ON DEGREES OF BIRATIONAL MAPPINGS

SERGE CANTAT AND JUNYI XIE

Abstract

We prove that the degrees of the iterates $\operatorname{deg}\left(f^{n}\right)$ of a birational map satisfy $\liminf \left(\operatorname{deg}\left(f^{n}\right)\right)<+\infty$ if and only if the sequence $\operatorname{deg}\left(f^{n}\right)$ is bounded, and that the growth of $\operatorname{deg}\left(f^{n}\right)$ cannot be arbitrarily slow, unless $\operatorname{deg}\left(f^{n}\right)$ is bounded.

1. DEGREE SEQUENCES

Let \mathbf{k} be a field. Consider a projective variety X, a polarization H of X (given by hyperplane sections of X in some embedding $X \subset \mathbb{P}^{N}$), and a birational transformation f of X, all defined over the field \mathbf{k}. Let k be the dimension of X. The degree of f with respect to the polarization H is the integer

$$
\begin{equation*}
\operatorname{deg}_{H}(f)=\left(f^{*} H\right) \cdot H^{k-1} \tag{1.1}
\end{equation*}
$$

where $f^{*} H$ is the total transform of H, and $\left(f^{*} H\right) \cdot H^{k-1}$ is the intersection product of $f^{*} H$ with $k-1$ copies of H. The degree is a positive integer, which we shall simply denote by $\operatorname{deg}(f)$, even if it depends on H. When f is a birational transformation of the projective space \mathbb{P}^{k} and the polarization is given by $O_{\mathbb{P}^{k}}(1)$ (i.e. by hyperplanes $H \subset \mathbb{P}^{k}$), then $\operatorname{deg}(f)$ is the degree of the homogeneous polynomial formulas defining f in homogeneous coordinates.

The degrees are submultiplicative, in the following sense:

$$
\begin{equation*}
\operatorname{deg}(f \circ g) \leq c_{X, H} \operatorname{deg}(f) \operatorname{deg}(g) \tag{1.2}
\end{equation*}
$$

for some positive constant $c_{X, H}$ and for every pair of birational transformations. Also, if the polarization H is changed into another polarization H^{\prime}, there is a positive constant c which depends on X, H and H^{\prime} but not on f, such that

$$
\begin{equation*}
\operatorname{deg}_{H}(f) \leq c \operatorname{deg}_{H^{\prime}}(f) \tag{1.3}
\end{equation*}
$$

We refer to $[11,16,18]$ for these fundamental properties.
The degree sequence of f is the sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$; it plays an important role in the study of the dynamics and the geometry of f. There are
infinitely, but only countably many degree sequences (see [4, 19]); unfortunately, not much is known on these sequences when $\operatorname{dim}(X) \geq 3$ (see $[3,10]$ for $\operatorname{dim}(X)=2$). In this article, we obtain the following basic results.

- The sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$ is bounded if and only if it is bounded along an infinite subsequence (see Theorems A and B in § 2 and § 3).
- If the sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$ is unbounded, then its growth can not be arbitrarily slow; for instance, $\max _{0 \leq j \leq n} \operatorname{deg}\left(f^{j}\right)$ is asymptotically bounded from below by the inverse of the diagonal Ackermann function when $X=\mathbb{P}_{\mathbf{k}}^{k}$ (see Theorem C in $\S 4$ for a better result).
We focus on birational transformations because a rational dominant transformation which is not birational has a topological degree $\delta>1$, and this forces an exponential growth of the degrees: $1<\delta^{1 / k} \leq \lim _{n}\left(\operatorname{deg}\left(f^{n}\right)^{1 / n}\right)$ where $k=\operatorname{dim}(X)$ (see [11] and [6], pages 120-126).

2. Automorphisms of the affine space

We start with the simpler case of automorphisms of the affine space; the goal of this section is to introduce a p-adic method to study degree sequences.

Theorem A (Urech).- Let f be an automorphism of the affine space $\mathbb{A}_{\mathbf{k}}^{k}$. If $\operatorname{deg}\left(f^{n}\right)$ is bounded along an infinite subsequence, then it is bounded.
2.1. Urech's proof. In [19], Urech proves a stronger result. Writing his proof in an intrinsic way, we extend it to affine varieties:

Theorem 2.1. Let $X=\operatorname{Spec} A$ be an irreducible affine variety of dimension k over the field \mathbf{k}. Let $f: X \rightarrow X$ be an automorphism. If $\left(\operatorname{deg}\left(f^{n}\right)\right)$ is unbounded there exists $\alpha>0$ such that $\#\left\{n \geq 0 \mid \operatorname{deg}\left(f^{n}\right) \leq d\right\} \leq \alpha d^{k}$; in particular, $\max _{0 \leq j \leq n} \operatorname{deg}\left(f^{j}\right)$ is bounded from below by $(n / \alpha)^{1 / k}$.

Here, the degree of f^{n}, depends on the choice of a projective compactification Y of X and an ample line bundle L on Y. However, by Equation (1.3), the statement of Theorem 2.1 does not depend on the choice of (Y, L). Since automorphisms of X always lift to its normalization, we may assume that X is normal. To prove this theorem, we shall introduce another equivalent notion of degree.
2.1.1. Degrees on affine varieties. Consider X as a subvariety $X \subseteq \mathbb{A}^{N} \subseteq \mathbb{P}^{N}$. Let \bar{X} be the Zariski closure of X in \mathbb{P}^{N} and $H_{1}:=\mathbb{P}^{N} \backslash \mathbb{A}^{N}$ be the hyperplane at infinity. Let $\pi: Y \rightarrow \bar{X}$ be its normalization: Y is a normal projective
compactification of X. Since $\pi: Y \rightarrow \bar{X}$ is finite, there exists $m \geq 1$ such (i) $H:=\pi^{*}\left(\left.m H_{1}\right|_{\bar{X}}\right)$ is very ample on Y and (ii) H is projectively normal on Y i.e. for every $n \geq 0$, the morphism $\left(H^{0}(Y, H)\right)^{\otimes n} \rightarrow H^{0}(Y, n H)$ is surjective.

If $P \in A$ is a regular function on X, we extend it as a rational function on Y, we denote by $(P)=(P)_{0}-(P)_{\infty}$ the divisor defined by P on Y, and we define

$$
\begin{align*}
\Delta(P) & =\min \{d \geq 0 \mid(P)+d H \geq 0 \text { on } Y\} \tag{2.1}\\
A_{d} & =\{P \in A \mid \Delta(P) \leq d\}, \quad(\forall d \geq 0) \tag{2.2}
\end{align*}
$$

Then $A=\cup_{d \geq 0} A_{d}$. Since $Y \backslash X$ is the support of H, we get an isomorphism i_{n} : $H^{0}(Y, n H) \rightarrow A_{n} \subseteq A$ for every $n \geq 0$. Thus, A_{1} generates A and the morphism $A_{1}^{\otimes n} \rightarrow A_{n}$ is surjective. Now we define

$$
\begin{equation*}
\operatorname{deg}^{H}(f)=\min \left\{m \geq 0 \mid \Delta\left(f^{*} P\right) \leq m \text { for every } P \in A_{1}\right\} \tag{2.3}
\end{equation*}
$$

For every $P \in A_{n}$, we can write $P=\sum_{i=1}^{l} g_{1, i} \ldots g_{1, n}$ for some $g_{i, j} \in A_{1}$. We get $f^{*} P=\sum_{i=1}^{l} f^{*} g_{1, i} \ldots f^{*} g_{1, n} \in A_{\operatorname{deg}^{H}(f) n}$ and

$$
\begin{equation*}
\Delta\left(f^{*} P\right) \leq \operatorname{deg}^{H}(f) \Delta(P) \tag{2.4}
\end{equation*}
$$

Since A is generated by A_{1}, we get an embedding

$$
\begin{equation*}
\operatorname{End}(A) \subseteq \operatorname{Hom}_{\mathbf{k}}\left(A_{1}, A\right)=\cup_{d \geq 1} \operatorname{Hom}_{\mathbf{k}}\left(A_{1}, A_{d}\right) \tag{2.5}
\end{equation*}
$$

Set End $(A)_{d}=\operatorname{End}(A) \cap \operatorname{Hom}_{\mathbf{k}}\left(A_{1}, A_{d}\right)$. For any automorphism $f: X \rightarrow X$, $\operatorname{deg}^{H}(f) \leq d$ if and only if $f \in \operatorname{End}(A)_{d}$. By Riemann-Roch theorem, there exists $\gamma>0$ such that $\operatorname{dim} A_{n} \leq \gamma n^{k}$, and this gives the upper bound

$$
\begin{equation*}
\operatorname{dim} \operatorname{End}(A)_{d} \leq \operatorname{Hom}_{\mathbf{k}}\left(A_{1}, A_{d}\right) \leq\left(\gamma d^{k}\right) \operatorname{dim} A_{1} \tag{2.6}
\end{equation*}
$$

The following proposition, proved in the Appendix, shows that this new degree $\operatorname{deg}^{H}(f)$ is equivalent to the degree $\operatorname{deg}_{H}(f)$ introduced in Section 1.

Proposition 2.2. For every automorphism $f \in \operatorname{Aut}(X)$ we have

$$
\frac{1}{k} \operatorname{deg}^{H}(f) \leq \frac{1}{\left(H^{k}\right)} \operatorname{deg}_{H}(f) \leq \operatorname{deg}^{H}(f)
$$

2.1.2. Proof of Theorem 2.1. By Proposition 2.2, the initial notion of degree can be replaced by deg^{H}. Let γ be as in Equation (2.6). Set $\ell=\left(\gamma d^{k}\right) \operatorname{dim} A_{1}+1$, and assume that $\operatorname{deg}^{H}\left(f^{n_{i}}\right) \leq d$ for some sequence of positive integers $n_{1}<$ $n_{2}<\ldots<n_{\ell}$. Each $\left(f^{*}\right)^{n_{i}}$ is in End $(A)_{d}$ and, because $\ell>\operatorname{dim} \operatorname{End}(A)_{d}$, there is a non-trivial linear relation between the $\left(f^{*}\right)^{n_{i}}$ in the vector space End $(A)_{d}$:

$$
\begin{equation*}
\left(f^{*}\right)^{n}=\sum_{m=1}^{n-1} a_{m}\left(f^{*}\right)^{m} \tag{2.7}
\end{equation*}
$$

for some integer $n \leq n_{\ell}$ and some coefficients $a_{m} \in \mathbf{k}$. Then, the subalgebra $\mathbf{k}\left[f^{*}\right] \subseteq \operatorname{End}(A)$ is of finite dimension and $\mathbf{k}\left[f^{*}\right] \subseteq E_{B}$ for some $B \geq 0$. This shows that the sequence $\left(\operatorname{deg}^{H}\left(f^{N}\right)\right)_{N \geq 0}$ is bounded.

Thus, if we set $\alpha=\gamma \operatorname{dim} A_{1}$, and if the sequence $\left(\operatorname{deg}^{H}\left(f^{n}\right)\right)$ is not bounded, we obtain $\#\left\{n \geq 0 \mid \operatorname{deg}^{H}\left(f^{n}\right) \leq d\right\} \leq \alpha d^{k}$. This proves the first assertion of the theorem; the second follows easily.
2.2. The p-adic argument. Let us give another proof of Theorem A when $\operatorname{char}(\mathbf{k})=0$, which will be generalized in $\S 3$ for birational transformations.
2.2.1. Tate diffeomorphisms. Let p be a prime number. Let K be a field of characteristic 0 which is complete with respect to an absolute value $|\cdot|$ satisfying $|p|=1 / p$; such an absolute value is automatically ultrametric (see [13], Ex. 2 and 3, Chap. I.2). Let $R=\{x \in K ;|x| \leq 1\}$ be the valuation ring of K; in the vector space K^{k}, the unit polydisk is the subset $\mathrm{U}=R^{k}$.

Fix a positive integer k, and consider the ring $R[\mathbf{x}]=R\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ of polynomial functions in k variables with coefficients in R. For f in $R[\mathbf{x}]$, define the norm $\|f\|$ to be the supremum of the absolute values of the coefficients of f :

$$
\begin{equation*}
\|f\|=\sup _{I}\left|a_{I}\right| \tag{2.8}
\end{equation*}
$$

where $f=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} a_{I} \mathbf{x}^{I}$. By definition, the Tate algebra $R\langle\mathbf{x}\rangle$ is the completion of $R[\mathbf{x}]$ with respect to this norm. It coincides with the set of formal power series $f=\sum_{I} a_{I} \mathbf{x}^{I}$ converging (absolutely) on the closed polydisk R^{k}. Moreover, the absolute convergence is equivalent to $\left|a_{I}\right| \rightarrow 0$ as length $(I) \rightarrow \infty$. Every element g in $R\langle\mathbf{x}\rangle^{k}$ determines a Tate analytic map $g: U \rightarrow U$.

For f and g in $R\langle\mathbf{x}\rangle$ and c in \mathbf{R}_{+}, the notation $f \in p^{c} R\langle\mathbf{x}\rangle$ means $\|f\| \leq|p|^{c}$ and the notation $f \equiv g \bmod \left(p^{c}\right)$ means $\|f-g\| \leq|p|^{c}$; we then extend such notations component-wise to $(R\langle\mathbf{x}\rangle)^{m}$ for all $m \geq 1$.

For indeterminates $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ and $\mathbf{y}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right)$, the composition $R\langle\mathbf{y}\rangle \times R\langle\mathbf{x}\rangle^{m} \rightarrow R\langle\mathbf{x}\rangle$ is well defined, and coordinatewise we obtain

$$
\begin{equation*}
R\langle\mathbf{y}\rangle^{n} \times R\langle\mathbf{x}\rangle^{m} \rightarrow R\langle\mathbf{x}\rangle^{n} . \tag{2.9}
\end{equation*}
$$

When $m=n=k$, we get a semigroup $R\langle\mathbf{x}\rangle^{k}$. The group of (Tate) analytic diffeomorphisms of U is the group of invertible elements in this semigroup; we denote it by $\operatorname{Diff}^{a n}(U)$. Elements of $\operatorname{Diff}^{a n}(U)$ are bijective transformations $f: U \rightarrow \mathrm{U}$ given by $f(\mathbf{x})=\left(f_{1}, \ldots, f_{k}\right)(\mathbf{x})$ where each f_{i} is in $R\langle\mathbf{x}\rangle$ with an inverse $f^{-1}: \mathrm{U} \rightarrow \mathrm{U}$ that is also defined by power series in the Tate algebra.

The following result is due to Jason Bell and Bjorn Poonen (see [1, 17]).

Theorem 2.3. Let f be an element of $R\langle\mathbf{x}\rangle^{k}$ with $f \equiv \mathrm{id} \bmod \left(p^{c}\right)$ for some real number $c>1 /(p-1)$. Then f is a Tate diffeomorphism of $\mathrm{U}=R^{k}$ and there exists a unique Tate analytic map $\Phi: R \times \mathrm{U} \rightarrow \mathrm{U}$ such that
(1) $\Phi(n, \mathbf{x})=f^{n}(\mathbf{x})$ for all $n \in \mathbf{Z}$;
(2) $\Phi(s+t, \mathbf{x})=\Phi(s, \Phi(t, \mathbf{x}))$ for all t, s in R.
2.2.2. Second proof of Theorem A. Denote by S the finite set of all the coefficients that appear in the polynomial formulas defining f and f^{-1}. Let $R_{S} \subset \mathbf{k}$ be the ring generated by S over \mathbf{Z}, and let K_{S} be its fraction field:

$$
\begin{equation*}
\mathbf{Z} \subset R_{S} \subset K_{S} \subset \mathbf{k} \tag{2.10}
\end{equation*}
$$

Since $\operatorname{char}(\mathbf{k})=0$, there exists a prime $p>2$ such that R_{S} embeds into \mathbf{Z}_{p} (see [15], §4 and 5, and [1], Lemma 3.1). We apply this embedding to the coefficients of f and get an automorphism of $\mathbb{A}_{\mathbf{Q}_{p}}^{k}$ which is defined by polynomial formulas in $\mathbf{Z}_{p}\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$; for simplicilty, we keep the same notation f for this automorphism (embedding R_{S} in \mathbf{Z}_{p} does not change the value of the degrees $\operatorname{deg}\left(f^{n}\right)$). Since f and f^{-1} are polynomial automorphisms with coefficients in \mathbf{Z}_{p}, they determine elements of $\operatorname{Diff}^{a n}(\mathrm{U})$, the group of analytic diffeomorphisms of the polydisk $\mathrm{U}=\mathbf{Z}_{p}^{k}$.

Reducing the coefficients of f and f^{-1} modulo $p^{2} \mathbf{Z}_{p}$, one gets two permutations of the finite set $\mathbb{A}^{k}\left(\mathbf{Z}_{p} / p^{2} \mathbf{Z}\right)$ (equivalently, f and f^{-1} permute the balls of $U=\mathbf{Z}_{p}^{k}$ of radius p^{-2}, and these balls are parametrized by $\mathbb{A}^{k}\left(\mathbf{Z}_{p} / p^{2} \mathbf{Z}\right)$; see [7]). Thus, there exists a positive integer m such that $f^{m}(0) \equiv 0 \bmod \left(p^{2}\right)$. Taking some further iterate, we may also assume that the differential $D f_{0}^{m}$ satisfies $D f_{0}^{m} \equiv \mathrm{Id} \bmod (p)$. We fix such an integer m and replace f by f^{m}. The following lemma follows from the submultiplicativity of degrees (see Equation (1.2) in Section 1). It shows that replacing f by f^{m} is harmless if one wants to bound the degrees of the iterates of f.

Lemma 2.4. If the sequence $\operatorname{deg}\left(f^{m n}\right)$ is bounded for some $m>0$, then the sequence $\operatorname{deg}\left(f^{n}\right)$ is bounded too.

Denote by $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ the coordinate system of \mathbb{A}^{k}, and by m_{p} the multiplication by $p: m_{p}(\mathbf{x})=p \mathbf{x}$. Change f into $g:=m_{p}^{-1} \circ f \circ m_{p}$; then $g \equiv \mathrm{Id}$ $\bmod (p)$ in the sense of Section 2.2.1. Since $p \geq 3$, Theorem 2.3 gives a Tate analytic flow $\Phi: \mathbf{Z}_{p} \times \mathbb{A}^{k}\left(\mathbf{Z}_{p}\right) \rightarrow \mathbb{A}^{k}\left(\mathbf{Z}_{p}\right)$ which extends the action of g : $\Phi(n, \mathbf{x})=g^{n}(\mathbf{x})$ for every integer $n \in \mathbf{Z}$. Since Φ is analytic, one can write

$$
\begin{equation*}
\Phi(\mathbf{t}, \mathbf{x})=\sum_{J} A_{J}(\mathbf{t}) \mathbf{x}^{J} \tag{2.11}
\end{equation*}
$$

where J runs over all multi-indices $\left(j_{1}, \ldots, j_{k}\right) \in\left(\mathbf{Z}_{\geq 0}\right)^{k}$ and each A_{J} defines a p-adic analytic curve $\mathbf{Z}_{p} \rightarrow \mathbb{A}^{k}\left(\mathbf{Q}_{p}\right)$. By submultiplicativity of the degrees, there is a constant $C>0$ such that $\operatorname{deg}\left(g^{n_{i}}\right) \leq C B^{m}$. Thus, we obtain $A_{J}\left(n_{i}\right)=0$ for all indices i and all multi-indices J of length $|J|>C B^{m}$. The A_{J} being analytic functions of $t \in \mathbf{Z}_{p}$, the principle of isolated zeros implies that

$$
\begin{equation*}
A_{J}=0 \text { in } \mathbf{Z}_{p}\langle t\rangle, \forall J \text { with }|J|>C B^{m} . \tag{2.12}
\end{equation*}
$$

Thus, $\Phi(t, \mathbf{x})$ is a polynomial automorphism of degree $\leq C B^{m}$ for all $t \in \mathbf{Z}_{p}$, and $g^{n}(\mathbf{x})=\Phi(n, \mathbf{x})$ has degree at most $C B^{m}$ for all n. By Lemma 2.4, this proves that $\operatorname{deg}\left(f^{n}\right)$ is a bounded sequence.

3. Birational transformations

Theorem B.- Let \mathbf{k} be a field of characteristic 0 . Let X be a projective variety and $f: X \rightarrow X$ be a birational transformation of X, both defined over \mathbf{k}. If the sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$ is not bounded, then it goes to $+\infty$ with n :

$$
\liminf _{n \rightarrow+\infty} \operatorname{deg}\left(f^{n}\right)=+\infty
$$

This extends Theorem A to birational transformations. With a theorem of Weil, we get: if f is a birational transformation of the projective variety X, over an algebraically closed field of characteristic 0 , and if the degrees of its iterates are bounded along an infinite subsequence $f^{n_{i}}$, then there exist a birational map $\psi: Y \longrightarrow X$ and an integer $m>0$ such that $f_{Y}:=\psi^{-1} \circ f \circ \psi$ is in $\operatorname{Aut}(Y)$, and f_{Y}^{m} is in the connected component $\operatorname{Aut}(Y)^{0}$ (see [5] and references therein).

Urech's argument does not apply to this context; the basic obstruction is that rational transformations of $\mathbb{A}_{\mathbf{k}}^{k}$ of degree $\leq B$ generate an infinite dimensional \mathbf{k}-vector space for every $B \geq 1$ (the maps $z \in \mathbb{A}_{\mathbf{k}}^{1} \mapsto(z-a)^{-1}$ with $a \in \mathbf{k}$ are linearly independent); looking back at the proof in Section 2.1.2, the problem is that the field of rational functions on an affine variety X is not finitely generated as a k-algebra. We shall adapt the p-adic method described in Section 2.2.2. In what follows, f and X are as in Theorem B; we assume, without loss of generality, that $\mathbf{k}=\mathbf{C}$ and X is smooth. We suppose that there is an infinite sequence of integers $n_{1}<\ldots<n_{j}<\ldots$ and a number B such that $\operatorname{deg}\left(f^{n_{j}}\right) \leq B$ for all j. We fix a finite subset $S \subset \mathbf{C}$ such that X, f and f^{-1} are defined by equations and formulas with coefficients in S, and we embed the ring $R_{S} \subset \mathbf{C}$ generated by S in some \mathbf{Z}_{p}, for some prime number $p>2$. According to [7, Section 3], we may assume that X and f have good reduction modulo p.
3.1. The Hrushovski's theorem and p-adic polydisks. According to a theorem of Hrushovski (see [12]), there is a periodic point z_{0} of f in $X(\mathbf{F})$ for some finite field extension \mathbf{F} of the residue field \mathbf{F}_{p}, the orbit of which does not intersect the indeterminacy points of f and f^{-1}. If ℓ is the period of z_{0}, then $f^{\ell}\left(z_{0}\right)=z_{0}$ and $D f_{z_{0}}^{\ell}$ is an element of the finite group $\operatorname{GL}\left(\left(T X_{\mathbf{F}_{q}}\right)_{z_{0}}\right) \simeq$ $\mathrm{GL}\left(k, \mathbf{F}_{q}\right)$. Thus, there is an integer $m>0$ such that $f^{m}\left(z_{0}\right)=z_{0}$ and $D f_{z_{0}}^{m}=\mathrm{Id}$.

Replace f by its iterate $g=f^{m}$. Then, g fixes z_{0} in $X(\mathbf{F}), g$ is an isomorphism in a neighborhood of z_{0}, and $D g_{z_{0}}=\mathrm{Id}$. According to [2] and [7, Section 3], this implies that there is

- a finite extension K of \mathbf{Q}_{p}, with valuation ring $R \subset K$;
- a point z in $X(K)$ and a polydisk $\mathrm{V}_{z} \simeq R^{k} \subset X(K)$ which is g-invariant and such that $\left.g\right|_{V_{z}} \equiv \mathrm{Id} \bmod (p)$ (in the coordinate system $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ of the polydisk).
When the point z_{0} is in $X\left(\mathbf{F}_{p}\right)$ and is the reduction of a point $z \in X\left(\mathbf{Z}_{p}\right)$, the polydisk V_{z} is the set of points $w \in X\left(\mathbf{Z}_{p}\right)$ with $|z-w|<1$; one identifies this polydisk to $\mathrm{U}=\left(\mathbf{Z}_{p}\right)^{k}$ via some p-adic analytic diffeomorphism $\varphi: \mathrm{U} \rightarrow$ V_{z}; changing φ into $\varphi \circ m_{p}$ if necessary, we obtain $g_{V_{z}} \equiv \mathrm{Id} \bmod (p)$ (see Section 2.2.2 and [7], Section 3.2.1). In full generality, a finite extension K of \mathbf{Q}_{p} is needed because z_{0} is a point in $X(\mathbf{F})$ for some extension \mathbf{F} of \mathbf{F}_{p}.
3.2. Controling the degrees. As in Section 2.2.1, denote by U the polydisk $R^{k} \simeq \mathrm{~V}_{z}$; thus, U is viewed as the polydisk R^{k} and also as a subset of $X(K)$. Applying Theorem 2.3 to g, we obtain a p-adic analytic flow

$$
\begin{equation*}
\Phi: R \times \mathrm{U} \rightarrow \mathrm{U}, \quad(t, \mathbf{x}) \mapsto \Phi(t, \mathbf{x}) \tag{3.1}
\end{equation*}
$$

such that $\Phi(n, \mathbf{x})=g^{n}(\mathbf{x})$ for every integer n. In other words, the action of g on U extends to an analytic action of the additive compact group $(R,+)$.

Let $\pi_{1}: X \times X \rightarrow X$ denote the projection onto the first factor. Denote by $\operatorname{Bir}_{D}(X)$ the set of birational transformations of X of degree D; once birational transformations are identified to their graphs, this set becomes naturally a finite union of irreducible, locally closed algebraic subsets in the Hilbert scheme of $X \times X$ (see [5], Section 2.2, and references therein). Taking a subsequence, there is a positive integer D, an irreducible component B_{D} of $\operatorname{Bir}_{D}(X)$, and a strictly increasing, infinite sequence of integers $\left(n_{j}\right)$ such that

$$
\begin{equation*}
g^{n_{j}} \in B_{D} \tag{3.2}
\end{equation*}
$$

for all j. Denote by $\overline{B_{D}}$ the Zariski closure of B_{D} in the Hilbert scheme of $X \times X$. To every element $h \in \overline{B_{D}}$ corresponds a unique algebraic subset \mathcal{G}_{h} of
$X \times X$ (the graph of h, when h is in B_{D}). Our goal is to show that, for every $t \in R$, the graph of $\Phi(t, \cdot)$ is the intersection $\mathcal{G}_{h_{t}} \cap \mathrm{U}^{2}$ for some element $h_{t} \in \overline{B_{D}}$; this will conclude the proof because $g^{n}(\mathbf{x})=\Phi(n, \mathbf{x})$ for all $n \geq 0$.

We start with a simple remark, which we encapsulate in the following lemma.
Lemma 3.1. There is a finite subset $E \subset \mathrm{U} \subset X(K)$ with the following property. Given any subset \tilde{E} of $\mathrm{U} \times \mathrm{U}$ with $\pi_{1}(\tilde{E})=E$, there is at most one element $h \in \overline{B_{D}}$ such that $\tilde{E} \subset \mathcal{G}_{h}$.

Fix such a set E, and order it to get a finite list $E=\left(x_{1}, \ldots, x_{\ell_{0}}\right)$ of elements of U. Let $E^{\prime}=\left(x_{1}, \ldots, x_{\ell_{0}}, x_{\ell_{0}+1}, \ldots, x_{\ell}\right)$ be any list of elements of U which extends E. For every element h in $\overline{B_{D}}$, the variety \mathcal{G}_{h} determines a correspondance $\mathcal{G}_{h} \subset X \times X$. The subset of elements $\left(h,\left(x_{i}, y_{i}\right)_{1 \leq i \leq \ell}\right)$ in $\overline{B_{D}} \times(X \times X)^{\ell}$ defined by the incidence relation

$$
\begin{equation*}
\left(x_{i}, y_{i}\right) \in \mathcal{G}_{h} \tag{3.3}
\end{equation*}
$$

for every $1 \leq i \leq \ell$ is an algebraic subset of $\overline{B_{D}} \times(X \times X)^{\ell}$. Add one constraint, namely that the first projection $\left(x_{i}\right)_{1 \leq i \leq \ell}$ coincides with E^{\prime}, and project the resulting subset on $(X \times X)^{\ell}$: we get a subset $G\left(E^{\prime}\right)$ of $(X \times X)^{\ell}$. Then, define a p-adic analytic curve $\Lambda: R \rightarrow(X \times X)^{\ell}$ by

$$
\begin{equation*}
\Lambda(t)=\left(x_{i}, \Phi\left(t, x_{i}\right)\right)_{1 \leq i \leq \ell} \tag{3.4}
\end{equation*}
$$

If $t=n_{j}, g^{n_{j}}$ is an element of B_{D} and $\Lambda\left(n_{j}\right)$ is contained in the graph of $g^{n_{j}}$; hence, $\Lambda\left(n_{j}\right)$ is an element of $G\left(E^{\prime}\right)$. By the principle of isolated zeros, the analytic curve $t \mapsto \Lambda(t) \subset(X \times X)^{\ell}$ is contained in $G\left(E^{\prime}\right)$ for all $t \in R$. Thus, for every t there is an element $h_{t} \in \overline{B_{D}}$ such that $\Lambda(t)$ is contained in the subset $\mathcal{G}_{h_{t}}^{\ell}$ of $(X \times X)^{\ell}$. From the choice of E and the inclusion $E \subset E^{\prime}$, we know that h_{t} does not depend on E^{\prime}. Thus, the graph of $\Phi(t, \cdot)$ coincides with the intersection of $\mathcal{G}_{h_{t}}$ with $\mathrm{U} \times \mathrm{U}$. This implies that the graph of $g^{n}(\cdot)=\Phi(n, \cdot)$ coincides with $\mathcal{G}_{h_{n}}$, and that the degree of g^{n} is at most D for all values of n.

4. Lower bounds on degree growth

We now prove that the growth of $\left(\operatorname{deg}\left(f^{n}\right)\right)$ can not be arbitrarily slow unless ($\operatorname{deg}\left(f^{n}\right)$) is bounded. For simplicity, we focus on birational transformations of the projective space; there is no restriction on the characteristic of \mathbf{k}.
4.1. A family of integer sequences. Fix two positive integers k and $d ; k$ will be the dimension of $\mathbb{P}_{\mathbf{k}}^{k}$, and d will be the degree of $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$. Set

$$
\begin{equation*}
m=(d-1)(k+1) . \tag{4.1}
\end{equation*}
$$

Then, consider an auxiliary integer $D \geq 1$, which will play the role of the degree of an effective divisor in the next paragraphs, and define

$$
\begin{equation*}
q=(d D+1)^{m} . \tag{4.2}
\end{equation*}
$$

Thus, q depends on k, d and D because m depends on k and d. Then, set

$$
\begin{equation*}
a_{0}=\binom{k+D}{k}-1, \quad b_{0}=1, \quad c_{0}=D+1 \tag{4.3}
\end{equation*}
$$

Starting from the triple $\left(a_{0}, b_{0}, c_{0}\right)$, we define a sequence $\left(\left(a_{j}, b_{j}, c_{j}\right)\right)_{j \geq 0}$ inductively by

$$
\begin{equation*}
\left(a_{j+1}, b_{j+1}, c_{j+1}\right)=\left(a_{j}, b_{j}-1, q c_{j}^{2}\right) \tag{4.4}
\end{equation*}
$$

if $b_{j} \geq 2$, and by

$$
\begin{equation*}
\left(a_{j+1}, b_{j+1}, c_{j+1}\right)=\left(a_{j}-1, q c_{j}^{2}, q c_{j}^{2}\right)=\left(a_{j}-1, c_{j+1}, c_{j+1}\right) \tag{4.5}
\end{equation*}
$$

if $b_{j}=1$. By construction, $\left(a_{1}, b_{1}, c_{1}\right)=\left(a_{0}-1, q c_{0}^{2}, q c_{0}^{2}\right)$.
Define $\Phi: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$by

$$
\begin{equation*}
\Phi(c)=q c^{2} \tag{4.6}
\end{equation*}
$$

Lemma 4.1. Define the sequence of integers $\left(F_{i}\right)_{i \geq 1}$ recursively by $F_{1}=q(D+$ $1)^{2}$ and $F_{i+1}=\Phi^{F_{i}}\left(F_{i}\right)$ for $i \geq 1$ (where $\Phi^{F_{i}}$ is the F_{i}-iterate of Φ). Then

$$
\left(a_{1+F_{1}+\cdots+F_{i}}, b_{1+F_{1}+\cdots+F_{i}}, c_{1+F_{1}+\cdots+F_{i}}\right)=\left(a_{0}-i-1, F_{i+1}, F_{i+1}\right)
$$

The proof is straightforward. Now, define $S: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$as the sum

$$
\begin{equation*}
S(j)=1+F_{1}+F_{2}+\cdots+F_{j} \tag{4.7}
\end{equation*}
$$

for all $j \geq 1$; it is increasing and goes to $+\infty$ extremely fast with j. Then, set

$$
\begin{equation*}
\chi_{d, k}(n)=\max \left\{D \geq 0 \left\lvert\, S\left(\binom{k+D}{k}-2\right)<n\right.\right\} . \tag{4.8}
\end{equation*}
$$

Lemma 4.2. The function $\chi_{d, k}: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$is non-decreasing and goes to $+\infty$ with n.

Remark 4.3. The function S is primitive recursive (see [9], Chapters 3 and 13). In other words, S is obtained from the basic functions (the zero function, the successor $s(x)=x+1$, and the projections $\left.\left(x_{i}\right)_{1 \leq i \leq m} \rightarrow x_{i}\right)$ by a finite sequence of compositions and recursions. Equivalently, there is a program computing S, all of whose instructions are limited to (1) the zero initialization $V \leftarrow 0$, (2) the increment $V \leftarrow V+1$, (3) the assignement $V \leftarrow V^{\prime}$, and (4) loops of definite length. Writing such a program is an easy exercise. Now, consider the diagonal Ackermann function $A(n)$ (see [9], Section 13.3). It grows asymptotically
faster than any primitive recursive function; hence, the inverse of the Ackermann diagonal function $\alpha(n)=\max \{D \geq 0 \mid \operatorname{Ack}(D) \leq n\}$ is, asymptotically, a lower bound for $\chi_{d, k}(n)$. Showing that $\chi_{d, k}$ is in the \mathcal{L}_{6} hierarchy of [9], Chapter 13, one gets an asymptotic lower bound by the inverse of the function f_{7} of [9], independent of the values of d and k.
4.2. Statement of the lower bound. We can now state the result that will be proved in the next paragraphs.

Theorem C.- Let f be a birational transformation of the complex projective space $\mathbb{P}_{\mathbf{k}}^{k}$ of degree d. If the sequence $\left(\max _{0 \leq j \leq n}\left(\operatorname{deg}\left(f^{j}\right)\right)\right)_{n \geq 0}$ is unbounded, then it is bounded from below by the sequence of integers $\left(\chi_{d, k}(n)\right)_{n \geq 0}$.

Remark 4.4. There are infinitely, but only countably many sequences of degrees $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$ (see [4, 19]). Consider the countably many sequences

$$
\begin{equation*}
\left(\max _{0 \leq j \leq n}\left(\operatorname{deg}\left(f^{j}\right)\right)\right)_{n \geq 0} \tag{4.9}
\end{equation*}
$$

restricted to the family of birational maps for which $\left(\operatorname{deg}\left(f^{n}\right)\right)$ is unbounded. We get a countable family of non-decreasing, unbounded sequences of inte-
 $\left(u_{i}(n)\right)$. Define $w(n)$ as follows. First, set $v_{j}=\min \left\{u_{0}, u_{1}, \ldots, u_{j}\right\}$; this defines a new family of sequences, with the same limit $+\infty$, but now $v_{j}(n) \geq$ $v_{j+1}(n)$ for every pair (j, n). Then, set $m_{0}=0$, and define m_{n+1} recursively to be the first positive integer such that $v_{n+1}\left(m_{n+1}\right) \geq v_{n}\left(m_{n}\right)+1$. We have $m_{n+1} \geq m_{n}+1$ for all $n \in \mathbf{Z}_{\geq 0}$. Set $w(n):=v_{r_{n}}\left(m_{r_{n}}\right)$ where r_{n} is the unique non-negative integer satisfying $m_{r_{n}} \leq n \leq m_{r_{n}+1}-1$. By construction, $w(n)$ goes to $+\infty$ with n and $u_{i}(n)$ is asymptotically bounded from below by $w(n)$.

In Theorem C, the result is more explicit. Firstly, the lower bound is explicitely given by the sequence $\left(\chi_{d, k}(n)\right)_{n \geq 0}$. Secondly, the lower bound is not asymptotic: it works for every value of n. In particular, if $\operatorname{deg}\left(f^{j}\right)<\chi_{d, k}(n)$ for $0 \leq j \leq n$ and $\operatorname{deg}(f)=d$, then the sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)$ is bounded.
4.3. Divisors and strict transforms. To prove Theorem C, we consider the action of f by strict transform on effective divisors. As above, $d=\operatorname{deg}(f)$ and $m=(d-1)(k+1)$ (see Section 4.1).
4.3.1. Exceptional locus. Let X be a smooth projective variety and π_{1} and $\pi_{2}: X \rightarrow \mathbb{P}^{k}$ be two birational morphisms such that $f=\pi_{2} \circ \pi_{1}^{-1}$; then, consider the exceptional locus $\operatorname{Exc}\left(\pi_{2}\right) \subset X$, project it by π_{1} into \mathbb{P}^{k}, and list its irreducible components of codimension 1: we obtain a finite number

$$
\begin{equation*}
E_{1}, \ldots, E_{m(f)} \tag{4.10}
\end{equation*}
$$

of irreducible hypersurfaces, contained in the zero locus of the jacobian determinant of f. Since this critical locus has degree m, we obtain:

$$
\begin{equation*}
m(f) \leq m, \quad \text { and } \operatorname{deg}\left(E_{i}\right) \leq m \quad(\forall i \geq 1) \tag{4.11}
\end{equation*}
$$

4.3.2. Effective divisors. Denote by M the semigroup of effective divisors of $\mathbb{P}_{\mathbf{k}}^{k}$. There is a partial ordering \leq on M, which is defined by $E \leq E^{\prime}$ if and only if the divisor $E^{\prime}-E$ is effective.

We denote by deg: $M \rightarrow \mathbf{Z}_{\geq 0}$ the degree function. For every degree $D \geq 0$, we denote by M_{D} the set $\mathbb{P}\left(H^{0}\left(\mathbb{P}_{\mathbf{k}}^{k}, O_{\mathbb{P}_{\mathbf{k}}^{k}}(D)\right)\right)$ of effective divisors of degree D; thus, M is the disjoint union of all the M_{D}, and each of these components will be endowed with the Zariski topology of $\mathbb{P}\left(H^{0}\left(\mathbb{P}_{\mathbf{k}}^{k}, O_{\mathbb{P}_{\mathbf{k}}^{k}}(D)\right)\right)$. The dimension of M_{D} is equal to the integer $a_{0}=a_{0}(D, k)$ from Section 4.1:

$$
\begin{equation*}
\operatorname{dim}\left(M_{D}\right)=\binom{k+D}{k}-1 . \tag{4.12}
\end{equation*}
$$

Let $G \subset M$ be the semigroup generated by the E_{i} :

$$
\begin{equation*}
G=\bigoplus_{i=1}^{m(f)} \mathbf{Z}_{\geq 0} E_{i} \tag{4.13}
\end{equation*}
$$

The elements of G are the effective divisors which are supported by the exceptional locus of f. For every $E \in G$, there is a translation operator $T_{E}: M \rightarrow M$, defined by $T_{E}: E^{\prime} \mapsto E+E^{\prime}$; it restricts to a linear projective embedding of the projective space M_{D} into the projective space $M_{D+\operatorname{deg}(E)}$. We define

$$
\begin{equation*}
M_{D}^{\circ}=M_{D} \backslash \bigcup_{E \in G \backslash\{0\}, \operatorname{deg}(E) \leq D} T_{E}\left(M_{D-\operatorname{deg}(E)}\right) . \tag{4.14}
\end{equation*}
$$

Thus, M_{D}° is the complement in M_{D} of finitely many proper linear projective subspaces. Also, $M_{0}^{\circ}=M_{0}$ is a point and M_{1}° is obtained from $M_{1}=\left(\mathbb{P}_{\mathbf{k}}^{k}\right)^{\vee}$ by removing finitely many points, corresponding to the E_{i} of degree 1 (the hyperplanes contracted by f). Set $M^{\circ}=\bigcup_{D \geq 0} M_{D}^{\circ}$. This is the set of effective divisors without any component in the exceptional locus of f. The inclusion of M° in M will be denoted by $\mathrm{t}: M^{\circ} \rightarrow M$. There is a natural projection $\pi_{G}: M \rightarrow$ G; namely, $\pi_{G}(E)$ is the maximal element such that $E-\pi_{G}(E)$ is effective.

We denote by $\pi_{\circ}: M \rightarrow M^{\circ}$ the projection $\pi_{\circ}=\mathrm{Id}-\pi_{G}$; this homomorphism removes the part of an effective divisor E which is supported on the exceptional locus of f.

Remark 4.5. The restriction of the map π_{\circ} to the projective space M_{D} is piecewise linear, in the following sense. Consider the subsets $U_{E, D}$ of M_{D} which are defined for every $E \in G$ with $\operatorname{deg}(E) \leq D$ by

$$
U_{E, D}=T_{E}\left(M_{D-\operatorname{deg}(E)}\right) \backslash \bigcup_{E^{\prime}>E, E^{\prime} \in G, \operatorname{deg}\left(E^{\prime}\right) \leq D} T_{E^{\prime}}\left(M_{D-\operatorname{deg}\left(E^{\prime}\right)}\right) .
$$

They define a stratification of M_{D} by (open subsets of) linear subspaces, and π_{\circ} coincides with the linear map inverse of T_{E} on each $U_{E, D}$. Moreover, $\pi_{\circ}(Z)$ is closed for any closed subset $Z \subseteq M_{D}$.

We say that a scheme theoritic point $x \in M$ (resp. M°) is irreducible if the divisor of \mathbb{P}^{k} corresponding to x is irreducible. In other words, x is irreducible, if a general closed point $y \in \overline{\{x\}} \subseteq M$ is irreducible.
4.3.3. Strict transform. First, we consider the total transform $f^{*}: M \rightarrow M$, which is defined by $f^{*}(E)=\left(\pi_{1}\right)_{*} \pi_{2}^{*}(E)$ for every divisor $E \in M$. This is a homomorphism of semigroups; it is injective on non-closed irreducible points. Let $\left[x_{0}, \ldots, x_{k}\right]$ be homogeneous coordinates on \mathbb{P}^{k}. If E is defined by the homogeneous equation $P=0$, then $f^{*}(E)$ is defined by $P \circ f=0$; thus, f^{*} induces a linear projective embedding of M_{D} into $M_{d D}$ for every D.

Then, we denote by $f^{\circ}: M^{\circ} \rightarrow M^{\circ}$ the strict transform. It is defined by

$$
\begin{equation*}
f^{\circ}(E)=\left(\pi_{\circ} \circ f^{*} \circ \mathfrak{\imath}\right)(E) \tag{4.15}
\end{equation*}
$$

This is a homomorphism of semigroups. If $x \in M$ is an irreducible point, its total transform $f^{*}(x)$ is not necessarily irreducible, but $f^{\circ}(x)$ is irreducible.

In general, $\left(f^{\circ}\right)^{n} \neq\left(f^{n}\right)^{\circ}$, but for non-closed irreducible point $x \in M$, we have $\left(f^{\circ}\right)^{n}(x)=\left(f^{n}\right)^{\circ}(x)$ for $n \geq 0$. Indeed, a non-closed irreducible point $x \in M$ can be viewed as an irreducible hypersurface on X which is defined over some transcendental extension of \mathbf{k}, but not over \mathbf{k}. Then $f^{\circ}(x)$ is the unique irreducible component E of $f^{*}(x)$, on which $\left.f\right|_{E}$ is birational to its image. (Note that when \mathbf{k} is uncountable, one can also work with very general points of M_{D} for every $D \geq 1$, instead of irreducible, non-closed points).
4.4. Proof of Theorem C. Let η be the generic point of $M_{1}^{\circ}(\eta$ corresponds to a generic hyperplane of $\mathbb{P}_{\mathbf{k}}^{k}$). Note that η is non-closed and irreducible. The
degree of $f^{*}(\eta)$ is equal to the degree of f, and since η is generic, $f^{*}(\eta)$ coincides with $f^{\circ}(\eta)$. Thus, $\operatorname{deg}(f)=\operatorname{deg}\left(f^{\circ}(\eta)\right)$ and more generally

$$
\begin{equation*}
\operatorname{deg}\left(f^{n}\right)=\operatorname{deg}\left(\left(f^{\circ}\right)^{n} \eta\right) \quad(\forall n \geq 1) \tag{4.16}
\end{equation*}
$$

Fix an integer $D \geq 0$. Write $M_{\leq D}^{\circ}$ for the disjoint union of the $M_{D^{\prime}}^{\circ}$ with $D^{\prime} \leq D$, and define recursively $Z_{D}(0)=M_{\leq D}^{\circ}$ and

$$
\begin{equation*}
Z_{D}(i+1)=\left\{E \in Z_{D}(i) \mid f^{\circ}(E) \in Z_{D}(i)\right\} \tag{4.17}
\end{equation*}
$$

for $i \geq 0$. A divisor $E \in M_{\leq D}^{\circ}$ is in $Z_{D}(i)$ if its strict transform $f^{\circ}(E)$ is of degree $\leq D$, and $f^{\circ}\left(f^{\circ}(E)\right)$ is also of degree $\leq D$, up to $\left(f^{\circ}\right)^{i}(E)$ which is also of degree at most D.

Let us describe $Z_{D}(i+1)$ more precisely. For each i, and each $E \in G$ of degree $\operatorname{deg}(E) \leq d D$ consider the subset $T_{E}\left(\overline{\left(Z_{D}(i)\right)}\right) \cap M_{d D}$; this is a subset of $M_{d D}$ which is made of divisors W such that $\pi_{\circ}(W)$ is contained in $Z_{D}(i)$, and the union of all these subsets when E varies is exactly the set of points W in $M_{d D}$ with a projection $\pi_{\circ}(W)$ in $Z_{D}(i)$. Thus, we consider

$$
\begin{equation*}
\left(f^{*}\right)^{-1}\left(T_{E}\left(\overline{\mathfrak{l}\left(Z_{D}(i)\right)}\right)\right)=\left\{V \in M_{\leq D} \mid f^{*}(V) \in T_{E}\left(\overline{\mathfrak{l}\left(Z_{D}(i)\right)}\right)\right\} . \tag{4.18}
\end{equation*}
$$

These sets are closed subsets of $M_{\leq D}$, and

$$
\begin{equation*}
Z_{D}(i+1)=Z_{D}(i) \bigcap \bigcup_{E \in G, \operatorname{deg}(E) \leq d D} \pi_{\circ}\left((f ^ { * }) ^ { - 1 } \left(T_{E}\left(\overline{\left(\overline{\left(Z_{D}(i)\right)}\right)}\right)\right.\right. \tag{4.19}
\end{equation*}
$$

Since $Z_{D}(0)$ is closed in $M_{\leq D}^{\circ}$ and π_{\circ} is closed on $M_{\leq D}$, by induction, $Z_{D}(i)$ is closed for all $i \geq 0$. The subsets $Z_{D}(i)$ form a decreasing sequence of Zariski closed subsets (in the disjoint union $M_{\leq D}^{\circ}$ of the $M_{D^{\prime}}^{\circ}, D^{\prime} \leq D$). The strict transform f° maps $Z_{D}(i+1)$ into $Z_{D}(i)$. By Noetherianity, there exists a minimal integer $\ell(D) \geq 0$ such that

$$
\begin{equation*}
Z_{D}(\ell(D))=\bigcap_{i \geq 0} Z_{D}(i) \tag{4.20}
\end{equation*}
$$

we denote this subset by $Z_{D}(\infty)=Z_{D}(\ell(D))$. By construction, $Z_{D}(\infty)$ is stable under the operator f°; more precisely, $f^{\circ}\left(Z_{D}(\infty)\right)=Z_{D}(\infty)=\left(f^{\circ}\right)^{-1}\left(Z_{D}(\infty)\right)$.

Let $\tau: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Z}_{\geq 0}$ be a lower bound for the inverse function of ℓ :

$$
\begin{equation*}
\ell(\tau(n)) \leq n \quad(\forall n \geq 0) \tag{4.21}
\end{equation*}
$$

Assume that $\max \left\{\operatorname{deg}\left(f^{m}\right) \mid 0 \leq m \leq n_{0}\right\} \leq \tau\left(n_{0}\right)$ for some $n_{0} \geq 1$. Then $\operatorname{deg}\left(\left(f^{\circ}\right)^{i}(\eta)\right) \leq \tau\left(n_{0}\right)$ for every integer i between 0 and n_{0}; this implies that η is in the set $Z_{\tau\left(n_{0}\right)}\left(\ell\left(\tau\left(n_{0}\right)\right)\right)=Z_{\tau\left(n_{0}\right)}(\infty)$, so that the degree of $\left(f^{\circ}\right)^{m}(\eta)$ is
bounded from above by $\tau\left(n_{0}\right)$ for all $m \geq 0$. From Equation (4.16) we deduce that the sequence $\left(\operatorname{deg}\left(f^{m}\right)\right)_{m \geq 0}$ is bounded. This proves the following lemma.

Lemma 4.6. Let τ be a lower bound for the inverse function of ℓ. If

$$
\max \left\{\operatorname{deg}\left(f^{m}\right) \mid 0 \leq m \leq n_{0}\right\} \leq \tau\left(n_{0}\right)
$$

for some $n_{0} \geq 1$, then the sequence $\left(\operatorname{deg}\left(f^{n}\right)\right)_{n \geq 0}$ is bounded by $\tau\left(n_{0}\right)$.
So, to conclude, we need to compare $\ell: \mathbf{Z}_{\geq 0} \rightarrow \mathbf{Z}^{+}$to the function $S: \mathbf{Z}_{\geq 0} \rightarrow$ \mathbf{Z}^{+}of paragraph 4.1 (recall that S depends on the parameters $k=\operatorname{dim}\left(\mathbb{P}_{\mathbf{k}}^{k}\right)$ and $d=\operatorname{deg}(f)$ and that ℓ depends on $f)$. Now, write $Z_{D}^{\prime}(i)=Z_{D}(i) \backslash Z_{D}(\infty)$, and note that it is a strictly decreasing sequence of open subsets of $Z_{D}(i)$ with $Z_{D}^{\prime}(j)=\emptyset$ for all $j \geq \ell(D)$. We shall say that a closed subset of $M_{\leq D}^{\circ} \backslash Z_{D}(\infty)$ for the Zariski topology is piecewise linear if all its irreducible components are equal to the intersection of $M_{\leq D}^{\circ} \backslash Z_{D}(\infty)$ with a linear projective subspace of some $M_{D^{\prime}}, D^{\prime} \leq D$. We note that the intersection of two irreducible linear projective subspaces is still an irreducible linear projective subspace.

Let $\operatorname{Lin}(a, b, c)$ be the family of closed piecewise linear subsets of $M_{\leq D}^{\circ} \backslash$ $Z_{D}(\infty)$ of dimension a, with at most c irreducible components, and at most b irreducible components of maximal dimension a. Then,
(1) $Z_{D}^{\prime}(i+1)=\left\{F \in Z_{D}^{\prime}(i) \mid f^{\circ}(F) \in Z_{D}^{\prime}(i)\right\}=\pi_{\circ}\left(f^{*} Z_{D}^{\prime}(i) \bigcap \cup_{E} T_{E}\left(Z_{D}^{\prime}(i)\right)\right)$, where E runs over the elements of G of degree $\operatorname{deg}(E) \leq d D$;
(2) in this union, each irreducible component of $T_{E}\left(Z_{D}^{\prime}(i)\right)$ is piecewise linear.
Recall that $q=(d D+1)^{m}$ (see Section 4.1). If Z is any closed piecewise linear subset of $M_{\leq D}^{\circ} \backslash Z_{D}(\infty)$ that contains exactly c irreducible components, the set

$$
\begin{aligned}
\pi_{\circ}\left(f^{*} Z \bigcap \bigcup_{E \in G, \operatorname{deg}(E) \leq d D} T_{E}(Z)\right) & =\bigcup_{E \in G, \operatorname{deg}(E) \leq d D} \pi_{\circ}\left(f^{*} Z \bigcap T_{E}(Z)\right) \\
& =\left.\bigcup_{E \in G, \operatorname{deg}(E) \leq d D} T_{E}^{-1}\right|_{T_{E}(Z)}\left(f^{*} Z \bigcap T_{E}(Z)\right)
\end{aligned}
$$

has at most $q c^{2}=(d D+1)^{m} c^{2}$ irreducible components (this is a crude estimate: $f^{*} Z \bigcap T_{E}(Z)$ has at most c^{2} irreducible components, $\left.T_{E}^{-1}\right|_{T_{E}(Z)}$ is injective and the factor $(d D+1)^{m}$ comes from the fact that G contains at most $(d D+1)^{m}$ elements of degree $\leq d D$). Let us now use that the sequence $Z_{D}^{\prime}(i)$ decreases strictly as i varies from 0 to $\ell(D)$, with $Z_{D}^{\prime}(\ell(D))=\emptyset$. If $0 \leq i \leq \ell(D)-1$, and if $Z_{D}^{\prime}(i)$ is contained in $\operatorname{Lin}(a, b, c)$, we obtain
(1) if $b \geq 2$, then $Z_{D}^{\prime}(i+1)$ is contained in $\operatorname{Lin}\left(a, b-1, q c^{2}\right)$;
(2) if $b=1$, then $Z_{D}^{\prime}(i+1)$ is contained in $\operatorname{Lin}\left(a-1, q c^{2}, q c^{2}\right)$.

This shows that

$$
\begin{equation*}
\ell(D) \leq S\left(\binom{k+D}{k}-2\right)+1 \tag{4.22}
\end{equation*}
$$

where S is the function introduced in the Equation (4.7) of Section 4.1. Since $\chi_{d, k}$ satisfies $\ell\left(\chi_{d, k}(n)\right) \leq n$ for every $n \geq 1$, the conclusion follows.

5. Appendix: Proof of Proposition 2.2

We keep the notation from Section 2.1.1. Let f be an automorphism of X. There exist a normal projective irreducible variety Z and two birational morphisms $\pi_{1}: Z \rightarrow$ Y and $\pi_{2}: Z \rightarrow Y$ such that π_{1} and π_{2} are isomorphisms over X, and $f=\pi_{2} \circ \pi_{1}^{-1}$.

Lemma 5.1. We have $\Delta\left(f^{*} P\right) \leq k\left(H^{k}\right)^{-1} \Delta(P) \operatorname{deg}_{H}(f)$ for every $P \in A$.
Proof of Lemma 5.1. By Siu's inequality (see [14] Theorem 2.2.15, and [8] Theorem 1), we get

$$
\begin{equation*}
\pi_{2}^{*} H \leq \frac{k\left(\pi_{2}^{*} H \cdot\left(\pi_{1}^{*} H\right)^{k-1}\right)}{\left(\left(\pi_{1}^{*} H\right)^{k}\right)} \pi_{1}^{*} H=\frac{k \operatorname{deg}_{H}(f)}{\left(H^{k}\right)} \pi_{1}^{*} H . \tag{5.1}
\end{equation*}
$$

Since $(P)+\Delta(P) H \geq 0$ we have $\left(\pi_{2}^{*} P\right)+\Delta(P) \pi_{2}^{*} H \geq 0$. It follows that

$$
\begin{equation*}
\left(\pi_{2}^{*} P\right)+\frac{\Delta(P) k \operatorname{deg}_{H}(f)}{\left(H^{k}\right)} \pi_{1}^{*} H \geq 0 \tag{5.2}
\end{equation*}
$$

Since $\left(\pi_{1}\right)_{*} \circ\left(\pi_{1}\right)^{*}=$ Id we obtain $\left(f^{*} P\right)+\left(k \Delta(P)\left(H^{k}\right)^{-1} \operatorname{deg}_{H}(f)\right) H \geq 0$. This implies $\Delta\left(f^{*} P\right) \leq k\left(H^{k}\right)^{-1} \Delta(P) \operatorname{deg}_{H}(f)$.

Lemma 5.1 shows that $\operatorname{deg}^{H}(f) \leq k\left(H^{k}\right)^{-1} \operatorname{deg}_{H}(f)$. We now prove the reverse direction: $\operatorname{deg}_{H}(f) \leq\left(H^{k}\right) \operatorname{deg}^{H}(f)$.

Since H is very ample, Bertini's theorem gives an irreducible divisor $D \in|H|$ such that $\pi_{2}(E) \nsubseteq D$ for every prime divisor E of Z in $Z \backslash \pi_{2}^{*}(X)$; hence, $\pi_{2}^{*} D$ is equal to the strict transform $\pi_{2}^{\circ} D$. By definition, $D=(P)+H$ for some $P \in A_{1}$. Thus, $\left(\pi_{1}\right)_{*} \pi_{2}^{*} H$ is linearly equivalent to $\left(\pi_{1}\right)_{*} \pi_{2}^{*} D=\left(\pi_{1}\right)_{*} \pi_{2}^{\circ} D$, and this irreducible divisor $\left(\pi_{1}\right)_{*} \pi_{2}^{\circ} D$ is the closure $D_{f^{*} P}$ of $\left\{f^{*} P=0\right\} \subseteq X$ in Y. Writing $\left(f^{*} P\right)=D_{f^{*} P}-F$ where F is supported on $Y \backslash X$ we also get that $\left(\pi_{1}\right)_{*} \pi_{2}^{*} H$ is linearly equivalent to F. Since $\Delta\left(f^{*} P\right) \leq \operatorname{deg}^{H}(f) \Delta(P)=\operatorname{deg}^{H}(f)$, the definition of Δ gives

$$
\begin{equation*}
D_{f^{*} P}-F+\operatorname{deg}^{H}(f) H=\left(f^{*} P\right)+\operatorname{deg}^{H}(f) H \geq 0 . \tag{5.3}
\end{equation*}
$$

Thus, $F \leq \operatorname{deg}^{H}(f) H$ because $D_{f^{*} P}$ is irreducible and is not supported on $Y \backslash X$. Altogether, this gives $\operatorname{deg}_{H}(f)=\left(\left(\pi_{1}\right)_{*} \pi_{2}^{*} H \cdot H^{k-1}\right)=\left(F \cdot H^{k-1}\right) \leq \operatorname{deg}^{H}(f)\left(H^{k}\right)$.

References

[1] Jason P. Bell. A generalised Skolem-Mahler-Lech theorem for affine varieties. J. London Math. Soc. (2), 73(2):367-379, 2006.
[2] Jason P. Bell, Dragos Ghioca, and Thomas. J. Tucker. The dynamical Mordell-Lang problem for étale maps. Amer. J. Math., 132(6):1655-1675, 2010.
[3] Jérémy Blanc and Serge Cantat. Dynamical degrees of birational transformations of projective surfaces. J. Amer. Math. Soc., 29(2):415-471, 2016.
[4] Araceli M. Bonifant and John Erik Fornæ ss. Growth of degree for iterates of rational maps in several variables. Indiana Univ. Math. J., 49(2):751-778, 2000.
[5] Serge Cantat. Morphisms between Cremona groups, and characterization of rational varieties. Compos. Math., 150(7):1107-1124, 2014.
[6] Serge Cantat, Antoine Chambert-Loir, and Vincent Guedj. Quelques aspects des systèmes dynamiques polynomiaux, volume 30 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2010.
[7] Serge Cantat and Junyi Xie. Algebraic actions of discrete groups: the p-adic method. Acta Math., 220(2):239-295, 2018.
[8] Steven Dale Cutkosky. Teissier's problem on inequalities of nef divisors. J. Algebra Appl., 14(9):1540002, 37, 2015.
[9] Martin D. Davis and Elaine J. Weyuker. Computability, complexity, and languages. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Fundamentals of theoretical computer science.
[10] Jeffrey Diller and Charles Favre. Dynamics of bimeromorphic maps of surfaces. Amer. J. Math., 123(6):1135-1169, 2001.
[11] Tien-Cuong Dinh and Nessim Sibony. Une borne supérieure pour l'entropie topologique d'une application rationnelle. Ann. of Math. (2), 161(3):1637-1644, 2005.
[12] Ehud Hrushovski. The elementary theory of the Frobenius automorphism. http://arxiv.org/pdf/math/0406514v1, pages 1-135, 2004.
[13] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1984.
[14] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
[15] Christer Lech. A note on recurring series. Ark. Mat., 2:417-421, 1953.
[16] Bac-Dang Nguyen. Degrees of iterates of rational transformations of projective varieties. arXiv, arXiv:1701.07760:1-46, 2017.
[17] Bjorn Poonen. p-adic interpolation of iterates. Bull. Lond. Math. Soc., 46(3):525-527, 2014.
[18] Tuyen Trung Truong. Relative dynamical degrees of correspondances over fields of arbitrary characteristic. J. Reine Angew. Math., to appear:1-44, 2018.
[19] Christian Urech. Remarks on the degree growth of birational transformations. Math. Res. Lett., 25(1):291-308, 2018.

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
E-mail address: serge.cantat@univ-rennes1.fr, junyi.xie@univ-rennes1.fr

