GAPS IN DYNAMICAL DEGREES FOR ENDOMORPHISMS AND RATIONAL MAPS

SERGE CANTAT

Abstract

We study the ratio of dynamical degrees $\lambda_{1}(f)^{2} / \lambda_{2}(f)$ for regular, dominant endomorphisms of smooth complex projective surfaces, and obtain a gap property: for $\lambda_{2}(f) \leq D$, there is a uniform $\varepsilon(D)>0$ such that this ratio is never contained in $] 1,1+\varepsilon(D)[$. The proof is a simple variation on the main theorems of [6].

This version is longer than the one submitted for publication. Here, I include some of the proofs of [6], instead of just pointing to this paper.

1. DYNAMICAL DEGREES

Let f be a dominant rational transformation of a smooth complex projective variety X. Let m denote the dimension of X. Let H be a hyperplane section of X. The dynamical degrees $\lambda_{k}(f)$ are defined for each dimension $0 \leq k \leq m$ by the following limits

$$
\begin{equation*}
\lambda_{k}(f)=\lim _{n \rightarrow+\infty}\left(\left(\left(f^{n}\right)^{*} H^{k}\right) \cdot\left(H^{n-k}\right)\right)^{1 / n} \tag{1.1}
\end{equation*}
$$

where (\cdot) denotes the intersection product and $H^{k}=H \cdot H \cdots H$ (with k factors H). Thus, $\lambda_{0}(f)=1$ and $\lambda_{m}(f)$ is the topological degree $\operatorname{deg}_{\text {top }}(f)$ (a positive integer since f is dominant). The sequence $k \mapsto \lambda_{k}(f)$ is log-concave, i.e.

$$
\begin{equation*}
\lambda_{k-1}(f) \lambda_{k+1}(f) \leq \lambda_{k}(f)^{2} \tag{1.2}
\end{equation*}
$$

for all $0<k<m$. In particular, $\lambda_{m}(f)^{k / m} \leq \lambda_{k}(f) \leq \lambda_{1}(f)^{k}$. This proves the following well known result.

Theorem A. There is a uniform lower bound

$$
\lambda_{k}(f) \geq \lambda_{m}(f)^{k / m} \geq 2^{k / m}>1 \quad(\forall 1 \leq k \leq m)
$$

for every variety X of dimension m and every dominant rational transformation f of X with topological degree $\lambda_{m}(f)>1$.

For instance, when f is an endomorphism of the projective space \mathbb{P}^{m} defined by polynomial formulas of degree d, one gets $\lambda_{k}(f)=d^{k}$ and the previous inequality is indeed an equality. This paper discusses whether a further uniform gap $\lambda_{1}(f)^{m} \geq \lambda_{m}(f)(1+\varepsilon)$ is satisfied for maps with $\lambda_{1}(f)^{m}>\lambda_{m}(f)$. We focus on the first interesting case, that is when X is a surface.

2. GAPS FOR SURFACES ?

When $\operatorname{dim}(X)=2$, one gets $\boldsymbol{\lambda}_{1}(f)^{2} \geq \lambda_{2}(f)$. If $\boldsymbol{\lambda}_{2}(f)=1$, i.e. if f is a birational map of X, then either $\lambda_{1}(f)=1=\lambda_{2}(f)$, or $\lambda_{1}(f) \geq \lambda_{L}$, where λ_{L} is the Lehmer number: this is an important consequence of [5] proven in [1]. This inequality may be considered as a gap for dynamical degrees, since $\lambda_{L} \simeq 1.17628>1$.

With the Inequalities (1.2) in mind, one would like to compute the infimum $R(D)$ of $\lambda_{1}(f)^{2} / \lambda_{2}(f)$ over all dominant rational maps of a given surface X (resp. of any surface) with a given topological degree $\lambda_{2}(f)=D$ and a first dynamical degree $\lambda_{1}(f)>\sqrt{\lambda_{2}(f)}$. A less precise question is the following.
Question.- Fix an integer $D \geq 2$. Does there exist a constant $\varepsilon(D)>0$ such that

$$
\begin{equation*}
\lambda_{1}(f)^{2} \geq D(1+\varepsilon(D)) \tag{2.1}
\end{equation*}
$$

for all dominant rational maps of surfaces with $\lambda_{2}(f)=D$ and $\lambda_{1}(f)^{2}>\lambda_{2}(f)$?
If the answer is positive for some family of rational maps, we say that this family satisfies the gap property for λ_{1}. Theorem B below provides such a gap for regular endomorphisms of smooth complex projective surfaces.

3. Monomial maps

Consider a monomial map $f:(x, y) \mapsto\left(\alpha x^{a} y^{b}, \beta x^{c} y^{d}\right)$, viewed as a rational transformation of the projective plane. Set $\tau=a+d$ and $\delta=a d-b c$, the trace and determinant of the 2×2 matrix

$$
A_{f}=\left(\begin{array}{ll}
a & b \tag{3.1}\\
c & d
\end{array}\right)
$$

associated to f. Then $|\delta|=\lambda_{2}(f)$, and the spectral radius of A_{f} is $\lambda_{1}(f)$; changing A_{f} into $-A_{f}$ does not change the dynamical degrees, so we assume $\tau \geq 0$. The characteristic polynomial of A_{f} is $\chi(t)=t^{2}-\tau t+\delta$. If its eigenvalues are complex conjugate, then $\lambda_{1}^{2}(f)=|\delta|=\lambda_{2}(f)$. So, we now assume that χ has two real roots. The largest one is $\lambda_{1}(f)=\frac{1}{2}\left(\tau+\sqrt{\tau^{2}-4 \delta}\right)$; it satisfies

$$
\begin{equation*}
\lambda_{1}(f)^{2}=\frac{1}{2}\left(\tau^{2}-2 \delta+\tau \sqrt{\tau^{2}-4 \delta}\right) \tag{3.2}
\end{equation*}
$$

Thus, with $a=d$ and $b=c=1$ we obtain $\tau=2 a, \delta=a^{2}-1$, and

$$
\begin{equation*}
\frac{\lambda_{1}(f)^{2}}{\lambda_{2}(f)}=\frac{a+1}{a-1} \tag{3.3}
\end{equation*}
$$

As $a \rightarrow+\infty$, the limit is 1 . Thus, if $D=|\delta|$ is not fixed there is no gap for λ_{1}.
Now, if $D=|\delta|$ is fixed there is a gap:
Proposition 3.1. Let D be an integer \geq. If $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a dominant monomial map with $\lambda_{2}(f)=D$ and $\lambda_{1}(f)^{2}>\lambda_{2}(f)$, the ratio $\lambda_{1}(f)^{2} / \lambda_{2}(f)$ is bounded from below by $1+(2 D)^{-1}$.

Proof. As explained above, we may assume $\tau \geq 0$. Since the eigenvalues are distinct, $\tau \neq 0$ and $\tau^{2}-4 \delta \geq 1$; hence, $\tau \geq 1$. Using that $\lambda_{2}(f)=|\delta|$ and Equation (3.2), the lower bound $\lambda_{1}(f)^{2} / \lambda_{2}(f) \geq 1+(2 D)^{-1}$ is equivalent to

$$
\begin{equation*}
\tau^{2}-2 \delta+\tau \sqrt{\tau^{2}-4 \delta} \geq 2|\delta|+1 \tag{3.4}
\end{equation*}
$$

If $\delta<0$, this follows from $\tau \geq 1$. If $\delta>0$, we denote by α and β the two eigenvalues of A_{f}, and we remark that (3.4) is equivalent to

$$
\begin{equation*}
(\alpha-\beta)^{2}+\tau \sqrt{\tau^{2}-4 \delta} \geq 1 \tag{3.5}
\end{equation*}
$$

This is always satisfied, because τ and δ are integers, and $\tau^{2}-4 \delta \geq 1$.
Remark 3.2. Similar examples can be obtained on abelian surfaces. For instance, for any elliptic curve E, one gets linear endomorphisms of $X=E \times E$ with $\lambda_{1}(f)^{2} / \lambda_{2}(f)>1$ but arbitrary close to 1 .

4. REGULAR ENDOMORPISMS

Let us look at regular endomorphisms of projective surfaces. As explained in Section 3, we need to fix $\lambda_{2}(f)$ to some value D in order to get a gap.

Theorem B. Let D be a positive integer. There is a positive real number $\varepsilon(D)$ such that

$$
\frac{\lambda_{1}(f)^{2}}{\lambda_{2}(f)} \geq 1+\varepsilon(D)
$$

for every smooth complex projective surface X and every dominant endomorphism f of X with $\lambda_{2}(f)=D$ and $\lambda_{1}(f)^{2}>\lambda_{2}(f)$.

The proof occupies the rest of this section. So, f will denote a dominant endomorphism of a smooth projective surface X. Since Theorem B is known for $D=1$, we shall always assume $2 \leq \lambda_{2}(f) \leq D$ for some fixed integer D.

The main arguments, described in § 4.2, are taken from the very nice paper [6] of Noboru Nakayama (see also the companion paper [4]). For all necessary results on dynamical degree, we refer to [2].
4.1. When a bound on $\rho(X)$ is satisfied. Since f is dominant, $f_{*} f^{*}$ is the multiplication by $\lambda_{2}(f)$, so f_{*} and f^{*} are isomorphisms of the Néron-Severi group $\mathrm{NS}(X ; \mathbf{Q})$. The dynamical degree $\lambda_{1}(f)$ is the spectral radius of f^{*} on $\operatorname{NS}(X ; \mathbf{R})$ and is the largest eigenvalue of f^{*} on $\mathrm{NS}(X ; \mathbf{R})$; as such, it is an algebraic integer.

Let $\rho(X)$ denote the Picard number of X, i.e. $\rho(X)=\operatorname{dim}_{\mathbf{Q}} \mathrm{NS}(X ; \mathbf{Q})$.
Lemma 4.1. Let D and R be positive integers >1. There is a positive real number $\varepsilon(R, D)$ such that $\lambda_{1}(f)^{2} / \lambda_{2}(f)>1+\varepsilon(R, D)$ for every smooth projective surface X and every regular endomorphism f of X such that $\rho(X) \leq R, \lambda_{2}(f) \leq D$, and $\lambda_{1}(f)^{2}>\lambda_{2}(f)$.

Proof. We can assume $\lambda_{1}(f)^{2}>\lambda_{2}(f)$ and $\lambda_{1}(f)^{2} / \lambda_{2}(f) \leq 2$. Thus, $\lambda_{1}(f)$ is bounded from above by $\sqrt{2 D}$; since $\lambda_{1}(f)$ is the spectral radius of f^{*}, all eigenvalues of f^{*} on $\operatorname{NS}(X ; \mathbf{C})$ have modulus $\leq \sqrt{2 D}$. So, the characteristic polynomial $\chi_{f^{*}}$ of $f^{*}: \mathrm{NS}(X ; \mathbf{Z}) \rightarrow \mathrm{NS}(X ; \mathbf{Z})$ is a polynomial with integer coefficients, of degree R, the coefficients of which are bounded from above by $C(R)(\sqrt{2 D})^{R}$ for some constant $C(R)$. This gives only finitely many possibilities for $\chi_{f^{*}}$, and the result follows.
4.2. Orbits of negative curves, following Nakayama. Consider the set $\operatorname{Neg}(X)$ of irreducible curves $C \subset X$ with $C^{2}<0$ (negative curves).

Pick $C \in \operatorname{Neg}(X)$ and set $C_{1}=f(C)$; let $a>0$ be the integer such that $f_{*}(C)=$ $a C_{1}$ (a is the degree of f along C). If C^{\prime} is another irreducible curve such that $f_{*}\left(C^{\prime}\right)=a^{\prime} C_{1}$ for some $a^{\prime}>0$ then $a C^{\prime}=a^{\prime} C$ in $\operatorname{NS}(X ; \mathbf{Q})$ because f_{*} is injective. This implies that $C^{\prime}=C$ because $C^{2}<0$ and C and C^{\prime} are irreducible and reduced. Thus, $f^{*} C_{1}=b C$ with $a b=\lambda_{2}(f)$; together with

$$
\begin{equation*}
f^{*}\left(C_{1}\right) \cdot C=b C \cdot C=C_{1} \cdot f_{*}(C)=C_{1} \cdot\left(a C_{1}\right) \tag{4.1}
\end{equation*}
$$

this implies

$$
\begin{equation*}
a b=\lambda_{2}(f) \quad \text { and } \quad C_{1}^{2}=(b / a) C^{2}<0 . \tag{4.2}
\end{equation*}
$$

In particular, f_{*} permutes the irreducible curves $C \subset X$ with negative self-intersection. This set of curves is, a priori, infinite, but we have

Lemma 4.2 (Nakayama, see Lem. 10 and Pro. 11 in [6]). Let $R(f)$ be the ramification divisor of f. Let $\operatorname{Neg}(X ; R(f))$ be the set of irreducible components of $R(f)$ with negative self-intersection. Let C be an element of $\operatorname{Neg}(X)$.
(1) There is an integer $0 \leq m \leq \log \left(\left|C^{2}\right|\right)$ such that $f^{m}(C) \in \operatorname{Neg}(X ; R(f))$.
(2) If $C^{2}=-1$ then $C \in \operatorname{Neg}(X ; R(f)), f(C)^{2} \leq-\lambda_{2}(f)$, and $f^{m}(C) \in R(f)$ for a positive integer $m \leq \log \left(\lambda_{2}(f)\right)$.
(3) The set $\operatorname{Neg}(X)$ is finite.
(4) There is an integer $N>0$ such that $f^{N}(C)=C$ for every C in $\operatorname{Neg}(X)$ and $\operatorname{Neg}(X)=\operatorname{Neg}\left(X ; R\left(f^{N}\right)\right)$.

Proof. It suffices to prove (1). With the above notation, the condition $C \subset R(f)$ is equivalent to $b \geq 2$. On the other hand, $b=1$ means $a=\lambda_{2}(f)$; and then $C_{1}^{2}=\lambda_{2}(f)^{-1} C^{2}>C^{2}$, hence $f^{m}(C) \subset R(f)$ for an $m \leq \log \left(-C^{2}\right) / \log (a)$.

This lemma shows that one can contract a sequence of (-1)-curves in an $f^{N_{-}}$ equivariant way to reach a minimal model of X :

Theorem 4.3 (Nakayama). If f is an endomorphism of a smooth projective surface X, there is an integer $N>0$, a birational morphism $\pi: X \rightarrow X_{0}$ onto a minimal model X_{0} of X, and an endomorphism f_{0} of X_{0} such that $\pi \circ f^{N}=f_{0} \circ \pi$.

Remark 4.4. Since the dynamical degrees are invariant under birational conjugacy, we have

$$
\begin{equation*}
\frac{\lambda_{1}(f)^{2}}{\lambda_{2}(f)}=\left(\frac{\lambda_{1}\left(f_{0}\right)^{2}}{\lambda_{2}\left(f_{0}\right)}\right)^{1 / N} \tag{4.3}
\end{equation*}
$$

without any control on N, one can not deduce a gap for f from a gap for f_{0}. But if N and $\rho\left(X_{0}\right)$ are bounded, then we automatically get a gap from Theorem 4.3 and Lemma 4.1. So, we shall either control N and $\rho\left(X_{0}\right)$, and for this we follow closely [6], or reduce the computation to the case of monomial maps (with the same value of D).

Let us replace f by $g:=f^{N}$ to assume that $\operatorname{Neg}(X)=\operatorname{Neg}(X ; R(g))$ and that g fixes each irreducible curve $C \subset R(g)$. From Equations (4.1) and (4.2) we obtain
(1) $\lambda_{2}(g)$ is a square: there is an integer $a_{g}>0$ such that $a_{g}^{2}=\operatorname{deg}_{t o p}(g)$;
(2) $g^{*}(C)=g_{*}(C)=a_{g} C$;
(3) the multiplicity of C in $R(g)$ is $a_{g}-1$.

Thus, if we set

$$
\begin{equation*}
N_{X}=\sum_{C \in \operatorname{Neg}(X)} C \tag{4.4}
\end{equation*}
$$

we can write $R(g)=\left(a_{g}-1\right) N_{X}+R^{+}(g)$ for some effective divisor $R^{+}(g)$, the components of which have non-negative self-intersection (these components are numerically effective). For C in $\operatorname{Neg}(X)$, we obtain the following linear equivalence

$$
\begin{equation*}
K_{X}+C \simeq g^{*}\left(K_{X}+C\right)+R^{+}(g)+\left(a_{g}-1\right)\left(N_{X}-C\right) . \tag{4.5}
\end{equation*}
$$

Thus, by adjunction formula, the ramification divisor $R\left(g_{\mid C}\right)$ of $g_{\mid C}: C \rightarrow C$ satisfies $R\left(g_{\mid C}\right) \simeq R^{+}(g)_{\mid C}+\left(a_{g}-1\right)\left(N_{X}-C\right)_{\mid C}$. And the Equality (4.5) gives

$$
\begin{equation*}
\left(a_{g}-1\right)\left(K_{X} \cdot C+C^{2}\right)+R^{+}(g) \cdot C+\left(a_{g}-1\right)\left(N_{X}-C\right) \cdot C=0 . \tag{4.6}
\end{equation*}
$$

Lemma 4.5 (Nakayama, Lem. 13 of [6]).
(1) Let C be an element of $\operatorname{Neg}(X)$. The arithmetic genus of C is ≤ 1, and if it is equal to 1 then C is a connected component of the support of $R(g)$ (hence also of N_{X}), where $g=f^{N}$.
(2) A connected component of the support of N_{X} is an irreducible curve, or a chain of rational curves, or a cycle of rational curves.

Proof. The arithmetic genus $p_{a}(C)$ is defined by $2 p_{a}(C)-2=K_{X} \cdot C+C^{2}$. Thus, Equation (4.6) gives

$$
\begin{equation*}
2\left(a_{g}-1\right)\left(p_{a}(C)-1\right)=-\left(a_{g}-1\right)\left(N_{X}-C\right) \cdot C-R^{+}(g) \cdot C . \tag{4.7}
\end{equation*}
$$

Since $R^{+}(g)$ is numerically effective and C has multiplicity 1 in N_{X}, we get $p_{a}(C)-1 \leq 0$, with equality if and only if $\left(N_{X}-C\right) \cdot C=0=R^{+}(g) \cdot C$. The first assertion follows.

Now, if C and C^{\prime} are two elements of $\operatorname{Neg}(X)$ with $C \cdot C^{\prime}>0$, then the arithmetic genus of both C and C^{\prime} is 0 ; this implies that C and C^{\prime} are smooth rational curves. Equation (4.7) implies that $C \cdot C^{\prime} \leq C \cdot\left(N_{X}-C\right) \leq 2$ and $R^{+}(g) \cdot C=0$ in case of equality. Thus, if $C \cdot C^{\prime}=2, C \cup C^{\prime}$ is a connected component of the support of both N_{X} and $R(g)$. If, moreover, C and C^{\prime} are tangent at some point p, then $R\left(g_{\mid C}\right)=\left(a_{g}-1\right) C_{\mid C}^{\prime}, g_{\mid C}^{-1}(p)=p$ with multiplicity $a_{g}=\operatorname{deg}_{t o p}\left(g_{\mid C}\right)$, and $g_{\mid C}$ is unramified on $C \backslash\{p\}$: this is a contradiction because a polynomial transformation of the affine line of degree $a_{g}>1$ has at least one ramification point. Thus, if $C \cdot C^{\prime}=2, C \cup C^{\prime}$ is a cycle of two smooth rational curves and it coïncides with a connected component of the support of both N_{X} and $R(g)$. If C intersects another element $C^{\prime \prime}$ of $\operatorname{Neg}(X)$, then the two points of intersection are distinct, by the same argument, and $C \cdot R^{+}(g)=0$. Thus, a connected component of the support of N_{X} is a chain or a cycle of smooth rational curves. If it is a cycle, it is also a connected component of the support of $R()$.
4.3. Rational surfaces. Assume that X is rational. We follow the proof of Theorem 17 in [6]. If $\rho(X) \leq 3, \S 4.1$ shows that the endomorphisms of X satisfy a gap for λ_{1}. Thus, we assume that $\rho(X) \geq 4$. Since X is the blow-up of a minimal rational surface (the plane, the quadric, or a Hirzebruch surface), there is a fibration $\pi: X \rightarrow B$ such that
(i) B is the projective line \mathbb{P}^{1} and the generic fiber of π is a projective line;
(ii) there is at least one singular fiber F;
(iii) every singular fiber is a tree of smooth rational curves with negative selfintersection;
(iv) there is at least one section S of π with self-intersection $S^{2}<0$.

Since X admits an endomorphism with $\lambda_{2}(f)>1$, we also know that
(iii') every singular fiber is a chain of smooth rational curves with negative selfintersections.
Indeed, such a fiber is entirely contained in N_{X}. Since S is also contained in N_{X}, we see that N_{X} is connected and contains at least three irreducible components. Thus, Lemma 4.5 implies that (iii') holds and that
(v) π has at most 2 singular fibers and N_{X} is connected and is either a chain or a cycle of rational curves.

Case of a chain.- Assume that N_{X} is a chain of rational curves. Either f or f^{2} fixes each irreducible component of N_{X} (because $f(C) \cap f\left(C^{\prime}\right)=f\left(C \cap C^{\prime}\right)$). Thus, when contracting (-1)-curves, we can do it f^{2}-equivariantly up to a minimal model of X. Since a minimal rational surface satisfies $\rho\left(X_{0}\right)=2$, the gap follows from Remark 4.4.

Case of a cycle.- Now, assume that N_{X} is a cycle of rational curves. There are two possibilities :
(1) N_{X} is the union of two singular fibers F and F^{\prime} and two sections S and S^{\prime};
(2) N_{X} is the union of the unique singular fiber F of π and two sections S and S^{\prime}, with $S \cap S^{\prime}=\{p\}$ for some $p \notin F$.

In the first case, we can contract (-1)-curves contained in the two singular fibers to reach a minimal model $\eta: X \rightarrow X_{0}$ on which $g:=f^{N}$ induces an endomorphism g_{0} and $\pi: X \rightarrow B$ induces a rational fibration $\pi_{0}: X_{0} \rightarrow B$ such that

- $F_{0}:=\eta(F), F_{0}^{\prime}:=\eta\left(F^{\prime}\right)$ are two (smooth) fibers of $\pi_{0}, S_{0}:=\eta(S)$ and $S_{0}^{\prime}:=\eta\left(S^{\prime}\right)$ are two sections of π_{0};
- f induces a rational transformation f_{0} of X_{0} such that $f_{\mid X_{0} \backslash R\left(g_{0}\right)}$ is regular and $f_{0}^{N}=g_{0}$;
- $F_{0} \cup F_{0}^{\prime} \cup S_{0} \cup S_{0}^{\prime}$ is f_{0}-invariant and coïncides with $R\left(g_{0}\right)$.

Then, the complement of $R\left(g_{0}\right)$ in X_{0} is a torus $T \simeq \mathbb{G}_{m} \times \mathbb{G}_{m}$ on which f_{0} and g_{0} act as regular endomorphisms. The restriction of f_{0} to $T \simeq \mathbb{G}_{m} \times \mathbb{G}_{m} \simeq \mathbf{C}^{\times} \times \mathbf{C}^{\times}$ is monomial: one can find integers a, b, c, d and elements α, β in \mathbf{C}^{*} such that $f_{0}(x, y)=\left(\alpha x^{a} y^{b}, \beta x^{c} y^{d}\right)$. From Section 3, we know that such transformations satisfy the gap property for λ_{1}.

Let us show that the second case does not occur. We shall need the following lemma (see Lem. 16 of [6]).

Lemma 4.6. Let $U=\sum_{i=1}^{k} a_{i} C_{i}$ be an effective divisor on a smooth projective surface such that $a_{i}>0$ for $1 \leq i \leq k$ and the C_{i} form a chain of smooth rational curves starting with C_{1} and ending with C_{k}. If

$$
K_{X} \cdot U+2=0 \text { and } U \cdot C_{i}=0 \text { for all } i
$$

then $a_{1}=a_{k}=1, C_{i}^{2}=-1$ for some $i<k$ and $C_{j}^{2}=-1$ for some $j>1$.
Proof. From $U \cdot C_{i}=0$ we get $a_{1} C_{1}^{2}+a_{2}=0, a_{k-1}+a_{k} C_{k}^{2}=0$ and $a_{i-1}+a_{i} C_{i}^{2}+$ $a_{i+1}=0$ for $1<i<k$. This implies that $C_{i}^{2}<0$ for all i and that a_{1} divides a_{j} for every $j \geq 1$. From $K_{X} \cdot U+2=0$ we deduce that a_{1} is equal to 1 or 2 . If $a_{1}=2$, then $U_{0}=(1 / 2) U$ is an effective divisor such that $K_{X} \cdot U_{0}=-1$ and $U_{0}^{2}=0$, so that the arithmetic genus of U_{0} should be $1 / 2$, and we get a contradiction. So $a_{1}=1$ and by symmetry $a_{k}=1$ as well.

If $C_{i}^{2} \leq-2$ for each $i>1$, then $K_{X} \cdot C_{i} \geq 0$ for each $i>1$ (by the genus formula) and $2+K_{X} \cdot U \geq 2+K_{X} \cdot C_{1}=-C_{1}^{2}$, which gives $C_{1} \geq 2$, a contradiction.

Let F be the singular fiber of π. Then $F=\sum_{i} a_{i} C_{i}$ for a chain of rational curves C_{i}, and moving F to a nearby smooth fiber we see that $F \cdot C_{i}=0$ for each i, and $K_{X} \cdot F=-2$. Thus, Lemma 4.6 can be applied to $U=F$.

First, one applies this lemma to contract a (-1)-curve contained in F that does not intersect S^{\prime}; then we repeat this step until we reach a model X_{1} of X in which the image S_{1} of S satisfies $S_{1}^{2}=0$. This is always possible, at least after permutation of S and S^{\prime}, since otherwise we would reach a minimal model X_{0} with two sections of negative self-intersection, but no such surface exists.

Then, one applies Lemma 4.6 to contract (-1) curves of the singular fiber that do not intersect S_{1} in order to reach a relatively minimal model X_{0} of X in which S becomes a section S_{0} with $S_{0}^{2}=0$ and S^{\prime} provides a second section S_{0}^{\prime}.

The existence of a section S_{0} with self-intersection 0 implies that X_{0} is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Since S_{0}^{\prime} intersects $S_{0},\left(S_{0}^{\prime}\right)^{2} \geq 2$. By construction, $q_{0}:=F_{0} \cap S_{0}^{\prime}$ is not contained in S_{0}. Consider the section containing q_{0} which is horizontal, i.e. linearly equivalent to S_{0}. This section is not S_{0} and, its self-intersection being 0 , it is not equal to S_{0}^{\prime} either. Its proper transform in X is a negative curve; this proper transform should be in $\operatorname{Neg}(X)$, and we get a contradiction.
4.4. Ruled surfaces. If X is ruled but not rational, the Albanese map $\alpha: X \rightarrow B$ is a surjective morphism onto a curve B of genus $\geq 1\left({ }^{1}\right)$. There is an endomorphism

[^0]f_{B} of B such that $\alpha \circ f=f_{B} \circ \alpha$; in particular, each fiber $X_{b}:=\alpha^{-1}(b)$ is mapped to the fiber $X_{f_{B}(b)}$ by f. Then $\lambda_{1}\left(f_{B}\right)$ is an integer, the topological degree δ of $f_{\mid X_{b}}: X_{b} \rightarrow X_{f_{B}(b)}$ for a generic point $b \in B$ is also an integer, and we have
\[

$$
\begin{equation*}
\lambda_{1}(f)=\max \left\{\lambda_{1}\left(f_{B}\right), \delta\right\} \text { and } \lambda_{2}(f)=\lambda_{1}\left(f_{B}\right) \delta ; \tag{4.8}
\end{equation*}
$$

\]

see [3] for the general setting of rational maps permuting the fibers of a fibration. Thus, we obtain the gap property for $\lambda_{1}(f)$ with $\varepsilon(D)=\frac{1}{D-1}$, i.e. $\lambda_{1}(f)^{2} \geq$ $\lambda_{2}(f)\left(1+\frac{1}{D-1}\right)$ if $\lambda_{2}(f) \leq D$ and $\lambda_{1}(f)^{2}>\lambda_{2}(f)$.
4.5. Surfaces with non-negative Kodaira dimension. Assume that $\operatorname{kod}(X) \geq 0$. Since every dominant rational transformation of a surface X of general type is a birational transformation of finite order, we have $\operatorname{kod}(X) \in\{0,1\}$.

When $\operatorname{kod}(X)=1$ the Kodaira-Iitaka fibration $\Phi: X \rightarrow B$ maps X onto a smooth curve B and there is an automorphism f_{B} of B such that $\Phi \circ f=f_{B} \circ \Phi$; by a superb theorem of Noboru Nakayama and De-Qi Zhang, f_{B} has finite order (see [7]). Then, one easily shows that $\lambda_{1}(f)=\lambda_{2}(f)$. In particular, $\lambda_{1}(f)^{2}=$ $\lambda_{2}(f)^{2}$ and we have a gap property as in Theorem B with $\varepsilon(D)=D-1$.

When $\operatorname{kod}(X)=0$, the unique minimal model X_{0} of X must be a torus, a hyperelliptic surface, an Enriques or a K3 surface. Up to multiplication by an element of \mathbf{C}^{\times}, there is a unique non-zero section Ω of $K_{X}, f^{*} \Omega=\delta \Omega$ with $\delta^{2}=\lambda_{2}(f)$, and the exceptional locus of the birational morphism $\pi: X \rightarrow X_{0}$ is the zero locus of Ω. Thus, f preserves this locus and induces a regular endomorphism of X_{0}. Since K3 and Enriques surfaces do not admit endomorphisms with $\lambda_{2}(f)>1$, we have $\rho\left(X_{0}\right) \leq 6$ (it would be ≤ 22 for K3 surfaces). Thus, the gap property follows when $\operatorname{kod}(X)=0$.
4.6. Conclusion. The last three subsections establish the gap property when X is rational, when X is ruled but not rational, and when $\operatorname{kod}(X) \geq 0$. From the classification of surfaces, this covers all possible cases, and Theorem B is proven.

5. Final comments

5.1. It would be nice to determine the infimum of $\lambda_{1}(f)^{2} / \lambda_{2}(f)$ for dominant endomorphisms of complex projective surfaces with a fixed $\lambda_{2}(f)=D$, say for $D=2,3,4$. The proof of Theorem B shows that this is a tractable problem.
5.2. It seems reasonable to expect that Theorem B extends to projective surfaces over fields of positive characteristic, and to singular surfaces too.
5.3. As explained in § 2, the natural question is to decide whether a similar gap property holds for rational transformations of surfaces. This question was originally asked by Curtis T. McMullen, who also suggested Theorem B in a private communication. The difficult case is the one of rational transformations of the projective plane. I don't know what to expect in this more general context (see [1] for birational maps).
5.4. One can also ask similar questions for any fixed pair $\left(\operatorname{dim}(X), \operatorname{deg}_{t o p}(f)\right)=$ (m, D), the first ratios to consider being $\lambda_{1}(f)^{m} / \operatorname{deg}_{\text {top }}(f)$ and $\lambda_{1}^{2} / \lambda_{2}(f)$.

References

[1] Jérémy Blanc and Serge Cantat. Dynamical degrees of birational transformations of projective surfaces. J. Amer. Math. Soc., 29(2):415-471, 2016.
[2] Nguyen-Bac Dang. Degrees of iterates of rational maps on normal projective varieties. Proc. Lond. Math. Soc. (3), 121(5):1268-1310, 2020.
[3] Tien-Cuong Dinh and Viêt-Anh Nguyên. Comparison of dynamical degrees for semiconjugate meromorphic maps. Comment. Math. Helv., 86(4):817-840, 2011.
[4] Yoshio Fujimoto and Noboru Nakayama. Complex projective manifolds which admit nonisomorphic surjective endomorphisms. In Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, B9, pages 51-79. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.
[5] Curtis T. McMullen. Coxeter groups, Salem numbers and the Hilbert metric. Publ. Math. Inst. Hautes Études Sci., (95):151-183, 2002.
[6] Noboru Nakayama. Ruled surfaces with non-trivial surjective endomorphisms. Kyushu J. Math., 56(2):433-446, 2002.
[7] Noboru Nakayama and De-Qi Zhang. Building blocks of étale endomorphisms of complex projective manifolds. Proc. Lond. Math. Soc. (3), 99(3):725-756, 2009.

IRMAR (UMR 6625 du CNRS), Université de Rennes 1, France
Email address: serge.cantat@univ-rennes1.fr

[^0]: ${ }^{1}$ Moreover, by a theorem of M. Segami, α endows X with the structure of a \mathbb{P}^{1}-bundle, i.e. X is ruled and the ruling is relatively minimal (see Pro. 14 of [6]).

