GAPS IN DYNAMICAL DEGREES FOR ENDOMORPHISMS AND
RATIONAL MAPS

SERGE CANTAT

ABSTRACT. We study the ratio of dynamical degrees A (f)? /A2 (f) for regular,
dominant endomorphisms of smooth complex projective surfaces, and obtain a
gap property: for A (f) < D, there is a uniform €(D) > 0 such that this ratio
is never contained in |1, 1+ ¢&(D)[. The proof is a simple variation on the main
theorems of [6].

This version is longer than the one submitted for publication. Here, I include
some of the proofs of [6], instead of just pointing to this paper.

1. DYNAMICAL DEGREES

Let f be a dominant rational transformation of a smooth complex projective
variety X. Let m denote the dimension of X. Let H be a hyperplane section of
X. The dynamical degrees A;(f) are defined for each dimension 0 < k < m by the
following limits

()= i (1)) " (L)

n——+oo

where ( - ) denotes the intersection product and H* = H - H ---H (with k factors
H). Thus, Ao(f) = 1 and A,,(f) is the topological degree deg,,,(f) (a positive
integer since f is dominant). The sequence k — At (f) is log-concave, i.e.

M1 (F) i1 () < Me(f)? (1.2)

for all 0 < k < m. In particular, km(f)k/’” <M(f) <N (f)k. This proves the
following well known result.

Theorem A. There is a uniform lower bound
M(f) > (P =2k > 1 (W1 <k<m)

for every variety X of dimension m and every dominant rational transformation f
of X with topological degree Ay,(f) > 1.
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For instance, when f is an endomorphism of the projective space P defined
by polynomial formulas of degree d, one gets Ax(f) = d* and the previous in-
equality is indeed an equality. This paper discusses whether a further uniform gap
M ()™ > M (f) (1 +€) is satisfied for maps with A ()™ > A, (f). We focus on
the first interesting case, that is when X is a surface.

2. GAPS FOR SURFACES ?

When dim(X) =2, one gets A (f)? > A2 (f). If A2 (f) = 1, i.e. if f is a birational
map of X, then either A;(f) = 1 = Ay (f), or A (f) > Az, where Ay is the Lehmer
number: this is an important consequence of [5] proven in [1]. This inequality
may be considered as a gap for dynamical degrees, since A;, ~ 1.17628 > 1.

With the Inequalities (1.2) in mind, one would like to compute the infimum
R(D) of A1 (f)?/A2(f) over all dominant rational maps of a given surface X (resp.
of any surface) with a given topological degree A,(f) = D and a first dynamical
degree A1 (f) > v/Aa2(f)- A less precise question is the following.

Question.— Fix an integer D > 2. Does there exist a constant €(D) > 0 such that
M(f)* = D(1+&(D)) @.1)
for all dominant rational maps of surfaces with Ay (f) = D and A;(f)? > A2 (f)?

If the answer is positive for some family of rational maps, we say that this
family satisfies the gap property for A. Theorem B below provides such a gap for
regular endomorphisms of smooth complex projective surfaces.

3. MONOMIAL MAPS

Consider a monomial map f: (x,y) — (cx%y?,Bx‘y?), viewed as a rational
transformation of the projective plane. Set T = a+d and & = ad — bc, the trace
and determinant of the 2 x 2 matrix

Afz(‘cl Z) 3.1)

associated to f. Then |8| = A»(f), and the spectral radius of A 7 is A1 (f); changing
Ay into —Ay does not change the dynamical degrees, so we assume T > 0. The
characteristic polynomial of A ¢ is %(¢) = 12—t + 8. If its eigenvalues are complex
conjugate, then A3(f) = |8] = A2(f). So, we now assume that  has two real roots.

The largest one is A (f) = 3 (’c + V12— 48) ; it satisfies

M(FE =+ (P28 41V —43). (3.2)
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Thus, witha = d and b = ¢ = 1 we obtain T = 2a, 8 = a* — 1, and

M (f)? _a+l1
M(f) a-1

As a — oo, the limit is 1. Thus, if D = |9| is not fixed there is no gap for A;.

(3.3)

Now, if D = |9| is fixed there is a gap:

Proposition 3.1. Let D be an integer > 1. If f: P? —-» P2 is a dominant monomial
map with My (f) = D and M (f)? > Mo (f), the ratio My (f)? /Ao (f) is bounded from
below by 1+ (2D)~1.

Proof. As explained above, we may assume T > (. Since the eigenvalues are
distinct, T # 0 and 1> — 48 > 1; hence, T > 1. Using that A>(f) = |8| and Equa-
tion (3.2), the lower bound A; (f)?/A2(f) > 1+ (2D) ! is equivalent to

2 - 28 +1/12 —48 > 25| + 1. (3.4)

If § < 0, this follows from T > 1. If § > 0, we denote by o and 3 the two eigen-
values of A7, and we remark that (3.4) is equivalent to

(—B)>+1V/12—48> 1. (3.5)

This is always satisfied, because T and & are integers, and T2 — 48 > 1. U

Remark 3.2. Similar examples can be obtained on abelian surfaces. For in-
stance, for any elliptic curve E, one gets linear endomorphisms of X = E X E
with A1 (f)?/A2(f) > 1 but arbitrary close to 1.

4. REGULAR ENDOMORPISMS

Let us look at regular endomorphisms of projective surfaces. As explained in
Section 3, we need to fix A»(f) to some value D in order to get a gap.

Theorem B. Let D be a positive integer. There is a positive real number €(D)
such that
M(f)?
M (f)
for every smooth complex projective surface X and every dominant endomorphism

f of X with My (f) = D and M (f)? > M (f).

The proof occupies the rest of this section. So, f will denote a dominant en-
domorphism of a smooth projective surface X. Since Theorem B is known for
D = 1, we shall always assume 2 < A, (f) < D for some fixed integer D.

> 1+¢(D)
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The main arguments, described in § 4.2, are taken from the very nice paper [6]
of Noboru Nakayama (see also the companion paper [4]). For all necessary results
on dynamical degree, we refer to [2].

4.1. When a bound on p(X) is satisfied. Since f is dominant, f, f* is the mul-

tiplication by A(f), so fi and f* are isomorphisms of the Néron-Severi group

NS(X;Q). The dynamical degree A;(f) is the spectral radius of f* on NS(X;R)

and is the largest eigenvalue of f* on NS(X;R); as such, it is an algebraic integer.
Let p(X) denote the Picard number of X, i.e. p(X) = dimg NS(X;Q).

Lemma 4.1. Let D and R be positive integers > 1. There is a positive real number
(R, D) such that My (f)? /M (f) > 1 +€(R, D) for every smooth projective surface
X and every regular endomorphism f of X such that p(X) <R, M(f) < D, and

M(f)? > ha ().

Proof. We can assume Aq(f)? > Aa(f) and Aq(f)%/Aa(f) < 2. Thus, A(f) is
bounded from above by /2D; since A (f) is the spectral radius of f*, all eigen-
values of f* on NS(X; C) have modulus < V/2D. So, the characteristic polynomial
X+ of f*: NS(X;Z) — NS(X;Z) is a polynomial with integer coefficients, of de-
gree R, the coefficients of which are bounded from above by C(R)(v/2D)¥ for
some constant C(R). This gives only finitely many possibilities for s+, and the
result follows. U

4.2. Orbits of negative curves, following Nakayama. Consider the set Neg(X)
of irreducible curves C C X with C? < 0 (negative curves).

Pick C € Neg(X) and set C; = f(C); let a > 0 be the integer such that f,(C) =
aC) (a is the degree of f along C). If C’ is another irreducible curve such that
f+(C")=d'C for some @’ > 0 then aC’ = a'C in NS(X; Q) because f is injective.
This implies that C' = C because C?> < 0 and C and C’ are irreducible and reduced.
Thus, f*C; = bC with ab = A, (f); together with

[ (C1)-C=bC-C=C; - fu(C)=Cy - (aCy) (4.1)
this implies
ab=2%(f) and C? = (b/a)C?<0. (4.2)

In particular, f, permutes the irreducible curves C C X with negative self-intersection.
This set of curves is, a priori, infinite, but we have

Lemma 4.2 (Nakayama, see Lem. 10 and Pro. 11 in [6]). Let R(f) be the ram-
ification divisor of f. Let Neg(X;R(f)) be the set of irreducible components of
R(f) with negative self-intersection. Let C be an element of Neg(X).

(1) There is an integer 0 < m < log(|C?|) such that f™(C) € Neg(X;R(f)).
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(2) If C? = ~1 then C € Neg(X:R(f)), f(C)? < —Da(f)., and f"(C) € R(f)
for a positive integer m < log(Az(f)).

(3) The set Neg(X) is finite.

(4) There is an integer N > 0 such that fN(C) = C for every C in Neg(X) and
Neg(X) = Neg(X; R(fY)).

Proof. Tt suffices to prove (1). With the above notation, the condition C C R(f)
is equivalent to b > 2. On the other hand, b = 1 means a = A(f); and then
C? =M (f)~1C? > C?, hence f"(C) C R(f) for an m < log(—C?)/log(a). O

This lemma shows that one can contract a sequence of (—1)-curves in an fV-
equivariant way to reach a minimal model of X:

Theorem 4.3 (Nakayama). If f is an endomorphism of a smooth projective sur-
face X, there is an integer N > 0, a birational morphism w: X — Xy onto a mini-
mal model Xo of X, and an endomorphism fy of Xy such that wo fN = fyom.

Remark 4.4. Since the dynamical degrees are invariant under birational conju-
gacy, we have

MO (7»1(fo)2>1/N. (43)
A2 (f) A2 (fo) ’ '
without any control on N, one can not deduce a gap for f from a gap for fy. But
if N and p(Xp) are bounded, then we automatically get a gap from Theorem 4.3
and Lemma 4.1. So, we shall either control N and p(Xo), and for this we follow
closely [6], or reduce the computation to the case of monomial maps (with the
same value of D).

Let us replace f by g := f" to assume that Neg(X) = Neg(X;R(g)) and that g
fixes each irreducible curve C C R(g). From Equations (4.1) and (4.2) we obtain
(1) A2(g) is a square: there is an integer ag > 0 such that ag = deg,,,(8);

(2) &°(C) = g:(C) = a,C;
(3) the multiplicity of C in R(g) is ag — 1.
Thus, if we set
Ny= Y C, (4.4)
CeNeg(X)
we can write R(g) = (ag — 1)Nx + R"(g) for some effective divisor R*(g), the
components of which have non-negative self-intersection (these components are
numerically effective). For C in Neg(X), we obtain the following linear equiva-
lence

Kx +C~g*(Kx +C)+R"(g)+ (ag — 1)(Nx —C). 4.5)
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Thus, by adjunction formula, the ramification divisor R(g|c) of gc: C — C satis-
fies R(g|c) ~ R*(g)|c + (ag — 1)(Nx — C)|c. And the Equality (4.5) gives

(ag—1)(Kx - C+C*) +R(g) - C+(ag—1)(Nx —C)-C=0.  (4.6)

Lemma 4.5 (Nakayama, Lem. 13 of [6]).

(1) Let C be an element of Neg(X). The arithmetic genus of C is < 1, and if
it is equal to 1 then C is a connected component of the support of R(g)
(hence also of Nx), where g = fV.

(2) A connected component of the support of Nx is an irreducible curve, or a
chain of rational curves, or a cycle of rational curves.

Proof. The arithmetic genus p,(C) is defined by 2p,(C) —2 = Ky - C +C?. Thus,
Equation (4.6) gives

2ag—1)(pal€) = 1) = —(ag—1)(Nx —C)-C—R" (g)-C.  (47)

Since R (g) is numerically effective and C has multiplicity 1 in Ny, we get
pa(C) —1 <0, with equality if and only if (Ny —C)-C =0=R"(g)-C. The
first assertion follows.

Now, if C and C’ are two elements of Neg(X ) with C-C’ > 0, then the arithmetic
genus of both C and C’ is 0; this implies that C and C’ are smooth rational curves.
Equation (4.7) implies that C-C' < C-(Nx —C) <2 and R"(g)-C = 0 in case
of equality. Thus, if C-C" =2, CUC’ is a connected component of the support
of both Ny and R(g). If, moreover, C and C’ are tangent at some point p, then
R(gic) = (ag — I)C"C, g‘_c1 (p) = p with multiplicity a, = deg,,,(g|c), and g|c is
unramified on C\ {p}: this is a contradiction because a polynomial transformation
of the affine line of degree a, > 1 has at least one ramification point. Thus, if
C-C'=2,CUC is acycle of two smooth rational curves and it coincides with a
connected component of the support of both Ny and R(g). If C intersects another
element C” of Neg(X), then the two points of intersection are distinct, by the same
argument, and C- R (g) = 0. Thus, a connected component of the support of Nx
is a chain or a cycle of smooth rational curves. If it is a cycle, it is also a connected
component of the support of R(). U

4.3. Rational surfaces. Assume that X is rational. We follow the proof of The-
orem 17 in [6]. If p(X) < 3, § 4.1 shows that the endomorphisms of X satisfy a
gap for A;. Thus, we assume that p(X) > 4. Since X is the blow-up of a mini-
mal rational surface (the plane, the quadric, or a Hirzebruch surface), there is a
fibration w: X — B such that

(i) B is the projective line P! and the generic fiber of 7 is a projective line;
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(i1) there is at least one singular fiber F’;

(i11) every singular fiber is a tree of smooth rational curves with negative self-
intersection;

(iv) there is at least one section S of 7 with self-intersection S% < 0.

Since X admits an endomorphism with A, (f) > 1, we also know that

(ii1”) every singular fiber is a chain of smooth rational curves with negative self-
intersections.

Indeed, such a fiber is entirely contained in Nx. Since S is also contained in Ny,
we see that Ny is connected and contains at least three irreducible components.
Thus, Lemma 4.5 implies that (iii’) holds and that

(v) mhas at most 2 singular fibers and Ny is connected and is either a chain or
a cycle of rational curves.

Case of a chain.— Assume that Ny is a chain of rational curves. Either f or f2
fixes each irreducible component of Ny (because f(C)N f(C) = f(CNC")). Thus,
when contracting (—1)-curves, we can do it f2-equivariantly up to a minimal
model of X. Since a minimal rational surface satisfies p(Xp) = 2, the gap follows
from Remark 4.4.

Case of a cycle.— Now, assume that Ny is a cycle of rational curves. There are
two possibilities :
(1) Ny is the union of two singular fibers F and F’ and two sections S and S';

(2) Nx is the union of the unique singular fiber F' of ® and two sections S and
S, with SNS" = {p} for some p ¢ F.

In the first case, we can contract (—1)-curves contained in the two singular
fibers to reach a minimal model n: X — Xo on which g := f" induces an endo-
morphism go and w: X — B induces a rational fibration 7y : Xy — B such that

o Fy :=n(F), Fj :=n(F’) are two (smooth) fibers of T, Sp := 1(S) and
b :==m(8") are two sections of my;
e f induces a rational transformation fo of Xo such that fix\g(e,) 18 regular
and £ = go;

o FoUF;USoUS] is fo-invariant and coincides with R(go).
Then, the complement of R(gp) in Xy is a torus T ~ G,, X G,, on which fj and g
act as regular endomorphisms. The restriction of fy to T ~ G, x G, ~ C* x C*
is monomial: one can find integers a, b, ¢, d and elements o, B in C* such that
fo(x,y) = (ox%y?, Bxy?). From Section 3, we know that such transformations
satisfy the gap property for A;.
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Let us show that the second case does not occur. We shall need the following
lemma (see Lem. 16 of [6]).

Lemma 4.6. Let U = Zé‘:l aiC; be an effective divisor on a smooth projective
surface such that a; > 0 for 1 <i < k and the C; form a chain of smooth rational
curves starting with Cy and ending with Cy. If

Kx-U+2=0 and U-C;=0 forall i
then a; = ay =1, Cl.Z: —1f0rs0mei<kandC%: —1 for some j > 1.

Proof. From U -C; = 0 we get a1C12 +a; =0, ar_ —|—akC,% =0and a;_ —|—a,~Cl-2 +
ai+1 =0 for 1 < i < k. This implies that Ci2 < 0 for all / and that a; divides a; for
every j > 1. From Ky - U +2 = 0 we deduce that a; is equal to 1 or 2. If a; = 2,
then Up = (1/2)U is an effective divisor such that Ky - Uy = —1 and U3 = 0, so
that the arithmetic genus of Uy should be 1/2, and we get a contradiction. So
a; = 1 and by symmetry a; = 1 as well.

If Cl.2 < —2foreachi> 1, then Kx -C; > 0 for each i > 1 (by the genus formula)
and 2+ Ky -U > 2+Kx -C; = —C?, which gives C1 > 2, a contradiction. ]

Let F' be the singular fiber of ©. Then F' = ) ; a;C; for a chain of rational curves
Ci, and moving F to a nearby smooth fiber we see that F' - C; = 0 for each i, and
Kx - F = —2. Thus, Lemma 4.6 can be applied to U = F'.

First, one applies this lemma to contract a (—1)-curve contained in F' that does
not intersect S’; then we repeat this step until we reach a model X; of X in which
the image S| of § satisfies S% = 0. This is always possible, at least after permu-
tation of S and S, since otherwise we would reach a minimal model X, with two
sections of negative self-intersection, but no such surface exists.

Then, one applies Lemma 4.6 to contract (—1) curves of the singular fiber that
do not intersect Sy in order to reach a relatively minimal model Xy of X in which
S becomes a section Sy with S% =0 and §’ provides a second section Sj,.

The existence of a section Sy with self-intersection 0 implies that Xy is P! x P!,
Since S}, intersects So, (Sf))2 > 2. By construction, go := Fy NS, is not contained
in Sp. Consider the section containing go which is horizontal, i.e. linearly equiv-
alent to So. This section is not Sy and, its self-intersection being 0, it is not equal
to S, either. Its proper transform in X is a negative curve; this proper transform
should be in Neg(X), and we get a contradiction.

4.4. Ruled surfaces. If X is ruled but not rational, the Albanese map o.: X — B is
a surjective morphism onto a curve B of genus > 1 (1. There is an endomorphism

1Moreover, by a theorem of M. Segami, o endows X with the structure of a P! bundle, i.e. X
is ruled and the ruling is relatively minimal (see Pro. 14 of [6]).
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f3 of B such that .o f = fg o« in particular, each fiber X, := o~ ! (b) is mapped
to the fiber Xy, ;) by f. Then Ai(fp) is an integer, the topological degree & of
Six,: Xb — Xpy(p) for a generic point b € B is also an integer, and we have

A (f) = max{A;(fB),8} and A»(f) =A1(fB)9; (4.8)

see [3] for the general setting of rational maps permuting the fibers of a fibra-
tion. Thus, we obtain the gap property for A;(f) with €(D) = Lﬁ, ie A(f)2>
Do (f)(1+ pip) if Ma(f) < D and A1 (f)* > ha(f)-

4.5. Surfaces with non-negative Kodaira dimension. Assume that kod(X) > 0.
Since every dominant rational transformation of a surface X of general type is a
birational transformation of finite order, we have kod(X) € {0,1}.

When kod(X) = 1 the Kodaira-Iitaka fibration ®: X --» B maps X onto a
smooth curve B and there is an automorphism fp of B such that ®o f = fgo P;
by a superb theorem of Noboru Nakayama and De-Qi Zhang, fp has finite order
(see [7]). Then, one easily shows that A;(f) = A2(f). In particular, A (f)* =
A2(f)? and we have a gap property as in Theorem B with ¢(D) = D — 1.

When kod(X) = 0, the unique minimal model X, of X must be a torus, a hyper-
elliptic surface, an Enriques or a K3 surface. Up to multiplication by an element
of C*, there is a unique non-zero section Q of Ky, f*Q = 8Q with §% = M (f),
and the exceptional locus of the birational morphism ©t: X — Xy is the zero locus
of Q. Thus, f preserves this locus and induces a regular endomorphism of Xj.
Since K3 and Enriques surfaces do not admit endomorphisms with A, (f) > 1, we
have p(Xp) < 6 (it would be < 22 for K3 surfaces). Thus, the gap property follows
when kod(X) = 0.

4.6. Conclusion. The last three subsections establish the gap property when X
is rational, when X is ruled but not rational, and when kod(X) > 0. From the
classification of surfaces, this covers all possible cases, and Theorem B is proven.

5. FINAL COMMENTS

5.1. It would be nice to determine the infimum of A;(f)?/A;(f) for dominant
endomorphisms of complex projective surfaces with a fixed A,(f) = D, say for
D =2, 3, 4. The proof of Theorem B shows that this is a tractable problem.

5.2. It seems reasonable to expect that Theorem B extends to projective surfaces
over fields of positive characteristic, and to singular surfaces too.



GAPS IN DYNAMICAL DEGREES FOR RATIONAL MAPS 10

5.3. As explained in § 2, the natural question is to decide whether a similar gap
property holds for rational transformations of surfaces. This question was origi-
nally asked by Curtis T. McMullen, who also suggested Theorem B in a private
communication. The difficult case is the one of rational transformations of the
projective plane. I don’t know what to expect in this more general context (see [1]
for birational maps).

5.4. One can also ask similar questions for any fixed pair (dim(X),deg,,,(f)) =
(m, D), the first ratios to consider being A1 (f)"/ deg,,,(f) and AT/ (f).
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