq satisfying the moment condition (4.1), then

(5.2) @1 ď k ď m,

ż

DiffpMq
log p}f˚}Hkq ` log

`›

›pf´1q˚
›

›

Hk

˘

dνpfq ă `8.

If we specialize this to automorphisms of compact Kähler surfaces we get

(5.3)
ż

AutpXq
log p}f˚}H1,1q ` log

`›

›pf´1q˚
›

›

H1,1

˘

dνpfq ă `8,

which is actually equivalent to (5.2) by Lemma 2.2. We saw in §2.3.3 that }f˚}H1,1 —
›

›pf´1q˚
›

›

H1,1 ,
so this last condition is in turn equivalent to

(5.4)
ż

AutpXq
log p}f˚}H1,1q dνpfq ă `8.

5.2. Cohomological Lyapunov exponent. As in § 2.1.2, we denote by |¨| a norm onH1,1pX,Rq
and by }¨} the associated operator norm. The linear action induced by the random dynamical
system pX, νq on H1,1pX,Rq defines a random product of matrices. Since the moment condi-
tion (5.4) is satisfied, we can define the upper Lyapunov exponent λH1,1 (or λH1,1pνq) by

λH1,1 “ lim
nÑ`8

1

n

ż

logp}pfnω q
˚}qdνNpωq(5.5)

“ lim
nÑ`8

1

n
log }pfnω q

˚}(5.6)

where the second equality holds almost surely, i.e. for νN-almost every ω P Ω. This conver-
gence follows from Kingman’s subadditive ergodic theorem, since }¨} being an operator norm,
pω, nq ÞÑ logp}pfnω q

˚}q defines a subadditive cocycle (see [8, Thm 4.28] or [13, Thm I.4.1]).

Proposition 5.2. Let pX, νq be a non-elementary holomorphic dynamical system on a compact
Kähler surface, satisfying the moment condition (4.1), or more generally (5.4). Then the coho-
mological Lyapunov exponent λH1,1 is positive and the other Lyapunov exponents of the linear
action on H1,1pX,Rq are ´λH1,1 , with multiplicity 1, and 0, with multiplicity h1,1pXq ´ 2.

Proof. Consider the Γν-invariant decomposition ΠΓν‘ΠKΓν given by Proposition 2.10 and Equa-
tion (2.8). Since the intersection form is negative definite on ΠKΓν , the group Γ˚ν |ΠKΓν is bounded
and all Lyapunov exponents of Γ˚ν |ΠKΓν vanish. The linear action of Γν on ΠΓν is strongly ir-
reducible and non-elementary, hence not relatively compact. Therefore Furstenberg’s theorem
asserts that λH1,1 ą 0 (see e.g. [13, Thm III.6.3] or [8, Cor 4.32]). The remaining proper-
ties of the Lyapunov spectrum on ΠΓν follow from the KAK decomposition in O`1,mpRq, with
1`m “ dimpΠΓν q (see Lemma 2.4). �

Lemma 5.3. If a P H1,1pX;Rq satisfies a2 ą 0, for instance if a is a Kähler class, then

lim
nÑ`8

1

n
log |pfnω q

˚a| “ λH1,1

for νN-almost every ω.

Proof. Corollary 2.5 implies that if a P HX then for every f P AutpXq, |f˚a| — }f˚}, where
the implied constants depend only on a. Thus the result follows from Equation (5.6). �
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If the order of compositions is reversed (which is less natural from the point of view of iterated
pull-backs), then Lemma 5.3 indeed holds for any a in ΠΓν (see [13, Cor. III.3.4.i]):

Lemma 5.4. For any a P ΠΓν z t0u and for νN-almost every ω “ pfnqně0 P Ω we have

lim
nÑ`8

1

n
log |f˚n ¨ ¨ ¨ f

˚
1 a| “ λH1,1 .

5.3. The measure µB. By Furstenberg’s theory the linear projective action of the random dy-
namical system pX, νq on PΠΓν Ă PH1,1pX;Rq admits a unique stationary measure µPΠΓν

;
this measure does not charge any proper projective subspace of PΠΓν . Recall that the mass of a
class a is defined by Mpaq “ xa|rκ0sy (see § 2.2).

Lemma 5.5. For νN-almost every ω, there exists a unique nef class epωq such that Mpepωqq “ 1
and

(5.7)
1

Mppfnω q
˚aq
pfnω q

˚a ÝÑ
nÑ8

epωq

for any pseudo-effective class a with a2 ą 0 (in particular for any Kähler class). In addition,
the class epωq is almost surely isotropic and Ppepωqq is a point of the limit set LimpΓνq Ă BHX .

Before starting the proof, note that Γ˚ν |ΠΓν
is proximal in the sense of [8, §4.1]; equivalently,

Γ˚ν |ΠΓν
is contracting in the sense of [13, Def III.1.3]. In other words, there are sequences of

elements gn P Γν such that }g˚n}
´1g˚n|ΠΓν

converges to a matrix of rank 1: for instance one can
take gn “ fn, where f P Γν is any loxodromic automorphism.

Proof. For f P AutpXq, we use the notation f˚ for its action on PH1,1pX;Rq. Since the action
of Γν on ΠΓν is strongly irreducible and proximal, its projective action satisfies the following
contraction property (see [13, Thm III.3.1]): there is a measurable map ω P Ω ÞÑ epωq P PΠΓν

such that for almost every ω, any cluster value Lpωq of

(5.8)
1

}f˚0 ¨ ¨ ¨ f
˚
n}
f˚0 ¨ ¨ ¨ f

˚
n

in EndpΠΓν q is an endomorphism of rank 1 whose range is equal to Repωq.
Let epωq be the unique vector of mass 1 in the line Repωq. If a P ΠΓν satisfies a2 ą

0 and Mpaq ą 0, then any cluster value of Mppfnω q
˚aq´1pfnω q

˚a must coincide with epωq
because by Corollary 2.5 the mass Mppfnω q

˚aq is comparable to the norm }f˚0 ¨ ¨ ¨ f
˚
n}. Thus, the

convergence (5.7) is satisfied. Furthermore epωq is nef, because we can apply this convergence
to a nef class a and AutpXq preserves the nef cone. Also, epωq belongs to LimpΓνq, hence it is
isotropic. Now, let a and a1 be two classes of HX with a P ΠΓν . Since the hyperbolic distance
between pfnω q

˚paq and pfnω q
˚pa1q remains constant and the convergence (5.7) holds for a, it

also holds for a1. This concludes the proof, for every class with positive self-intersection is
proportional to a unique class in HX . �

Here is a summary of the properties of the stationary measure µPΠΓν
; from now on, we view

it as a measure on PH1,1pX;Rq and rename it as µB because it is supported on BHX .

Theorem 5.6. The probability measure defined on PH1,1pX;Rq by

(5.9) µB “

ż

δPpepωqq dν
Npωq
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is ν-stationary and ergodic. It is the unique stationary measure on PH1,1pX;Rq such that
µBpPpΠKΓν qq “ 0. The measure µB has no atoms and is supported on LimpΓνq; in particular, if
Λ1 Ă LimpΓνq is such that µBpΛ1q ą 0 then Λ1 is uncountable.

The top Lyapunov exponent satisfies the so-called Furstenberg formula:

λH1,1 “

ż

log

ˆ

|f˚ũ|

|ũ|

˙

dνpfq dµBpuq,(5.10)

where ũ P H1,1pX,Rqz t0u denotes any lift of u P LimpΓνq Ă PH1,1pX,Rq.

Proof. The ergodicity of µB “ µPΠΓν
as well as its representation (5.9) follow from the proper-

ties of the action of Γν on PpΠΓq (see [13, Chap. III]). Also, we know that λH1,1 is equal to the
top Lyapunov exponent of the restriction of the action to PpΠΓν q, so the formula (5.10) follows
from the strongly irreducible case (see [13, Cor III.3.4]).

Let now µ be a stationary measure on PH1,1pX;Rq such that µpPΠKΓν q “ 0. A martingale
convergence argument shows that pfn

ω
q˚µ converges to some measure µω for almost every ω

(see [13, Lem. II.2.1]). Since Γν preserves the decomposition ΠΓν ‘ ΠKΓν and }pfnω q
˚} tends to

infinity while ‖ pfnω q˚|ΠKΓν ‖ stays uniformly bounded, we get that pfnω q
˚u converges to PΠΓν for

µ-almost every u and νN-almost every ω; thus µω is almost surely supported on PΠΓν . Since by
stationarity µ “

ş

µωdν
Npωq we conclude that µ gives full mass to PpΠΓν q, hence µ “ µB. �

Remark 5.7. If Supppνq generates Γν as a semi-group, then SupppµBq “ LimpΓνq, otherwise
the inclusion can be strict: take a Schottky group Γ “ xf, gy Ă PSLp2,Rq and ν “ pδf ` δgq{2.

Remark 5.8. Since LimpΓνq Ă PsefpXq, for every u P LimpΓνq there exists a unique ũ such
that Pũ “ u and xũ | rκ0sy “Mpũq “ 1. Then the following formula holds:

λH1,1 “

ż

log pMpf˚ũqq dνpfq dµBpuq “

ż

log

ˆ

Mpf˚ũq

Mpũq

˙

dνpfq dµBpuq.(5.11)

Indeed set rpwq “Mpwq{ |w|. On the limit set this function satisfies 1{C ď rpũq ď C, where
C is the positive constant from Equation (2.4). Then, for allm ě 1,the stationarity of µB implies
ż

log

ˆ

rpf˚ũq

rpũq

˙

dνpfq dµBpuq “

ż

log

ˆ

rpf˚m ¨ ¨ ¨ f
˚
0 ũq

rpf˚m´1 ¨ ¨ ¨ f
˚
0 ũq

˙

dνpfmq ¨ ¨ ¨ dνpf0q dµBpuq.

Summing from m “ 0 to n´ 1, telescoping the sum, and dividing by n gives
ż

log

ˆ

rpf˚ũq

rpũq

˙

dνpfq dµBpuq “
1

n

ż

log

ˆ

rpf˚n´1 ¨ ¨ ¨ f
˚
0 ũq

rpũq

˙

dνpfn´1q ¨ ¨ ¨ dνpf0q dµBpuq.

Finally since 1{C ď r ď C, the right hand side tends to zero as n Ñ 8. Hence the integral of
logpr ˝ f˚{rq vanishes, and (5.11) follows from Furstenberg’s formula. �

Proposition 5.9. The point Ppepωqq is νN-almost surely extremal in PpKahpXqq and in PpPsefpXqq.

Proof. The class epωq almost surely belongs to KahpXq and to the isotropic cone. By the Hodge
index theorem –more precisely, by the case of equality in the reverse Schwarz Inequality (2.5)–
epωq cannot be a non-trivial convex combination of classes with non-negative intersection and
mass 1; so Ppepωqq is an extremal point of the convex set PpKahpXqq Ă PH1,1pX;Rq.

From Proposition 2.3, there are at most countably many points Ppuq in PpKahpXqq such that
u2 “ 0 and Ppuq is not extremal in PpPsefpXqq. Therefore the second assertion follows from
the fact that µB is atomless. �
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5.4. Some estimates for random products of matrices. The aim of this section is to establish
some technical facts which will play a crucial role in our study of the closed positive currents
T sω in Section 6. The key results are Theorem 5.10 and Lemma 5.12.

5.4.1. Sequences of good times. Let us describe a theorem of Gouëzel and Karlsson, specialized
to our context. Fix a point e0 in HX , for instance e0 “ rκ0s with κ0 a fixed Kähler form, as in
Section 2.2. Consider the two functions of pn, ωq P Nˆ Ω defined by

(5.12) T pn, ωq “ dHpe0, pf
n
ω q
˚e0q, Npn, ωq “ log }pfnω q

˚}.

They satisfy the subadditive cocycle property

(5.13) apn`m,ωq ď apn, ωq ` apm,σnpωqq,

where σ is the unilateral shift on Ω (see § 4.3). Let apn, ωq be such a subadditive cocycle; if
ap1, ωq is integrable the asymptotic average is defined to be the limit

(5.14) A “ lim
nÑ`8

1

n

ż

apn, ωq dνNpωq;

it exists in r´8,`8q, and we say it is finite if A ‰ ´8. From Theorem 5.6, Remark 5.8, and
Corollary 2.5, the asymptotic average of the cocycles T and N are both equal to λH1,1 .

Following [53], we say that a subadditive cocycle apn, ωq is tight along the sequence of
positive integers pniq if there is a sequence of real numbers pδ`q “ pδ`pωqq`ě0 such that

(i) δ` converges to 0 as ` goes to `8;
(ii) for every i, and for every 0 ď ` ď ni,

ˇ

ˇapni, ωq ´ apni ´ `, σ
`pωqq ´A`

ˇ

ˇ ď `δ`;
(iii) for every i and for every 0 ď ` ď ni, apni, ωq ´ apni ´ `, ωq ě pA´ δ`q`.

Theorem 5.10 (Gouëzel and Karlsson [53]). Let apn, ωq be an ergodic subadditive cocycle, with
a finite asymptotic averageA. Then, for almost every ω, the cocycle is tight along a subsequence
pnipωqq of positive upper density.

Recall that the (asymptotic) upper density of a subset S of N is the non-negative number
defined by denspSq “ lim supkÑ`8

`

1
k |S X r0, k ´ 1s|

˘

. A sequence pniqiě0 is said to have
positive upper density if the set of its values S “ tni ; i ě 0u satisfies denspSq ą 0.

Proof. Let us explain how this result follows from [53]. First, fix a small positive real number
ρ ą 0, and apply Theorem 1.1 and Remark 1.2 of [53] to get a set Ωρ of measure 1 ´ ρ such
that the first two properties (i) and (ii) are satisfied for every ω P Ωρ with respect to a sequence
pδ`q that does not depend on ω, and for a sequence of times pnipωqq of upper density ě 1 ´ ρ.
To get (iii), we apply Lemma 2.3 of [53] to the sub-additive cocycle apn, ωq (not to the cocycle
bpn, ωq “ apn, σ´npωqq as done in [53]). For every ε ą 0, there is a subset Ω1ε Ă Ω and a
sequence pδ1`q`ě0 such that

(a) νNpΩ1εq ą 1´ ε, and δ1` converges towards 0 as ` goes to `8;
(b) for every ω P Ω1ε, there is a set of bad times Bpωq Ă N such that for every k ě 0

|Bpωq X r0, k ´ 1s| ď εk, and for every n R Bpωq and every 0 ď ` ď n,

apn, ωq ´ apn´ `, ωq ě pA´ δ1`q`.

If ω belongs to Ωρ XΩ1ε, the set of indices i for which nipωq R Bpωq is infinite. More precisely,
the set Spωq “ tnjpωq ; njpωq R Bpωqu has asymptotic upper density ě 1 ´ ρ ´ ε. Along
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this subsequence, the three properties (i), (ii), and (iii) are satisfied. Since this holds for all
ω P Ω1ε X Ωρ and the measure of this set is ě 1´ ρ´ ε, this holds for νN-almost every ω. �

Corollary 5.11. For νN-almost every ω P AutpXqN, there is an increasing sequence of integers
pnipωqq going to `8 and a real number Apωq such that

nipωq
ÿ

j“0

›

›

`

f jω
˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

ď Apωq and
nipωq
ÿ

j“0

›

›

`

f
nipωq´j

σjpωq

˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

ď Apωq

for all indices i ě 0.

Proof. Apply Theorem 5.10 to the subadditive cocyle Npn, ωq and note that

(5.15)
nipωq
ÿ

j“0

›

›

`

f jω
˘˚›
›

›

›

`

f
nipωq
ω

˘˚›
›

“

nipωq
ÿ

`“0

›

›

`

fni´`ω

˘˚›
›

›

›

`

fniω
˘˚›
›

“

nipωq
ÿ

`“0

eNpni´`,ωq

eNpni,ωq
ď

nipωq
ÿ

`“0

e´`pλH1,1´δ`q

which is bounded as nipωq Ñ 8. The second estimate is similar. �

5.4.2. A mass estimate for pull-backs. Assume that pX, νq is non-elementary and satisfies the
condition (4.1). Recall from Lemma 5.4 that Mppfnω q

˚aq´1pfnω q
˚a converges to the pseudo-

effective class epωq for almost every ω and every Kähler class a. Thus, on a set of total νN-
measure, this convergence holds for all σkpωq, k ě 0. Since Mpepωqq “ 1, we obtain

(5.16) f˚0 epσωq “Mpf˚0 epσωqqepωq;

more generally, for every k ě 1,

(5.17) pfkωq
˚epσkωq “Mppfkωq

˚epσkωqqepωq.

Lemma 5.12. For νN-almost every ω, we have 1
n logMppfnω q

˚epσnωqq ÝÑ
nÑ8

λH1,1 .

This does not follow from Lemma 5.3 because epσnωq depends on n.

Proof. For almost every ω, for every k ě 1, and for every Kähler class a, epσkωq is the limit of
Mpf˚k ¨ ¨ ¨ f

˚
n´1aq

´1f˚k ¨ ¨ ¨ f
˚
n´1a as n goes to `8. So

(5.18) f˚0 ¨ ¨ ¨ f
˚
k´1epσ

kpωqq “

ˆ

lim
nÑ8

Mpf˚0 ¨ ¨ ¨ f
˚
n´1aq

Mpf˚k ¨ ¨ ¨ f
˚
n´1aq

˙

epωq “: ζpk, ωqepωq

where ζpk, ωq is both equal to Mppfkωq
˚epσkpωqqq and to the limit

(5.19) ζpk, ωq “ lim
nÑ8

Mpf˚0 ¨ ¨ ¨ f
˚
n´1aq

Mpf˚k ¨ ¨ ¨ f
˚
n´1aq

“ lim
nÑ8

Mppfnω q
˚aq

Mppfn´k
σkpωq

q˚aq
.

We want to show that, νN-almost surely, p1{kq log ζpk, ωq converges to λH1,1 .

Before starting the proof, note that ζ is a multiplicative cocycle: ζpk, ωq “
śk
`“1 ζp1, σ

`ωq;
in particular, log ζpk, ωq is equal to the Birkhoff sum

řk
`“1 log ζp1, σ`ωq. Since

(5.20) C´1
›

›pf´1
0 q˚

›

›

H1,1 ďMpf˚0 epσpωqqq ď C}f˚0 }H1,1 ,

our moment condition shows that logpζp1, ωqq is integrable. So, by the ergodic theorem of
Birkhoff, limk

1
k log ζpk, ωq exists νN-almost surely.
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Pick a sequence pniq of good times for ω, as in Theorem 5.10. If we compute the limit in
Equation (5.19) along the subsequence pniq we see that ζpk, ωq ě C expppλH1,1 ´ δpkqqkq for
some constant C ą 0, and some sequence δpkq converging to 0 as k goes to `8. This gives

(5.21) lim sup
kÑ`8

1

k
log ζpk, ωq ě λH1,1 .

Now, consider the linear cocycle Υ : ΩˆH1,1pX,Rq Ñ ΩˆH1,1pX,Rq defined by

(5.22) Υpω, uq “ pσpωq, pf1
ωq˚uq

and let PΥ be the associated projective cocycle on Ω ˆ PH1,1pX,Rq. The Lyapunov expo-
nents of Υ are ˘λH1,1 , each with multiplicity 1, and 0, with multiplicity h1,1pXq ´ 2. Since
Pppf1

ωq
˚epσpωqqq “ Ppepωqq, the measurable section tpω,Ppepωqqq ; ω P Ωu is PΥ-invariant.

Therefore, by ergodicity of σ with respect to νN, m “
ş

δPpepωqq dν
Npωq defines an invariant

and ergodic measure for PΥ. It follows from the invariance of the decomposition into character-
istic subspaces in Oseledets’ theorem that epωq is contained in a given characteristic subspace
of the cocycle Υ; thus, if λ denotes the Lyapunov exponent of Υ in that characteristic subspace,
we get (as in Remark 5.8) that

λ “

ż

log

ˇ

ˇpf1
ωq˚u

ˇ

ˇ

|u|
dmpω, uq “

ż

log
Mppf1

ωq˚pepωqq

Mpepωqq
dνNpωq “

ż

log ζp1, ωq´1 dνNpωq

(see Ledrappier [64, §1.5]). Birkhoff’s ergodic theorem implies that limk
1
k log ζpk, ωq “ ´λ,

with λ P t˘λH1,1 , 0u, therefore the Inequality (5.21) concludes the proof. �

5.4.3. Exponential moments. The result of this section will only be used in Theorem 6.16 so
this paragraph may be skipped on a first reading. Consider the exponential moment condition

(5.23) Dτ ą 0,

ż

`

}f}C1 `
›

›f´1
›

›

C1

˘τ
dνpfq ă `8.

As in Section 5.1, this upper bound implies the cohomological moment condition

(5.24) Dτ ą 0,

ż

`

}f˚}H1,1 `
›

›pf´1q˚
›

›

H1,1

˘τ
dνpfq ă `8.

Proposition 5.13. Assume that ν satisfies the Condition (5.23). Let D : AutpXq Ñ R` be a
measurable function such that

ş

Dpfqτ
1

dνpfq ă 8 for some τ 1 ą 0. Then, there is a measurable
function B : Ω Ñ R` satisfying

ż

log`pBpωqq dνNpωq ă 8

such that for νN-almost every ω “ pfnq and every n ě 0

n´1
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď Bpωq, and
n´1
ÿ

j“1

Dpfjq

›

›f˚0 ¨ ¨ ¨ f
˚
j´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď Bpωq.

This is a refined version of Corollary 5.11.

Proof. We are grateful to Sébastien Gouëzel for explaining this argument to us. We temporarily
use the notation Pp¨q for probability with respect to νn or νN (instead of projectivisation).

First Estimate.– We start with the first estimate:
řn´1
j“1 Dpfj´1q

›

›f˚j ¨¨¨f
˚
n´1

›

›

}f˚0 ¨¨¨f
˚
n´1}

ď Bpωq.
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Step 1.– For every 0 ă ε ă λH1,1 there exists constants c, C ą 0 such that

(5.25) P p|pfnω q˚b| ď eεnq ď Ce´cn.

for every b P ΠΓ with |b| “ 1. This large deviation result, which is uniform in n and b, follows
from condition (5.24) (see for instance [13, §V.6], and [8, §12]).

Step 2.– Let us prove that

(5.26) P

˜
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ą e´εj

¸

ď Ce´cj .

For this, fix fj , . . . , fn´1. Then, there is a point a P ΠΓ with |a| “ 1 such that
›

›

›
f˚j ¨ ¨ ¨ f

˚
n´1

›

›

›
“

ˇ

ˇ

ˇ
f˚j ¨ ¨ ¨ f

˚
n´1a

ˇ

ˇ

ˇ
. Hence, if

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

› ă
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›eεj , we infer that

(5.27)
ˇ

ˇf˚0 ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇ ă
›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›eεj “
ˇ

ˇf˚j ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇeεj .

Thus, if we set

(5.28) b “
1

ˇ

ˇf˚j ¨ ¨ ¨ f
˚
n´1a

ˇ

ˇ

f˚j ¨ ¨ ¨ f
˚
n´1a,

we obtain that
ˇ

ˇ

ˇ
f˚0 ¨ ¨ ¨ f

˚
j´1b

ˇ

ˇ

ˇ
ă eεj ; this happens with (conditional) probability ď Ce´cj (rela-

tive to ν˚j), for the uniform constants given in Step 1. Averaging over fj , . . . , fn´1, we get the
result.

Step 3.– The moment condition satisfied by D and Markov’s inequality imply PpD ą Kq ď

C1K
´τ 1 for some constant C1 ą 0. Fix ε P R˚` small with respect to λH1,1 and τ 1. Then, on a

set Ωpε, Jq of measure

(5.29) νNpΩpε, Jqq ě 1´ C2pe
´pετ 1{2qJ ` e´εcJq,

for some C2 “ C2pεq ą 0, we have both Dpfj´1q ď eεj{2 and }
f˚j ¨¨¨f

˚
n´1}

}f˚0 ¨¨¨f
˚
n´1}

ď e´εj for all j ě J .

For ω “ pfnq in Ωpε, Jq, we get
n´1
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

ď

J
ÿ

j“1

Dpfj´1q

›

›f˚j ¨ ¨ ¨ f
˚
n´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
n´1

›

›

`

n´1
ÿ

j“J`1

e´εj{2(5.30)

ď

J
ÿ

j“1

Dpfj´1q

›

›

›
pf´1
j´1q

˚ ¨ ¨ ¨ pf´1
0 q˚

›

›

›
` C3

“ C3 `

J´1
ÿ

j“0

}f˚0 } ¨ ¨ ¨
›

›f˚j
›

›Dpfjq.

The moment condition (5.23) gives Pp}f˚} ą Kq ď C4K
´τ and as already noticed, we also

have PpDpfq ą Kq ď C1K
´τ 1 . So, with η “ minpτ, τ 1q, there is a set of probability at least

1´ C5JK
´η on which

(5.31)
J´1
ÿ

j“0

Dpfjq}f
˚
0 } ¨ ¨ ¨

›

›f˚j
›

› ď C6JK
J`2.
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Taking K “ J3{η, we have JK´η “ J´2, and we obtain

(5.32) P

˜

J´1
ÿ

j“0

Dpfjq}f
˚
0 } ¨ ¨ ¨

›

›f˚j
›

› ą J1`3pJ`2q{η

¸

ď C7J
´2.

Also, note that J1`p3J`6q{η ď exp
`

CJ3{2
˘

.
By the Borel-Cantelli lemma, the sum in (5.30) is almost surely bounded by some constant

Bpωq which satisfies P
`

logB ą J3{2
˘

ď CJ´2; in particular E
`

log`B
˘

ă 8.

Second Estimate.– To obtain the second estimate of Proposition 5.13, we apply the above
proof to the reversed random dynamical system, induced by ν̌ : f ÞÑ νpf´1q. Indeed, the core
of the argument is the inequality (5.30) which is not sensitive to the order of compositions. �

6. LIMIT CURRENTS

In this section, we establish the counterpart of the convergence (5.7) at the level of closed
positive currents on X . Throughout this section we fix a non-elementary random holomorphic
dynamical system pX, νq satisfying the moment condition (4.1), so that all results of §5 apply.
We refer the reader to [38] and [56] (in particular Chapter 8) for basics on pluripotential theory.

6.1. Potentials and cohomology classes of positive closed currents. Let us fix once and for
all a family of Kähler forms pκiq1ďiďh1,1pXq such that rκis2 “ 1 and the rκis form a basis of
H1,1pX;Rq; in addition we require that the κi satisfy

(6.1) κ0 “ β
ÿ

i

κi

for some β ą 0, where κ0 is the Kähler form chosen in Section 2.2 (note that necessarily
β ă 1). We also fix a smooth volume form volX on X , normalized by

ş

X vol “ 1. On tori, K3
and Enriques surfaces, we choose volX to be the canonical AutpXq-invariant volume form (see
Remark 3.2). It is convenient to assume in all cases that volX is also the volume form associated
with the Kähler metric κ0 (up to scaling).

Unless otherwise specified, the currents we shall consider will be of type p1, 1q. The action
of a current T on a test form ϕ will be denoted by xT, ϕy or

ş

T ^ ϕ. If T is closed, we denote
its cohomology class by rT s; so, if ϕ is a closed form, xT, ϕy “ xrT s | rϕsy. By definition the
mass of a current is the quantity MpT q “

ş

T ^ κ0; so MpT q “ xrT s|rκ0sy when T is closed.

6.1.1. Normalized potentials. If a is an element ofH1,1pX;Rq, we denote by pcipaqq1ďiďh1,1pXq

its coordinates in the basis prκisq, so that a “
ř

i cipaqrκis. Then, we set

(6.2) Θpaq “
ÿ

i

cipaqκi.

Likewise, given a closed p1, 1q-form α or a closed current of bidegree p1, 1q, we set cipαq “
ciprαsq and Θpαq “ Θprαsq; hence, rΘpαqs “ rαs. It is worth keeping in mind that some
coefficients cipαq can be negative and Θpαq need not be semi-positive, even if α is a Kähler
form. If T is a closed positive current of bidegree p1, 1q onX we define its normalized potential
to be the unique function uT P L1pXq such that

(6.3) T “ ΘpT q ` ddcpuT q and
ż

X
uT vol “ 0
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(see [56, §8.1]). The function uT is locally given as the difference v ´ w of a psh potential v of
T and a smooth potential w of ΘpT q.

Lemma 6.1. There is a constant A ą 0 such that the following properties are satisfied for every
closed positive current T of mass 1

(1) ´A ď cipT q ď A for all 1 ď i ď h1,1pXq, and ´Aκ0 ď ΘpT q ď Aκ0.
(2) the function uT is pAκ0q-psh: ddcpuT q `Aκ0 is a positive current.

Proof. Since the coefficients T ÞÑ cipT q are continuous functions on the space of currents and
closed positive currents of mass 1 form a compact set K, the functions |ci| are bounded by
some uniform constant A1 on K. Setting A “ A1β´1, with β as in Equation (6.1), we get
´Aκ0 ď ΘpT q ď Aκ0 for all T P K. Then ddcuT “ T ´ΘpT q ě ´Aκ0 and (2) follows. �

Corollary 6.2. The set of potentials tuT | T is a closed positive current of mass 1 on Xu is a
compact subset of L1pX; volq.

Proof. Since this is a set of pAκ0q-psh functions which are normalized with respect to a smooth
volume form, the result follows from Proposition 8.5 and Remark 8.6 in [56]. �

Remark 6.3. Another usual normalization is supxPX uT pxq “ 0; by compactness this only
changes uT by some uniformly bounded constant. Since many of our dynamical examples
preserve a natural volume form it is more convenient for us to normalize as in (6.3).

6.1.2. The diameter of a pseudo-effective class. For a class a P PsefpXq we define

(6.4) Curpaq “ tT ; T is a closed positive current with rT s “ au,

This is a compact convex subset of the space of currents. If S and T are two elements of Curpaq,
then ΘpSq “ ΘpT q “ Θpaq and T ´ S “ ddcpuT ´ uSq. We set

(6.5) distpS, T q “

ż

X
|uS ´ uT | vol .

This is a distance that metrizes the weak topology on Curpaq: this follows for instance from the
fact that by Corollary 6.2 pCurpaq, distq is compact. By definition, the diameter of a is

(6.6) Diampaq “ DiampCurpaqq “ suptdistpS, T q ; S, T in Curpaqu,

If a P PsefpXq, then Diampaq is a non-negative real number which is finite by Corollary 6.2.
If Curpaq “ H, we set Diampaq “ ´8. Note that Diam is homogeneous of degree 1:
Diamptaq “ tDiampaq for every a P PsefpXq and t ą 0.

Lemma 6.4. On PsefpXq, a ÞÑ Diampaq is upper semi-continuous, hence measurable.

Proof. Let panq be a sequence of pseudo-effective classes converging to a. For every n we
choose a pair of currents pSn, Tnq in Curpanq

2 such that distpSn, Tnq ě Diampanq ´ 1{n.
The masses of Sn and Tn are uniformly bounded because they depend only on an. By Corol-
lary 6.2, we can extract a subsequence such that Sn and Tn converge towards closed positive
currents S, T P Curpaq, and uSn and uTn converge towards their respective potentials uS and
uT in L1pX, volq. Then, distpS, T q “

ş

X |uS ´ uT |vol “ limn distpSn, Tnq, which shows that
Diampaq ě lim supn pDiampanqq. �

6.2. Action of AutpXq.



RANDOM DYNAMICS ON COMPLEX SURFACES 27

6.2.1. A volume estimate. Let X be a compact, complex manifold, and let vol be a C0-volume
form on X with volpXq “ 1. If f is an automorphism of X , let Jacpfq : X Ñ R denote its
Jacobian determinant with respect to the volume form vol: f˚vol “ Jacpfqvol. The following
lemma is a variation on well-known ideas in holomorphic dynamics (see for instance [55]).

Lemma 6.5. Let κ be a hermitian form on X . Let h be a κ-psh function on X such that
ş

X h vol “ 0, and let f be an automorphism of X . Then,
ż

X
|h ˝ f | vol ď C logpC

›

›Jacpf´1q
›

›

8
q

for some positive constant C that depends on pX,κq but neither on f nor on h.

Proof. We first observe that there is a constant c ą 0 such that volt|h| ě tu ď c expp´t{cq; this
follows from Lemma 8.10 and Theorem 8.11 in [56], together with Chebychev’s inequality (see
Remark 6.3 for the normalization). Then, we get

ż

X
|h ˝ f | vol “

ż 8

0
volt|h ˝ f | ě tudt(6.7)

“

ż 8

0
volpf´1t|h| ě tuqdt

ď

ż s

0
volpXqdt`

›

›Jacpf´1q
›

›

8

ż 8

s
c expp´t{cqdt

ď s volpXq `
›

›Jacpf´1q
›

›

8
c2 expp´s{cq(6.8)

where the inequality in the third line follows from the change of variable formula. Now, we
minimize (6.8) by choosing s “ c logpc

›

›Jacpf´1q
›

›

8
{volpXqq and we infer that

(6.9)
ż

X
|h ˝ f | vol ď c volpXq

˜

1` log

˜

c
›

›Jacpf´1q
›

›

8

volpXq

¸¸

.

Since the total volume is invariant, }Jacpfq}8 ě 1, and the asserted estimate follows. �

6.2.2. Equivariance. Let us come back to the study of pX, νq. If f is an automorphism of
X , then f˚Curpaq “ Curpf˚paqq for every class a P H1,1pX,Rq. If a P PsefpXq and
T P Curpaq, then T “ Θpaq ` ddcpuT q and

(6.10) f˚T “ f˚Θpaq ` ddcpuT ˝ fq “ Θpf˚aq ` ddcpuf˚Θpaq ` uT ˝ fq.

This shows that the normalized potential of f˚T is given by

(6.11) uf˚T “ uf˚Θpaq ` uT ˝ f ` Epf, T q

where Epf, T q P R is the constant for which the integral of uf˚T vanishes; since uf˚Θpaq has
mean 0, we get

(6.12) Epf, T q “ ´

ż

X

`

uf˚Θpaq ` uT ˝ f
˘

vol “ ´

ż

X
uT ˝ f vol.

Remark 6.6. If vol is f -invariant, for instance if it is the canonical volume on a K3 or Enriques
surface, then Epf, T q “ 0, which simplifies a little bit the analysis of the potentials below.
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Lemma 6.7. On the set of closed positive currents of mass 1, the function pf, T q ÞÑ Epf, T q
satisfies

|Epf, T q| ď C log
`

C
›

›Jacpf´1q
›

›

8

˘

where the implied positive constant C depends neither on f nor on T .

Proof. From Lemma 6.1, the potentials uT are uniformly pAκ0q-psh, so the conclusion follows
from Equation (6.12) and Lemma 6.5. �

Lemma 6.8. There exists a constant C such that if a is any pseudo-effective class of mass 1,
and f is any automorphism of X , then

Diampf˚aq ď C log
`

C
›

›Jacpf´1q
›

›

8

˘

.

Proof. Indeed, if S and T belong to Curpaq, by Equation (6.11) we have uf˚T ´ uf˚S “
puT ´ uSq ˝ f ` Epf, T q ´ Epf, Sq, so

(6.13) distpf˚T, f˚Sq ď

ż

|uT ˝ f | vol`

ż

|uS ˝ f | vol` |Epf, T q| ` |Epf, Sq| ;

and the result follows from Lemmas 6.5 and 6.7, since uS and uT are uniformly pAκ0q-psh. �

6.2.3. An estimate for canonical potentials.

Lemma 6.9. For any Kähler form κ on X there exists a positive constant Cpκq such that for
every f P AutpXq,

›

›uf˚κ
›

›

C1 ď Cpκq}f}2C1 .

In addition Cpκq ď C 1}κ}8, where }κ}8 is the sup norm of the coefficients of κ in a system of
coordinate charts, and C 1 depends only on X (and the choice of these coordinate charts).

Recall the choice of Kähler forms pκiq from § 6.1 and the definition of Θp¨q from § 6.1.1.

Corollary 6.10. If κ “
ř

i ciκi in Lemma 6.9, then the constant Cpκq satisfies Cpκq ď
C2Mpκq. Likewise,

›

›uf˚Θpaq

›

›

C1 ď C3Mpaq}f}2C1 for all a P PsefpXq.

Indeed Cpκq ď C 1}κ}8 ď C2
ř

i |ci| and uf˚Θpaq “
ř

cipaquf˚κi .

Proof of Lemma 6.9. By definition f˚κ ´ Θpf˚κq “ ddc
`

uf˚κ
˘

. The desired estimate will be
obtained by constructing a solution φ to the equation

(6.14) ddcφ “ f˚κ´Θpf˚κq

which satisfies }φ}C1 ď C}f}2C1 . Then, since uf˚κ and φ differ by a constant and uf˚κ is
known to vanish at some point, it follows that uf˚κ satisfies the same estimate. To construct
the potential φ, we follow the method of Dinh and Sibony [39, Prop. 2.1] which is itself based
on [11] (we keep the notation from [39]). Let α be a closed p2, 2q-form on X ˆ X which is
cohomologous to the diagonal ∆. In [11], Bost, Gillet and Soulé construct an explicit p1, 1q-
form K on X ˆX such that ddcK “ r∆s ´ α; they refer to it as the “Green current”. It is C8

outside the diagonal, and along ∆, it satisfies the estimates

(6.15) Kpx, yq “ O

ˆ

log |x´ y|

|x´ y|2

˙

and ∇Kpx, yq “ O

ˆ

log |x´ y|

|x´ y|3

˙

(here we mean that these estimates hold for the coefficients of K and ∇K in local coordinates).
These estimates are easily deduced from the explicit expression ofK as π˚ppϕη´βq given in the
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proof of Proposition 2.1 of [39], where π : {X ˆX Ñ X ˆ X is the blow-up of the diagonal,
η and β are smooth (1,1) forms on {X ˆX and pϕ is a function with logarithmic singularities
along the proper transform of ∆ in X ˆ X . It is shown in [39, Prop. 2.1] that a solution to
Equation (6.14) is given by

(6.16) φpxq “

ż

yPX
Kpx, yq ^ pf˚κpyq ´Θpf˚κqpyqq

(in the notation of [39], f˚κ and Θpf˚κq correspond to Ω` and Ω´ respectively). The co-
efficients of the smooth p1, 1q-forms f˚κ and Θpf˚κq have their uniform norms bounded by
C}f}2C1 , whereC “ Cpκq ď C 1}κ}8. The first estimate in (6.15) implies that the coefficients of
K belong toLploc for p ă 2, so it follows from the Hölder inequality that }φ}C0 ď C2}κ}8}f}

2
C1

(for some constant C2 depending only on X). A similar estimate for ∇φ is obtained from
derivation under the integral sign and the fact that ∇K P Lploc for p ă 4{3. This concludes the
proof. �

6.3. Convergence and extremality.

Theorem 6.11. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface X , satisfying the moment condition (4.1). Then for µB-almost every
point a P LimpΓq, the following properties hold:

(1) there is a unique nef and isotropic class a P H1,1pX;Rq of mass 1 with Ppaq “ a;
(2) the convex set Curpaq is a singleton tTau;
(3) the class a is an extremal point of PpKahpXqq and of PpPsefpXqq;
(4) the current Ta is extremal in the convex set of closed positive currents of mass 1.

With Lemma 5.5 and Equation (5.9), this theorem gives the first and second assertions of the
following corollary; the third one follows from the first and the equivariance relation (5.16).

Corollary 6.12. The following properties are satisfied for νN-almost every ω:

(1) there exists a unique closed positive current T sω in the cohomology class epωq;
(2) for every Kähler form κ,

1

M ppfnω q
˚κq

pfnω q
˚κ ÝÑ

nÑ8
T sω.

(3) the currents T sω satisfy the equivariance property

pfωq
˚T sσpωq “

Mppfωq
˚T sσpωqq

MpT sωq
T sω “Mppfωq

˚T sσpωqqT
s
ω.

Proof of Theorem 6.11. The first and third properties were already established, respectively in
Lemma 2.13 and 2.14 and Proposition 5.9. Property (4) follows from (2) and (3). It remains
to prove (2). For this, we denote by f˚ the projective action of f˚ on PH1,1pX;Rq. For
a P LimpΓq, let us set diam paq “ Diampaq, where a is the unique pseudo-effective class of
mass 1 such that Ppaq “ a; this defines a measurable function on LimpΓq, by Lemma 6.4. Our
purpose is to show that diam paq “ 0 for µB-almost every a. The stationarity of µB reads

(6.17)
ż

diam paq dµB paq “

żż

diam
`

f˚ paq
˘

dνpfqdµB paq
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and iterating this relation gives

(6.18)
ż

diam paq dµB paq “

ż

diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

dνpf1q ¨ ¨ ¨ dνpfnqdµB paq

(notice the order of compositions chosen here). Since the diameter is upper-semicontinuous it is
uniformly bounded on LimpΓq. So, if we prove that

(6.19) lim
nÑ`8

diam
`

f˚
n
¨ ¨ ¨ f˚

1
paq

˘

“ 0

for νN-almost every pfnq and every a, then we can apply the dominated convergence theorem
to infer that diam paq “ 0 µB-almost surely. To derive the convergence (6.19), note that

(6.20) diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

“
Diam pf˚n ¨ ¨ ¨ f

˚
1 aq

M pf˚n ¨ ¨ ¨ f
˚
1 aq

because Diam is homogeneous. Applying Lemma 6.8 and the multiplicativity of the Jacobian
we get that

(6.21) diam
´

f˚
n
¨ ¨ ¨ f˚

1
paq

¯

ď
C log

`

C
›

›Jacpf1 ˝ ¨ ¨ ¨ ˝ fnq
´1
›

›

8

˘

M pf˚n ¨ ¨ ¨ f
˚
1 aq

ď C

řn´1
i“0 log

›

›f´1
i

›

›

C1

Mpf˚n ¨ ¨ ¨ f
˚
1 aq

.

We conclude with two remarks. Firstly, the moment condition (4.1) implies that the sequence
1
n

řn´1
i“0 log

›

›f´1
i

›

›

C1 is almost surely bounded. Secondly, Lemma 5.4 shows that Mpf˚n ¨ ¨ ¨ f
˚
1 aq

goes exponentially fast to infinity for νN-almost every ω “ pfnq (this is where the order of
compositions matters). Thus diam

`

f˚
n
¨ ¨ ¨ f˚

1
paq

˘

Ñ 0 almost surely, and we are done. �

Remark 6.13. The uniqueness of Ta in its cohomology class implies that Ta depends measur-
ably on a. Indeed there is a set E Ă LimpΓq of full measure along which the map a ÞÑ Ta is
continuous (recall that the space Cur1pXq of positive closed currents of mass 1 on X is a com-
pact metrizable space). This implies that a ÞÑ Ta is a measurable map from LimpΓq, endowed
with the µB-completion of the Borel σ-algebra, to Cur1pXq, endowed with its Borel σ-algebra.

6.4. Continuous potentials. We now study the limit currents T sω introduced in Corollary 6.12.

Theorem 6.14. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface X , satisfying the moment condition (4.1). Then for νN-almost every ω
the current T sω has continuous potentials.

Lemma 6.15. Let κ be any Kähler form on X . For νN-almost every ω, there exists an increas-
ing sequence of integers pniqiě0 “ pnipωqq such that the potentials of the pull-back currents
Mppfniω q

˚κq´1u
pf
ni
ω q

˚
κ

are uniformly bounded.

If furthermore the exponential moment condition (5.23) holds, this assertion holds for all n
(i.e. extracting a subsequence pniq is not necessary), and the function ω ÞÑ log`

›

›uT sω
›

›

8
is

νN-integrable.

Proof of the Lemma. Recall the notation ω “ pfnqně0. First,

f˚n´1κ “ f˚n´1Θpκq ` ddc puκ˝fn´1q(6.22)

“ Θpf˚n´1κq ` dd
c
´

uf˚n´1Θpκq ` uκ˝fn´1

¯
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(For the moment, we do not introduce the constants Epfn;κq in the computation). We obtain

f˚n´2f
˚
n´1κ “ f˚n´2Θpf˚n´1κq ` dd

c
´

uf˚n´1Θpκq˝fn´2 ` uκ˝pfn´1˝fn´2q

¯

“ Θpf˚n´2f
˚
n´1κq ` dd

c
´

uf˚n´2Θpf˚n´1κq
` uf˚n´1Θpκq˝fn´2 ` uκ˝pfn´1˝fn´2q

¯

.

Setting Gj,k “ fk´1˝ ¨ ¨ ¨ ˝fj , for j ď k ´ 1, (so in particular G0,j “ f jω for all j ě 1) and
Gj,j “ idX , we get

pfnω q
˚κ “ Θppfnω q

˚κq ` ddc

˜

uκ˝f
n
ω `

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nκq
˝G0,j

¸

.(6.23)

Let un denote the function in the parenthesis. We want to estimate the sup-norm }un}8. Lemma
6.9 and Corollary 6.10 provide successively the following upper bounds

›

›

›
uf˚j ΘpG˚j`1,nκq

›

›

›

8
ď C}fj}

2
C1MpG

˚
j`1,nκq ď CMpκq}fj}

2
C1

›

›G˚j`1,n

›

›,(6.24)

(6.25)
›

›

›

›

1

Mppfnω q
˚κq

un

›

›

›

›

8

ď
}uκ}8

Mppfnω q
˚κq

` CMpκq
n´1
ÿ

j“0

}fj}
2
C1

›

›

›
G˚j`1,n

›

›

›

Mppfnω q
˚κq

.

To estimate this sum we apply Theorem 5.10 to the subadditive cocycle Npn, ωq “ log }pfnω q
˚},

as we did for Corollary 5.11: there exists a sequence pδjq of positive numbers converging to 0,
an increasing sequence ni “ nipωq of integers, and a constant C 1pωq such that

(6.26)

›

›G˚j`1,ni

›

›

Mppfniω q˚κq
—

›

›f˚j`1 ¨ ¨ ¨ f
˚
ni´1

›

›

›

›f˚0 ¨ ¨ ¨ f
˚
ni´1

›

›

ď C 1 expp´pλ1 ´ δjqjq

for all i ě 1 and all 0 ď j ď ni. Fix any real number εwith 0 ă ε ă λ1. Then from Lemma 4.3,
we know that, for almost every ω, there is a constant C2pωq such that }fj}

2
C1 ď C2 exppεjq. So

from (6.25) we get

(6.27)
›

›

›

›

1

Mppfniω q˚κq
uni

›

›

›

›

8

ď
}uκ}8

Mppfniω q˚κq
` C3pωqMpκq

ni´1
ÿ

j“0

expp´pλ1 ´ ε´ δpjqqjq

This inequality shows that
›

›Mppfniω q
˚κq´1uni

›

›

8
is uniformly bounded.

Now, note that upfnω q˚κ “ un ` En with En “ ´
ş

unvol. Since
›

›Mppfniω q
˚κq´1uni

›

›

8
is

uniformly bounded, so is Mppfniω q
˚κq´1Eni , and the first assertion of the lemma is established.

Now if the exponential moment condition (5.23) holds, we follow the same argument and
apply Proposition 5.13 – instead of Theorem 5.10 – to (6.25), with Dpfq “ }f}2C1 . �

Proof of Theorem 6.14. First, we prove that the normalized potential uT sω is bounded, for νN-
almost every ω. To see this, recall that Mppfnω q

˚κq´1pfnω q
˚κ converges to T sω as n Ñ 8.

From Lemma 6.15, we know that the normalized potentials Mppfnω q
˚κq´1upfnω q

˚κ of the cur-
rents Mppfnω q

˚κq´1 pfnω q
˚ κ are uniformly bounded along some subsequence ni “ nipωq. These

potentials are Aκ0-psh functions on X so, by compactness, they converge to uT sω in L1pX; volq.
Thus, uT sω is essentially bounded. We conclude that uT sω is bounded because quasi-plurisubhar-
monic functions are upper semi-continuous and have a value (in RY t´8u) at every point.
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Now, we show that uT sω is continuous. Here, the argument is similar to the one used to prove
Theorem 6.11. If T is a positive closed current with bounded potential on X , we define

(6.28) JumppT q “ max
xPX

ˆ

lim sup
yÑx

uT pyq ´ lim inf
yÑx

uT pyq

˙

.

Then 0 ď JumppT q ď 2}uT }8, and JumppT q “ 0 if and only if uT is continuous. In addition
Jumppf˚T q “ JumppT q for every f P AutpXq because f˚T “ Θpf˚aq`ddcpuf˚Θpaq`uT ˝
fq and uf˚ΘprT sq is continuous (see Equation (6.10)). From the equivariance relation

(6.29) T sω “
1

M
`

pfnω q
˚ T sσnω

˘T sσnω,

which follows from the third assertion of Corollary 6.12, we get

(6.30) Jump pT sωq “
1

M
`

pfnω q
˚ T sσnω

˘Jump pT sσnωq .

Remark 6.13 says that ω ÞÑ T sω is measurable; hence, ω ÞÑ uT sω is measurable. If C is large
enough, the first step of the proof gives a subset ΩC Ă Ω such that νpΩCq ą 0 and

›

›uT sω
›

›

8
ď C

for all ω P ΩC . By ergodicity of the shift, σnω P ΩC for almost every ω and infinitely many n;
for such an n,

›

›uT sσnω

›

›

8
ď C and Jump pT sσnωq ď 2C. By Lemma 5.12, M

`

pfnω q
˚ T sσnω

˘

goes
to infinity almost surely. So, Jump pT sωq “ 0, and the proof is complete. �

Theorem 6.16. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surfaceX , satisfying the exponential moment condition (5.23). Then there exists
θ ą 0 such that for νN-almost every ω the potential uT sω is Hölder continuous of exponent θ.

Proof. The initial computations are similar (but not identical) to those used to reach Lemma 6.15.
Keeping the notation Gj,n “ fn´1 ˝ ¨ ¨ ¨ ˝ fj , a descending induction starting from

(6.31) f˚n´1T
s
σnω “ Θpf˚n´1T

s
σnωq ` dd

c
´

uf˚n´1ΘpT sσωq
` uT sσnω ˝ fn´1

¯

yields

pfnω q
˚T sσnω “ Θ ppfnω q

˚T sσnωq ` dd
c

˜

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω ` uT sσnω ˝ f
n
ω

¸

.(6.32)

Thus, there is a constant of normalization E “ Epω;nq such that

(6.33) uT sω “
1

Mppfnω q
˚pT sσnωqq

˜

n´1
ÿ

j“0

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω ` uT sσnω ˝ f
n
ω

¸

` E.

Note that the additional termE does not affect the modulus of continuity of uT sω . Since Lippfjq ď

}fj}C1 for all j, Lemma 6.9 and Corollary 6.10 imply Lippuf˚j Θpaqq ď C}fj}
2
C1Mpaq for every

class a P PsefpXq; hence

Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

¯

ď C}fj}
2
C1MpG

˚
j`1,nT

s
σnωq ď C}fj}

2
C1

›

›G˚j`1,n

›

›(6.34)

ď C}fj}
2
C1

n´1
ź

`“j`1

}f˚` }H1,1 ď C
n´1
ź

`“j

}f`}
2
C1 .(6.35)
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Finally, since 1 ď Lippfjq for every 0 ď j ď n´ 1, we obtain

Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

˝ f jω

¯

ď Lip
´

uf˚j ΘpG˚j`1,nT
s
σnωq

¯

j´1
ź

`“0

Lippf`q ď C
n´1
ź

`“0

}f`}
2
C1 .(6.36)

Denoting the modulus of continuity by modcpu, rq “ supdpx,x1qďr |upxq ´ upx
1q|, we infer from

Equation (6.33) that

(6.37) modcpuT sω , rq ď
1

M ppfnω q
˚pT sσnωqq

˜

Cn
n´1
ź

`“0

}f`}
2
C1 ¨ r `

›

›uT sσnω

›

›

8

¸

.

To ease notation set λ “ λH1,1 . Fix a small ε ą 0. By Lemma 5.12, for almost every ω there
exists C “ Cεpωq such that M ppfnω q

˚pT sσnωqq
´1
ď Ce´npλ´εq for every n. Fix M larger than

but close to exp pE plog }f}C1qq. Applied to the νN-integrable function ω “ pfnq ÞÑ log }f0}C1 ,
the Birkhoff ergodic theorem gives

(6.38)
n´1
ź

`“0

}f`}
2
C1 ď CMn as well as n

n´1
ź

`“0

}f`}
2
C1 ď CMn

for some C “ CM pωq (increase M to deduce the second inequality from the first). Thus,

(6.39) modcpuT sω , rq ď C1e
´npλ´εq

´

Mnr `
›

›uT sσnω

›

›

8

¯

for some C1 ą 0. By the last assertion of Lemma 6.15, ω ÞÑ log`
›

›uT sω
›

›

8
is integrable, so for

almost every ω there exists C2 “ Cεpωq such that
›

›uT sσnω

›

›

8
ď C2e

εn holds for all n, and we
infer that

(6.40) modcpuT sω , rq ď C3e
´npλ´εqpMnr ` eεnq “ C3e

´npλ´2εq
`

pMe´εqnr ` 1
˘

.

Choosing n so that r — pMe´εq´n we get modcpuT sω , rq ď C4r
θ with θ “ λ´2ε

logM`ε and the
proof of the theorem is complete. �

7. GLOSSARY OF RANDOM DYNAMICS, II

In this section we consider a random holomorphic dynamical system pX, νq on a compact
Kähler surface, satisfying the moment condition (4.1). We collect a number of facts from the
ergodic theory of random dynamical systems, including the associated skew products, fibered
entropy and Lyapunov exponents of stationary measures, stable and unstable manifolds, and
various measurable partitions. Here the group Γν may a priori be elementary; also, the com-
pactness assumption on X can be dropped in most of these results if (4.1) is strengthened to a
C2-moment condition. Since some subsequent arguments rely on the work [16] of Brown and
Rodriguez-Hertz, we have tried to make notation consistent with that paper as much as possible.

7.1. Skew products and stationary measures associated to pX, νq. Define:

– Ω “ AutpXqN, whose elements are denoted by ω “ pfnqně0. On Ω, the one-sided shift
is denoted by σ : Ω Ñ Ω.

– Σ “ AutpXqZ, whose elements are denoted by ξ “ pfnqnPZ. On Σ, the two-sided shift
is denoted by ϑ : Σ Ñ Σ.
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– X “ Σ ˆ X and X` “ Ω ˆ X , whose elements are denoted by x “ pξ, xq and
x “ pω, xq respectively. The natural projections are denoted by πΣ : X Ñ Σ (resp.
πΩ : X` Ñ Ω) and πX : X Ñ X (resp. πX : X` Ñ X , using the same notation).

Recall that the product σ-algebra on Ω (resp. Σ) is generated by cylinders (1), and that it
coincides with the Borel σ-algebra BpΩq (resp. BpΣq) (see [9, Lem. 6.4.2]).

7.1.1. Skew products. For ω P Ω and n ě 1, fnω is the left composition fnω “ fn´1 ˝ ¨ ¨ ¨ ˝ f0; in
particular, f1

ω “ f0 (see § 4.3). For n “ 0, we set f0
ω “ id. This is consistent with the notation

used in the previous sections. The same notation fnξ is used for ξ P Σ and n ě 0. When n ă 0,
we set fnξ “ pfnq

´1˝¨ ¨ ¨˝pf´1q
´1. With this definition the cocycle formula fn`mξ “ fnϑmξ ˝f

m
ξ

holds for all pm,nq P Z2 and ξ P Σ. By definition, the skew products induced by the random
dynamical system pX, νq are the transformations F` : X` Ñ X` and F : X Ñ X defined by

(7.1) F` : pω, xq ÞÝÑ pσω, f1
ωpxqq and F : pξ, xq ÞÝÑ pϑξ, f1

ξ pxqq.

If $ : X Ñ X` denotes the natural projection, then $ ˝ F “ F` ˝$. Note that F is invertible,
with F´1px q “ pϑ´1ξ, f´1

ϑ´1ξ
pxqq, but F` is not; indeed pX , F q is the natural extension of

pX`, F`q.

Lemma 7.1. The measure µ on X is stationary if and only if the product measure

m` :“ νN ˆ µ

on X` is invariant under F`.

A stationary measure is said to be ergodic if it is an extremal point in the convex set of
stationary measures; hence, µ is ergodic if and only if m` is F`-ergodic. Actually µ is ergodic
if and only if every ν-almost surely invariant measurable subset A Ă X (that is a measurable
subset such that µpA∆f´1pAqq “ 0 for ν-almost every f ) has measure µpAq “ 0 or 1. This
statement is part of the so-called random ergodic theorem (see [8, Propositions 1.8 and 1.9]).

Proposition 7.2. There exists a unique F -invariant probability measure m on X projecting on
m` under the natural projection X Ñ X`. Moreover,

(1) the measure m is equal to the weak-‹ limit

m “ lim
nÑ8

pFnq›
`

νZ ˆ µ
˘

.

(2) the projections pπΣq˚m and pπXq˚m are respectively equal to νZ and µ;
(3) the equality m “ νZ ˆ µ holds if and only if µ is f -invariant for ν-almost every f ;
(4) pX , F,mq is ergodic if and only if pX`, F`,m`q is.

The existence and uniqueness of m, as well as the characterization of its ergodicity, follow
from the fact that pX , F q is the natural extension of pX`, F`q (see [61, §1.2] for a detailed
explanation). See [69, §I.1] for the proof of Assertions (1), (2) and (3).

1Cylinders are products C “
ś

Cj of Borel sets, all of which are equal to AutpXq except finitely many of them.
For simplicity, we denote a cylinder by C “

śN
j“0 Cj if Ck “ AutpXq for |k| ą N .



RANDOM DYNAMICS ON COMPLEX SURFACES 35

7.1.2. Past, future, and partitions. Let F denote the σ-algebra on X obtained by taking the m-
completion of BpΣq b BpXq. It will often be important to detect objects depending only on the
“future” or on the “past”. To formalize this, we define two σ-algebras on Σ:

– F̂` is the νZ-completion of the σ-algebra generated by the cylinders C “
śN
j“0Cj .

– F̂´ is the νZ-completion of the σ-algebra generated by the cylinders C “
ś´1
j“´N Cj .

To formulate it differently, we define local stable and unstable sets for the shift ϑ:

(7.2) Σs
locpξq “ tη P Σ ; @i ě 0, ηi “ ξiu and Σu

locpξq “ tη P Σ ; @i ă 0, ηi “ ξiu .

Then a subset of Σ is F̂`-measurable (resp. F̂´ measurable) if, up to a set of zero νZ-measure,
it is Borel and saturated by local stable sets Σs

locpξq (resp. unstable sets Σu
locpξq). The σ-algebra

F` on X will be the m-completion of F̂` b BpXq. An F`-measurable object should be
understood as “depending only on the future”, thus it makes sense on X and on X`. Actually F`
coincides with the completion of the pull-back of BpX`q under $ : X Ñ X`. The σ-algebra
F´ of “objects depending only on the past” is defined analogously. Consider the partition into
the subsets F´px q :“ Σu

locpξq ˆ txu (each of them can be naturally identified to Ω). Then,
modulo m-negligible sets, the elements of F´ are saturated by this partition.

For ξ P Σ we set Xξ “ tξu ˆ X “ π´1
Σ pξq, which can be naturally identified with X via

πX . The disintegration of the probability measure m with respect to the partition into fibers of
πΣ gives rise to a family of conditional probabilities mξ such that m “

ş

mξ dν
Zpξq, because

pπΣq˚m “ νZ.

Lemma 7.3. The conditional measure mξ on Xξ satisfies νZ-almost surely

mξ “ lim
nÑ`8

pf´1 ˝ ¨ ¨ ¨ ˝ f´nq›µ “ lim
nÑ`8

pfnϑ´nξq›µ.

In particular, the family of measures ξ ÞÑ mξ is F´-measurable.

Indeed, the convergence is a consequence of the martingale convergence theorem (see [8,
§2.5] for details) and the second assertion easily follows.

Since ξ ÞÑ mξ is F´-measurable, the conditional measures of m on the atoms F´px q “
Σu

locpξq ˆ txu of the partition generating F´ are induced by the lifts of the conditionals of νZ

on the Σu
locpξq, via the natural projection πΣ : X Ñ Σ. In addition we can simultaneously

identify Σu
locpξq to Ω and νZp ¨ | Σu

locq to νN. In this way we get

(7.3) mp ¨ | F´px qq “ νZp ¨ | Σu
locpξqq ˆ δx » νN

for m-almost every x “ pξ, xq P X . This corresponds to Equation (9) in [16]. By [16, Prop.
4.6], this implies that F` X F´ is equivalent, modulo m-negligible sets, to tH,Σu b BpXq.

7.2. Lyapunov exponents. Let µ be a stationary measure for pX, νq; assume that µ (or equiva-
lently m or m`) is ergodic. The upper and lower Lyapunov exponents λ` ě λ´ are respectively
defined by the almost sure limits

(7.4) λ` “ lim
nÑ8

1

n
log }Dxf

n
ω } and λ´ “ lim

nÑ8

1

n
log

›

›

›
pDxf

n
ω q
´1
›

›

›

´1
;

the existence of these limits is guaranteed by Kingman’s subadditive ergodic theorem, thanks
to the moment condition (4.1), and the convergence also holds on average. Let us now ap-
ply the Oseledets theorem successively to the tangent cocycle defined by the fiber dynamics
pX`, F`,m`q, and then to the cocycle associated to pX , F,mq.
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7.2.1. The non-invertible setting. Define the tangent bundles TX` :“ Ω ˆ TX and TX :“
ΣˆTX , and denote by DF and DF` the natural tangent maps, that is Dpξ,xqF : tξuˆTxX Ñ

tϑξu ˆ TfξpxqX is induced by Dxf
1
ξ :

(7.5) Dpξ,xqF pvq “ Dxf
1
ξ pvq p@v P TxXξ “ TxXq

For the non-invertible dynamics on X`, the Oseledets theorem gives: for m`-almost every
pω, xq, there exists a non-trivial complex subspace V ´pω, xq of tωu ˆ TxX such that

@v P V ´pω, xqzt0u, lim
nÑ`8

1

n
log }Dxf

n
ω pvq} “ λ´(7.6)

@v R V ´pω, xq, lim
nÑ`8

1

n
log }Dxf

n
ω pvq} “ λ`.(7.7)

The field of subspaces V ´ is measurable and almost surely invariant. Two cases can occur:
either λ´ ă λ` and V ´pω, xq is almost surely a complex line, or λ´ “ λ` and V ´pω, xq “
tωu ˆ TxX .

7.2.2. The invertible setting. For the dynamical system F : X Ñ X , the statement is:

– if λ´ “ λ` then for m-almost every x “ pξ, xq, for every non-zero v P TxXξ » TxX ,

(7.8) lim
nÑ˘8

1

n
log

›

›Dxf
n
ξ pvq

›

› “ λ´;

– if λ´ ă λ` then for m-almost every x there exists a decomposition TxXξ “ E´pξ, xq‘
E`pξ, xq such that for ‹ P t´,`u and every v P E‹pξ, xqz t0u,

(7.9) lim
nÑ˘8

1

n
log

›

›Dxf
n
ξ pvq

›

› “ λ‹.

Furthermore the line fields E˘ are measurable and invariant, and log |=pE´, E`q| is
integrable (here, the “angle” =pE´px q, E`px qq is the distance between the two lines
E´px q and E`px q in PpTx X q).

7.2.3. Invariant volume forms. When there is an invariant volume form, it is well-known that
the sum of Lyapunov exponents vanishes. So from Remark 3.2 we obtain:

Corollary 7.4. Assume that X is an Abelian, or K3, or Enriques surface. Let ν be a probability
measure on AutpXq satisfying the integrability condition (4.1), and µ be an ergodic ν-stationary
measure. Then λ´ ` λ` “ 0.

7.2.4. Hyperbolicity. It can happen that λ´ and λ` have the same sign. If λ´ and λ` are both
negative, the conditional measures mξ are atomic: this can be shown by adapting a classical
Pesin-theoretic argument (see e.g. [59, Cor. S.5.2]) to the fibered dynamics of F on X (see [63,
Prop. 2] for a direct proof and an example where the mξ have several atoms). Such random dy-
namical systems are called proximal. For instance, generic random products of automorphisms
of P2pCq, that is of matrices in PGLp3,Cq, are proximal; in such examples the stationary mea-
sure is not invariant. Other examples are given by contracting iterated function systems.

When λ` and λ´ are both non-negative, we have the so-called invariance principle:

Theorem 7.5. Let pX, νq be a random holomorphic dynamical system satisfying the integrability
condition (4.1), and let µ be an ergodic stationary measure. If λ`pµq ě λ´pµq ě 0 then µ is
almost surely invariant.
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This result was proven by Crauel, building on ideas of Ledrappier (see Theorem 5.1, Corollary
5.3 and Remark 5.6 in [37], and also Avila-Viana [1, Thm B]).

Remark 7.6. If λ´ and λ` are both positive then µ is atomic. Indeed, since µ is almost surely
invariant we get m “ νZ ˆ µ. Reversing time, the Lyapunov exponents of m become negative,
so as explained above the measures mξ are atomic. By invariance mξ “ µ, so µ is atomic too.

By definition, µ is hyperbolic if λ´ ă 0 ă λ`. In this case we rather use the conventional
superscripts s{u instead of ´{` for stable and unstable objects. We also have Es “ V s in this
case (and more generally when λ´ ă λ`); so, it follows that the complex line field Es on TX
is F`-measurable. Conversely the unstable line field Eu is F´-measurable.

7.3. Intermezzo: local complex geometry. Recall thatX is endowed with a Riemannian struc-
ture, hence a distance, induced by the Kähler metric κ0. For x P X , we denote by eucx the
translation-invariant Hermitian metric on TxX (which is considered here as a manifold in its
own right) associated to the Riemannian structure induced by pκ0qx. Given any orthonormal
basis pe1, e2q of TxX for this metric, we obtain a linear isometric isomorphism from TxX to
C2, endowed respectively with eucx and the standard euclidean metric; we shall implicitly use
such identifications in what follows.

We denote by Dpz; rq the disk of radius r around z in C, and set Dprq “ Dp0; rq.

7.3.1. Hausdorff andC1-convergence. LetU Ă C be a domain. If γ : U Ñ X is a holomorphic
curve, we can lift it canonically to a curve γp1q : U Ñ TX by setting γp1qpzq “ pγpzq, γ1pzqq P
TγpzqX , where γ1pzq denotes the velocity of γ at z. The Kähler form κ0 induces a Riemannian
metric and therefore a distance distTX on TX . We say that two parametrized curves γ1 and γ2

are δ-close in the C1-topology if distTXpγ
p1q
1 pzq, γ

p1q
2 pzqq ď δ uniformly on U . This implies

that γ1pUq and γ2pUq are δ-close in the Hausdorff sense, but the converse does not hold (take
U “ Dp1q, γ1pzq “ pz, 0q, and γ2pzq “ pz

k, εz`q with k and ` large while ε is small).

7.3.2. Good charts. Let R0 be the injectivity radius of κ0. We fix once and for all a family of
maps Φx : Ux Ă TxX Ñ X satisfying the following properties (for some uniform C0 ą 0):

(i) Ux is an open neighborhood of 0 in TxX and Φx is a holomorphic diffeomorphism from
Ux to an open subset Vx of X contained in the ball of radius R0 around x;

(ii) Φxp0q “ x and pDΦxq0 “ idTxX ;
(iii) on Ux, the Riemannian metrics eucx and Φ˚x κ0 satisfy C´1

0 ď eucx{Φ˚x κ0 ď C0;
(iv) the family of maps Φx depends continuously on x.

With r0 ď R0{p
?

2C0q, we can add:

(v) for every orthonormal basis pe1, e2q of TxX , the bidisk Dpr0qe1 `Dpr0qe2 is contained in
Ux; in particular, the ball of radius r0 centered at the origin for eucx is contained in Ux.

To make assertion (iv) more precise, fix a continuous family of orthonormal basis pe1pxq, e2pxqq
on some open set V of X: Assertion (iv) means that, if we compose Φx with the linear isomor-
phism pz1, z2q P C2 ÞÑ z1e1pxq ` z2e2pxq P TxX we obtain a continuous family of maps. If
needed, we can also add the following property (see [54, pp. 107-109]):

(iii’) eucx osculates Φ˚x κ0 up to order 2 at x.

The maps Φx have to be thought of as “holomorphic exponential maps”; they are used in the
next paragraph to get a definite notion of local orthogonal projection in X .
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7.3.3. Families of disks. A holomorphic disk ∆ Ă X containing x is said to be a disk of size
(at least) r at x (resp. of size exactly r at x), for some r ă r0, if there is an orthonormal basis
pe1, e2q of TxX such that Φ´1

x p∆q contains (resp. is) the graph tze1 ` ϕpzqe2 ; z P Dprqu
for some holomorphic map ϕ : Dprq Ñ Dprq. By the Koebe distortion theorem its geometric
characteristics around x at scale r are then comparable to that of a flat disk. An alternative
definition for the concept of disks of size ě r could be that ∆ contains the image of an injective
holomorphic map γ : Dprq Ñ X such that γpBDprqq Ă XzBXpx; rq and }γ1} ď D, for some
fixed constant D. Then, if ∆ contains a disk of size r for one of these definitions, it contains a
disk of size ε0r for the other one, for some uniform ε0 ą 0; in particular, there is a constant C
depending only on pX,κ0q such that a disk of size r at x contains an embedded submanifold of
BXpx;Crq.

Let pxnq be a sequence converging to x inX , and let r be smaller than the radius r0 introduced
in Assertion (v), § 7.3.2. Let ∆n be a family of disks of size at least r at xn and ∆ be a disk of
size at least r at x. We say that ∆n converges towards ∆ as a sequence of disks of size r, if
there is an orthonormal basis pe1, e2q of TxX for eucx such that

(i) Φ´1
x p∆q contains the graph tze1 ` ϕpzqe2; z P Dprqu for some holomorphic function

ϕ : Dprq Ñ Dprq;
(ii) for every s ă r, if n is large enough, the disk Φ´1

x p∆nq contains the graph tze1 `

ϕnpzqe2; z P Dpsqu of a holomorphic function ϕn : Dpsq Ñ Dprq;
(iii) for every ε ą 0, we have |ϕpzq ´ ϕnpzq| ă ε on Dpsq if n is large enough.

By the Cauchy estimates, the convergence then holds in theC1-topology (see § 7.3.1). It follows
from the usual compactness criteria for holomorphic functions that the space of disks of size r
on X is compact (for the topology induced by the Hausdorff topology in X). Likewise, if a
sequence of disks of size r converges in the Hausdorff sense, then it also converges in the C1

sense, at least as disks of size s ă r, because two holomorphic functions ϕ and ψ from Dprq to
Dprq whose graphs are ε-close are also εpr ´ sq´1-close in the C1-topology.

It may also be the case that the ∆n are contained in different fibers Xξn of X . By definition,
we say that the sequence ∆n converges to ∆ Ă Xξ if ξn converges to ξ and the projections of
∆n converge to ∆ in X .

7.3.4. Entire curves. An entire curve inX is a holomorphic map ψ : CÑ X . It is immersed if
its velocity ψ1 does not vanish. Our main examples of immersed curves will, in fact, be injective
and immersed entire curves. If ψ1 and ψ2 are two immersed entire curves with the same image,
there exists a holomorphic diffeomorphism of C, i.e. a non-constant affine map A : z ÞÑ az` b,
such that ψ2 “ ψ1 ˝ A. If ψ is an immersed entire curve and |ψ1| ě η on Dpz0, sq, its image
contains a disk of size Cs at ψpz0q, for some C ą 0 that depends only on η and κ0.

7.4. Stable and unstable manifolds. By Lemma 4.1, Condition (4.1) implies similar moment
conditions for higher derivatives, so Pesin’s theory applies. The following proposition summa-
rizes the main properties of Pesin local stable and unstable manifolds. Recall that a function h
is ε-slowly varying, relatively to some dynamical system g, if e´ε ď hpgpxqq{hpxq ď eε for
every x. We view the stable manifold of x “ pξ, xq as contained in Xξ; it can also be viewed
as a subset of X: whether we consider one or the other point of view should be clear from the
context. If x “ pξ, xq and y “ pξ, yq are points of the same fiber Xξ, we denote by distXpx , y q
the Riemannian distance between x and y computed in X .
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Proposition 7.7. Let pX, νq be a random holomorphic dynamical system, and µ be an er-
godic and hyperbolic stationary measure. Then, for every δ ą 0, there exists measurable
positive δ-slowly varying functions r and C on X (depending on δ) and, for m-almost every
x “ pξ, xq P X , local stable and unstable manifolds W s

rpx qpx q and W u
rpx qpx q in Xξ such that

m-almost surely:

(1) W s
rpx qpx q and W u

rpx qpx q are holomorphic disks of size at least 2rpx q at x respectively tan-
gent to Espx q and Eupx q;

(2) for every y PW s
rpx qpx q and every n ě 0,

distXpF
npx q, Fnpy qq ď Cpx q expppλ´ ` δqnq;

likewise for every y PW u
rpx qpx q and every n ě 0

distXpF
´npx q, F´npy qq ď Cpx q expp´pλ` ´ δqnq;

(3) F pW s
rpx qpx qq ĂW s

rpF px qqpF px qq and F´1pW u
rpF px qqpF px qqq ĂW u

rpx qpx q.

By Lusin’s theorem, for every ε ą 0 we can select a compact subset Rε Ă X with mpRεq ą

1 ´ ε, on which rpx q and Cpx q can be replaced by uniform constants (respectively denoted by
r and C) and the following additional property holds:

(4) on Rε the local stable and unstable manifolds W s{u
r px q vary continuously for the C1-

topology (in the sense of § 7.3.1 and 7.3.3).

The subsets Rε are usually called Pesin sets, or regular sets. We also denote the local stable or
unstable manifolds by W s{u

loc px q, or by W s{u
r px q when x is in a Pesin set on which rp¨q ě r. On

several occasions we will have to deal with measurability issues for W s{u
loc px q as a function of x :

this will be done by exhausting X by Pesin sets and using their continuity on Rε.
The global stable and unstable manifolds of x are respectively defined by the following in-

creasing unions:

(7.10) W spx q “
ď

ně0

F´n
´

W s
rpx qpF

npx qq
¯

and W upx q “
ď

ně0

Fn
´

W u
rpx qpF

´npx qq
¯

.

In particular, they are injectively immersed holomorphic curves in Xξ. Pesin theory shows that:

W spx q “
"

pξ, yq P Xξ ; lim sup
nÑ8

1

n
log distXpF

npξ, yq, Fnpξ, xqq ă 0

*

(7.11)

W upx q “
"

pξ, yq P Xξ ; lim sup
nÑ´8

1

|n|
log distXpF

npξ, yq, Fnpξ, xqq ă 0

*

.(7.12)

Proposition 7.8. Under the assumptions of Proposition 7.7, W spx q and W upx q are biholomor-
phic to C for m-almost every x .

More precisely, W spx q is parametrized by an injectively immersed entire curve ψsx : CÑ X
such that ψsx p0q “ x and this parametrization is unique, up to an homothety z ÞÑ az of C.
Likewise, W upx q is parametrized by such an entire curve ψux .

Proof. By (7.10) and Proposition 7.7.(3), W spx q is an increasing union of disks and is there-
fore a Riemann surface homeomorphic to R2; so, it is biholomorphic to C or D. Let A Ă X
be a set of positive measure on which r ě r0 and C ď C0. By Proposition 7.7.(2), there
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exists n0 P N and m0 ą 0 such that if n ě n0 and if x and Fnpx q belong to A, then
W s
r pF

npξ, xqqz pFnW s
r pξ, xqq is an annulus of modulusě m0. Now for m-almost every x P X

there is an infinite sequence pkjq such that F kj px q P A and kj`1 ´ kj ą n0. For such an x ,
W spx qzW s

r px q contains an infinite nested sequence of annuli of modulus at least m0, namely
the F´kj`1pW s

r pF
kj`1px qqzF kj`1´kj pW s

r pF
kj px qq. Thus, W spx q is biholomorphic to C. �

If we are only interested in stable manifolds, there is a simplified version of Proposition 7.7
which takes place on X:

Proposition 7.9. Let pX, νq be a random holomorphic dynamical system and µ an ergodic
stationary measure, whose Lyapunov exponents satisfy λ´ ă 0 ď λ`. Then for m`-almost
every pω, xq the stable set

W spω, xq “

"

y P X ; lim sup
nÑ8

1

n
log distXpf

n
ω pyq, f

n
ω pxqq ă 0

*

is an injectively immersed entire curve in X .

Indeed, stable manifolds can be obtained from a purely “one-sided” construction, that is,
by considering only positive iterates (see [69, Chap. III]). This also shows that local stable
manifolds in X are F`-measurable, and may be viewed as living in X`.

7.5. Fibered entropy. Here we recall the definition of the metric fibered entropy of a station-
ary measure µ (see [61, §2.1] or [69, Chap. 0 and I] for more details). If η is a finite measurable
partition of X , its entropy relative to µ is Hµpηq “ ´

ř

CPη µpCq logµpCq. Then, we set

hµpX, ν; ηq “ lim
nÑ8

1

n

ż

Hµ

˜

n´1
ł

k“0

´

fkξ

¯´1
pηq

¸

dνNpξq,(7.13)

hµpX, νq “ sup thµpX, ν; ηq ; η a finite measurable partition of Xu .(7.14)

Actually hµpX, ν; ηq can be interpreted as a conditional (or fibered) entropy for the skew-
products F` on X` and F on X . Indeed, the so-called Abramov-Rokhlin formula holds [10]:

hµpX, νq “ hνNˆµpF`|ηΩq “ hm`pF`q ´ hνNpσq(7.15)

“ hmpF |ηΣq “ hmpF q ´ hνZpϑq,(7.16)

where ηΩ (resp. ηΣ) denotes the partition into fibers of the first projection πΩ : X` Ñ Ω (resp.
πΣ : X Ñ Σ) and in the second and fourth equalities we assume hνNpσq “ hνZpϑq ă 8. The
next result is the fibered version of the Margulis-Ruelle inequality.

Proposition 7.10. Let pX, νq be a random holomorphic dynamical system satisfying the moment
condition (4.1) and µ be an ergodic stationary measure. If hµpX, νq ą 0 then µ is hyperbolic
and minpλ`,´λ´q ě 1

2hµpX, νq.

Proof. See [2] or [69, Chap. II] for the inequality λ` ě 1
2hµpX, νq. For´λ´ ě 1

2hµpX, νq, we
use the fact that hmpF |ηΣq “ hmpF

´1|ηΣq (see e.g. [69, I.4.2]) and apply the Margulis-Ruelle
inequality to F´1. Beware that there is a slightly delicate point here: pF´1,mq is not associated
to a random dynamical system in our sense; fortunately, the statement of the Margulis-Ruelle
inequality in [2] (see also [69, Appendix A]) covers this situation. �
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7.6. Unstable conditionals and entropy. Assume µ is ergodic and hyperbolic. By definition,
an unstable Pesin partition ηu on X is a measurable partition of pX ,F , µq with the following
properties:

– η is increasing: F´1ηu refines ηu;
– for m-almost every x , ηupx q is an open subset of W upx q and

(7.17)
ď

ně0

Fn
`

ηupF´npx qq
˘

“W upx q;

– ηu is a generator, i.e.
Ž8
n“0 F

´npηuq coincides m-almost surely with the partition into
points.

Here, as usual, ηupx q denotes the atom of ηu containing x , and F´1ηu is the partition defined
by pF´1ηuqpx q “ F´1pηupF px qqq. The definition of a stable Pesin partition ηs is similar. A
neat proof of the existence of such a partition is given by Ledrappier and Strelcyn in [66], which
easily adapts to the random setting (see [69, §IV.2], and [24]).

Lemma 7.11. There exists a stable (resp. unstable) Pesin partition whose atoms are F`-
measurable (resp. F´-measurable), that is, saturated by local stable (resp. unstable) sets
Σs

loc ˆ txu (resp. Σu
loc ˆ txu).

The existence of unstable partitions enables us to give a meaning to the unstable conditionals
of m. Indeed, first observe that if ηu and ζu are two unstable Pesin partitions, then m-almost
surely mp¨|ηuq and mp¨|ζuq coincide up to a multiplicative factor on ηupx q X ζupx q. Further-
more, there exists a sequence of unstable partitions ηun such that for almost every x , if K is a
compact subset ofW upx q for the intrinsic topology (i.e. the topology induced by the biholomor-
phism W upx q » C) then K Ă ηunpx q for sufficiently large n: indeed by (7.17), the sequence of
partitions Fnηu does the job. Hence almost surely the conditional measure of m on W upx q is
well-defined up to scale; we define mu

x by normalizing so that mu
x pη

upx qq “ 1.
The next proposition is known as the (relative) Rokhlin entropy formula, stated here in our

specific context.

Proposition 7.12. Let pX, νq be a random holomorphic dynamical system satisfying the moment
condition (4.1), and µ be an ergodic and hyperbolic stationary measure. Let ηu be an unstable
Pesin partition. Then

hµpX, νq “ HmpF
´1ηu| ηuq :“

ż

log Jηupx qdmpx q,

where Jηupx q is the “Jacobian” of F relative to ηu, that is

Jηupx q “ m
`

F´1 pηupF px qqq | ηupx q
˘´1

.

Sketch of proof. The argument is based on the following sequence of equalities, in which ηΣ is
the partition into fibers of πΣ, as before:

hµpX, νq “ hmpF |ηΣq “ hmpF
´1|ηΣq

“ hmpF
´1|ηu _ ηΣq(7.18)

:“ Hmpη
u|Fηu _ ηΣq “ Hmpη

u|Fηuq “ HmpF
´1ηu|ηuq

The equalities in the first and last line follow from general properties of conditional entropy
(see [69, Chap. 0], the conditional entropy is denoted by hηΣ

m there). The Equality (7.18) is
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non-trivial. If ηu were of the form
Ž`8
n“0 η, where η is a 2-sided generator with finite entropy, it

would follow from the general theory. For a Pesin unstable partition the result is established for
diffeomorphisms in [67, Cor 5.3] and for random dynamics in [69, Cor. VI.7.1]. �

Remark 7.13. A similar formula holds in the stable direction:

hµpX, νq “

ż

log Jηspx qdmpx q where Jηspx q “ m
`

F
`

ηspF´1px qq
˘

| ηspx q
˘´1

.

The proof is identical to that of Proposition 7.12, applied to F´1, with the same caveat as in
Proposition 7.10: pF´1,mq is not associated to a random dynamical system in our sense. The
non-trivial point is to check that Equality (7.18) holds. Fortunately, the main purpose of [3] is to
explain how to adapt [69, Chap. VI], hence Equality (7.18), to a more general notion of “random
dynamical system” which covers the case of pF´1,mq (see the last lines of [3, §5] for a short
discussion of the Rokhlin formula).

The following consequence of the Rokhlin formula will play an important role in Section 9.

Corollary 7.14. Under the assumptions of the previous proposition, the following assertions are
equivalent:

(a) hµpX, νq “ 0;
(b) mp¨|ηupx qq “ δx for m-almost every x ;
(c) mp¨|ηupx qq is atomic for m-almost every x .

The same result holds for the stable Pesin partition ηs.

Proof. In view of the definition of Jηu , the entropy vanishes if and only if for m-almost every x ,
mp¨|ηupx qq is carried by a single atom of the finer partitionF´1ηu. Now sinceHmpF

´1ηu| ηuq “
1
nHmpF

´nηu| ηuq, the same is true for F´nηu, and finally since pF´nηuq is generating, we
conclude that (a)ô(b). That (c) implies (a) follows from the same ideas but it is slightly more
delicate, see [78, §2.1-2.2] for a clear exposition in the case of the iteration a single diffeomor-
phism, which readily adapts to our setting.

The result for the stable partition ηs follows by changing F to F´1 (see Remark 7.13). �

8. STABLE MANIFOLDS AND LIMIT CURRENTS

Let pX, νq be a non-elementary random holomorphic dynamical system on a Kähler surface.
Assume that µ is an ergodic stationary measure admitting exactly one negative Lyapunov expo-
nent, as in Proposition 7.9. Our purpose in this section is to relate the stable manifoldsW spω, xq
to the stable currents T sω constructed in §6. According to Proposition 7.9, the stable manifolds
are parametrized by injective entire curves; the link between these curves and the stable currents
will be given by the well-known Ahlfors-Nevanlinna construction of positive closed currents
associated to entire curves.

8.1. Ahlfors-Nevanlinna currents. We denote by tV u the integration current on a (possibly
non-closed, or singular) curve V . Let φ : C Ñ X be an entire curve. By definition, if α is a
test 2-form, xφ˚ tDp0, tqu , αy “

ş

Dp0,tq φ
˚α, which accounts for possible multiplicities coming

from the lack of injectivity of φ; φ˚ tDp0, tqu “ tφpDp0, tqqu when φ is injective. Set

(8.1) ApRq “

ż

Dp0,Rq
φ˚κ0 and T pRq “

ż R

0
Aptq

dt

t
.
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for R ą 0. When φ is an immersion, ApRq is the area of φpDp0, Rqq; in all cases, ApRq is the
mass of φ˚tpDp0, Rqqu.

Proposition 8.1 (see Brunella [17, §1]). If φ : C Ñ X is a non-constant entire curve, there
exist sequences of radii pRnq increasing to infinity such that the sequence of currents

NpRnq “
1

T pRnq

ż Rn

0
φ˚ tDp0, tqu

dt

t

converges to a closed positive current T . If furthermore φpCq is Zariski dense, the class rT s P
H1,1pX,Rq is nef. In particular xrT s | rT sy ě 0 and xrT s | rCsy ě 0 for every algebraic curve
C Ă X .

Such limit currents T will be referred to as Ahlfors-Nevanlinna currents associated to the
entire curve φ : C Ñ X . If φpCq is not Zariski dense then the closure φpCq (for the euclidean
topology) is a (possibly singular) curve of genus 0 or 1; if φ is injective, then φpCq is rational.

8.2. Equidistribution of stable manifolds. If µ is hyperbolic, or more generally if it admits
exactly one negative Lyapunov exponent, then, for m`-almost every x “ pω, xq P X`, the stable
manifold W spx q, which is viewed here as a subset of X as in Proposition 7.9, is parametrized
by an injectively immersed entire curve. Then we can relate the Ahlfors-Nevanlinna currents to
the limit currents T sω; here are the three main results that will be proved in this section.

Theorem 8.2. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface, satisfying (4.1). Let µ be an ergodic stationary measure such that
λ´pµq ă 0 ď λ`pµq. Then exactly one of the following alternative holds.

(a) For m`-almost every x , the stable manifoldW spx q is not Zariski dense. Then µ is supported
on a Γν-invariant curve Y Ă X and for m`-almost every x , W spx q Ă Y . In addition every
component of Y is a rational curve, and the intersection form is negative definite on the
subspace of H1,1pX;Rq generated by the classes of components of Y .

(b) For m`-almost every x the stable manifoldW spx q is Zariski dense and the only normalized
Ahlfors-Nevanlinna current associated to W spx q is T sω.

Corollary 8.3. Under the assumptions of Theorem 8.2, if in addition µ is hyperbolic and non-
atomic, then the Alternative (b) is equivalent to

(b’) µ is not supported on a Γν-invariant curve.

The next corollary follows from Theorem 6.16 and an ergodicity argument (see [24]).

Corollary 8.4. Under the assumptions of Theorem 8.2, assume furthermore that ν satisfies the
exponential moment condition (5.23). Then in Alternative (b) there exists θ ą 0 such that for
m`-almost every x P X` the Hausdorff dimension of W spx q equals 2` θ.

8.3. Proof of Theorem 8.2 and its corollary. We work under the assumptions of Theorem 8.2.

Lemma 8.5. If there exists a proper Zariski closed subset of X with positive µ-measure, then:

– either µ is the uniform counting measure on a finite orbit of Γν;
– or µ has no atom and it is supported on a Γν-invariant algebraic curve, which is the

Γν-orbit of an irreducible algebraic curve.
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Proof. Consider the real number δ0
maxpµq “ maxxPX µ ptxuq. If δ0

maxpµq ą 0, there is a non-
empty finite set F Ă X for which µ ptxuq “ δ0

maxpµq. By stationarity, F is Γν-invariant, and by
ergodicity µ is the uniform measure on F . Now, assume that µ has no atom. Let δ1

maxpµq be the
maximum of µpDq among all irreducible curves D Ă X . If µpZq ą 0 for some proper Zariski
closed subset Z Ă X , then δ1

maxpµq ą 0. Since two distinct irreducible curves intersect in at
most finitely many points and µ has no atom, there are only finitely many irreducible curves E
such that µpEq “ δ1

maxpµq. To conclude, we argue as in the zero dimensional case. �

If V Ă X is a smooth curve, possibly with boundary, if T is a closed positive p1, 1q-current
on X with a continuous normalized potential uT (as in § 6.1.1), then, by definition of ΘpT q
(see (6.2)),

(8.2) xT ^ tV u , ϕy “

ż

V
ϕΘpT q `

ż

V
ϕddcpuT |V q,

for every test function ϕ. Here is the key relation between stable manifolds and limit currents:

Lemma 8.6. For m`-almost every x “ pω, xq, if ∆ is a disk contained in W spx q, then T sω ^
t∆u “ 0.

Proof. Without loss of generality we assume that the boundary of the disk ∆ in W spx q » C is
smooth. We consider points x “ pω, xq P X` which are generic in the following sense: they
are regular from the point of view of Pesin’s theory, and T sω satisfies the conclusions of §6. By
Pesin’s theory, for every ε ą 0, there is a set Aε Ă N of density larger than 1´ ε, such that for
n in Aε, the local stable manifold W s

r pF
n
`px qq is a disk of size r “ rpεq at fnω pxq and fnω p∆q is

a disk contained in an exponentially small neighborhood of fnω pxq. We have

(8.3) MpT sσnω ^ tf
n
ω p∆quq “

ż

W s
r pF

n
`px qq

1fnω p∆qΘpT sσnωq `

ż

W s
r pF

n
`px qq

1fnω p∆qdd
cuT sσnω .

Since MpT sσnωq “ 1, Lemma 6.1 shows that ΘpT sσnωq is bounded by Aκ0; so the first integral
on the right hand side of (8.3) is bounded by a constant times the area of fnω p∆q, which is
exponentially small. By ergodicity, there exists A1ε Ă Aε of density at least 1 ´ 2ε such that if
n P A1ε, }uT sσnω}8 is bounded by some contant Dε ą 0. For such an n, let χ be a test function
in W s

r pF
n
`px qq such that χ “ 1 in W s

r{2pF
n
`px qq, and vanishing near BW s

r pF
n
`px qq. Note that

since W s
r pF

n
`px qq is of size r, the C2-norm of χ depends only on r. We write

ż

W s
r pF

n
`px qq

1fnω p∆qdd
cuT sσnω ď

ż

W s
r pF

n
`px qq

χddcuT sσnω

“

ż

W s
r pF

n
`px qq

uT sσnωdd
cχ(8.4)

ď Cprq}χ}C2

›

›uT sσnω

›

›

8

whereCprq bounds the area ofW s
r pF

n
`px qq; this last term is uniformly bounded because n P A1ε.

Thus we conclude that MpT sσnω ^ tf
n
ω p∆quq is bounded along such a subsequence.

On the other hand, the relation pfnω q
˚T sσnω “Mppfnω q

˚T sσnωqT
s
ω gives

(8.5) T sσnpωq ^ tf
n
ω p∆qu “M

´

pfnω q
˚T sσnpωq

¯

pfnω q˚pT
s
ω ^ t∆uq.
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The mass Mppfnω q˚pT
s
ω ^ t∆uqq is constant, equal to the mass of the measure T sω ^ t∆u; so

(8.6) M
´

T sσnpωq ^ tf
n
ω p∆qu

¯

“Mppfnω q
˚T sσnpωqqMpT

s
ω ^ t∆uq.

By Lemma 5.12, Mppfnω q
˚T sσnpωqq goes exponentially fast to infinity. Since the left hand side is

bounded, this shows that MpT sω ^ t∆uq “ 0, as desired. �

With Lemma 2.12, the following statement takes care of the first alternative in Theorem 8.2.

Lemma 8.7. If there is a Borel subset A Ă X` of positive measure such that for every x P A,
the stable manifold W spx q is contained in an algebraic curve, then µ is supported on a Γν-
invariant algebraic curve. In addition, for m`-almost every x , W spx q is an irreducible rational
curve of negative self-intersection.

Proof. For x P A, let Dpx q be the Zariski closure of W spx q. Discarding a set of measure zero
if needed, W spx q is biholomorphic to C so Dpx q is a (possibly singular) irreducible rational
curve, and Dpx qzW spx q is reduced to a point. By Lemma 8.6, T sω ^ t∆u “ 0 for every
disk ∆ Ă W spx q. Since T sω has continuous potentials, T sω ^ tDpx qu gives no mass to points
(see e.g. [28, Lem. 10.13] for the singular case). Therefore T sω ^ tDpx qu carries no mass on
Dpx q “ W spx q Y pDpx qzW spx qq, hence T sω ^ tDpx qu “ 0, and taking cohomology classes
we infer that xepωq | rDpx qsy “ 0. Then, by the Hodge index theorem, either rDpx qs2 ă 0 or
rDpx qs is proportional to epωq, however this latter case would contradict the fact that epωq is
νN-almost surely irrational (see Theorem 5.6; one could also use that Curpepωqq is reduced to
T sω). Thus, rDpx qs2 ă 0, as asserted.

An irreducible curve with negative self-intersection is uniquely determined by its cohomology
class; since NSpX;Zq is countable, there are only countably many irreducible curves pDkqkPN
with negative self intersection. Since W s

locpx q Ă Dk if and only if Dpx q “ Dk, and since
local stable manifolds vary continuously on the Pesin regular set Rε for every ε ą 0, we infer
that tx P A ; Dpx q “ Dku is measurable for every k. Hence there exists an index k such that
m` ptx P A ; rDpx qs “ rDksuq ą 0. Since x belongs to W s

locpx q, Fubini’s theorem implies
that µpDkq ą 0, and Lemma 8.5 shows that µ is supported on the Γν-orbit of Dk.

Finally, this argument shows that the property W s
locpx q Ă

Ť

kPNDk, or equivalently that
W s

locpx q is contained in a rational curve of negative self intersection, is invariant and measurable,
so by ergodicity of m` it is of full measure. The proof is complete. �

We are now ready to conclude the proof of Theorem 8.2. Let A be the set of Pesin regular
points such that W spx q is contained in an algebraic curve. From the proof of Lemma 8.7, x
belongs to A if and only if W s

locpx q is contained in one of the countably many irreducible curves
Dk Ă X of negative self-intersection. This condition determines a countable union of closed
subsets in the Pesin sets Rε, hence A is Borel measurable. By Lemma 8.7, if A has positive
m`-measure then Alternative (a) holds. So, if (a) is not satisfied,W spx q is almost surely Zariski
dense. Pick such a generic x , which further satisfies the conclusion of Lemma 8.6, and let N be
an Ahlfors-Nevanlinna current associated to W spx q. By Proposition 8.1, rN s is a nef class so
rN s2 ě 0. Thus, if we are able to show that xrN s | rT sωsy “ 0, we deduce from the Hodge index
theorem and MpNq “ 1 that rN s “ rT sωs “ epωq, hence N “ T sω by Theorem 6.11. So, it only
remains to prove that xrN s | rT sωsy “ 0, or equivalently

(8.7) N ^ T sω “ 0.
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This is intuitively clear because N is an Ahlfors-Nevanlinna current associated to the entire
curve W spx q and T sω ^ t∆u “ 0 for every bounded disk ∆ Ă W spx q. However, there is a
technical difficulty to derive (8.7) from T sω ^ t∆u “ 0, even if W spx q is an increasing union of
such disks ∆.

To deal with this situation we use the geometric intersection theory of laminar currents (see
[5, 41]). Unfortunately these papers only deal with currents of the form limn

1
ApRnq

φpDp0, Rnqq,
instead of the Ahlfors-Nevanlinna currents introduced in Section 8.1, which were designed to
get the nef property (Proposition 8.1). Let us explain how the formalism of [5, 41] can be
adapted to the Ahlfors-Nevanlinna currents of Proposition 8.1. Following [44] we say that T is
an Ahlfors current if there exists a sequence p∆nq of unions of smoothly bounded holomorphic
disks such that lengthpB∆nq “ o pMp∆nqq and T is the limit as n Ñ 8 of the sequence
of normalized integration currents 1

Mp∆nq
t∆nu; here, lengthpB∆nq is by definition the sum

of the lengths of the boundaries of the disks constituting ∆n, computed with respect to the
Riemannian metric induced by κ0. We say furthermore that T is an injective Ahlfors current if
the disks constituting ∆n are disjoint or intersect along subsets with relative non-empty interior.
By discretizing the integral defining the currents NpRnq in Proposition (8.1) we see that any
Ahlfors-Nevanlinna current is an Ahlfors current.

Strongly approximable laminar currents are a class of positive currents introduced in [41]
which are well suited for geometric intersection theory. In a nutshell, a current T is a strongly
approximable laminar current if for every r ą 0, there exists a uniformly laminar current Tr
(non closed in general) made of disks of size r, and such that MpT ´ Trq “ Opr2q. Since these
notions have been studied in a number of papers, we refer to [5, 41, 21] for definitions, the basic
properties of these currents, and technical details. This presentation in terms of disks of size r is
from [42, §4]. The next lemma is a mild generalization of the methods of [5, §7], [18, §4.3] and
[41, §4]. For completeness we provide the details in Appendix A.

Lemma 8.8. Any injective Ahlfors current T on a projective surface X is a strongly approx-
imable laminar current: if T “ limn

1
Mp∆nq

t∆nu as above, there exists a family of uniformly
laminar currents Tr increasing to T whose constitutive disks are C1 limits of pieces of the ∆n,
and such that if S is any closed positive current with continuous potential onX , S^Tr increases
to S ^ T as r decreases to 0.

We can now conclude the proof of Theorem 8.2. Since by Theorem 3.4, X is projective, we
can apply the previous lemma to any Ahlfors-Nevanlinna current N associated to W spx q. In
this way we get a family of currents Nr such that Nr ^ T sω increases to N ^ T sω as r decreases
to 0. On the other hand, by Lemma 8.6, the intersection of T sω with every disk contained in
W spx q vanishes, so again using the fact that T sω has a continuous potential, we infer that if ∆ is
any disk subordinate to Nr, T sω ^ t∆u “ 0. Hence Nr ^ T sω “ 0 for every r ą 0, and finally
N ^ T sω “ 0, as desired. �

Proof of Corollary 8.3. Since (b’) and (a) are contradictory, (b’) implies (b). Conversely assume
that µ is hyperbolic, non atomic and supported on a Γν-invariant curve C. Since µ has no atom,
it gives full mass to the regular set of C, hence Σˆ T pRegpCqq defines a DF -invariant bundle,
and by the Oseledets theorem the ergodic random dynamical system pC, ν, µq must either have
a positive or a negative Lyapunov exponent. If this exponent were positive then µ would be
atomic, as observed in Section 7.2.4. Hence, the Lyapunov exponent tangent to C is negative
and W spx q is contained in C for m`-almost every x . So (b) implies (b’). �
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9. NO INVARIANT LINE FIELDS

As above, let pX, νq be a random holomorphic dynamical system satisfying the moment con-
dition (4.1), and µ be an ergodic hyperbolic stationary measure. From §7.2 and §7.4, the local
stable manifolds and stable Oseledets directions are F`-measurable; so, Espξ, xq is naturally
identified to Espω, xq under the projection pξ, xq P X ÞÑ pω, xq P X`, and the same property
holds for stable manifolds. Then, m`-almost every x P X` has a Pesin stable manifold W spx q
(resp. direction Espx q). Let V px q “ V pω, xq be such a measurable family of objects (stable
manifolds, or stable directions, etc); we say that V px q is non-random if for µ-almost every x,
V pω, xq does not depend on ω, that is, there exists V pxq such that V pω, xq “ V pxq for νN-
almost every ω. If V is not non-random, we say that V depends non-trivially on the itinerary.
Since stable directions depend only on the future, the random versus non-random dichotomy can
be analyzed in X` or in X . Our purpose in this section is to establish the following result.

Theorem 9.1. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface, satisfying the Condition (4.1). Let µ be an ergodic and hyperbolic
stationary measure, not supported on a Γν-invariant curve. Then the following alternative holds:

(a) either the Oseledets stable directions depend non-trivially on the itinerary;
(b) or µ is Γν-invariant and hµpX, νq “ 0.

In fact, the stiffness theorems of §10 imply that µ is often also invariant in case (a).

Remark 9.2. It turns out that unless µ is atomic, (a) and (b) are mutually exclusive. Indeed the
main argument of [16] (2) implies that if the Oseledets stable directions depend non-trivially on
the itinerary and µ is not atomic then its fiber entropy is positive (see also [16, Rmk 12.3]). This
implies that for pX, ν, µq as in Theorem 9.1, if µ is not Γν-invariant, then its fiber entropy is
positive.

9.1. Intersection multiplicities. If V1 and V2 are germs of curves at 0 P C2, with an isolated
intersection at 0, the intersection multiplicity inter0pV1, V2q is, by definition, the number of
intersection points of V1 and V2 ` u in N for small generic u P C2, where N is a neighborhood
of 0 such that V1XV2XN “ t0u (see [34, §12]). It is a positive integer, and inter0pV1, V2q “ 1 if
and only if V1 and V2 are transverse at 0. We extend this definition by setting inter0pV1, V2q “ 0
if V1 or V2 does not contain 0 and inter0pV1, V2q “ 8 if 0 is not an isolated point of V1 X V2,
that is locally V1 and V2 share an irreducible component. The intersection multiplicity extends
to analytic cycles (that is, formal integer combinations of analytic curves).

Lemma 9.3. The multiplicity of intersection inter0p¨, ¨q is upper semi-continuous for the Haus-
dorff topology on analytic cycles.

In our situation we will only apply this result to holomorphic disks with multiplicity 1, in
which case the topology is just the usual local Hausdorff topology.

Proof. Assume inter0pV1, V2q “ k and V1,n Ñ V1 (resp. V2,n Ñ V2) as cycles; we have to
show that lim sup inter0pV1,n, V2,nq ď k. If k “ 8 there is nothing to prove. Otherwise, t0u is
isolated in V1 X V2, so we can fix a neighborhood U of 0 such that V1 X V2 X U “ t0u; then,
the result follows from [34, Prop 2 p.141] (stability of proper intersections). �

2This actually requires checking that the whole proof of [16] can be reproduced in our complex setting: we will
come back to this issue in a forthcoming paper. Since this remark is not used in this paper, we take the liberty to
anticipate on that research.
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9.2. Generic intersection multiplicity of stable manifolds. Recall from §7.4 that for m-almost
every x “ pξ, xq P X there exists a local stable manifoldW s

rpx qpx q Ă Xξ » X , depending mea-
surably on x ; we might simply denote it by W s

locpx q.
Let us cover a subset of full measure in X by Pesin subsets Rεn . Take a point x P X ,

and consider the set of points ppξ, xq, pζ, xqq P Rεn ˆ Rεm , for some fixed pair of indices
pn,mq; Lemma 9.3 shows that the intersection multiplicity interx pW

s
locpξ, xq,W

s
locpζ, xqq is an

upper semi-continuous function of ppξ, xq, pζ, xqq on that compact set. Thus, the intersection
multiplicity interx pW

s
locpξ, xq,W

s
locpζ, xqq is a measurable function of pξ, ζq. Recall that

– the σ-algebra F´ on X is generated, modulo m-negligible sets, by the partition into
subsets of the form Σu

locpξq ˆ txu (see § 7.1, Equation (7.2));
– ξ ÞÑ mξ is F´-measurable, i.e mξ “ mζ almost surely when ζ P Σu

locpξq;
– the conditional measures of m with respect to this partition satisfy (see Equation (7.3))

(9.1) mp ¨ | F´px qq “ νZp ¨ | Σu
locpξqq ˆ δx.

The next lemma can be seen as a complex analytic version of [16, Lemma 9.9].

Lemma 9.4. Let k ě 1 be an integer. Exactly one of the following assertions holds:

(a) for m-almost every x “ pξ, xq and for mp ¨ | F´pξ, xqq-almost every η

interx pW
s
locpξ, xq,W

s
locpη, xqq ě k ` 1;

(b) for m-almost every x “ pξ, xq and for mp ¨ | F´pξ, xqq-almost every η

interx pW
s
locpξ, xq,W

s
locpη, xqq ď k.

Proof. The relation defined on X by pξ, xq »k pη, yq if x “ y and W s
locpξ, xq and W s

locpη, yq
have order of contact at least k ` 1 at x is an equivalence relation which defines a partition
Qk of X . We shall see below that Qk is a measurable partition. Since F : X Ñ X acts by
diffeomorphisms on the fibers X of X , we get that F pQkpx qq “ QkpF px qq for almost every
x P X . Then, the proof of [16, Lemma 9.9] applies verbatim to show that if

(9.2) m
` 

x ; mpQkpx q|F´px qq ą 0
(˘

ą 0,

then

(9.3) m
` 

x ; mpQkpx q|F´px qq “ 1
(˘

“ 1.

This is exactly the desired statement. (This assertion says more than the mere ergodicity of m,
which only implies that m ptx ; mpQkpx q|F´px qq ą 0uq “ 1.)

It remains to explain why Qk is a measurable partition. For this, we have to express the atoms
of Qk as the fibers of a measurable map to a Lebesgue space. As for the measurability of the
intersection multiplicity, we consider an exhaustion of X by countably many Pesin sets; then, it
is sufficient to work in restriction to some compact set K Ă X on which local stable manifolds
have uniform size and vary continuously. Taking a finite cover ofX by good charts (see § 7.3.2),
and restricting K again to keep only those local stable manifolds which are graphs over some
fixed direction, we can also assume that πXpKq is contained in the image of a chart Φx0 : Ux0 Ñ

Vx0 Ă X and there is an orthonormal basis pe1, e2q such that for every y P K the local stable
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manifold πXpW s
locpy qq is a graph tze1`ψ

s
y pzqe2u in this chart, for some holomorphic function

ψsy on Dprq. Now the map from K to C2 ˆCk defined by

(9.4) x ÞÝÑ
´

Φ´1
x0
pπXpx qq, pψsx q

1p0q, . . . , pψsx q
pkqp0q

¯

is continuous. Since the fibers of this map are precisely the (intersection with K of the) atoms
of Qk, we are done. �

The previous lemma is stated on X because its proof relies on the ergodic properties of F .
However, since stable manifolds depend only on the future, it admits the following more ele-
mentary formulation on X:

Corollary 9.5. Let k ě 1 be an integer. Exactly one of the following assertions holds:

(a) for µ-almost every x P X and pνNq2-almost every pω, ω1q,

interx
`

W s
locpω, xq,W

s
locpω

1, xq
˘

ě k ` 1;

(b) or for µ-almost every x P X and pνNq2-almost every pω, ω1q,

interx
`

W s
locpω, xq,W

s
locpω

1, xq
˘

ď k.

Combined with results from the previous sections, this alternative leads to the existence of a
finite order of contact k0 between generic stable manifolds W s

locpω, xq and W s
locpω

1, xq. Note
that the assumption that µ is not supported on an invariant curve is used exactly here.

Lemma 9.6. There exists a unique finite integer 1 ď k0 ă `8 such that for µ-almost every
x P X and pνNq2-almost every pair pω, ω1q, interx pW

spω, xq,W spω1, xqq “ k0.

Proof. Fix a small ε ą 0 and consider a compact set Rε Ă X` with m`pRεq ě 1 ´ ε, along
which local stable manifolds have size at least rpεq and vary continuously. Since by Theorem 8.2
for m`-a.e. x , the only Nevanlinna current associated to W spx q is T sω, we can further assume
that this property holds for every x P Rε. Let A Ă X be a subset of full µ-measure on which
the alternative of Corollary 9.5 holds for every k ě 1. In X`, consider the measurable partition
into fibers of the form Ω ˆ txu; it corresponds to the partition F´ in Lemma 9.4. Then, the
associated conditional measures m`p ¨ |Ω ˆ txuq are naturally identified with νN. Fix x P A
such that m`pRε|Ωˆtxuq ą 0. Since pX, νq is non-elementary, Theorems 5.6 and 6.11 provide
pairs pω1, ω2q in pπΩpRεqq

2 for which the currents T sω1
and T sω2

are not cohomologous. By
Theorem 8.2 these currents describe respectively the asymptotic distribution of W spω1, xq and
W spω2, xq so we infer that W spω1, xq ‰ W spω2, xq and by the analytic continuation principle
it follows that W s

locpω1, xq ‰ W s
locpω2, xq. Let k1 ă 8 be the intersection multiplicity of these

manifolds at x. Since the intersection multiplicity is upper semi-continuous, we infer that for
ω1j P Rε close to ωj , j “ 1, 2, interxpW

s
locpω

1
1, xq,W

s
locpω

1
2, xqq ď k1. Thus for k “ k1 we

are in case (b) of the alternative of Corollary 9.5. Applying then Corollary 9.5 successively for
k “ 1, . . . , k1, there is a first integer k0 for which case (b) holds, and since (a) holds for k0 ´ 1,
we conclude that generically interx pW

s
locpω, xq,W

s
locpω

1, xqq “ k0. �

9.3. Transversal perturbations. The key ingredient in the proof of Theorem 9.1 is the follow-
ing basic geometric lemma, which is a quantitative refinement of [5, Lemma 6.4].
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Lemma 9.7. Let k be a positive integer. If r and c are positive real numbers, then there are two
positive real numbers δ “ δpk, r, cq and α “ αpk, r, cq with the following property. Let M1 and
M2 be two complex analytic curves in Dprq ˆ Dprq Ă C2 such that

(i) M1 andM2 are graphs tpz, fjpzqq ; w P Dru of holomorphic functions fj : Dprq Ñ Dprq;
(ii) M1 XM2 “ tp0, 0qu, and interp0,0qpM1,M2q “ k;

(iii) the k-th derivative satisfies
ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ ě c.

If M3 Ă Dprq ˆ Dprq is a complex curve that does not intersect M1 but is δ-close to M1 in the
C1-topology , then M2 and M3 have exactly k transverse intersection points in Dpαrq ˆDpαrq
(i.e. with multiplicity 1).

Proof. Without loss of generality we may assume that δ ă 1.

Step 1.– We claim that there exists α1 “ α1pk, r, cq such that for every α ď α1 and every
z P Dpαrq the following estimates hold:

1

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z|k ď |f1pzq ´ f2pzq| ď

3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z|k(9.5)

1

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

pk ´ 1q!
|z|k´1

ď
ˇ

ˇf 11pzq ´ f
1
2pzq

ˇ

ˇ ď
3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

pk ´ 1q!
|z|k´1 .(9.6)

Indeed put g “ f1 ´ f2 “
ř

měk gmz
m. Assumptions (i) and (iii) give|gpzq| ď 2r on Dprq,

and gpkqp0q ‰ 0. By the Cauchy estimates, |gn| ď 2r1´n for all n ě 0. Then on Dpαrq we get
ˇ

ˇ

ˇ

ˇ

ˇ

gpzq ´
gpkqp0q

k!
zk

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2r

ˆ

|z|

r

˙k`1 ˆ

1´
|z|

r

˙´1

ď 2r1´k α

1´ α
|z|k .

There exists α1pk, r, cq such that as soon as α ď α1, the right hand side of this inequality is
smaller than c |z|k {p2k!q; hence Estimate (9.5) follows. The same argument applies for (9.6)
because
ˇ

ˇ

ˇ

ˇ

ˇ

g1pzq ´
gpkqp0q

pk ´ 1q!
zk´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4pk ` 1q

ˆ

|z|

r

˙k ˆ

1´
|z|

r

˙´2

ď 4pk ` 1qr1´k α

p1´ αq2
|z|k´1 .

Step 2.– For every α ď α1, if δ ă cpαrqk{2k!,M2 andM3 have exactly k intersection points,
counted with multiplicities, in Dpαrq ˆ Dpαrq.

Indeed, the intersection points of M3 and M2 correspond to the solutions of the equation
f3 “ f2. To locate its roots, note that on the circle BDpαrq, the Inequality (9.5) implies

(9.7) |f1 ´ f2| ě
1

2

c

k!
pαrqk.

Since |f1 ´ f3| ă δ, the choice δ ă cpαrqk{2k! is tailored to assure that the hypothesis of the
Rouché theorem is satisfied in Dpαrq; so, counted with multiplicities, there are k solutions to
the equation f3 “ f2 on that disk. Furthermore by the Schwarz lemma |f2| ă αr on Dpαrq so
the corresponding intersection points between M2 and M3 are contained in Dpαrq ˆ Dpαrq.

If k “ 1 the proof is already complete at this stage, so from now on we assume k ě 2.
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Step 3.– Set δ0 “ |f3p0q|, and note that δ0 ď δ. Then for every α ď 1{2, in Dpαrq we have

δ
1`α
1´α

0 ď |f1pzq ´ f3pzq| ď δ
1´α
1`α

0(9.8)
ˇ

ˇf 11pzq ´ f
1
3pzq

ˇ

ˇ ď
1

αr
δ

1´2α
1`2α

0 .(9.9)

For this, recall the Harnack inequality: for any negative harmonic function in D

(9.10)
1´ |ζ|

1` |ζ|
ď
upζq

up0q
ď

1` |ζ|

1´ |ζ|
.

Since f1 ´ f3 does not vanish and |f1 ´ f3| ď δ ă 1 in Dprq, the function log |f1 ´ f3| is
harmonic and negative there. Thus for α ď 1{2, the Harnack inequality can be applied to
ζ ÞÑ pf1 ´ f3qprζq in D: this gives (9.8). Likewise, we infer that

(9.11) δ
1`2α
1´2α

0 ď |f1pzq ´ f3pzq| ď δ
1´2α
1`2α

0

in Dp2αrq, and (9.9) follows from the Cauchy estimate }g1}Dpαrq ď pαrq
´1}g}Dp2αrq.

Step 4.– We now conclude the proof. Fix α “ αpk, r, cq such that α ď α1 and

(9.12) βpαq :“
1´ 2α

1` 2α
´
k ´ 1

k
ˆ

1` α

1´ α
ą 0.

(This will be our final choice for α.) Fix δ ă cpαrqk{2k! and consider a solution z0 of the
equation f2pzq “ f3pzq in Dpαrq provided by Step 2. The transversality of M2 and M3 at
pz0, f2pz0qq is equivalent to f 13pz0q ‰ f 12pz0q, so we only need

(9.13)
ˇ

ˇpf3 ´ f1q
1pz0q

ˇ

ˇ ă
ˇ

ˇpf2 ´ f1q
1pz0q

ˇ

ˇ .

Since pf1 ´ f3qpz0q “ pf1 ´ f2qpz0q, combining the right hand side of Inequality (9.5) and the
left hand side of Inequality 9.8, we get that

(9.14)
3

2

ˇ

ˇpf1 ´ f2q
pkqp0q

ˇ

ˇ

k!
|z0|

k
ě δ

1`α
1´α

0 .

thus

(9.15) |z0| ě δ
1
k

1`α
1´α

0

ˆ

2k!

3

˙
1
k
ˇ

ˇ

ˇ
pf1 ´ f2q

pkqp0q
ˇ

ˇ

ˇ

´ 1
k
.

Hence by (9.6) we get that

ˇ

ˇpf2 ´ f1q
1pz0q

ˇ

ˇ ě
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

δ
k´1
k

1`α
1´α

0

ˇ

ˇ

ˇ
pf1 ´ f2q

pkqp0q
ˇ

ˇ

ˇ

1
k(9.16)

ě
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

δ
k´1
k

1`α
1´α

0 c
1
k .

On the other hand by Estimate (9.9)

(9.17)
ˇ

ˇpf3 ´ f1q
1pz0q

ˇ

ˇ ď
1

αr
δ

1´2α
1`2α

0
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Since δ0 ď δ, we only need to impose one more constraint on δ (together with δ ă cpαrqk{2k!),
namely

(9.18) δβpαq ă
1

2pk ´ 1q!

ˆ

2k!

3

˙
k´1
k

c
1
k rα,

to get the desired inequality |pf3 ´ f1q
1pz0q| ă |pf2 ´ f1q

1pz0q|. �

Remark 9.8. Lemma 9.7 does not hold in the real analytic setting. Indeed, take an integer
n ” 1 mod r4s and consider the n-th Chebychev polynomial Tn, defined by Tnpcos θq “
cospnθq; it satisfies |Tn| ď 1 on r´1, 1s, |T 1n| ď 2n on r´1{2, 1{2s, and T 1np0q “ n. Then,
set Pnpxq “ 10

n2T
`

x´ 5
n

˘

` 25
n2 . This function satisfies P 1np5{nq “ 10{n, Pnp5{nq “ p5{nq2,

and 15{n2 ď Pn ď 35{n2 on r´1, 1s. Now, if n is large, M1 “ ty “ 0u, M2 “
 

y “ x2
(

and
M3 “ ty “ Pnpxqu are three smooth algebraic curves in p´1, 1q2 Ă R2 such thatM3 is disjoint
from M1 but close to it in the C1 topology, and M3 is tangent to M2 at p5{n, 25{n2q. Similar
arguments can be used to show that the semi-continuity of Lemma 9.3 fails for real analytic
curves (though Corollary 9.5 may still be valid for real analytic random dynamical systems).

Let ∆1 and ∆2 be two disks of size r at x P X , which are tangent at x; let e1 P TxX be a
unit vector in Tx∆1 “ Tx∆2 and e2 a unit vector orthogonal to e1 for κ0. Then, in the chart Φx,
∆1 and ∆2 are graphs tze1 ` ψipzqe2u of holomorphic functions ψi : Dprq Ñ Dprq, i “ 1, 2,
such that ψip0q “ 0 and ψ1ip0q “ 0. If interxp∆1,∆2q “ k, then for j “ 1, . . . , k ´ 1 one has
ψ
pjq
1 p0q “ ψ

pjq
2 p0q and ψpkq1 p0q ‰ ψ

pkq
2 p0q. We define the k-osculation of ∆1 and ∆2 at x to be

(9.19) osck,x,rp∆1,∆2q “

ˇ

ˇ

ˇ
ψ
pkq
1 p0q ´ ψ

pkq
2 p0q

ˇ

ˇ

ˇ
.

If s ď r and we consider ∆1 and ∆2 as disks of size s, then osck,x,sp∆1,∆2q “ osck,x,rp∆1,∆2q.
Thus, osck,x,rp∆1,∆2q does not depend on r, so we may denote this osculation number by
osck,xp∆1,∆2q. With this terminology, Lemma 9.7 directly implies the following corollary.

Corollary 9.9. Let k be a positive integer, and r and c be positive real numbers. Then, there are
two positive real numbers δ and α, depending on pk, r, cq, satisfying the following property. Let
∆1 and ∆2 be two holomorphic disks of size r through x, such that interxp∆1,∆2q “ k and
osck,xp∆1,∆2qq ě c. Let ∆3 be a holomorphic disk of size r such that ∆3 is δ-close to ∆1 in
the C1-topology but ∆3 X∆1 “ H. Then ∆3 intersects ∆2 transversely in exactly k points in
BXpx, αrq.

The following lemma follows directly from the first step of the proof of Lemma 9.7.

Lemma 9.10. Let k be a positive integer, and r and c be positive real numbers. Then there exists
a constant β depending only on pr, k, cq such that if ∆1 and ∆2 are two holomorphic disks of
size r through x, such that k “ interxp∆1,∆2q and osck,xp∆1,∆2qq ě c, then x is the only
point of intersection between ∆1 and ∆2 in the ball BXpx, βrq.

9.4. Proof of Theorem 9.1. Before starting the proof, we record the following two facts from
elementary measure theory:

Lemma 9.11. Let pΩ,F ,Pq be a probability space, and δ P p0, 1q.

(1) If ϕ is a measurable function with values in r0, 1s and such that
ş

ϕ dP ě 1´ δ, then

P
´!

x ; ϕpxq ě 1´
?
δ
)¯

ě 1´
?
δ.
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(2) If Aj is a sequence of measurable subsets such that PpAjq ě 1 ´ δ for every j, then
Pplim supAjq ě 1´ δ.

Let us now prove Theorem 9.1. If the integer k0 of Lemma 9.6 is equal to 1, then the Pesin
stable manifolds corresponding to different itineraries at a µ-generic point x P X are generically
transverse and we are in case (a) of the theorem. So, we now assume k0 ą 1 and we prove that µ
is almost surely invariant (hence Γν-invariant by Remark 4.2) and that its fiber entropy vanishes.

Step 1.– First, we construct a subset Gε of “good points” in X .
As described in Section 7.1.2, the atoms of F´ are the sets F´px q “ Σu

locpξq ˆ txu and the
measures mp ¨ |F´px qq can be naturally identified to νN under the natural projections F´px q „Ñ
Σu

locpξq
„
Ñ Ω. For notational simplicity we denote these measures by mF´

x .
For a small ε ą 0, let Rε Ă X be a compact subset with mpRεq ą 1´ ε, along which local

stable manifolds have size at least 2rpεq and vary continuously. Since
ş

mF´
x pRεq dmpx q ě

1´ ε, by Lemma 9.11 (1) we can select a compact subset R1ε Ă Rε with mpR1εq ě 1´
?
ε such

that for every x P R1ε one has mF´
x pRεq ě 1´

?
ε.

By assumption, interxpW
s
locpy1q,W

s
locpy2qq “ k0 for m-almost every x “ pξ, xq P R1ε and

for pmF´
x b mF´

x q-almost every pair of points py1, y2q P pF´px q X Rεq
2. Then there exists

R2ε Ă R1ε of measure at least 1´ 2
?
ε and a constant cpεq ą 0 such that

(9.20) osck0,x,rpεqpW
s
locpy1q,W

s
locpy2qq ě cpεq

for every x “ pξ, xq P R2ε and all pairs py1, y2q in a subset Aε,x Ă pF´px q XRεq
2 depending

measurably on x and of measure

(9.21) pmF´
x bmF´

x qpAε,x q ě 1´ 4
?
ε

(we just used pmF´
x b mF´

x qppF´px q X Rεq
2q ě p1 ´

?
εq2 ą 1 ´ 2

?
ε). Finally, Fubini’s

theorem and Lemma 9.11 (1) provide a set Gε Ă R2ε such that

(a) mpGεq ě 1´ 2ε1{4

(b) for every x P Gε, W s
locpx q has size 2rpεq;

(c) for every x P Gε, there exists a measurable set Gε,x Ă F´px q with mF´
x pGε,x q ě 1´ 2ε1{4

such that for every y in Gε,x , W s
locpy q has size ě rpεq and, viewed as a subset of X ,

– it is tangent to W s
locpx q to order k0 at x,

– osck0,x,rpεqpW
s
locpx q,W

s
locpy qq ě cpεq.

Note that x R Gε,x : indeed, when the local stable manifolds vary continuously, one can think of
Aε,x as the complement of a small neighborhood of the diagonal in Ωˆ Ω.

Step 2.– To make the argument more transparent, we first show that the fiber entropy vanishes.
Let ηs be a Pesin partition subordinate to local stable manifolds in X . By Corollary 7.14

it is enough to show that for m-almost every x , mp¨|ηspx qq is atomic (hence concentrated at
x). Assume by contradiction that this is not the case. Therefore for ε ą 0 small enough there
exists x “ pξ, xq P Gε such that mp¨|ηspx qq|ηspx qXGε is non-atomic, and there exists an infinite
sequence of pairwise distinct points xj “ pξ, xjq in Gε X ηspx q converging to x . Then with Gε,‹
as in Property (c) of the definition of Gε, we have mF´

xj pGε,xj q ě 1´ 2ε1{4 for every j.

Identifying all F´pxjq with Σu
locpξq, by Lemma 9.11 (2) we can find ζ P Σu

locpξq such that
pζ, xjq belongs to Gε,pζ,xjq for infinitely many j’s. Along this subsequence the local stable
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W s
px q

W s
pζ, xjq

W s
pξj , xjq

x x

xj

W s
px q

FIGURE 1. On the left, a generic point x with the local stable manifolds W s
locpξi, xq

for distinct pξiqiě0 (see Step 1). On the right, the choice of the sequence pζ, xjq gives
a family of local stable manifolds (see Step 2).

manifolds W s
locpζ, xjq form a sequence of disks of uniform size r “ 2rpεq at xj . Two such local

stable manifolds are either pairwise disjoint or coincide along an open subset because they are
associated to the same itinerary ζ.

Let us now use the notation from Corollary 9.9 and Lemma 9.10. We know that W s
rpεqpζ, xjq

is tangent to W s
rpεqpξ, xq at xj to order k0, with osck0,xj ,rpεqpW

s
rpεqpx q,W

s
rpεqpζ, xjqq ě cpεq; so,

by Lemma 9.10, W s
rpεqpζ, xjq and W s

rpεqpζ, xj1q are disjoint as soon as distXpxj , xj1q ă βrpεq.
Finally, if j and j1 are large enough, then distXpxj , xj1q ă αrpεq and the C1 distance between
W s
rpεqpζ, xjq andW s

rpεqpζ, xj1q is smaller than δ; thus, Corollary 9.9 asserts thatW s
rpεqpζ, xjq and

W s
rpεqpζ, xj1q cannot both be tangent to W s

rpεqpξ, xq. This is a contradiction, and we conclude
that the fiber entropy of m vanishes.

Step 3.– We now prove the almost sure invariance.
As in [16, Eq. (11.1)] we consider a measurable partition P of X with the property that for

m-almost every pξ, xq,

(9.22) Σs
locpξq ˆW

s
rpξ,xqpξ, xq Ă Ppξ, xq Ă Σs

locpξq ˆW
spξ, xq.

The existence of such a partition is guaranteed, for instance, by Lemma 7.11. By [16, Prop
11.1](3), to show that µ is almost surely invariant it is enough to prove that:

(9.23) for m almost every ξ, mp ¨ |Ppξ, xqq is concentrated on Σs
locpξq ˆ txu .

By contradiction, assume that (9.23) fails. By contraction along the stable leaves, it follows that
almost surely Σs

locpξq ˆ txu is contained in

(9.24) Supp
´

mp¨|Ppξ, xqq|Ppξ,xqzΣslocpξqˆtxu

¯

(this is identical to the argument of Corollary 7.14). In particular for small ε we can find x “
pξ, xq P Gε and a sequence of points xj “ pξj , xjq P Gε such that xj belongs to Ppx q X Gε,
xj ‰ x and pxjq converges to x in X . We can also assume that the xj are all distinct. By
definition of Gε, mF´

xj

`

Gε,xj
˘

ě 1´ 2ε1{4 for every j. For pξ, ζq P Σ2, set

(9.25) rξ, ζs “ Σu
locpξq X Σs

locpζq;

3Brown and Rodriguez-Hertz make it clear that this result holds for an arbitrary smooth random dynamical system
on a compact manifold.
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that is, rξ, ζs is the itinerary with the same past as ξ and the same future as ζ. As above, iden-
tifying the atoms of the partition F´ with Ω, Lemma 9.11 (2) provides an infinite subsequence
pj`q and for every ` an itinerary ζj` P Σu

locpξj`q such that yj` :“ pζj` , xj`q belongs to Gε,xj` and
all the ζj` have the same future, that is ζj` is of the form rξj` , ζs for a fixed ζ. By definition,

interxj` pW
s
locpxj`q,W

s
locpyj`qq “ k0(9.26)

osck0,xj` ,rpεq
pW s

locpxj`q,W
s
locpyj`qq ě cpεq.(9.27)

In addition the disks πXpW s
locpyj`qq are pairwise disjoint or locally coincide because the xj`

are distinct and the ζj` have the same future. Moreover, since xj` belongs to Ppx q, W spxj`q
coincides with W spx q. Therefore, the πXpW s

locpyj`qq form a sequence of disjoint disks of size
2rpεq at xj , all tangent to πXpW s

locpx qq to order k0, with osculation bounded from below by
cpεq. Since this sequence of disks is continuous and pxjq converges towards x, Lemma 9.10
and Corollary 9.9 provide a contradiction, exactly as in Step 2. This completes the proof of the
theorem. �

10. STIFFNESS

Here we study Furstenberg’s stiffness property for automorphisms of compact Kähler sur-
faces, thereby proving Theorem A. Our first results in §10.3 deal with elementary subgroups
of AutpXq. The argument relies on the classification of such elementary groups together with
general group-theoretic criteria for stiffness; these criteria are recalled in § 10.1 and 10.2. The-
orem 10.7 concerns the much more interesting case of non-elementary subgroups; its proof
combines all results of the previous sections with the work of Brown and Rodriguez-Hertz [16].

10.1. Stiffness. As said in Section 4.2, a random dynamical system pX, νq is stiff if any ν-
stationary measure is almost surely invariant; equivalently, every ergodic stationary measure
is almost surely invariant. This property can be expressed in terms of ν-harmonic functions
on Γ. Indeed if ξ : X Ñ R is a continuous function and µ is ν-stationary, then Γ Q g ÞÑ
ş

X ξpgxq dµpxq is a bounded, continuous, right ν-harmonic function on Γ; thus proving that µ
is invariant amounts to proving that such harmonic functions are constant. Stiffness can also be
defined for group actions: a group Γ acts stiffly on X if and only if pX, νq is stiff for every
probability measure ν on Γ whose support generates Γ; in this definition, the measures ν can
also be restricted to specific families, for instance symmetric finitely supported measures, or
measures satisfying some moment condition. There are some general criteria ensuring stiffness
directly from the properties of Γ. For instance, if G ˆ X Ñ X is a continuous action of a
topological group and Γ Ă G is relatively compact, then Γ acts stiffly on X (this follows from
the maximum principle for harmonic functions on Γ, see also [51, Thm 3.5]). Another important
case is that of Abelian and nilpotent groups:

Theorem 10.1. Let G be a locally compact, second countable, topological group. Let ν be a
probability measure on G. If G is nilpotent of class ď 2, then any measurable, ν-harmonic, and
bounded function ϕ : GÑ R is constant; thus, every measurable action of such a group is stiff.
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This is a special case of results of Dynkin-Malyutov and Guivarc’h, see [57, 74] for the proof
(4). When applying Theorem 10.1 to subgroups A Ă AutpXq, we implicitly first replace A by
its closure in AutpXq then apply the theorem to this locally compact group.

10.2. Subgroups and hitting measures. A basic tool is the hitting measure on a subgroup,
which we briefly introduce now (see [8, Chap. 5] for details). LetG be a locally compact second
countable topological group. A notion of length can be defined in this context as follows: given
a neighborhood U of the unit element, for any g P G, lengthU pgq is the least integer n ě 1 such
that g P Un. By definition a probability measure ν on G has a finite first moment (resp. a finite
exponential moment) if

ş

lengthU pgq dνpgq ă 8 (resp. if
ş

exppα lengthU pgqq dνpgq ă 8 for
some α ą 0). This condition does not depend on the choice of U .

Let ν be a probability measure on G, and consider the left random walk on G governed by ν.
Given a subgroup H Ă G, for ω “ pgiq P GN, define the hitting time

(10.1) T pωq “ THpωq :“ min tn ě 1 ; gn ¨ ¨ ¨ g1 P Hu .

If T is almost surely finite we say that H is recurrent and the distribution of gT pωq ¨ ¨ ¨ g1 is by
definition the hitting measure of ν on H , which will be denoted by νH . The key property of νH
is that if ϕ : G Ñ R is a ν-harmonic function, then ϕ|H is also νH -harmonic. Therefore, if µ
is a ν-stationary measure, then it is also νH -stationary. Conversely, any bounded νH -harmonic
function h on H admits a unique extension rh to a bounded ν-harmonic function on G; this
follows from Doob’s optional stopping theorem.

If rG : Hs ă 8 then H is recurrent and its stopping time admits an exponential moment.
It follows that νH has a finite first (resp. exponential) moment if and only if ν does. Likewise,
assume that H is a normal subgroup of G with G{H isomorphic to Z, and that ν is symmetric
with a finite first moment. Then, the projection ν of ν on G{H is symmetric with a finite first
moment, so the random walk governed by ν on G{H » Z is recurrent (see the Chung-Fuchs
Theorem in [43, §5.4] or [35]) and H is recurrent.

Lemma 10.2. Let ν be a probability measure on AutpXq and Γ1 be a closed subgroup which is
recurrent for the random walk induced by ν. Let ν 1 be the induced measure on Γ1. If pX, ν1q is
stiff then pX, νq is stiff as well. This holds in particular if:

(i) either rΓν : Γ1s ă 8
(ii) or Γ1 is a normal subgroup of Γν with Γν{Γ

1 isomorphic to Z, and ν is symmetric with a
finite first moment.

Proof. Let µ be a ν-stationary measure on X . Then µ is ν 1-stationary, hence by stiffness it is
Γ1-invariant. Therefore for every Borel setB Ă X , the function Γ Q g ÞÑ µpg´1Bq is a bounded
ν-harmonic function which is constant on Γ1 so by the uniqueness of harmonic extension it is
constant, and ν is Γ-invariant. �

10.3. Elementary groups. Recall that AutpXq is a topological group for the topology of uni-
form convergence and is in fact a complex Lie group (with possibly infinitely many connected
components). Let AutpXq˝ be the connected component of the identity in AutpXq and

(10.2) AutpXq# “ AutpXq{AutpXq˝.

4The proof in [74] is not correct (Lemma 2.5 there is false) but it works perfectly, and is quite short, if the support
of ν is countable or if the nilpotency class is ď 2. See the introduction of [74] for a summary of previous results.
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Let ρ : AutpXq Ñ GLpH˚pX;Zqq be the natural homomorphism; its image is AutpXq˚ “
ρpAutpXqq (see § 2.1.1); is kernel contains AutpXq˝ and a theorem of Lieberman [68] shows
that AutpXq˝ has finite index in kerpρq. If Γ is a subgroup of AutpXq, we set Γ˚ “ ρpΓq.

Theorem 10.3. Let X be a compact Kähler surface. Let ν be a symmetric probability measure
on AutpXq satisfying the moment condition (4.1). If Γν is elementary and Γ˚ν is infinite, then
pX, νq is stiff.

Note that stiffness can fail when Γ˚ν is finite: see Example 10.4 below. The proof relies on the
classification of elementary subgroups of AutpXq (see [21, Thm 3.2], [46]): if Γν is elementary
and Γ˚ν is infinite there exists a finite index subgroup A˚ Ă Γ˚ν which is

(a) either cyclic and generated by a loxodromic map;
(b) or a free Abelian group of parabolic transformations possessing a common isotropic line; in

that case, there is a genus 1 fibration τ : X Ñ S, onto a compact Riemann surface S, such
that Γν permutes the fibers of τ .

Denote by ρΓν : Γν Ñ Γ˚ν the restriction of ρ to Γν . We distinguish two cases.

Proof when the kernel of ρΓν is finite. Let A be the pre-image of A˚ in Γν ; it fits into an exact
sequence 1 Ñ F Ñ A Ñ A˚ Ñ 0 with F finite, so a classical group theoretic lemma (see
Corollary 4.8 in [31]) asserts that A contains a finite index, free Abelian subgroup A0, such that
ρΓν pA0q has finite index in A˚. Since A0 is Abelian, Theorem 10.1 shows that the action of
pA0, νA0q on X is stiff. The index of A0 in Γ being finite, Lemma 10.2 concludes the proof. �

Proof when the kernel of ρΓν is infinite. In case (a), X is a torus C2{Λ and kerpρΓν q is a group
of translations of X (see Proposition 3.3). Let A Ă Γν be the pre-image of A˚; setting K “

kerpρΓν q, we obtain an exact sequence 0 Ñ K Ñ A Ñ A˚ Ñ 0, with A Ă Γν of finite index,
A˚ » Z generated by a loxodromic element, andK Ă X an infinite group of translations. Since
ν is symmetric, the measure νA is also symmetric; since νA satisfies the moment condition (4.1),
its projection on A˚ has a first moment (note that if f is loxodromic, then logp}pf˚qn}q — |n|).
Since K is Abelian, its action on X is stiff; thus, as in Lemma 10.2.(ii), the action of A on X is
stiff. Since A has finite index in Γ, the action of Γ on X is stiff too by Lemma 10.2.(i).

In case (b), we apply Proposition 2.15. So, either X is a torus, or the action of Γν on the
base S of its invariant fibration τ : X Ñ S has finite order. In the latter case, a finite index
subgroup Γ0 of Γ preserves each fiber of τ ; then, Γ0 contains a subgroup of index dividing 12
acting by translations on these fibers. This shows that Γ is virtually Abelian; in particular, Γ
is stiff. The last case is when the image of Γ in AutpSq is infinite and X is a torus C2{ΛX .
Then, S “ C{ΛS is an elliptic curve and τ is induced by a linear projection C2 Ñ C, say the
projection px, yq ÞÑ x. Lifting Γ to C2, and replacing Γ by a finite index subgroup if necesssary,
its action is by affine transformations of the form f̃ : px, yq ÞÑ px ` a, y `mx ` bq with m in
C˚, and pa, bq in C2. This implies that Γ is a nilpotent group of length ď 2; by Theorem 10.1 it
also acts stiffly and we are done. �

Example 10.4. If X “ P2pCq, its group of automorphisms is PGL3pCq and for most choices of
ν there is a unique stationary measure, which is not invariant; the dynamics is proximal, and this
is opposite to stiffness (see [51]). If X “ P1pCqˆC, for some algebraic curve C, then AutpXq
contains PGL2pCq ˆ AutpCq; if ν is a probability measure on PGL2pCq ˆ tidCu, then in most
cases the stationary measures are again non invariant.
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Proposition 10.5. Let X be a compact Kähler surface and Γ be a subgroup of AutpXq such
that Γ˚ is finite. If Γ preserves a probability measure whose support is Zariski dense in X , then
the action of Γ on X is stiff.

Proof. Let µ be the invariant measure. Replacing Γ by a finite index subgroup we may assume
that Γ Ă AutpXq˝. Let G be its closure (for the euclidean topology) in the Lie group AutpXq˝;
it is a real Lie group preserving µ. We can assume that G is not compact, since otherwise
stiffness is automatic. According to [33, Lem. 5.7], X is ruled, hence projective (since X is a
compact Kähler surface). Pick an ample line bundle L on X , denote by PN pCq the projective
space PpH0pX,Lq_q, with N ` 1 “ h0pX,Lq, and by ΨL : X Ñ PN pCq the Kodaira-Iitaka
embedding ofX given byL. By hypothesis, pΨLq˚µ is not supported by a hyperplane of PN pCq.

Step 1.— Suppose G acts trivially on Pic0pXq. Then L is G-invariant and there is a homo-
morphism β : G Ñ PGLN`1pCq such that ΨL ˝ g “ βpgq ˝ ΨL for every g P L. If G is not
compact, there is a sequence of elements gn P G going to infinity in PGLN`1pCq: in the KAK
decomposition gn “ knank

1
n, the diagonal part an goes to8. Then, any probability measure on

PN pCq which is invariant under all gn is supported in a proper projective subspace of PN pCq,
and this contradicts our preliminary remark. So, G is compact and the action is stiff.

Step 2.— Suppose the action of G on PicpXq0 is non-trivial. Then, the base of the ruling
α : X Ñ B has genus ě 1, and the homomorphism AutpXq0 Ñ AutpBq0 has positive dimen-
sional image. So, B is an elliptic curve on which AutpXq0 acts transitively. According to [70,
Thm 3] and [72, §3], there are two cases: eitherX “ BˆP1pCq, AutpXq “ AutpBqˆPGL2pCq
and we deduce, as in the first step, that G is a compact group; or AutpXq˝ is Abelian. In all
cases stiffness follows, and we are done. �

10.4. Invariant algebraic curves II. If Γν admits a smooth invariant rational curveC such that
the induced action on C » P1pCq comes from a non-elementary subgroup of PGL2pCq, then
there is a unique, non-invariant, stationary measure on C. The next result shows that when ν is
symmetric, every non-invariant stationary measure is essentially of this kind.

Proposition 10.6. Let pX, νq be a random holomorphic dynamical system, with ν symmetric.
Let µ be an ergodic ν-stationary measure giving positive mass to some proper Zariski closed
subset of X . Then µ is supported on a Γν-invariant proper Zariski closed subset and

(a) either µ is invariant;
(b) or the Zariski closure of Supppµq is a finite, disjoint union of smooth rational curves Ci,

the stabilizer of Ci in Γ induces a strongly irreducible and proximal subgroup of AutpCiq »
PGL2pCq, and µpCiq´1µ|Ci is the unique stationary measure of this group of Möbius trans-
formations.

Moreover, if pX, νq is non-elementary, the curves Ci have negative self-intersection and can be
contracted on cyclic quotient singularities.

Note that no moment assumption is assumed here. Before giving the proof, let us briefly
discuss the question of stiffness for Möbius actions on P1pCq. Let ν be a symmetric measure on
PGL2pCq. As already said, by Furstenberg’s theory, if Γν is strongly irreducible and unbounded
it admits a unique stationary measure, and this measure is not invariant. Otherwise, any ν-
stationary measure is invariant because

– either Γν is relatively compact and stiffness follows from [51, Thm. 3.5];
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– or Γν admits an invariant set made of two points, then Γν is virtually Abelian and stiff-
ness follows from Theorem 10.1;

– or Γν is conjugate to a subgroup of the affine group AffpCq with no fixed point.

In the latter case after conjugating Γν to a subgroup of AffpCq we can write any g P Γν as
gpzq “ apgqz ` bpgq. If apgq ” 1 then Γν is Abelian and we are done. Otherwise Γν is merely
solvable and we apply the following lemma which follows from a result of Bougerol and Picard:
let ν be a symmetric probability measure on AffpCq. If no point of C is fixed by ν-almost every
g, then the only ν-stationary probability on P1pCq is the point mass at8 (see [14, Thm. 2.4]; a
self-contained proof is provided in [24]).

Proof of Proposition 10.6. If µ has an atom then, by ergodicity, µ is supported on a finite orbit
and it is invariant. So we now assume that µ is atomless. By ergodicity, µ gives full mass
to a Γν-invariant curve D; let C1, . . . , Cn be its irreducible components. Let Γ1 be the finite
index subgroup of Γν stabilizing each Ci and ν 1 be the hitting measure induced by ν on Γ1; it is
symmetric, µ is ν 1-stationary, and so are its restrictions µ|Ci , for each Ci.

If the genus of (the normalization of) C1 is positive, then Γ1|C1 Ă AutpC1q is virtually
Abelian, hence µ|C1 is Γ1-invariant. Since µ is ergodic, Γν permutes transitively the Ci, and
arguing as in Lemma 10.2, we see that µ is ν-invariant as well. Now, assume that the normal-
ization Ĉ1 is isomorphic to P1pCq. If C1 is not smooth, or if it intersects another Γν-periodic
curve, then the image of Γ1 in AutpĈ1q » PGL2pCq is not strongly irreducible, and the discus-
sion preceding this proof shows that µ is Γ1-invariant. Again, this implies that µ is Γν-invariant.
The same holds if Γ1 is a bounded subgroup of AutpĈ1q. The only possibility left is that C1 is
smooth, disjoint from the other periodic curves, and Γ1 induces a strongly irreducible subgroup
of AutpC1q. Since Γν permutes transitively the Ci, conjugating the dynamics of the groups
Γ1|Ci , the same property holds for each Ci.

If Γν is non-elementary, Lemma 2.12 shows that C2
i “ ´m for some m ą 0, which does not

depend on i because Γν permutes the Ci transitively. Then, the Ci being disjoint, one can con-
tract them simultaneously, each of the contractions leading to a quotient singularity pC2, 0q{xηy
with ηpx, yq “ pαx, αyq for some root of unity α of order m (see [4, §III.5]). �

10.5. Non-elementary groups: real dynamics. We now consider the action of general non-
elementary subgroup of AutpXq on an invariant, totally real surface Y ; as in Theorem A, we
further assume the existence of an invariant volume form on Y ; this is automatic when X is an
Abelian, K3, or Enriques surface (see Remark 3.2 and [26]).

Theorem 10.7. Let pX, νq be a non-elementary random holomorphic dynamical system on a
compact Kähler surface, satisfying the moment condition (4.1). Assume that Y Ă X is a
Γν-invariant totally real 2-dimensional smooth submanifold such that the action of Γν on Y
preserves a probability measure volY equivalent to the Riemannian volume on Y . Then, every
ergodic stationary measure µ on Y is:

(a) either almost surely invariant,
(b) or supported on a Γν-invariant algebraic curve.

In particular if there is no Γν-invariant curve then pY, νq is stiff. Moreover, if the fiber entropy
of µ is positive, then µ is the restriction of volY to a subset of positive volume.
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Recall from Lemma 2.12 that Γν-invariant curves can be contracted. For the induced random
dynamical system on the resulting singular surface, stiffness holds unconditionally. If further-
more ν is symmetric then the result can be made more precise by applying Proposition 10.6.

Proof of Theorem 10.7. We split the proof in two steps.
Step 1.– Let µ be an ergodic stationary measure supported on Y . We assume that µ is not

invariant, and we want to prove that it is supported on a Γν-invariant curve. Since the action is
volume preserving, its Lyapunov exponents satisfy λ´ ` λ` “ 0 (see § 7.2.3) . The invariance
principle (Theorem 7.5) shows that µ is hyperbolic: indeed µ is almost surely invariant when
λ´ ě 0. We can therefore apply Theorem 3.4 of [16] to obtain the following trichotomy:

(1) either µ has finite support, so it is invariant;
(2) or the distribution of Oseledets stable directions is non-random;
(3) or µ is almost surely invariant and absolutely continuous with respect to volY : even

more, it is the restriction of volY to a subset of positive volume.

Since µ is not invariant, we are in case (2). Theorem 9.1 then implies that µ is supported on
an invariant algebraic curve. This concludes the proof of the first assertions in Theorem 10.7,
including the stiffness property when Γ has no periodic curve.

Step 2.– It remains to prove the last assertion. Let then µ be an ergodic stationary measure
with hµpX, νq ą 0. In the above trichotomy, (1) is now excluded. To exclude the alternative (2),
by Theorem 9.1, it suffices to show that µ is not supported on an invariant curve. By Proposition
7.10 (i.e. the fibered Margulis-Ruelle inequality), µ is hyperbolic. If µ is supported on an
algebraic curve, the proof of Corollary 8.3 leads to the following alternative: either µ is atomic
or the Lyapunov exponent along that curve is negative. In the latter case µ is proximal along
that curve and its stable conditionals are points. In both cases the fiber entropy would vanish, in
contradiction with our hypothesis, so µ is not supported on an algebraic curve, as desired. �

11. MEASURE RIGIDITY

Invariant measures are classified in [26] when Γ is non-elementary and contains a parabolic
element. Thus, in view of the results of Section 10, it is natural to ask for such a classification
when Γ does not contain parabolic elements. If µ is a probability measure on X , we denote by
AutµpXq the group of automorphisms of X preserving µ.

Theorem 11.1. Let f be an automorphism of a complex projective surface X , preserving a
totally real and real analytic surface Y Ă X . Let µ be an ergodic f -invariant measure on Y
with positive entropy. Then

(a) either µ is absolutely continuous with respect to the Lebesgue measure on Y ;
(b) or AutµpXq is virtually cyclic.

If in addition the Lyapunov exponents of f with respect to µ satisfy λ´pf, µq ` λ`pf, µq ‰ 0,
then case (a) does not occur, so AutµpXq is virtually cyclic.

This result, and its proof, may be viewed as a counterpart, in our setting, to Theorems 5.1
and 5.3 of [16]; again the possibility of invariant line fields is ruled out by using the complex
structure. As before the typical case to keep in mind is when X is a projective surface defined
over R and Y “ XpRq. Observe that by ergodicity, if f preserves a smooth volume volY , then
in case (a) µ will be the restriction of volY to an AutµpXq-invariant Borel set of positive volume.
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Remark 11.2. Theorem 11.1 holds more generally for compact Kähler surfaces (see [24]).

Proof of Theorem 11.1. Since it admits a measure of positive entropy, f is a loxodromic trans-
formation. By the Ruelle-Margulis inequality µ is hyperbolic with respect to f and it does not
charge any point, nor any piecewise smooth curve: indeed, the entropy of a homeomorphism of
the circle or the interval is equal to zero.

For µ-almost every x P X , the stable manifold W spf, xq is an entire curve in X which is
either transcendental or contained in a periodic rational curve (see [21, Thm. 6.2]). Since f has
only finitely many invariant algebraic curves (see [21, Prop. 4.1]) and µ gives no mass to curves,
W spf, xq is µ-almost surely transcendental; then, the only Ahlfors-Nevanlinna current associ-
ated to W spf, xq is T`f ; similarly, the Ahlfors-Nevanlinna currents of the unstable manifolds
give T´f . (This is the analogue in deterministic dynamics of Theorem 8.2.) Fix g P AutµpXq

and set Γ :“ xf, gy. Our first goal is to prove the following:

Alternative: either Γ˚ is virtually cyclic and preserves tPrT`f s,PrT
´
f su Ă BHX ; or µ is abso-

lutely continuous with respect to the Lebesgue measure on Y .

Let Y 1 Ă Y be the union of the connected components of Y of positive µ-measure. The mea-
sure µ does not charge any analytic subset of Y of dimensionď 1; thus, by analytic continuation,
any h P Γ preserves Y 1. So, without loss of generality we can replace Y by Y 1.

We divide the argument into several cases according to the existence or non-existence of
certain Γ-invariant line fields. In the first two cases we will conclude that Γ is elementary. In
the third case, µ will be absolutely continuous with respect to the Lebesgue measure on Y ; then
by the Pesin formula its Lyapunov exponents satisfy λ`pf, µq “ ´λ´pf, µq “ hµpfq so when
λ`pf, µq ` λ´pf, µq ‰ 0, Case 3 is actually impossible.

Case 1.– There exists a Γ-invariant measurable line field. Specifically, we mean a measurable
field of complex lines x ÞÑ Epxq P PpTxXq, defined on a set of full µ-measure, such that
DxhpEpxqq “ Ephpxqq for every h P Γ and almost every x P X; since µ is supported on
the totally real surface Y , the field of real lines Epxq X TxY Ă TxY is also invariant, and
determines Epxq. Now, µ being ergodic and hyperbolic for f , the Oseledets theorem shows that
either Epxq “ Esf pxq µ-almost everywhere or Epxq “ Euf pxq µ-almost everywhere. Changing
f into f´1 if necessary, we may assume that Epxq “ Esf pxq.

Consider the automorphism h “ g´1fg P AutµpXq. Since h is conjugate to f , µ is also
ergodic and hyperbolic for h. Thus, either Eshpxq “ Esf pxq for µ-almost every x or Euhpxq “
Esf pxq for µ-almost every x.

Lemma 11.3. If there is a measurable set A of positive measure along which Eshpxq “ Esf pxq

(resp. Euhpxq “ Esf pxq), then W spf, xq “W sph, xq for almost every x in A (resp. W uph, xq “

W spf, xq).

Let us postpone the proof of this lemma and conclude the argument. Suppose first that
Eshpxq “ Esf pxq on a subset A with µpAq ą 0. Then T`f “ T`h because for µ-almost every
x, the unique Ahlfors-Nevanlinna current associated to the (complex) stable manifold W spf, xq
(resp. W sph, xq) is T`f (resp. T`h ). Since T`h “ Mpg˚T`f q

´1g˚T`f , we see that g, and there-
fore Γ itself, preserve the line RrT`f s Ă H1,1pXq. Since rT`f s

2 “ 0, Γ fixes a point PrT`f s
of the boundary BHX , so it is elementary. Since in addition Γ contains a loxodromic element,
Theorem 3.2 of [21] shows that Γ˚ is virtually cyclic.
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Now, suppose that Euhpxq “ Esf pxq on A. Then, T´h “ T`f and the group generated by f
and h is elementary. Since it contains a loxodromic element [21, Thm 3.2] says that xf˚, h˚y
is virtually cyclic and fixes also PrT´f s P BHX . This implies that g, hence Γ, preserves the
pair of boundary points tPrT`f s,PrT

´
f su Ă BHX . Thus, in both cases Γ˚ is virtually cyclic and

preserves tPrT`f s,PrT
´
f su Ă BHX .

Proof of Lemma 11.3. The argument is similar to that of Theorem 9.1, in a simplified setting,
so we only sketch it. For µ-almost every x, W spf, xq and W sph, xq are tangent at x. Assume
by contradiction that there exists a measurable subset A1 of A of positive measure such that
W spf, xq ‰ W sph, xq for every x P A1. Then for small ε ą 0 there exists two positive
constants r “ rpεq and c “ cpεq, an integer k ě 2, and a measurable subset Gε Ă A1 such that
µpGεq ą 0 and

- W s
locpf, xq and W s

locph, xq are well defined and of size r for every x P Gε,
- W s

locpf, xq and W s
locph, xq depend continuously on x on Gε Ă X ,

- interxpW
s
locpf, xq,W

u
locpf, xqq “ k for every x P Gε,

- and oscpk,x,rqpW
s
r pf, xq,W

s
r ph, xqq ě c for every x P Gε.

Indeed, to get the first and second properties, one intersects A1 with a large Pesin set Rε. On
A1XRε the multiplicity of intersection x ÞÑ interxpW

s
locpf, xq,W

u
locpf, xqq is semi-continuous,

so we can find k ě 2 and a subset R1ε Ă pA1 XRεq of positive measure such that

(11.1) interxpW
s
locpf, xq,W

u
locpf, xqq “ k

for every x P R1ε. Thus, the k-th osculation number is well defined, and the last property holds
on a subset Gε Ă R1ε of positive measure if c is small.

Let ηs be a Pesin partition subordinate to the local stable manifolds of f . Since hµpfq ą
0 the conditional measures µp¨|ηsq are non-atomic. Thus there exists x P Gε such that x is
an accumulation point of Supp

`

µp¨|ηspxqq|GεXηspxq
˘

. Fix a neighborhood N of x such that
W s
r pf, xq XW

s
r ph, xq XN “ txu, and then pick a sequence pxjq of points in Gε X ηspxq XN

converging to x. The local stable manifolds W s
r ph, xjq form a sequence of disks of size r at xj ,

each of them tangent to W s
r pf, xq (at xj), and all of them disjoint from W s

r ph, xq (because xj
does not belong to W s

r ph, xq). This contradicts Corollary 9.9, and the proof is complete. �

Case 2.– There is a pair of distinct measurable line fields tE1pxq, E2pxqu invariant under Γ.
Again by the Oseledets theorem applied to f , necessarily tE1pxq, E2pxqu “ tE

s
f pxq, E

u
f pxqu.

For µ-almost every x, gptEsf pxq, E
u
f pxquq “ tE

s
f pgpxqq, E

u
f pgpxqqu. As before, consider h “

g´1fg P AutµpXq. Since h is conjugate to f , it is hyperbolic and ergodic with respect to µ, and
tEsf pxq, E

u
f pxqu “ tE

s
hpxq, E

u
hpxqu for almost every x. Replacing h by h´1 if necessary, there

exists a set A of positive measure for which Eshpxq “ Esf pxq, and we conclude as in Case 1.

Case 3.– There is no Γ-invariant line field or pair of line fields. In other words, Cases 1 or 2
are now excluded. This part of the argument is identical to the proof of [16, Thm 5.1.a].

First, we claim that there exists g1, g2 P Γ and a subset A of positive measure such that
Dxg1pE

s
f pxqq R tE

s
f pg1pxqq, E

u
f pg1pxqqu and Dxg2pE

u
f pxqq R tE

s
f pg2pxqq, E

u
f pg2pxqu for ev-

ery x inA. Indeed since we are not in Case 2 (possibly switchingEuf andEsf ) there exists g1 P Γ

and a set A of positive measure such that for x P A, Dxg1pE
s
f pxqq Ć Esf pg1pxqq Y Euf pg1pxqq.

Since we are not in Case 1, there exists g P Γ and a set B of positive measure such that for



RANDOM DYNAMICS ON COMPLEX SURFACES 63

x P B, DxgpE
u
f pxqq ‰ Euf pgpxqq. If DxgpE

s
f pxqq P tE

s
f pgpxqq, E

u
f pgpxqqu on a subset B1

of B of positive measure, then choose k ą 0 and ` ą 0 such that µpf `pAq X B1q ą 0 and
µpfkpgpf `pAqqq X Aq ą 0 and define g2 “ g1f

kgf `; otherwise, set g2 “ gf ` with ` such that
µpf `pAq XBq ą 0. Then change A into A “ AX f´`pB1q (resp. AX f´`pBq).

Denote by ∆ the simplex
 

pa, b, c, dq P pR˚`q
4 ; a` b` c` d “ 1

(

. For α “ pa, b, c, dq in
∆, let να be the probability measure να “ aδf ` bδf´1 ` cδg ` dδg´1 . Then µ is να-stationary
and since µ is f -ergodic and ναptfuq ą 0, it is also ergodic as a να-stationary measure (see [8,
§2.1.3]). Since we are not in Cases 1 or 2 and µ is hyperbolic for f , the invariance principle of
Ledrappier [65] implies that the Lyapunov exponents of µ, viewed as a να-stationary measure,
satisfy λ´α pµq ă λ`α pµq (see Section 13.2.2 of [16]; more precise statements and proofs can be
found in [23, §7]).

Lemma 11.4. There exists a choice of α P ∆ such that µ is a hyperbolic να-stationary measure,
i.e. λ´α pµq ă 0 ă λ`α pµq

Proof. This is automatic when f and g are volume preserving because λ´α pµq “ ´λ
`
α pµq in that

case. For completeness, let us copy the proof given in [16, §13.2.4]. The assumptions of Case 3
and the strict inequality λ´pµq ă λ`pµq imply that

(11.2) α P ∆ ÞÑ pλ´α pµq, λ
`
α pµqq P R

2

is continuous (see [16, Prop. 13.7] or [77, Chap. 9]). Since λ´α pµq ă λ`α pµq for every α P ∆,
one of λ´α and λ`α is non zero. Furthermore, µ being invariant, the involution pa, b, c, dq ÞÑ
pb, a, d, cq interchanges the Lyapunov exponents. It follows that P “ tα P ∆, λ`α ą 0u andN “

tα P ∆, λ´α ă 0u are non-empty open subsets of ∆ such that P YN “ ∆. The connectedness
of ∆ implies P XN ‰ H, as was to be shown. �

Fix α P ∆ such that µ is hyperbolic as a να-stationary measure. The assumptions of Case 3
imply that the stable directions depend on the itinerary so the main result of [16] shows that µ
is fiberwise SRB (on the surface Y ), that is, the unstable conditionals of the measures µx (here
µx “ µ) are given by the Lebesgue measure (in some natural affine parametrizations of the
unstable manifolds by the real line R). Since µ is invariant, we can revert the stable and unstable
directions by applying the argument to F´1, and we conclude that the stable conditionals are
given by the Lebesgue measure as well. The absolute continuity property of the stable and
unstable laminations then implies that µ is absolutely continuous with respect to the Lebesgue
measure on Y .

Conclusion.– Assume that µ is not absolutely continuous with respect to the Lebesgue measure
on Y . The above alternative holds for all subgroups Γ “ xf, gy, with g P AutµpXq arbitrary.
Therefore, AutµpXq

˚ preserves tPrT`f s,PrT
´
f su Ă BHX , which implies that AutµpXq

˚ is vir-
tually cyclic. It remains to prove that AutµpXq itself is virtually cyclic. If not, then AutpXq˝

is infinite, X is a torus C2{Λ (see Proposition 3.3), and AutµpXq X AutpXq˝ is a normal sub-
group of AutµpXq containing infinitely many translations. This group is a closed subgroup of
the compact Lie group AutpXq˝ “ C2{Λ; thus, its connected component of the identity is a
(real) torus H Ă C2{Λ of positive dimension. This torus H is invariant under the action of f
by conjugacy. Since X “ C2{Λ, f is a complex linear Anosov diffeomorphism of X , and it
follows that dimRpHq ě 2. Being H-invariant, µ is then absolutely continuous with respect to
the Lebesgue measure of Y ; this contradiction completes the proof. �
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It is natural to expect that the positive entropy assumption in Theorem 11.1 could be replaced
by a much weaker assumption, namely, “µ gives no mass to proper Zariski closed subsets”. The
case when Supppνq contains a Kummer example is successfully treated in [24]. Also, a version
of Theorem 11.1 can be established for polynomial automorphisms of R2, with essentially the
same proof (see [24]).

APPENDIX A. STRONG LAMINARITY OF AHLFORS CURRENTS

In this appendix, we sketch the proof of Lemma 8.8, by explaining how to adapt the arguments
of [5, 40, 41], written for X “ P2pCq, to our context.

Proof of Lemma 8.8. Let p∆nq be a sequence of unions of disks, as in the definition of injective
Ahlfors currents, such that 1

Mp∆nq
t∆nu converges to T . Since X is projective we can choose a

finite family of meromorphic fibrations $i : X 99K P1 such that

– the general fibers of $i are smooth curves of genus ě 2;
– for every x P X , there are at least two of the fibrations $i, denoted for simplicity by $1

and $2, which are well defined in some neighborhood Ux of x (x is not a base point of
the corresponding pencils), satisfy pd$1 ^ d$2qpxq ‰ 0 (the fibrations are transverse),
and for which the fibers $´1

k p$kpxqq containing x are smooth.

If we blow-up the base points of $k, k “ 1, 2, we obtain a new surface X 1 Ñ X on which each
$k lifts to a regular fibration $1k; the open neighborhood Ux is isomorphic to its preimage in
X 1 so, when working on Ux, we can do as if the two fibrations $k were local submersions with
smooth fibers of genus ě 2.

To construct Tr, we follow the proof of [41, Proposition 4.4] (see also [40, Proposition 3.4]).
The construction works as follows: we fix a sequence prjq converging to zero, and for every j
we extract from 1

Mp∆nq
t∆nu a current Tn,rj made of disks of size« rj which are obtained from

∆n by only keeping graphs of size rj over one of the projections $i.
By a covering argument, it is enough to work locally near a point x, with two projections $1

and $2 as above. Let S Ă C be the unit square tx` iy ; 0 ď x ď 1, 0 ď y ď 1u » r0, 1s2. To
simplify the exposition, we may assume that

(A.1) $kpUxq “ S Ă C Ă P1pCq pfor k “ 1, 2q.

Set rj “ 2´j and consider the subdivision Qj of S » r0, 1s2 into 4j squares Q of size rj .
A connected component of ∆n X $´1

k pQq, for such a small square Q, is called a graph (with
respect to $k) if it lifts to a local section of the fibration $1k : X 1 Ñ P1pCq above Q. Then,
we fix j, intersect ∆n with $´1

k pQq, and keep only the components of $´1
k pQX∆nq, Q P Qj

which are graphs with respect to $k. Such a family of graphs is normal because the fibers of $1k
have genus ě 2 (compare to Lemma 3.5 of [40]).

This being done, we can copy the proof of [41, Proposition 4.4]. Letting n go to `8 and
extracting a converging subsequence, we obtain a uniformly laminar current TQj ,k ď T . Away
from the base points of $k, TQj ,k is made of disks of size — rj which are limits of disks
contained in the ∆n. Combining the two currents TQj ,k, we get a current Trj ď T which is
uniformly laminar in every cube $´1

1 pQq X$´1
2 pQ1q, Q,Q1 P Qj , and such that

(A.2) xT ´ Trj , $
˚
1κP1 `$˚1κP1y ď xT ´ TQj ,1, $

˚
1κP1y ` xT ´ TQj ,2, $

˚
2κP1y,
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where κP1 is the Fubini-Study form. By definition, T will be strongly approximable if locally
MpT ´ Trj q ď Opr2

j q. Using the fact that $˚1κP1 ` $˚1κP1 ě Cκ0 and the Inequality (A.2),
it will be enough to show that xT ´ TQj ,k, $

˚
kκP1y “ Opr2

j q for k “ 1, 2. This itself reduces
to counting (with multiplicity) the number of “good components” of ∆n for the projections
$k : ∆n Ñ Qj that is, the components above the squares Q of Qj that are kept in the above
contruction of TQj ,k (the graphs relative to $k).

The counting argument is identical to [5, §7], except that we apply the Ahlfors theory of
covering surfaces to a union of disks, not just one. For notational ease, set $ “ $k, r “ rj
and Q “ Qj ; Q is a subdivision of S » r0, 1s2 by squares of size 2´j . We decompose Q as a
union of four non-overlapping subdivisions Q`, ` “ 1, 2, 3, 4; by this we mean that for each `,
the squares Q P Q` have disjoint closures Q. Fix such an ` and let q “ #Q` “ 4j´1. Applying
Ahlfors’ theorem to each of the disks constituting ∆n and summing over these disks, we deduce
that the number of good components NpQ`q satisfies (5)

(A.3) NpQ`q ě pq ´ 4q areaP1p∆nq ´ h lengthP1pB∆nq,

where areaP1 (resp. lengthP1) is the area of the projection $p∆nq (resp. length of $pB∆nq),
counted with multiplicity, and h is a constant that depends only on the geometry of Q`. Divid-
ing by areaP1p∆nq, using lengthP1pB∆nq “ opareaP1p∆nqq, which is guaranteed by Ahlfors’
construction, and letting n go to `8, we obtain

(A.4) xTQ|Q` , $˚κP1y ě pq ´ 4qr2 “ areaP1

´

ď

SPQ`
S
¯

´ 4r2.

Finally, summing from ` “ 1 to 4, we see that, relative to $˚κP1 , the mass lost by discarding
the bad components of size r in T is of order Opr2q: this is precisely the required estimate.

Let us now justify the geometric intersection statement, following step by step the proof of
[41, Thm. 4.2]: let S be a current with continuous normalized potential on X; we have to
show that S ^ Tr increases to S ^ T as r decreases to 0. Again the result is local so we work
near x, use the projections $1 and $2, and keep notation as above. Given squares Q,Q1 P Q
and a real number λ ă 1, we denote by λQ the homothetic of Q of factor λ with respect to
its center, and by CpQ,Q1q the cube $´1

1 pQq X $´1
2 pQ1q. Fix ε ą 0. We want to show that

for r ď rpεq, the mass of pT ´ Trq ^ S is smaller than ε. The first observation is that there
exists λpεq P p0, 1q, independent of r, such that translating Q if necessary, the mass of T ^ S
concentrated in

Ť

Q,Q1 CpQ,Q
1qzCpλQ, λQ1q is smaller than ε{2 (see [41, Lem. 4.5]). Fix such

a λ. It only remains to estimate the mass of pT ´ Trq ^ S in
Ť

Q,Q1 CpλQ, λQ
1q. In such a

cube CpλQ, λQ1q the argument presented in [41, pp. 123-124], based on an integration by parts,
gives the estimate

(A.5)
ż

CpλQ,λQ1q
pT ´ Trq ^ S ď CpλqmodcpuS , rq

1

r2
M

`

pT ´ Trq|CpQ,Q1q
˘

,

where modcpuS , rq is the modulus of continuity of the potential uS of S. To conclude, we sum
over all squares Q,Q1 and use the estimate MpT ´ Trq “ Opr2q to get that

(A.6) M
´

pT ´ Trq|Ť
Q,Q1 CpλQ,λQ

1q

¯

ď CωpuS , rq.

This is smaller than ε{2 if r ď rpεq. �

5The term pq ´ 4q instead of pq ´ 2q in [5] is due to the fact that we are projecting on P1 and not on C.
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