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ABSTRACT. We study the ratio of dynamical degrees λ1( f )2/λ2( f ) for regular,
dominant endomorphisms of smooth complex projective surfaces, and obtain a
gap property: for λ2( f ) ≤ D, there is a uniform ε(D) > 0 such that this ratio
is never contained in ]1,1+ ε(D)[. The proof is a simple variation on the main
theorems of [6].

This version is longer than the one submitted for publication. Here, I include
some of the proofs of [6], instead of just pointing to this paper.

1. DYNAMICAL DEGREES

Let f be a dominant rational transformation of a smooth complex projective
variety X . Let m denote the dimension of X . Let H be a hyperplane section of
X . The dynamical degrees λk( f ) are defined for each dimension 0≤ k≤m by the
following limits

λk( f ) = lim
n→+∞

(
(( f n)∗Hk) · (Hn−k)

)1/n
(1.1)

where ( · ) denotes the intersection product and Hk = H ·H · · ·H (with k factors
H). Thus, λ0( f ) = 1 and λm( f ) is the topological degree degtop( f ) (a positive
integer since f is dominant). The sequence k 7→ λk( f ) is log-concave, i.e.

λk−1( f )λk+1( f )≤ λk( f )2 (1.2)

for all 0 < k < m. In particular, λm( f )k/m ≤ λk( f ) ≤ λ1( f )k. This proves the
following well known result.

Theorem A. There is a uniform lower bound

λk( f )≥ λm( f )k/m ≥ 2k/m > 1 (∀1≤ k ≤ m)

for every variety X of dimension m and every dominant rational transformation f
of X with topological degree λm( f )> 1.
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For instance, when f is an endomorphism of the projective space Pm defined
by polynomial formulas of degree d, one gets λk( f ) = dk and the previous in-
equality is indeed an equality. This paper discusses whether a further uniform gap
λ1( f )m ≥ λm( f )(1+ ε) is satisfied for maps with λ1( f )m > λm( f ). We focus on
the first interesting case, that is when X is a surface.

2. GAPS FOR SURFACES ?

When dim(X)= 2, one gets λ1( f )2≥ λ2( f ). If λ2( f )= 1, i.e. if f is a birational
map of X , then either λ1( f ) = 1 = λ2( f ), or λ1( f )≥ λL, where λL is the Lehmer
number: this is an important consequence of [5] proven in [1]. This inequality
may be considered as a gap for dynamical degrees, since λL ' 1.17628 > 1.

With the Inequalities (1.2) in mind, one would like to compute the infimum
R(D) of λ1( f )2/λ2( f ) over all dominant rational maps of a given surface X (resp.
of any surface) with a given topological degree λ2( f ) = D and a first dynamical
degree λ1( f )>

√
λ2( f ). A less precise question is the following.

Question.– Fix an integer D≥ 2. Does there exist a constant ε(D)> 0 such that

λ1( f )2 ≥ D(1+ ε(D)) (2.1)

for all dominant rational maps of surfaces with λ2( f ) = D and λ1( f )2 > λ2( f )?

If the answer is positive for some family of rational maps, we say that this
family satisfies the gap property for λ1. Theorem B below provides such a gap for
regular endomorphisms of smooth complex projective surfaces.

3. MONOMIAL MAPS

Consider a monomial map f : (x,y) 7→ (αxayb,βxcyd), viewed as a rational
transformation of the projective plane. Set τ = a+ d and δ = ad− bc, the trace
and determinant of the 2×2 matrix

A f =

(
a b
c d

)
(3.1)

associated to f . Then |δ|= λ2( f ), and the spectral radius of A f is λ1( f ); changing
A f into −A f does not change the dynamical degrees, so we assume τ ≥ 0. The
characteristic polynomial of A f is χ(t) = t2−τt+δ. If its eigenvalues are complex
conjugate, then λ2

1( f ) = |δ|= λ2( f ). So, we now assume that χ has two real roots.

The largest one is λ1( f ) = 1
2

(
τ+
√

τ2−4δ

)
; it satisfies

λ1( f )2 =
1
2

(
τ

2−2δ+ τ

√
τ2−4δ

)
. (3.2)
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Thus, with a = d and b = c = 1 we obtain τ = 2a, δ = a2−1, and

λ1( f )2

λ2( f )
=

a+1
a−1

. (3.3)

As a→+∞, the limit is 1. Thus, if D = |δ| is not fixed there is no gap for λ1.

Now, if D = |δ| is fixed there is a gap:

Proposition 3.1. Let D be an integer≥ 1. If f : P2 99KP2 is a dominant monomial
map with λ2( f ) = D and λ1( f )2 > λ2( f ), the ratio λ1( f )2/λ2( f ) is bounded from
below by 1+(2D)−1.

Proof. As explained above, we may assume τ ≥ 0. Since the eigenvalues are
distinct, τ 6= 0 and τ2− 4δ ≥ 1; hence, τ ≥ 1. Using that λ2( f ) = |δ| and Equa-
tion (3.2), the lower bound λ1( f )2/λ2( f )≥ 1+(2D)−1 is equivalent to

τ
2−2δ+ τ

√
τ2−4δ≥ 2|δ|+1. (3.4)

If δ < 0, this follows from τ ≥ 1. If δ > 0, we denote by α and β the two eigen-
values of A f , and we remark that (3.4) is equivalent to

(α−β)2 + τ

√
τ2−4δ≥ 1. (3.5)

This is always satisfied, because τ and δ are integers, and τ2−4δ≥ 1. �

Remark 3.2. Similar examples can be obtained on abelian surfaces. For in-
stance, for any elliptic curve E, one gets linear endomorphisms of X = E ×E
with λ1( f )2/λ2( f )> 1 but arbitrary close to 1.

4. REGULAR ENDOMORPISMS

Let us look at regular endomorphisms of projective surfaces. As explained in
Section 3, we need to fix λ2( f ) to some value D in order to get a gap.

Theorem B. Let D be a positive integer. There is a positive real number ε(D)

such that
λ1( f )2

λ2( f )
≥ 1+ ε(D)

for every smooth complex projective surface X and every dominant endomorphism
f of X with λ2( f ) = D and λ1( f )2 > λ2( f ).

The proof occupies the rest of this section. So, f will denote a dominant en-
domorphism of a smooth projective surface X . Since Theorem B is known for
D = 1, we shall always assume 2≤ λ2( f )≤ D for some fixed integer D.
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The main arguments, described in § 4.2, are taken from the very nice paper [6]
of Noboru Nakayama (see also the companion paper [4]). For all necessary results
on dynamical degree, we refer to [2].

4.1. When a bound on ρ(X) is satisfied. Since f is dominant, f∗ f ∗ is the mul-
tiplication by λ2( f ), so f∗ and f ∗ are isomorphisms of the Néron-Severi group
NS(X ;Q). The dynamical degree λ1( f ) is the spectral radius of f ∗ on NS(X ;R)

and is the largest eigenvalue of f ∗ on NS(X ;R); as such, it is an algebraic integer.
Let ρ(X) denote the Picard number of X , i.e. ρ(X) = dimQ NS(X ;Q).

Lemma 4.1. Let D and R be positive integers > 1. There is a positive real number
ε(R,D) such that λ1( f )2/λ2( f )> 1+ε(R,D) for every smooth projective surface
X and every regular endomorphism f of X such that ρ(X) ≤ R, λ2( f ) ≤ D, and
λ1( f )2 > λ2( f ).

Proof. We can assume λ1( f )2 > λ2( f ) and λ1( f )2/λ2( f ) ≤ 2. Thus, λ1( f ) is
bounded from above by

√
2D; since λ1( f ) is the spectral radius of f ∗, all eigen-

values of f ∗ on NS(X ;C) have modulus≤
√

2D. So, the characteristic polynomial
χ f ∗ of f ∗ : NS(X ;Z)→NS(X ;Z) is a polynomial with integer coefficients, of de-
gree R, the coefficients of which are bounded from above by C(R)(

√
2D)R for

some constant C(R). This gives only finitely many possibilities for χ f ∗ , and the
result follows. �

4.2. Orbits of negative curves, following Nakayama. Consider the set Neg(X)

of irreducible curves C ⊂ X with C2 < 0 (negative curves).
Pick C ∈ Neg(X) and set C1 = f (C); let a > 0 be the integer such that f∗(C) =

aC1 (a is the degree of f along C). If C′ is another irreducible curve such that
f∗(C′) = a′C1 for some a′ > 0 then aC′ = a′C in NS(X ;Q) because f∗ is injective.
This implies that C′ =C because C2 < 0 and C and C′ are irreducible and reduced.
Thus, f ∗C1 = bC with ab = λ2( f ); together with

f ∗(C1) ·C = bC ·C =C1 · f∗(C) =C1 · (aC1) (4.1)

this implies
ab = λ2( f ) and C2

1 = (b/a)C2 < 0. (4.2)

In particular, f∗ permutes the irreducible curves C⊂X with negative self-intersection.
This set of curves is, a priori, infinite, but we have

Lemma 4.2 (Nakayama, see Lem. 10 and Pro. 11 in [6]). Let R( f ) be the ram-
ification divisor of f . Let Neg(X ;R( f )) be the set of irreducible components of
R( f ) with negative self-intersection. Let C be an element of Neg(X).

(1) There is an integer 0≤ m≤ log(|C2|) such that f m(C) ∈ Neg(X ;R( f )).
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(2) If C2 = −1 then C ∈ Neg(X ;R( f )), f (C)2 ≤ −λ2( f ), and f m(C) ∈ R( f )
for a positive integer m≤ log(λ2( f )).

(3) The set Neg(X) is finite.
(4) There is an integer N > 0 such that f N(C) =C for every C in Neg(X) and

Neg(X) = Neg(X ;R( f N)).

Proof. It suffices to prove (1). With the above notation, the condition C ⊂ R( f )
is equivalent to b ≥ 2. On the other hand, b = 1 means a = λ2( f ); and then
C2

1 = λ2( f )−1C2 >C2, hence f m(C)⊂ R( f ) for an m≤ log(−C2)/ log(a). �

This lemma shows that one can contract a sequence of (−1)-curves in an f N-
equivariant way to reach a minimal model of X :

Theorem 4.3 (Nakayama). If f is an endomorphism of a smooth projective sur-
face X, there is an integer N > 0, a birational morphism π : X → X0 onto a mini-
mal model X0 of X, and an endomorphism f0 of X0 such that π◦ f N = f0 ◦π.

Remark 4.4. Since the dynamical degrees are invariant under birational conju-
gacy, we have

λ1( f )2

λ2( f )
=

(
λ1( f0)

2

λ2( f0)

)1/N

; (4.3)

without any control on N, one can not deduce a gap for f from a gap for f0. But
if N and ρ(X0) are bounded, then we automatically get a gap from Theorem 4.3
and Lemma 4.1. So, we shall either control N and ρ(X0), and for this we follow
closely [6], or reduce the computation to the case of monomial maps (with the
same value of D).

Let us replace f by g := f N to assume that Neg(X) = Neg(X ;R(g)) and that g
fixes each irreducible curve C ⊂ R(g). From Equations (4.1) and (4.2) we obtain

(1) λ2(g) is a square: there is an integer ag > 0 such that a2
g = degtop(g);

(2) g∗(C) = g∗(C) = agC;
(3) the multiplicity of C in R(g) is ag−1.

Thus, if we set
NX = ∑

C∈Neg(X)

C, (4.4)

we can write R(g) = (ag− 1)NX +R+(g) for some effective divisor R+(g), the
components of which have non-negative self-intersection (these components are
numerically effective). For C in Neg(X), we obtain the following linear equiva-
lence

KX +C ' g∗(KX +C)+R+(g)+(ag−1)(NX −C). (4.5)
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Thus, by adjunction formula, the ramification divisor R(g|C) of g|C : C→C satis-
fies R(g|C)' R+(g)|C +(ag−1)(NX −C)|C. And the Equality (4.5) gives

(ag−1)(KX ·C+C2)+R+(g) ·C+(ag−1)(NX −C) ·C = 0. (4.6)

Lemma 4.5 (Nakayama, Lem. 13 of [6]).
(1) Let C be an element of Neg(X). The arithmetic genus of C is ≤ 1, and if

it is equal to 1 then C is a connected component of the support of R(g)
(hence also of NX ), where g = f N .

(2) A connected component of the support of NX is an irreducible curve, or a
chain of rational curves, or a cycle of rational curves.

Proof. The arithmetic genus pa(C) is defined by 2pa(C)−2 = KX ·C+C2. Thus,
Equation (4.6) gives

2(ag−1)(pa(C)−1) =−(ag−1)(NX −C) ·C−R+(g) ·C. (4.7)

Since R+(g) is numerically effective and C has multiplicity 1 in NX , we get
pa(C)− 1 ≤ 0, with equality if and only if (NX −C) ·C = 0 = R+(g) ·C. The
first assertion follows.

Now, if C and C′ are two elements of Neg(X) with C ·C′> 0, then the arithmetic
genus of both C and C′ is 0; this implies that C and C′ are smooth rational curves.
Equation (4.7) implies that C ·C′ ≤ C · (NX −C) ≤ 2 and R+(g) ·C = 0 in case
of equality. Thus, if C ·C′ = 2, C∪C′ is a connected component of the support
of both NX and R(g). If, moreover, C and C′ are tangent at some point p, then
R(g|C) = (ag− 1)C′|C, g−1

|C (p) = p with multiplicity ag = degtop(g|C), and g|C is
unramified on C\{p}: this is a contradiction because a polynomial transformation
of the affine line of degree ag > 1 has at least one ramification point. Thus, if
C ·C′ = 2, C∪C′ is a cycle of two smooth rational curves and it coïncides with a
connected component of the support of both NX and R(g). If C intersects another
element C′′ of Neg(X), then the two points of intersection are distinct, by the same
argument, and C ·R+(g) = 0. Thus, a connected component of the support of NX

is a chain or a cycle of smooth rational curves. If it is a cycle, it is also a connected
component of the support of R(). �

4.3. Rational surfaces. Assume that X is rational. We follow the proof of The-
orem 17 in [6]. If ρ(X) ≤ 3, § 4.1 shows that the endomorphisms of X satisfy a
gap for λ1. Thus, we assume that ρ(X) ≥ 4. Since X is the blow-up of a mini-
mal rational surface (the plane, the quadric, or a Hirzebruch surface), there is a
fibration π : X → B such that

(i) B is the projective line P1 and the generic fiber of π is a projective line;



GAPS IN DYNAMICAL DEGREES FOR RATIONAL MAPS 7

(ii) there is at least one singular fiber F ;
(iii) every singular fiber is a tree of smooth rational curves with negative self-

intersection;
(iv) there is at least one section S of π with self-intersection S2 < 0.

Since X admits an endomorphism with λ2( f )> 1, we also know that

(iii’) every singular fiber is a chain of smooth rational curves with negative self-
intersections.

Indeed, such a fiber is entirely contained in NX . Since S is also contained in NX ,
we see that NX is connected and contains at least three irreducible components.
Thus, Lemma 4.5 implies that (iii’) holds and that

(v) π has at most 2 singular fibers and NX is connected and is either a chain or
a cycle of rational curves.

Case of a chain.– Assume that NX is a chain of rational curves. Either f or f 2

fixes each irreducible component of NX (because f (C)∩ f (C′)= f (C∩C′)). Thus,
when contracting (−1)-curves, we can do it f 2-equivariantly up to a minimal
model of X . Since a minimal rational surface satisfies ρ(X0) = 2, the gap follows
from Remark 4.4.

Case of a cycle.– Now, assume that NX is a cycle of rational curves. There are
two possibilities :

(1) NX is the union of two singular fibers F and F ′ and two sections S and S′;
(2) NX is the union of the unique singular fiber F of π and two sections S and

S′, with S∩S′ = {p} for some p /∈ F .

In the first case, we can contract (−1)-curves contained in the two singular
fibers to reach a minimal model η : X → X0 on which g := f N induces an endo-
morphism g0 and π : X → B induces a rational fibration π0 : X0→ B such that

• F0 := η(F), F ′0 := η(F ′) are two (smooth) fibers of π0, S0 := η(S) and
S′0 := η(S′) are two sections of π0;
• f induces a rational transformation f0 of X0 such that f|X0\R(g0) is regular

and f N
0 = g0;

• F0∪F ′0∪S0∪S′0 is f0-invariant and coïncides with R(g0).

Then, the complement of R(g0) in X0 is a torus T 'Gm×Gm on which f0 and g0

act as regular endomorphisms. The restriction of f0 to T 'Gm×Gm ' C××C×

is monomial: one can find integers a, b, c, d and elements α, β in C∗ such that
f0(x,y) = (αxayb,βxcyd). From Section 3, we know that such transformations
satisfy the gap property for λ1.
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Let us show that the second case does not occur. We shall need the following
lemma (see Lem. 16 of [6]).

Lemma 4.6. Let U = ∑
k
i=1 aiCi be an effective divisor on a smooth projective

surface such that ai > 0 for 1≤ i≤ k and the Ci form a chain of smooth rational
curves starting with C1 and ending with Ck. If

KX ·U +2 = 0 and U ·Ci = 0 for all i

then a1 = ak = 1, C2
i =−1 for some i < k and C2

j =−1 for some j > 1.

Proof. From U ·Ci = 0 we get a1C2
1 +a2 = 0, ak−1 +akC2

k = 0 and ai−1 +aiC2
i +

ai+1 = 0 for 1 < i < k. This implies that C2
i < 0 for all i and that a1 divides a j for

every j ≥ 1. From KX ·U +2 = 0 we deduce that a1 is equal to 1 or 2. If a1 = 2,
then U0 = (1/2)U is an effective divisor such that KX ·U0 = −1 and U2

0 = 0, so
that the arithmetic genus of U0 should be 1/2, and we get a contradiction. So
a1 = 1 and by symmetry ak = 1 as well.

If C2
i ≤−2 for each i > 1, then KX ·Ci ≥ 0 for each i > 1 (by the genus formula)

and 2+KX ·U ≥ 2+KX ·C1 =−C2
1 , which gives C1 ≥ 2, a contradiction. �

Let F be the singular fiber of π. Then F = ∑i aiCi for a chain of rational curves
Ci, and moving F to a nearby smooth fiber we see that F ·Ci = 0 for each i, and
KX ·F =−2. Thus, Lemma 4.6 can be applied to U = F .

First, one applies this lemma to contract a (−1)-curve contained in F that does
not intersect S′; then we repeat this step until we reach a model X1 of X in which
the image S1 of S satisfies S2

1 = 0. This is always possible, at least after permu-
tation of S and S′, since otherwise we would reach a minimal model X0 with two
sections of negative self-intersection, but no such surface exists.

Then, one applies Lemma 4.6 to contract (−1) curves of the singular fiber that
do not intersect S1 in order to reach a relatively minimal model X0 of X in which
S becomes a section S0 with S2

0 = 0 and S′ provides a second section S′0.
The existence of a section S0 with self-intersection 0 implies that X0 is P1×P1.

Since S′0 intersects S0, (S′0)
2 ≥ 2. By construction, q0 := F0∩S′0 is not contained

in S0. Consider the section containing q0 which is horizontal, i.e. linearly equiv-
alent to S0. This section is not S0 and, its self-intersection being 0, it is not equal
to S′0 either. Its proper transform in X is a negative curve; this proper transform
should be in Neg(X), and we get a contradiction.

4.4. Ruled surfaces. If X is ruled but not rational, the Albanese map α : X→B is
a surjective morphism onto a curve B of genus≥ 1 (1). There is an endomorphism

1Moreover, by a theorem of M. Segami, α endows X with the structure of a P1-bundle, i.e. X
is ruled and the ruling is relatively minimal (see Pro. 14 of [6]).
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fB of B such that α◦ f = fB ◦α; in particular, each fiber Xb := α−1(b) is mapped
to the fiber X fB(b) by f . Then λ1( fB) is an integer, the topological degree δ of
f|Xb : Xb→ X fB(b) for a generic point b ∈ B is also an integer, and we have

λ1( f ) = max{λ1( fB),δ} and λ2( f ) = λ1( fB)δ; (4.8)

see [3] for the general setting of rational maps permuting the fibers of a fibra-
tion. Thus, we obtain the gap property for λ1( f ) with ε(D) = 1

D−1 , i.e. λ1( f )2 ≥
λ2( f )(1+ 1

D−1) if λ2( f )≤ D and λ1( f )2 > λ2( f ).

4.5. Surfaces with non-negative Kodaira dimension. Assume that kod(X)≥ 0.
Since every dominant rational transformation of a surface X of general type is a
birational transformation of finite order, we have kod(X) ∈ {0,1}.

When kod(X) = 1 the Kodaira-Iitaka fibration Φ : X 99K B maps X onto a
smooth curve B and there is an automorphism fB of B such that Φ ◦ f = fB ◦Φ;
by a superb theorem of Noboru Nakayama and De-Qi Zhang, fB has finite order
(see [7]). Then, one easily shows that λ1( f ) = λ2( f ). In particular, λ1( f )2 =

λ2( f )2 and we have a gap property as in Theorem B with ε(D) = D−1.
When kod(X) = 0, the unique minimal model X0 of X must be a torus, a hyper-

elliptic surface, an Enriques or a K3 surface. Up to multiplication by an element
of C×, there is a unique non-zero section Ω of KX , f ∗Ω = δΩ with δ2 = λ2( f ),
and the exceptional locus of the birational morphism π : X → X0 is the zero locus
of Ω. Thus, f preserves this locus and induces a regular endomorphism of X0.
Since K3 and Enriques surfaces do not admit endomorphisms with λ2( f )> 1, we
have ρ(X0)≤ 6 (it would be≤ 22 for K3 surfaces). Thus, the gap property follows
when kod(X) = 0.

4.6. Conclusion. The last three subsections establish the gap property when X
is rational, when X is ruled but not rational, and when kod(X) ≥ 0. From the
classification of surfaces, this covers all possible cases, and Theorem B is proven.

5. FINAL COMMENTS

5.1. It would be nice to determine the infimum of λ1( f )2/λ2( f ) for dominant
endomorphisms of complex projective surfaces with a fixed λ2( f ) = D, say for
D = 2, 3, 4. The proof of Theorem B shows that this is a tractable problem.

5.2. It seems reasonable to expect that Theorem B extends to projective surfaces
over fields of positive characteristic, and to singular surfaces too.
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5.3. As explained in § 2, the natural question is to decide whether a similar gap
property holds for rational transformations of surfaces. This question was origi-
nally asked by Curtis T. McMullen, who also suggested Theorem B in a private
communication. The difficult case is the one of rational transformations of the
projective plane. I don’t know what to expect in this more general context (see [1]
for birational maps).

5.4. One can also ask similar questions for any fixed pair (dim(X),degtop( f )) =
(m,D), the first ratios to consider being λ1( f )m/degtop( f ) and λ2

1/λ2( f ).
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