FAMILIES OF COMMUTING AUTOMORPHISMS, AND A CHARACTERIZATION OF THE AFFINE SPACE

SERGE CANTAT, ANDRIY REGETA, AND JUNYI XIE

ABSTRACT. We prove that the affine space of dimension $n \ge 1$ over an uncountable algebraically closed field $\mathbf k$ is determined, among connected affine varieties, by its automorphism group (viewed as an abstract group). The proof is based on a new result concerning algebraic families of pairwise commuting automorphisms.

1. Introduction

1.1. Characterization of the affine space. In this paper, \mathbf{k} is an algebraically closed field and $\mathbb{A}^n_{\mathbf{k}}$ denotes the affine space of dimension n over \mathbf{k} .

Theorem A.– Let \mathbf{k} be an algebraically closed and uncountable field. Let n be a positive integer. Let X be a reduced, connected, affine variety over \mathbf{k} . If its automorphism group $\operatorname{Aut}(X)$ is isomorphic to $\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})$ as an abstract group, then X is isomorphic to $\mathbb{A}^n_{\mathbf{k}}$ as a variety over \mathbf{k} .

Note that no assumption is made on $\dim(X)$; in particular, we do not assume $\dim(X) = n$. This theorem is our main goal. It would be great to lighten the hypotheses on **k**, but besides that the following remarks show the result is optimal:

- The affine space $\mathbb{A}^n_{\mathbf{k}}$ is not determined by its automorphism group in the category of quasi-projective varieties because
 - (1) $\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})$ is naturally isomorphic to $\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}} \times Z)$ for any projective variety Z with $\operatorname{Aut}(Z) = \{ \operatorname{id} \};$
 - (2) for every algebraically closed field **k** there is a projective variety Z over **k** such that $\dim(Z) \ge 1$ and $\operatorname{Aut}(Z) = \{\operatorname{id}\}$ (one can take a general curve of genus ≥ 3 ; see [12] and [13, Main Theorem]).
- The connectedness is crucial: $\operatorname{Aut}(\mathbb{A}^n_k)$ is isomorphic to the automorphism group of the disjoint union of \mathbb{A}^n_k and Z if Z is a variety with $\operatorname{Aut}(Z) = \{\operatorname{id}\}$.
- 1.2. **Previous results.** The literature contains already several theorems that may be compared to Theorem A. We refer to [2] for an interesting introduction and for the case of the complex affine plane; see [7, 8] for extensions and generalisations of Déserti's results in higher dimension. Some of those results assume $\operatorname{Aut}(X)$ to be isomorphic to $\operatorname{Aut}(\mathbb{A}^n_k)$ as an ind-group; this is a rather strong hypothesis. Indeed,

Date: 2019.

there are examples of affine varieties X and Y such that Aut(X) and Aut(Y) are isomorphic as abstract groups, but not isomorphic as ind-groups (see [9, Theorem 2]). In [10] the authors prove that an affine toric surface is determined by its group of automorphisms in the category of affine surfaces; unfortunately, their methods do not work in higher dimension.

1.3. **Commutative families.** The proof of Theorem A relies on a new result concerning families of pairwise commuting automorphisms of affine varieties. To state it, we need a few standard notions. If V is a subset of a group G, we denote by $\langle V \rangle$ the subgroup generated by V, i.e. the smallest subgroup of G containing V. We say that V is **commutative** if fg = gf for all pairs or equivalently, if $\langle V \rangle$ is an abelian group. In the following statement, $\operatorname{Aut}(X)$ is viewed as an ind-group, so that it makes sense to speak of algebraic subsets of it (see the definitions in Section 2.2).

Theorem B.– Let \mathbf{k} be an algebraically closed field and let X be an affine variety over \mathbf{k} . Let V be a commutative irreducible algebraic subvariety of $\operatorname{Aut}(X)$ containing the identity. Then $\langle V \rangle$ is an algebraic subgroup of $\operatorname{Aut}(X)$.

It is crucial to assume that V contains the identity. Otherwise, a counter-example would be given by a single automorphism f of X for which the sequence $n \mapsto \deg(f^n)$ is not bounded (see Section 2.1). To get a family of positive dimension, consider the set V of automorphisms $f_a \colon (x,y) \mapsto (x,axy)$ of $(\mathbb{A}^1_k \setminus \{0\})^2$, for $a \in k \setminus \{0\}$; V is commutative and irreducible, but $\langle V \rangle$ has infinitely many connected components (hence $\langle V \rangle$ is not algebraic). However, if V satisfies the hypotheses of Theorem B except that it does not contain the identity, the subset $V \cdot V^{-1} \subseteq \operatorname{Aut}(X)$ is irreducible, commutative and contains the identity; if its dimension is positive, Theorem B implies that $\operatorname{Aut}(X)$ contains a commutative algebraic subgroup of positive dimension.

1.4. **Acknowledgement.** We thank Jean-Philippe Furter, Hanspeter Kraft, and Christian Urech for interesting discussions and comments related to this article. We thank the referee for helpful criticisms and suggestions.

2. Degrees and ind-groups

2.1. **Degrees and compactifications.** Let X be an affine variety. Embed X in the affine space $\mathbb{A}^N_{\mathbf{k}}$ for some N, and denote by $\mathbf{x} = (x_1, \dots, x_N)$ the affine coordinates of $\mathbb{A}^N_{\mathbf{k}}$. Let f be an automorphism of X. Then, there are N polynomial functions $f_i \in \mathbf{k}[\mathbf{x}]$ such that $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_N(\mathbf{x}))$ for $\mathbf{x} \in X$. One says that f has degree $\leq d$ if one can choose the f_i of degree $\leq d$; the degree $\deg(f)$ can then be defined as the minimum of these degrees d. This notion depends on the embedding $X \hookrightarrow \mathbb{A}^N_{\mathbf{k}}$.

Another way to proceed is as follows. To simplify the exposition, assume that all irreducible components of X have the same dimension $k = \dim(X)$. Fix a compactification \overline{X}_0 of X by a projective variety and let $\overline{X} \to \overline{X}_0$ be the normalization of \overline{X}_0 . If H is an ample line bundle on \overline{X} , and if f is a birational transformation of \overline{X} , one defines $\deg_H(f)$ (or simply $\deg(f)$) to be the intersection number

(2.1)
$$\deg(f) = (f^*H) \cdot (H)^{k-1}.$$

Since $\operatorname{Aut}(X) \subset \operatorname{Bir}(\overline{X})$, we obtain a second notion of degree. It is shown in [1, 17] (see also § 6 below) that these notions of degrees are compatible: if we change the embedding $X \hookrightarrow \mathbb{A}^N_{\mathbf{k}}$, or the polarization H of \overline{X} , or the compactification \overline{X} , we get different degrees, but any two of these degree functions are always comparable, in the sense that there are positive constants satisfying

$$(2.2) a \deg(f) \le \deg'(f) \le b \deg(f) (\forall f \in \operatorname{Aut}(X)).$$

A subset $V \subset \operatorname{Aut}(X)$ is of **bounded degree** if there is a uniform upper bound $\deg(g) \leq D < +\infty$ for all $g \in V$. This notion does not depend on the choice of degree. If $V \subset \operatorname{Aut}(X)$ is of bounded degree, then $V^{-1} = \{f^{-1} ; f \in V\} \subset \operatorname{Aut}(X)$ is of bounded degree too (see [1] and [3] for instance); we shall not use this result.

- 2.2. Automorphisms of affine varieties and ind-groups. The notion of an ind-group goes back to Shafarevich, who called these objects infinite dimensional groups in [15]. We refer to [3, 6] for detailed introductions to this notion.
- 2.2.1. *Ind-varieties*. By an **ind-variety** we mean a set \mathcal{V} together with an ascending filtration $\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset ... \subset \mathcal{V}$ such that the following is satisfied:
 - (1) $\mathcal{V} = \bigcup_{k \in \mathbb{N}} \mathcal{V}_k$;
 - (2) each \mathcal{V}_k has the structure of an algebraic variety over **k**;
 - (3) for all $k \in \mathbb{N}$ the inclusion $\mathcal{V}_k \subset \mathcal{V}_{k+1}$ is a closed immersion.

We refer to [3] for the notion of equivalent filtrations on ind-varieties.

A map $\Phi: \mathcal{V} \to \mathcal{W}$ between ind-varieties $\mathcal{V} = \bigcup_k \mathcal{V}_k$ and $\mathcal{W} = \bigcup_l \mathcal{W}_l$ is a **morphism** if for each $k \in \mathbb{N}$ there is $l \in \mathbb{N}$ such that $\Phi(\mathcal{V}_k) \subset \mathcal{W}_l$ and the induced map $\Phi: \mathcal{V}_k \to \mathcal{V}_l$ is a morphism of algebraic varieties. Isomorphisms of ind-varieties are defined in the usual way. An ind-variety $\mathcal{V} = \bigcup_k \mathcal{V}_k$ has a natural Zariski topology: $S \subset \mathcal{V}$ is **closed** (resp. **open**) if $S_k := S \cap \mathcal{V}_k \subset \mathcal{V}_k$ is closed (resp. **open**) for every k. A closed subset $S \subset \mathcal{V}$ inherits a natural structure of ind-variety and is called an **ind-subvariety**. An ind-variety \mathcal{V} is said to be affine if each \mathcal{V}_k is affine. We shall only consider affine ind-varieties and for simplicity we just call them ind-varieties. An ind-subvariety S is an **algebraic subvariety** of \mathcal{V} if $S \subset \mathcal{V}_k$ for some $k \in \mathbb{N}$; by definition, a **constructible subset** will always be a constructible subset in an algebraic subvariety of \mathcal{V} .

2.2.2. *Ind-groups*. The product of two ind-varieties is defined in the obvious way. An ind-variety \mathcal{G} is called an **ind-group** if the underlying set \mathcal{G} is a group and the map $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$, defined by $(g,h) \mapsto gh^{-1}$, is a morphism of ind-varieties. If a subgroup H of \mathcal{G} is closed for the Zariski topology, then H is naturally an ind-subgroup of \mathcal{G} ; it is an **algebraic subgroup** if it is an algebraic subvariety of \mathcal{G} . A connected component of an ind-group \mathcal{G} , with a given filtration $\mathcal{G}_0 \subset \mathcal{G}_1 \subset \mathcal{G}_2 \subset \ldots$, is an increasing union of connected components \mathcal{G}_i^c of \mathcal{G}_i . The **neutral component** \mathcal{G}° of \mathcal{G} is the union of the connected components of the \mathcal{G}_i containing the neutral element id $\in \mathcal{G}$. We refer to [3], and in particular to Propositions 1.7.1 and 2.2.1, showing that \mathcal{G}° is an ind-subgroup in \mathcal{G} whose index is at most countable (the proof of [3] works in arbitrary characteristic).

Theorem 2.1. Let X be an affine variety over an algebraically closed field \mathbf{k} . Then $\operatorname{Aut}(X)$ has the structure of an ind-group acting "morphically" on X; this means that the action $\mathcal{G} \times X \to X$ of \mathcal{G} on X induces a morphism of algebraic varieties $\mathcal{G}_i \times X \to X$ for every $i \in \mathbf{N}$.

In particular, if V is an algebraic subset of $\operatorname{Aut}(X)$, then $V(x) \subset X$ is constructible for every $x \in X$ by Chevalley's theorem. The proof can be found in [6, Proposition 2.1] (see also [3], Theorems 5.1.1 and 5.2.1): the authors assume that the field has characteristic 0, but their proof works in the general setting. To obtain a filtration, one starts with a closed embedding $X \hookrightarrow \mathbb{A}^N_{\mathbf{k}}$, and define $\operatorname{Aut}(X)_d$ to be the set of automorphisms f such that $\max\{\deg(f),\deg(f^{-1})\}\leq d$. For example, if $X=\mathbb{A}^n_{\mathbf{k}}$, the ind-group filtration $(\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})_d)$ of $\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})$ is defined by the following property: an automorphism f is in $(\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})_d)$ if the polynomial formulas for $f=(f_1,\ldots,f_n)$ and for its inverse $f^{-1}=(g_1,\ldots,g_n)$ satisfy

(2.3)
$$\deg f_i \leq d \text{ and } \deg g_i \leq d, \ (\forall i \leq n).$$

Note that an ind-subgroup is algebraic if and only if it is of bounded degree. Thus, we get the following basic fact.

Proposition 2.2. Let X be an affine variety over an algebraically closed field \mathbf{k} . Let V be an irreducible algebraic subset of $\operatorname{Aut}(X)$ that contains id. Then $\langle V \rangle$ is an algebraic subgroup of $\operatorname{Aut}(X)$, acting algebraically on X, if and only if $\langle V \rangle$ is of bounded degree.

Example 2.3. Let $g \in \mathsf{SU}_2(\mathbf{C})$ be an irrational rotation, and set $V = \{g\} \subset \mathsf{Aut}(\mathbb{A}^2_{\mathbf{C}})$. Then $\langle V \rangle$ is not an algebraic group, but it is Zariski dense in an abelian algebraic subgroup of $\mathsf{GL}_2(\mathbf{C}) \subset \mathsf{Aut}(\mathbb{A}^2_{\mathbf{C}})$. This shows that $\mathsf{id} \in V$ is a necessary hypothesis.

Proof. If $\langle V \rangle$ is algebraic, then it is contained in some $\operatorname{Aut}(X)_d$ and, as such, is of bounded degree; moreover, Theorem 2.1 implies that the action $\langle V \rangle \times X \to X$ is algebraic. If $\langle V \rangle$ is of bounded degree, then $\langle V \rangle^{-1} = \langle V \rangle$ is of bounded degree too,

and $\langle V \rangle$ is contained in some $\operatorname{Aut}(X)_d$. The Zariski closure $\overline{\langle V \rangle}$ of $\overline{\langle V \rangle}$ in $\operatorname{Aut}(X)_d$ is an algebraic subgroup of $\operatorname{Aut}(X)$; we are going to show that $\overline{\langle V \rangle} = \overline{\langle V \rangle}$. Set $W = V \cdot V^{-1}$, and note that W contains V because $\operatorname{id} \in V$. By definition, $\overline{\langle V \rangle}$ is the increasing union of the subsets $W \subset W \cdot W \subset \cdots \subset W^k \subset \cdots$, and by Chevalley theorem, each $W^k \subset \overline{\langle V \rangle}$ is constructible. The $\overline{W^k}$ are irreducible, because V is irreducible, and their dimensions are bounded by the dimension of $\operatorname{Aut}(X)_d$; so, there exists $\ell \geq 1$ such that $\overline{W^\ell} = \bigcup_{k \geq 1} \overline{W^k} \subseteq \overline{\langle V \rangle}$. Since $\overline{\langle V \rangle} \subseteq \bigcup_{k \geq 1} \overline{W^k}$, we get $\overline{W^\ell} = \overline{\langle V \rangle}$; thus, there exists a Zariski dense open subset U of $\overline{\langle V \rangle}$ which is contained in W^ℓ . Now, pick any f in $\overline{\langle V \rangle}$. Then $(f \cdot U)$ and U are two Zariski dense open subsets of $\overline{\langle V \rangle}$, so $(f \cdot U)$ intersects U and this implies that f is in $U \cdot U^{-1} \subset \overline{\langle V \rangle}$. So $\overline{\langle V \rangle} \subset \overline{\langle V \rangle}$.

3. ALGEBRAIC VARIETIES OF COMMUTING AUTOMORPHSIMS

Let **k** be an algebraically closed field. Let *X* be an affine variety over **k** of dimension *d*. In this section, we prove Theorem B. Since $V \subset \operatorname{Aut}(X)$ is irreducible and contains the identity, every irreducible component of *X* is invariant under the action of *V* (and of $\langle V \rangle$); thus, we may and do assume *X* to be irreducible.

3.1. **Invariant fibrations, base change, and degrees.** Let B and Y be affine varieties and assume that B is irreducible. Let $\pi: Y \to B$ be a dominant morphism. By definition, $\operatorname{Aut}_{\pi}(Y)$ is the group of automorphisms $g: Y \to Y$ such that $\pi \circ g = \pi$.

Let B' be another irreducible affine variety, and let $\psi \colon B' \to B$ be a quasifinite and dominant morphism. Pulling-back π by ψ , we get a new affine variety $Y \times_B B' = \{(y,b') \in Y \times B'; \pi(y) = \psi(b')\}$; the projections $\pi_Y \colon Y \times_B B' \to Y$ and $\pi' \colon Y \times_B B' \to B'$ satisfy $\psi \circ \pi' = \pi \circ \pi_Y$. There is a natural homomorphism

$$(3.1) t_{\mathsf{W}} \colon \mathsf{Aut}_{\pi}(Y) \to \mathsf{Aut}_{\pi'}(Y \times_B B')$$

defined by $\iota_{\Psi}(g) = g \times_B \operatorname{id}_{B'}$. For every $g \in \operatorname{Aut}_{\pi}(Y)$, we have

$$(3.2) g \circ \pi_Y = \pi_Y \circ \iota_{\Psi}(g) \text{and} \pi' = \pi' \circ \iota_{\Psi}(g).$$

If $\iota_{\psi}(g) = \text{id}$ then $g \circ \pi_Y = \pi_Y$ and g = id because π_Y is dominant; hence, ι_{ψ} is an embedding. Since π_Y is dominant and generically finite, the next lemma follows from Proposition 6.3.

Lemma 3.1. If S is a subset of $\operatorname{Aut}_{\pi}(Y)$, then S is of bounded degree if and only if its image $\iota_{W}(S)$ in $\operatorname{Aut}_{\pi'}(Y \times_{B} B')$ is of bounded degree.

Let us come back to the example f(x,y)=(x,xy) from Section 1.3. This is an automorphism of the multiplicative group $\mathbb{G}_m \times \mathbb{G}_m$ that preserves the projection onto the first factor. The degrees of the iterates $f^n(x,y)=(x,x^ny)$ are not bounded, but on every fiber $\{x=x_0\}$, the restriction of f^n is the linear map $y\mapsto (x_0)^n y$, of constant degree 1. More generally, if $x\in B\mapsto A(x)$ is a regular map with values

in $GL_N(\mathbf{k})$, then $g:(x,y)\mapsto (x,A(x)(y))$ is a regular automorphism of $B\times\mathbb{A}^N_{\mathbf{k}}$ and, in most cases, we observe the same phenomenon: the degrees of the restrictions $g^n_{|\{x_0\}\times\mathbb{A}^N_{\mathbf{k}}}$ are bounded, but the degrees of g^n are not.

If X is an affine variety over \mathbf{k} with a morphism $\pi: X \to B$, we denote by η the generic point of B and X_{η} the generic fiber of π . If G is a subgroup of $\operatorname{Aut}_{\pi}(X)$, then its restriction to X_{η} may have bounded degree even if G is not a subgroup of $\operatorname{Aut}(X)$ of bounded degree: this is shown by the previous example.

The next proposition provides a converse result. To state it, we make use of the following notation. Let B be an irreducible affine variety, and let O(B) be the **k**-algebra of its regular functions. By definition, \mathbb{A}_B^N denotes the affine space $\mathrm{Spec}\ O(B)[x_1,\ldots,x_N]$ over the ring O(B) and $\mathrm{Aut}_B(\mathbb{A}_B^N)$ denotes the group of O(B)-automorphisms of \mathbb{A}_B^N . Similarly, $\mathrm{GL}_N(O(B))$ is the linear group over the ring O(B). The inclusion $\mathrm{GL}_N(O(B)) \subset \mathrm{Aut}_B(\mathbb{A}_B^N)$ is an embedding of ind-groups.

Proposition 3.2. Let X be an irreducible and normal affine variety over \mathbf{k} with a dominant morphism $\pi: X \to B$ to an irreducible affine variety B over \mathbf{k} . Let η be the generic point of B and X_{η} the generic fiber of π . Let G be a subgroup of $\operatorname{Aut}_{\pi}(X)$ whose restriction to X_{η} is of bounded degree. Then there exists

- (a) a nonempty affine open subset B' of B,
- (b) an embedding $\tau: X_{B'} := \pi^{-1}(B') \hookrightarrow \mathbb{A}^r_{B'}$ over B' for some $r \geq 1$,
- (c) and an embedding $\rho: G \hookrightarrow \mathsf{GL}_r(\mathcal{O}(B')) \subseteq \mathsf{Aut}_{B'}(\mathbb{A}^r_{B'})$,

such that $\tau \circ g = \rho(g) \circ \tau$ for every $g \in G$.

Notation.– For $f \in \text{Aut}(X)$ and $\xi \in O(X)$ (resp. in $\mathbf{k}(X)$), we denote by $f^*\xi$ the function $\xi \circ f$. The field of constant functions is identified with $\mathbf{k} \subset O(X)$.

Proof of Proposition 3.2. Shrinking *B*, we assume *B* to be normal.

Pick any closed embedding $X \hookrightarrow \mathbb{A}^\ell_B \subseteq \mathbb{P}^\ell_B$ over B. Let X' be the Zariski closure of X in \mathbb{P}^ℓ_B . Let \overline{X} be the normalization of X', with the structure morphism $\overline{\pi}: \overline{X} \to B$; thus, $\overline{\pi}: \overline{X} \to B$ is a normal and projective scheme over B containing X as a Zariski open subset. By Proposition 3.1 in [4, Chap. II], $D := \overline{X} \setminus X$ is an effective Weil divisor of \overline{X} . Denote by \overline{X}_η the generic fiber of $\overline{\pi}$ and by D_η the generic fiber of $\overline{\pi}|_D$. Shrinking B again if necessary, we may assume that all irreducible components of D meet the generic fiber, i.e. $D = \overline{D_\eta}$.

Write $X = \operatorname{Spec} A$, where A = O(X). Let M be a finite dimensional subspace of A such that $1 \in M$ and A is generated by M as a k-algebra. Since the action of G on X_{η} is of bounded degree, there exists $m \ge 0$ such that the divisor

$$(3.3) \qquad (\operatorname{Div}(g^*v) + mD)|_{\overline{X}_n}$$

is effective for every $v \in M$ and $g \in G$. Now, consider $Div(g^*v) + mD$ as a divisor of \overline{X} and write $Div(g^*v) + mD = D_1 - D_2$ where D_1 and D_2 are effective and have no common irreducible component. Since $g \in Aut_{\pi}(X)$, we get $g^*v \in A$ and $D_2 \cap X = Aut_{\pi}(X)$

 \emptyset . Moreover, $D_2 \cap \overline{X}_{\eta} = \emptyset$. So D_2 is contained in $\overline{X} \setminus X$, but then we deduce that D_2 is empty because $\overline{X} \setminus X$ is covered by D and $D = \overline{D_{\eta}}$.

Observe that $H^0(\overline{X}, mD)$ is a finitely generated O(B)-module. Denote by N the G-invariant O(B)-submodule of A generated by the g^*v , for $g \in G$ and $v \in M$. Since $N \subseteq H^0(\overline{X}, mD)$, N is a finitely generated O(B)-module. Let r be the dimension of the $\mathbf{k}(B)$ -vector space $N \otimes_{O(B)} \mathbf{k}(B)$. Fix a basis (w_1, \dots, w_r) of this space made of elements $w_i \in N$. After shrinking B, we may assume that N is a free O(B)-module generated by w_1, \dots, w_r . Let W be a free O(B)-module of rank P with a basis (z_1, \dots, z_r) ; thus, $W = \bigoplus_{i=1}^r O(B)z_i$ and

$$(3.4) Spec O(B)[W] = Spec O(B)[z_1, \dots, z_r] = \mathbb{A}^r_{O(B)}.$$

Let $\tau_W^*: W \to N$ be the isomorphism of modules defined by $\tau_W^*(z_i) = w_i$. The action of G on N induces a representation $\rho: G \to \mathsf{GL}_B(W)$ such that $\tau_W^* \circ \rho(g) = g^* \circ \tau_W^*$.

Using the basis (z_i) , we obtain a homomorphism $\rho: G \to \mathsf{GL}_r(\mathcal{O}(B))$. Let τ be the morphism $X \hookrightarrow \mathsf{Spec}\ \mathcal{O}(B)[W] = \mathbb{A}^r_{\mathcal{O}(B)}$ over B induced by $\tau_W^*: W \to N \subseteq A$. The group $\mathsf{GL}_r(\mathcal{O}(B))$ can naturally be identified to a subgroup of $\mathsf{Aut}_B(\mathbb{A}^r_{\mathcal{O}(B)})$, and then $\tau \circ g = \rho(g) \circ \tau$ for every $g \in G$.

3.2. **Orbits.** If *S* is a subset of $\operatorname{Aut}(X)$ and *x* is a point of *X* the *S*-**orbit** of *x* is the subset $S(x) = \{f(x); f \in S\}$. Let *V* be an irreducible algebraic subvariety of $\operatorname{Aut}(X)$ containing id. Set $W = V \cdot V^{-1}$; it is a constructible subset of $\operatorname{Aut}(X)$ containing *V* (for id $\in V$). Then, the group $\langle V \rangle$ is the union of the sets

$$(3.5) W^k = \{f_1 \circ \cdots \circ f_k; f_j \in W \text{ for all } j\}.$$

Since W contains id, the W^k form a non-decreasing sequence

$$(3.6) W^0 = \{ id \} \subset W \subset W^2 \subset \cdots \subset W^k \subset \cdots$$

of constructible subsets of Aut(X); their closures are irreducible, because so is V. In particular, $k \mapsto \dim(W^k)$ is non-decreasing.

The W^k -orbit of a point $x \in X$ is the image of $W^k \times \{x\}$ by the morphism $\operatorname{Aut}(X) \times X \to X$ defining the action on X: applying Chevalley's theorem one more time, $W^k(x)$ is a constructible subset of X. If $U \subset X$ is open, its W^k -orbit $W^k(U)$ is open too; thus, $\langle W \rangle(U) = \bigcup_{k \geq 0} W^k(U)$ is open in X.

An increasing union of irreducible constructible sets needs not be stationary: the sequence of subsets of $\mathbb{A}^2_{\mathbb{C}}$ defined by $Z_k = \left(\mathbb{A}^2_{\mathbb{C}} \setminus \{y=0\}\right) \cup_{j=1}^k \{(j,0)\}$ provides such an example. However, we shall see in the next proposition that the $W^k(x)$ are better behaved.

Let π_1 and π_2 be the projections from $X \times X$ to the first and second factor, respectively. Let Δ_X be the diagonal in $X \times X$; if Y is a subvariety of X, set

$$(3.7) \Delta_Y = \pi_1^{-1}(Y) \cap \Delta_X = \{(y,y) \in X \times X; y \in Y\} \subset X \times X.$$

Consider the morphism Φ : Aut(X) $\times X \to X \times X$ defined by

(3.8)
$$\Phi(g, x) = (x, g(x)),$$

and set $\Gamma_i = \Phi(W^i \times X)$ for $i \in \mathbf{Z}_{>0}$. The family $(\Gamma_i)_{i \in \mathbf{N}}$ forms a non-decreasing sequence of constructible sets; we denote by Γ_{∞} their union. Then, consider the action of $\operatorname{Aut}(X)$ on $X \times X$ given by $g \cdot (x,y) = (x,g(y))$. By construction, $\Gamma_i = W^i \cdot \Delta_X$ and $\Gamma_{\infty} = \langle W \rangle \cdot \Delta_X$; similarly $W^i \cdot \Delta_Y = \Gamma_i \cap \pi_1^{-1}(Y)$ and $\langle W \rangle \cdot \Delta_Y = \Gamma_{\infty} \cap \pi_1^{-1}(Y)$ for every subvariety $Y \subset X$.

Lemma 3.3. The subset Γ_{∞} of $X \times X$ is constructible.

Proof. Let us prove, by an induction on $\dim(Y)$, that $\pi_1^{-1}(Y) \cap \Gamma_\infty$ is constructible for every irreducible subvariety $Y \subseteq X$. By convention, set $\dim Y = -1$ when $Y = \emptyset$. So, the case $\dim Y = -1$ is trivial. Now assume that $\dim Y \geq 0$ and that the result holds in dimension $< \dim(Y)$. Set $Z_Y = \overline{\langle W \rangle \cdot \Delta_Y}$; this set is invariant under the action of $\langle W \rangle$ on $X \times X$. Since $\overline{W^i \cdot \Delta_Y}$ is irreducible and increasing for each $i \geq 0$, there is $m \geq 0$, such that

(3.9)
$$Z_Y = \overline{\langle W \rangle \cdot \Delta_Y} = \overline{W^i \cdot \Delta_Y} \quad (\forall i \ge m).$$

Then there is a dense open subset U_Y of Z_Y which is contained in $W^m \cdot \Delta_Y$, hence in $\langle W \rangle \cdot \Delta_Y$. Shrinking U_Y if necessary, we may assume that $\pi_1(U_Y)$ is open in Y. Then $Y \setminus \pi_1(U_Y)$ is a closed subset of X, the irreducible component of which have dimension $< \dim Y$. By the induction hypothesis, $\pi_1^{-1}(Y \setminus \pi_1(U_Y)) \cap \Gamma_\infty$ is constructible. We also know that $\pi_1^{-1}(\pi_1(U_Y)) \cap \Gamma_\infty = \langle W \rangle \cdot U_Y$ is an open subset of Z_Y . Thus, $\pi_1^{-1}(Y) \cap \Gamma_\infty = (\pi_1^{-1}(Y \setminus \pi_1(U_Y)) \cap \Gamma_\infty) \cup (\pi_1^{-1}(\pi_1(U_Y)) \cap \Gamma_\infty)$ is constructible. \square

Proposition 3.4. The orbits $W^k(x)$ satisfy the following properties.

- (1) The function $k \in \mathbb{Z}_{>0} \mapsto \dim(W^k(x))$ is non-decreasing.
- (2) The function $x \in X \mapsto \dim(W^k(x))$ is lower semi-continuous in the Zariski topology: the subsets $\{x \in X : \dim(W^k(x)) \le n\}$ are Zariski closed for all pairs (n,k) of integers.
- (3) The integers

$$s(x) := \max_{k \ge 0} \{ \dim(W^k(x)) \}$$
 and $s_X := \max_{x \in X} \{ s(x) \}$

are bounded from above by $\dim(X)$.

- (4) There is a Zariski dense open subset \mathcal{U} of X and an integer k_0 such that $\dim(W^k(x)) = s_X$ for all $k \ge k_0$ and all $x \in \mathcal{U}$.
- (5) There is an integer $\ell \geq 0$, such that for every x in X, $W^{\ell}(x) = \langle W \rangle(x)$ and $W^{\ell}(x)$ is an open subset of $\overline{\langle W \rangle(x)}$.

Proof. The first assertion follows from the inclusions (3.6), and the third one is obvious. Since the action $(f,x) \in W^k \times X \mapsto f(x) \in X$ is a morphism, the second

and fourth assertions follow from Chevalley's constructibility result and the semi-continuity of the dimension of the fibers (see [5, II, Exercise 3.19] and [16, Section I.6.3, Corollary] respectively). By Lemma 3.3, Γ_{∞} is constructible. Since it is the increasing union of the constructible subsets Γ_i , there is an integer ℓ such that $\Gamma_{\infty} = \Gamma_i$ for $i \geq \ell$. Then, $W^{\ell}(x) = \langle W \rangle(x)$ because $W^i(x) = \pi_2(\Gamma_i \cap \pi_1^{-1}\{x\})$ and $\langle W \rangle(x) = \pi_2(\Gamma_{\infty} \cap \pi_1^{-1}\{x\})$. Now, the constructible set $W^{\ell}(x)$ contains a dense open subset U of $\overline{\langle W \rangle(x)}$; since $\langle W \rangle$ acts transitively on $W^{\ell}(x)$, $W^{\ell}(x) = \langle W \rangle(U)$ is open in $\overline{\langle W \rangle(x)}$.

3.3. **Open orbits.** Let us assume in this paragraph that $s_X = \dim X$: there is an orbit $W^k(x_0)$ which is open and dense and coincides with $\langle W \rangle(x_0)$. We fix such a pair (k,x_0) . Let f be an element of $\langle W \rangle$. Since $f(x_0)$ is in the set $W^k(x_0)$, there is an element g of W^k such that $g(x_0) = f(x_0)$, i.e. $g^{-1} \circ f(x_0) = x_0$. By commutativity, $(g^{-1} \circ f)(h(x_0)) = h(x_0)$ for every h in W^k , and this shows that $g^{-1} \circ f = \operatorname{id}$ because $W^k(x_0)$ is dense in X. Thus, $\langle W \rangle$ coincides with W^k , and $\langle W \rangle = \langle V \rangle$ is an irreducible algebraic subgroup of the ind-group $\operatorname{Aut}(X)$.

Thus, Theorem B is proved in case $s_X = \dim X$. The proof when $s_X < \dim X$ occupies the next section, and is achieved in § 3.4.4.

3.4. No dense orbit. Assume now that there is no dense orbit; in other words, $s_X < \dim(X)$. Fix an integer $\ell > 0$ and a *W*-invariant open subset $\mathcal{U} \subset X$ such that

(3.10)
$$s(x) = s_X \text{ and } W^{\ell}(x) = \langle W \rangle(x)$$

for every $x \in \mathcal{U}$ (see Proposition 3.4, assertions (4) and (5)).

3.4.1. *A fibration*. Let *C* be an irreducible algebraic subvariety of *X* of codimension s_X that intersects the general orbit $W^{\ell}(x)$ transversally (in *k* points). As in § 3.2, denote by $\pi_1: X \times X \to X$ the projection to the first factor. The morphism

(3.11)
$$\pi' := (\pi_1)|_{(X \times C) \cap \Gamma_{\ell}} : (X \times C) \cap \Gamma_{\ell} \to X$$

is generically finite of degree k. So there is a non-empty open subset $\mathcal V$ of $\mathcal U$ such that $\pi'|_{\pi'^{-1}(\mathcal V)}:\pi'^{-1}(\mathcal V)\to \mathcal V$ is finite étale. Observe that for every $g\in \langle W\rangle, g(\mathcal V)$ is open in $\mathcal U$ and $\pi'|_{\pi'^{-1}(g(\mathcal V))}$ is finite étale of degree k. Set $Y:=\langle W\rangle(\mathcal V)$; it is open in $\mathcal U$ and satisfies

- (i) for each $x \in Y$ the intersection of C and $W^{\ell}(x)$ is transverse and contains exactly k points;
- (ii) Y is W-invariant.

To each point $x \in Y$, we associate the intersection $C \cap W^{\ell}(x)$, viewed as a point in the space $C^{[k]}$ of cycles of length k and dimension 0 in C. This gives a dominant morphism

$$\pi\colon Y\to B$$

where, by definition, B is the irreducible variety $B = \overline{\pi(Y)} \subset C^{[k]}$. The group $\langle W \rangle$ is now contained in $\operatorname{Aut}_{\pi}(Y)$. Shrinking B and Y accordingly, we may assume that B is normal. Let η be the generic point of B.

The fiber $\pi^{-1}(b)$ of $b \in B$, we denote by Y_b . By construction, for every $b \in B(\mathbf{k})$, Y_b is an orbit of $\langle W \rangle$; and Section 3.3 shows that Y_b is isomorphic to the image $\langle W \rangle_b$ of $\langle W \rangle$ in $\operatorname{Aut}(Y_b)$: this group $\langle W \rangle_b$ coincides with the image of W^ℓ in $\operatorname{Aut}(Y_b)$ and the action of $\langle W \rangle$ on Y_b corresponds to the action of $\langle W \rangle_b$ on itself by translation. Thus, Section 3.3 implies the following properties

- (1) every fiber, in particular the generic fiber, of π is geometrically irreducible;
- (2) the generic fiber of π is normal and affine, shrinking B (and Y accordingly) again, we may assume B and Y to be normal and affine;
- (3) the action of $\langle W \rangle$ on the generic fiber Y_{η} has bounded degree.

3.4.2. *Reduction to* $Y = U_B \times_B (\mathbb{G}_{m,B}^s)$. In this section, the variety Y will be modified, so as to reduce our study to the case when Y is an abelian group scheme over B. Note that B and Y will be modified several times in this paragraph, keeping the same names.

By Proposition 3.2, after shrinking B, there exist an embedding $\tau: Y \hookrightarrow \mathbb{A}^N_B$ for some $N \geq 0$ and a homomorphism $\rho: \langle W \rangle \hookrightarrow \mathsf{GL}_N(\mathcal{O}(B)) \subseteq \mathsf{Aut}_B(\mathbb{A}^N_B)$ such that

(3.13)
$$\tau \circ g = \rho(g) \circ \tau \quad (\forall g \in \langle W \rangle).$$

Via τ , we view Y as a B-subscheme of \mathbb{A}^N_B , and via ρ we view $\langle W \rangle$ in $\mathsf{GL}_N(\mathcal{O}(B))$. Consider the inclusion of $\mathsf{GL}_N(\mathcal{O}(B))$ into $\mathsf{GL}_N(\mathbf{k}(B))$, and compose it with the embedding of W into $\mathsf{GL}_N(\mathcal{O}(B))$. Denote by $\langle W \rangle_{\eta}$ the Zariski closure of $\langle W \rangle$ in $\mathsf{GL}_N(\mathbf{k}(B),Y_{\eta}) \subseteq \mathsf{Aut}(Y_{\eta})$, where $\mathsf{GL}_N(\mathbf{k}(B),Y_{\eta})$ is the subgroup of $\mathsf{GL}_N(\mathbf{k}(B))$ which preserves Y_{η} . There is a natural inclusion of sets $W \hookrightarrow W \otimes_{\mathbf{k}} \mathbf{k}(B)$: a point X of W, viewed as a morphism X: Spec $\mathbf{k}(X) \to W$, is mapped to the point

$$(3.14) x^B : \operatorname{Spec} \mathbf{k}(x)(B \otimes_{\mathbf{k}} \mathbf{k}(x)) = \operatorname{Spec} \operatorname{Frac}(\mathbf{k}(x) \otimes_{\mathbf{k}} \mathbf{k}(B)) \to W \otimes_{\mathbf{k}} \mathbf{k}(B),$$

where $\mathbf{k}(x)(B \otimes_{\mathbf{k}} \mathbf{k}(x))$ is the function field of $B \otimes_{\mathbf{k}} \mathbf{k}(x)$ which is the variety over the field $\mathbf{k}(x)$; note that \mathbf{k} being algebraically closed, $B \otimes_{\mathbf{k}} \mathbf{k}(x)$ is irreducible over $\mathbf{k}(x)$ and $\mathbf{k}(x) \otimes_{\mathbf{k}} \mathbf{k}(B)$ is an integral domain. The image of this inclusion is Zariski dense in $W \otimes_{\mathbf{k}} \mathbf{k}(B)$. The morphism $W \hookrightarrow \operatorname{GL}_N(\mathbf{k}(B), Y_{\eta})$ naturally extends to a morphism $W \otimes_{\mathbf{k}} \mathbf{k}(B) \hookrightarrow \operatorname{GL}_N(\mathbf{k}(B), Y_{\eta})$. It follows that $\langle W \rangle_{\eta}$ is the Zariski closure of $\langle W \otimes_{\mathbf{k}} \mathbf{k}(B) \rangle$ in $\operatorname{GL}_N(\mathbf{k}(B), Y_{\eta})$.

Since $W \otimes_{\mathbf{k}} \mathbf{k}(B)$ is geometrically irreducible, $\langle W \rangle_{\eta}$ is a geometrically irreducible commutative linear algebraic group over $\mathbf{k}(B)$. As a consequence ([11], Chap. 16.b), there exists a finite extension L of $\mathbf{k}(B)$ and an integer $s \geq 0$ such that

$$\langle W \rangle_{\eta} \otimes_{\mathbf{k}(B)} L \simeq U_L \times \mathbb{G}^s_{m,L}$$

where U_L is a unipotent commutative linear algebraic group over L.

Let $\psi: B' \to B$ be the normalization of B in L. We obtain a new fibration $\pi': Y \times_B B' \to B'$, together with an embedding ι_{ψ} of $\operatorname{Aut}_{\pi}(Y)$ in $\operatorname{Aut}_{\pi'}(Y \times_B B')$; by Lemma 3.1, the subgroup $\langle W \rangle$ has bounded degree if and only if its image $\iota_{\psi}\langle W \rangle$ has bounded degree too. Because the generic fiber of π is geometrically irreducible, $Y \times_B B'$ is irreducible. After such a base change, we may assume that $\langle W \rangle_{\eta} \simeq U_{\eta} \times \mathbb{G}^s_{m,\mathbf{k}(B)}$, where U_{η} corresponds to the group U_L of Equation (3.15). Replacing (this new) B by an affine open subset, and shrinking Y accordingly, we may assume that $Y = U_B \times_B (\mathbb{G}^s_{m,B})$, where U_B is an integral unipotent commutative algebraic group scheme over B, and

$$(3.16) W \subseteq U_B(B) \times \mathbb{G}^s_{m,B}(B) \subseteq \operatorname{Aut}_{\pi}(Y)$$

acts on Y by translation; here $U_B(B)$ and $\mathbb{G}^s_{m,B}(B)$ denote the ind-varieties of sections of the structure morphisms $U_B \to B$ and $\mathbb{G}^s_{m,B} \to B$ respectively.

Remark 3.5. A section $\sigma: B \to U_B$ defines an automorphism of $U_B \simeq B \times_B U_B$ by $\phi(\sigma \times_B \mathrm{id}_{U_B})$, where $\phi: U_B \times U_B \to U_B$ is the multiplication morphism of U_B ; it defines in the same way an element of $\mathrm{Aut}_{\pi}(Y)$. Similarly $\mathbb{G}^s_{m,B}(B)$ embeds into $\mathrm{Aut}_{\pi}(Y)$, so $U_B(B) \times \mathbb{G}^s_{m,B}(B) \subseteq \mathrm{Aut}_{\pi}(Y)$, and this is the meaning of (3.16).

Remark 3.6. Both $U_B(B) \times \mathbb{G}^s_{m,B}(B)$ and $\operatorname{Aut}_{\pi}(Y)$ are ind-varieties over **k** and the inclusions in (3.16) are morphisms between ind-varieties.

Now, to prove Theorem B, we only need to show that W is contained in an algebraic subgroup of $U_B(B) \times \mathbb{G}^s_{m,B}(B)$.

3.4.3. Structure of U_B . Let B be a normal affine variety over the algebraically closed field \mathbf{k} , and let U_B be an integral, connected and unipotent algebraic group scheme over B (we do not assume U_B to be commutative here).

Lemma 3.7. The ind-group $U_B(B)$ is an increasing union of algebraic subgroups.

Before describing the proof, let us assume that U_B is just an r-dimensional additive group $\mathbb{G}_{a,B}^r$. Then, each element of U_B can be written

(3.17)
$$f = (a_1^f(z), \dots, a_r^f(z))$$

where each $a_i^f(z)$ is an element of O(B); its *n*-th power is given by $f^n = (na_1^f(z), \ldots, na_r^f(z))$. Thus, viewed as automorphisms of Y, the degrees of the f^n are bounded independently of n, by (a function of) the degrees of the a_i^f . Our proof is a variation on this basic remark, with two extra difficulties: the structure of U_B may be more subtle in positive characteristic (see [14], §VII.2); instead of iterating one element f, we need to controle the group U_B itself.

Proof. Denote by $\pi_U: U_B \to B$ the structure morphism. Recall, from the end of Section 3.4.2, that B is an affine variety.

The proof is by induction on the relative dimension of $\pi_U : U_B \to B$. If this dimension is zero, there is nothing to prove. So, we assume that the lemma holds for relative dimensions $\leq \ell$, for some $\ell \geq 0$, and we want to prove it when the relative dimension is $\ell + 1$. Denote by U_η the generic fiber of π_U . Our field \mathbf{k} is algebraically closed, and the group U_B is connected, so by Corollary 14.55 of [11] (see also § 14.63), there exists a finite field extension L of $\mathbf{k}(B)$ such that $U_L := U_\eta \otimes_{\mathbf{k}(B)} L$ sits in a central exact sequence

$$(3.18) 0 \to \mathbb{G}_{a,L} \to U_L \xrightarrow{q_L} V_L \to 0,$$

where V_L is an irreducible unipotent group of dimension ℓ and V_L is isomorphic to \mathbb{A}_L^ℓ as an L-variety; moreover, there is an isomorphism of L-varieties $\phi_L \colon U_L \to V_L \times \mathbb{G}_{a,L}$ such that the quotient morphism q_L is given by the projection onto the first factor. So we have a section $s_L \colon V_L \to U_L$ such that $q_L \circ s_L = \mathrm{id}$. The section s_L is just given by a regular function on V_L , it needs not be a homomorphism of groups. Doing the base change given by the normalization of B in L, and then shrinking the base if necessary, we may assume that B is affine and

• there is an exact sequence of group schemes over B,

$$0\to \mathbb{G}_{a,B}\to U_B\xrightarrow{q_B}V_B\to 0,$$

where V_B is a unipotent group scheme over B of relative dimension ℓ ;

- there is an isomorphism of *B*-schemes $V_B \simeq \mathbb{A}_R^{\ell}$;
- s_L extends to a section $s_B: V_B \to U_B$ over $B: q_B \circ s_B = id$.

For $b \in B$, denote by U_b , V_b , q_b , s_b the specialization of U_B , V_B , q_B , s_B at b. Since U_B and V_B are abelian, we denote by + the group law on these groups. The morphism of B-schemes $\beta: U_B \to V_B \times \mathbb{G}_{a,B}$ sending a point x in the fiber U_b to the point $(q_b(x), x - s_b(q_b(x)))$ of the fiber $V_b \times \mathbb{G}_{a,b}$ defines an isomorphism. We use β to transport the group law of U_B into $V_B \times \mathbb{G}_{a,B}$; this defines a law * on $V_B \times \mathbb{G}_{a,B}$, given by

(3.19)
$$a_1 * a_2 = \beta(\beta^{-1}(a_1) + \beta^{-1}(a_2)),$$

for a_1 and a_2 in $V_B \times \mathbb{G}_{a,B}$. Denote by $O(V_B \times_B V_B)$ the function ring of the **k**-variety $V_B \times_B V_B \simeq B \times \mathbb{A}^\ell \times \mathbb{A}^\ell$. We write a point in $V_B \times_B V_B$ as (b, x_1, x_2) where $x_1, x_2 \in V_B$ with the same image b in B. There is an element $F(b, x_1, x_2)(y_1, y_2)$ of $O(V_B \times_B V_B)[y_1, y_2]$ such that

$$(3.20) (x_1, y_1) * (x_2, y_2) = (x_1 + x_2, F(b, x_1, x_2)(y_1, y_2))$$

for all $b \in B$ and $(x_1, y_1), (x_2, y_2) \in V_b \times \mathbb{G}_a$. (In (3.20), + is the group law in V_b .) For every fixed (x_1, y_1, x_2) , the morphism $y_2 \mapsto F(b, x_1, x_2)(y_1, y_2)$ is an automorphism of the variety \mathbb{G}_a . Thus, we can write

$$(3.21) F(b,x_1,x_2)(y_1,y_2) = C_0(b,x_1,x_2)(y_1) + C_2(b,x_1,x_2)(y_1)y_2.$$

The function $C_2(b, x_1, x_2)(y_1)$ does not vanish on $V_B \times_B V_B \times \mathbb{A}^1 \simeq B \times \mathbb{A}^{2\ell+1}$; thus, C_2 is an element of O(B). By symmetry we get

$$(3.22) F(b,x_1,x_2)(y_1,y_2) = C_0(b,x_1,x_2) + C_1(b)y_1 + C_2(b)y_2$$

and

$$(3.23) (x_1, y_1) * (x_2, y_2) = (x_1 + x_2, C_0(b, x_1, x_2) + C_1(b)y_1 + C_2(b)y_2).$$

Now, apply this equation for $x_1 = x_2 = 0$ (the neutral element of V_B). The restriction of β to the fiber $q_b^{-1}(0)$ is $x \mapsto x - s_b(0)$, so for $(0, y_1)$ and $(0, y_2)$ in $V_b \times \mathbb{G}_a$, we obtain $(0, y_1) * (0, y_2) = (0, y_1 + y_2 + s_b(0))$; then $C_1 = C_2 = 1$.

We identify now the ind-varieties $U_B(B)$ and $V_B(B) \times \mathbb{G}_a(B)$. By induction, the ind-group $V_B(B)$ is an increasing union of algebraic subgroups V_i ; as observed before the proof of this lemma, the ind-group $\mathbb{G}_a(B)$ is an increasing union of subgroups G_j . If S and T are elements of $V_B(B)$ and $\mathbb{G}_a(B)$ respectively, we set

$$\delta_V(S) = \min\{i; S \in V_i\}, \quad \delta_{\mathbb{G}_a}(T) = \min\{j; T \in G_i\}.$$

Each element of $U_B(B)$ is given by a section $(S,T) \in V_B(B) \times \mathbb{G}_a(B)$ and the group law in $U_B(B)$ corresponds to the law

$$(3.25) (S1, T1) * (S2, T2) = (S1 + S2, C0(S1, S2) + T1 + T2)$$

because $C_1 = C_2 = 1$. Here $C_0 : V_B(B) \times V_B(B) \to \mathbb{G}_a(B)$ is a morphism of indvarieties, so there is a function $\alpha : \mathbf{N} \to \mathbf{N}$ such that

(3.26)
$$\delta_{\mathbb{G}_a} C_0(S_1, S_2) \le \alpha(\delta_V(S_1) + \delta_V(S_2)).$$

Now, note that $V_i \times G_{\alpha(2i)}$ is an algebraic subgroup of $U_B(B)$, because

$$(3.27) \quad \delta_{\mathbb{G}_a}(C_0(S_1, S_2) + T_1 + T_2) \leq \max\{\delta_{\mathbb{G}_a}(C_0(S_1, S_2)), \delta_{\mathbb{G}_a}(T_1), \delta_{\mathbb{G}_a}(T_2)\}.$$

Thus, $U_B(B)$ is the increasing union of the algebraic subgroups $V_i \times G_{\alpha(2i)}$.

3.4.4. Subgroups of $\mathbb{G}_m^s(B)$ and conclusion.

Lemma 3.8. If Z is an irreducible subvariety of $\mathbb{G}_m^s(B)$ containing id, then $\langle Z \rangle$ is an algebraic subgroup of $\mathbb{G}_m^s(B)$.

Proof of Lemma 3.8. Pick a projective compactification \overline{B} of B. After taking the normalization of \overline{B} , we may assume \overline{B} to be normal. If h is any non-constant rational function on \overline{B} , denote by $\mathrm{Div}(h)$ the divisor $(h)_0 - (h)_\infty$ on \overline{B} .

Let $\mathbf{y} = (y_1, \dots, y_s)$ be the standard coordinates on \mathbb{G}_m^s . Each element $f \in \mathbb{G}_m^s(B)$ can be written as $(b_1^f(z), \dots, b_s^f(z))$, for some $b_j^f \in O^*(B)$. Let R be an effective divisor whose support Support (R) contains $\overline{B} \setminus B$. Replacing R by some large multiple, Z is contained in the subset P_R of $\mathbb{G}_m^s(B)$ made of automorphisms $f \in \mathbb{G}_m^s(B)$ such that $\mathrm{Div}(b_i^f) + R \geq 0$ and $\mathrm{Div}(1/b_i^f) + R \geq 0$ for all $i = 1, \dots, s$. Let us study the structure of this set $P_R \subset \mathbb{G}_m^s(B)$.

Let K be the set of pairs (D_1,D_2) of effective divisors supported on $\overline{B}\setminus B$ such that D_1 and D_2 have no common irreducible component, $D_1 \leq R$, $D_2 \leq R$, and D_1 and D_2 are rationally equivalent. Then K is a finite set. For every pair $\alpha = (D_1^{\alpha},D_2^{\alpha}) \in K$, we choose a function $h_{\alpha} \in \mathcal{O}^*(Y)$ such that $\mathrm{Div}(h_{\alpha}) = D_1^{\alpha} - D_2^{\alpha}$; if h is another element of $\mathcal{O}^*(Y)$ such that $\mathrm{Div}(h) = D_1^{\alpha} - D_2^{\alpha}$, then $h/h_{\alpha} \in \mathbf{k}^*$. By convention $\alpha = 0$ means that $\alpha = (0,0)$, and in that case we choose h_{α} to be the constant function 1. For every $\beta = (\alpha_1,\ldots,\alpha_s) \in K^s$, denote by P_{β} the set of elements $f \in \mathbb{G}_m^s(B)$ such that the $b_i^f \in \mathcal{O}^*(B)$ satisfy $\mathrm{Div}(b_i^f) = D_1^{\alpha_i} - D_2^{\alpha_i}$ for all $i = 1,\ldots,s$. Then $P_{\beta} \simeq \mathbb{G}_m^s(\mathbf{k})$ is an irreducible algebraic variety over \mathbf{k} . Moreover, id $\in P_{\beta}$ if and only if $\beta = 0$, and P_0 is an algebraic subgroup of $\mathbb{G}_m^s(B)$, isomorphic to $\mathbb{G}_m^s(\mathbf{k})$ as an algebraic group.

Observe that P_R is the disjoint union $P_R = \bigsqcup_{\beta \in K^s} P_\beta$. Since $\mathrm{id} \in Z$, Z is irreducible, and $Z \subseteq P_R$, we obtain $Z \subset P_0$. Since P_0 is an algebraic subgroup of $\mathbb{G}_m^s(B)$, $\langle Z \rangle$ coincides with $(Z \cdot Z^{-1})^\ell$ for some $\ell \geq 1$, and $\langle Z \rangle$ is a connected algebraic group.

Proof of Theorem B. By Proposition 2.2, we only need to prove that $W = \langle V \rangle$ is of bounded degree. By Lemma 3.1 W is a subgroup of bounded degree if and only if $W \subset \operatorname{Aut}_{\pi}(Y)$ is a subgroup of bounded degree. Moreover, by (3.16), W is a subgroup of $U_B(B) \times \mathbb{G}_m^s(B) \subset \operatorname{Aut}_{\pi}(Y)$. Denote by $\pi_1 : U_B(B) \times \mathbb{G}_m^s(B) \to U_B(B)$ the projection to the first factor and $\pi_2 : U_B(B) \times \mathbb{G}_m^s(B) \to \mathbb{G}_m^s(B)$ the projection to the second. By Lemma 3.7, there exists an algebraic subgroup H_1 of $U_B(B)$ containing $\pi_1(W)$. Since $\pi_2(W)$ is irreducible and contains id, Lemma 3.8 shows that $\pi_2(W)$ is contained in an algebraic subgroup H_2 of $\mathbb{G}_m(B)$. Then W is contained in the algebraic subgroup $H_1 \times H_2$ of $U_B(B) \times \mathbb{G}_m^s(B)$. This concludes the proof. \square

4. ACTIONS OF ADDITIVE GROUPS

Theorem 4.1. Let \mathbf{k} be an uncountable, algebraically closed field. Let X be a connected affine variety over \mathbf{k} . Let $G \subset \operatorname{Aut}(X)$ be an algebraic subgroup isomorphic to \mathbb{G}^r_a , for some $r \geq 1$. Let $H = \{h \in \operatorname{Aut}(X) | gh = hg \text{ for every } g \in G\}$ be the centralizer of G. If H/G is at most countable then G acts simply transitively on X, so that X is isomorphic to G as a G-variety.

This section is devoted to the proof of this result. A proof is also described in [3, $\S11.4$] when X is irreducible and the characteristic of \mathbf{k} is 0.

Lemma 4.2. Let X be an irreducible affine variety endowed with a faithful action of $G = \mathbb{G}_a^r$. Let I be a non-zero, G-invariant ideal of O(X). If

$$I^G := \{ \xi \in I \mid g^* \xi = \xi \text{ for every } g \in G \}$$

is contained in the field **k** of constant functions, then

(1) every non-zero, G-invariant ideal $J \subset O(X)$ coincides with O(X);

- (2) G acts simply transitively on X;
- (3) *X* can be identified to *G*, with *G* acting on it by translations.

In particular, I = O(X).

Proof of Lemma 4.2. Let ξ be a non-zero element of *I*. To prove the first assertion, pick $\psi \in J \setminus \{0\}$, then $\xi \psi \in IJ \setminus \{0\}$. Let *V* be the linear subspace of O(X) generated by the orbit $\{g^*(\xi \psi) \mid g \in G\}$. Firstly, *V* is contained in *IJ* because *I* and *J* are *G*-invariant. Secondly, the dimension of *V* is finite, for *G* acts regularly on *X* (see [18, §1.2]). Thus, *G* being isomorphic to \mathbb{G}_a^r , there exists a *G*-invariant vector $\varphi \in V \setminus \{0\} \subseteq IJ$. Since $I^G \subset \mathbf{k}$, the function φ is a constant, and *J* must be equal to O(X) because it contains φ .

To prove the second and third assertions, fix a point $x \in X$. The closure $\overline{G(x)}$ of the orbit G(x) is a closed, G-invariant subvariety, and the same is true for $\overline{X \setminus G(x)}$. Looking at the ideal of functions vanishing on those subvarieties we obtain X = G(x). Since G is abelian and acts faithfully on X, the stabilizer of x must be trivial. Thus, G acts simply transitively on X.

Let X be an affine variety over \mathbf{k} , and let G be a subgroup of $\operatorname{Aut}(X)$ isomorphic to \mathbb{G}_a^r for some r > 0. Denote by X_1, \ldots, X_l the irreducible components of X. Then each of the X_i , $i = 1, \ldots, l$, is invariant under G; permuting the X_i if necessary, there exists $s \le l$ such that the action of G on X_i is nontrivial if and only if $i \le s$.

For every $i \leq l$, denote by $\pi_i \colon O(X) \twoheadrightarrow O(X_i)$ the quotient map. Let J_i be the ideal of functions $\xi \in O(X)$ vanishing on the closed subset $\cup_{j \neq i} X_j$; its projection $I_i := \pi_i(J_i)$ is an ideal of $O(X_i)$. Observe that I_i is non-zero, is invariant under the action of G, and is contained in the ideal of $O(X_i)$ associated to the closed subset $X_i \cap (\cup_{j \neq i} X_j)$. In particular, $I_i = O(X_i)$ if and only if X_i is a connected component of X. Moreover, the homomorphism $\pi_i|_{J_i}: J_i \to I_i$ is a bijection. Indeed, it is a surjective homomorphism by definition. And if $\pi_i|_{J_i}(\xi) = 0$, then $\xi|_{X_i} = 0$ and since $\xi \in J_i$, $\xi|_{X_i} = 0$ for all $j \neq i$; thus $\xi = 0$, so that $\mathrm{Ker}(\pi_i|_{J_i}) = 0$.

We denote by $(\pi_i|_{J_i})^{-1}$: $I_i \to J_i$ the inverse of $\pi_i|_{J_i}$.

Lemma 4.3. Let \mathbf{k} be an uncountable, algebraically closed field. Let X be an affine variety, and G be an algebraic subgroup of $\operatorname{Aut}(X)$ isomorphic to \mathbb{G}_a^r . Let

$$H := \{ h \in Aut(X) | gh = hg \text{ for every } g \in G \}$$

be the centralizer of G. If H/G is at most countable then $I_i^G \subseteq \mathbf{k}$ for every irreducible component X_i on which G acts non-trivially.

Proof of Lemma 4.3. Keeping the notation that precedes the statement of the lemma, we only need to treat the case i = 1. Fix an identification $\mathbb{G}_a^r \simeq G$. Then, we get an identification $O(X)^r = \operatorname{Mor}(X, \mathbb{G}_a^r) = \operatorname{Mor}(X, G)$ for which $(O(X)^G)^r$ corresponds

to $Mor(X,G)^G$ (here G acts on X only). We also identify G to the group of constant morphisms in Mor(X,G); then, G becomes a subgroup of the additive group $(O(X)^G)^r$. Let us modify the action of G on X, as in [3, §0.7]:

Fact 1.– Define $\Psi: (O(X)^G)^r \to \operatorname{End}(X)$ by $\Psi(\xi): x \mapsto \xi(x)(x)$ for every $x \in X$. Then Ψ is a homomorphism of additive groups. Here we view $\xi \in (O(X)^G)^r$ as an element of $\operatorname{Mor}(X,G)$.

We need to prove that $\Psi(\xi_1 + \xi_2) = \Psi(\xi_1) \circ \Psi(\xi_2)$ for every pair of elements $\xi_1, \xi_2 \in (O(X)^G)^r$. For $x \in X$, we have

(4.1)
$$\Psi(\xi_1 + \xi_2)(x) = (\xi_1(x) + \xi_2(x))(x) = \xi_1(x)((\xi_2(x)(x))).$$

On the other hand, $\xi_1(y) = \xi_1(\xi_2(x)(y))$ for every pair $(x,y) \in X^2$ because $\xi_2(x) \in G$ and ξ_1 is in $Mor(X,G)^G$. Thus $\xi_1(x) = \xi_1(\xi_2(x)(x))$, and the claim follows:

(4.2)
$$\Psi(\xi_1 + \xi_2)(x) = \xi_1(\xi_2(x)(x))(\xi_2(x)(x)) = \Psi(\xi_1)(\Psi(\xi_2)(x)).$$

This fact implies that Ψ is a homomorphism from the additive group $(O(X)^G)^r$ to the group of automorphisms $\operatorname{Aut}(X)$. We note that $\Psi|_G = \operatorname{id}$; since $(O(X)^G)^r$ is abelian, $\Psi((O(X)^G)^r)$ is a subgroup of the centralizer H that contains G. Since H/G is countable, so is $(O(X)^G)^r/\Psi^{-1}(G)$.

Now, define $\Phi \colon (I_1^G)^r \to \operatorname{Aut}(X)$ to be the composition of Ψ with the inclusion $((\pi_1|_{J_1})^{-1})^r \colon (I_1^G)^r \hookrightarrow (O(X)^G)^r$. We obtain an inclusion

(4.3)
$$(I_1^G)^r/\Phi^{-1}(G) \hookrightarrow (O(X)^G)^r/\Psi^{-1}(G);$$

hence, $(I_1^G)^r/\Phi^{-1}(G)$ is also countable.

Fact 2.– We have
$$\Phi^{-1}(G) = (I_1^G)^r$$
.

To prove it, denote by G_x the stabilizer of $x \in X$ in G, and for $\xi \in (I_1^G)^r$, set

(4.4)
$$Y(\xi) := \bigcap_{x \in X} (\xi(x) + G_x).$$

Then $Y(\xi)$ is an affine linear subspace of $G \simeq \mathbb{A}^r(\mathbf{k}) = \mathbf{k}^r$, and $\xi \in \Phi^{-1}(G)$ if and only if $Y(\xi) \neq \emptyset$. It follows that $\Phi^{-1}(G)$ is a linear subspace of $(I_1^G)^r$. Since \mathbf{k} is uncountable and $(I_1^G)^r/\Phi^{-1}(G)$ is at most countable, we get $\Phi^{-1}(G) = (I_1^G)^r$.

It follows that for every $\xi \in (I_1^G)^r$,

(4.5)
$$\emptyset \neq Y(\xi) = \bigcap_{x \in X} (\xi(x) + G_x) \subseteq W(\xi) := \bigcap_{x \in X_1} (\xi(x) + G_x).$$

Choose $\eta \in (I_1^G)^r$ such that $\dim(W(\eta))$ is minimal, and then choose $x_1, \ldots, x_m \in X_1$, such that $W(\eta) = \bigcap_{i=1}^m (\eta(x_i) + G_{x_i})$. To conclude, we assume that I_1^G contains a non-constant function α , and then we shall modify η to get a new function τ with $\dim(W(\tau)) < \dim(W(\eta))$, in contradiction with our choice for η . For this purpose,

set $\beta = \prod_{i=1}^m (\alpha - \alpha(x_i))$. Then, choose $y \in X_1 \setminus \{x_1, \dots, x_m\}$ such that $G_y \neq G$, $\alpha(y) \neq 0$ and $\beta(y) \neq 0$, and set

$$\gamma := \frac{\alpha \beta}{\beta(y)\alpha(y)}.$$

By construction, we get

- (1) $\gamma \in O(X_1)^G I_1^G \subseteq I_1^G$;
- (2) $\gamma(x_i) = 0$ for all i = 1, ..., m;
- (3) $\gamma(y) = 1$.

Pick $g \in W(\eta)$. The set $U = \{h \in G ; g \notin h + \xi(y) + G_y\}$ is Zariski dense in G. Take $h \in U$, write $h = (a_1, \dots, a_r)$ as an element of $G = \mathbb{G}_a^r$, and set

(4.7)
$$\tau := \eta + \gamma h := \eta + (a_1 \gamma, \dots, a_r \gamma).$$

By construction, τ is an element of $(I_1^G)^r$; and, changing $h = (a_1, \dots, a_r)$ in U if necessary, we may assume that $\tau \notin \mathbf{k}^r$. From the properties (2) and (3) above, we get $\tau(x_i) = \eta(x_i)$ for $i = 1, \dots, m$ and $\tau(y) = \eta(y) + h$. We have

(4.8)
$$W(\tau) \subseteq \left(\bigcap_{i=1}^{m} (\tau(x_i) + G_{x_i})\right) \cap (\tau(y) + G_y)$$

$$(4.9) \qquad = \left(\bigcap_{i=1}^{m} (\eta(x_i) + G_{x_i})\right) \bigcap (\eta(y) + h + G_y)$$

$$(4.10) = W(\eta) \cap (\eta(y) + h + G_y).$$

Since $g \in W(\eta)$ but $g \notin (\eta(y) + h + G_y)$, we get $\dim W(\tau) \le \dim(W(\eta) \cap (\eta(y) + h + G_y)) < \dim W(\eta)$. This proves the lemma.

Proof of Theorem 4.1. We keep the same notation. By Lemma 4.3, $I_1^G \subseteq \mathbf{k}$. Let $G_1 \subset \operatorname{Aut}(X_1)$ be the restriction of G. There exists $m \in \{1, \dots, r\}$, such that $G_1 \simeq \mathbb{G}_a^m$. We have $I_1^{G_1} = I_1^G \subseteq \mathbf{k}$. By Lemma 4.2, $I_1 = O(X_1)$ and $X_1 \simeq G_1$ as a G_1 -variety. Since $I_1 = O(X_1)$, X_1 is a connected component of X. Since X is connected, $X = X_1$ and $G_1 = G$. This concludes the proof.

5. Proof of Theorem A

In this section, we prove Theorem A. So, \mathbf{k} is an uncountable, algebraically closed field, X is a connected affine algebraic variety over \mathbf{k} , and $\phi : \operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}}) \to \operatorname{Aut}(X)$ is an isomorphism of (abstract) groups.

5.1. **Translations and dilatations.** Let $\mathsf{Tr} \subset \mathsf{Aut}(\mathbb{A}^n_k)$ be the group of all translations and Tr_i the subgroup of translations of the *i*-th coordinate:

$$(5.1) (x_1,\ldots,x_n) \mapsto (x_1,\ldots,x_i+c,\ldots,x_n)$$

for some c in \mathbf{k} . Let $D \subset GL_n(\mathbf{k}) \subset Aut(\mathbb{A}^n_{\mathbf{k}})$ be the diagonal group (viewed as a maximal torus) and let D_i be the subgroup of automorphisms

$$(5.2) (x_1,\ldots,x_n) \mapsto (x_1,\ldots,ax_i,\ldots,x_n)$$

for some $a \in \mathbf{k}^*$. A direct computation shows that Tr (resp. D) coincides with its centralizer in $\operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})$.

Lemma 5.1. Let G be a subgroup of Tr whose index is at most countable. Then, the centralizer of G in $Aut(\mathbb{A}^n)$ is Tr.

Proof. The centralizer of G contains Tr. Let us prove the reverse inclusion. The index of G in Tr being at most countable, G is Zariski dense in Tr. Thus, if h centralizes G, we get hg = gh for all $g \in Tr$, and h is in fact in the centralizer of Tr. Since Tr coincides with its centralizer, we get $h \in Tr$.

5.2. Closed subgroups. As in Section 2.2, we endow Aut(X) with the structure of an ind-group, given by a filtration by algebraic varieties Aut_i for $i \ge 1$.

Lemma 5.2. The groups $\varphi(\mathsf{Tr})$, $\varphi(\mathsf{Tr}_i)$, $\varphi(\mathsf{D})$ and $\varphi(\mathsf{D}_i)$ are closed subgroups of $\mathsf{Aut}(X)$ for all $i=1,\ldots,n$.

Proof. Since $\operatorname{Tr} \subset \operatorname{Aut}(\mathbb{A}^n_{\mathbf{k}})$ coincides with its centralizer, $\varphi(\operatorname{Tr}) \subset \operatorname{Aut}(X)$ coincides with its centralizer too and, as such, is a closed subgroup of $\operatorname{Aut}(X)$. The same argument applies to $\varphi(\mathsf{D}) \subset \operatorname{Aut}(X)$. To prove that $\varphi(\operatorname{Tr}_i) \subset \operatorname{Aut}(X)$ is closed we note that $\varphi(\operatorname{Tr}_i)$ is the subset of elements $f \in \varphi(\operatorname{Tr})$ that commute to every element $g \in \varphi(\mathsf{D}_j)$ for every index $j \neq i$ in $\{1, \dots, n\}$. Analogously, $\varphi(\mathsf{D}_i) \subset \operatorname{Aut}(X)$ is a closed subgroup because an element f of D is in D_i if and only if it commutes to all elements g of Tr_j for $j \neq i$.

5.3. Proof of Theorem A.

- 5.3.1. Abelian groups (see [11, 14]). Before starting the proof, let us recall a few important facts on abelian, affine algebraic groups. Let G be an algebraic group over the field \mathbf{k} , such that G is abelian, affine, and connected.
 - (1) If $\operatorname{char}(\mathbf{k}) = 0$, then G is isomorphic to $\mathbb{G}_a^r \times \mathbb{G}_m^s$ for some pair of integers (r,s); if G is unipotent, then s = 0. (see [14]), §VII.2, p.172)

When the characteristic p of \mathbf{k} is positive, there are other types of of abelian groups, but criteria on the p-torsion may rigidify their structure:

- (2) If $\operatorname{char}(\mathbf{k}) = p$, G is unipotent, and all elements of G have order p, then G is isomorphic to \mathbb{G}_q^r for some $r \ge 0$. (see [14], §VII.2, Prop. 11, p.178)
- (3) If $\operatorname{char}(\mathbf{k}) = p$, and there is no non-trivial element in G of order p^{ℓ} , for any $\ell \geq 0$, then G is isomorphic to \mathbb{G}_m^s for some $s \geq 0$. (see [11], Theorem 16.13 and Corollary 16.15, and [14], §VII.2, p.176)

To keep examples in mind, note that all elements of $\mathsf{Tr}_1(\mathbf{k})$ have order p and $\mathsf{D}_1(\mathbf{k})$ does not contain any non-trivial element of order p^ℓ when $\mathsf{char}(\mathbf{k}) = p$.

5.3.2. *Proof of Theorem A*. Let us now prove Theorem A.

By Lemma 5.2, $\varphi(\mathsf{Tr}_1) \subset \mathsf{Aut}(X)$ is a closed subgroup; in particular, $\varphi(\mathsf{Tr}_1)$ is an ind-subgroup of $\mathsf{Aut}(X)$. Let $\varphi(\mathsf{Tr}_1)^\circ$ be the connected component of the identity of $\varphi(\mathsf{Tr}_1)$; from Section 2.2.2, we know that the index of $\varphi(\mathsf{Tr}_1)^\circ$ in $\varphi(\mathsf{Tr}_1)$ is at most countable. The ind-group $\varphi(\mathsf{Tr}_1)^\circ$ is an increasing union $\cup_i V_i$ of irreducible algebraic varieties V_i , each V_i containing the identity. Theorem B implies that each $\langle V_i \rangle$ is an irreducible algebraic subgroup of $\mathsf{Aut}(X)$. Since $\varphi(\mathsf{Tr}_1)$ does not contain elements of order $k < \infty$ with $k \wedge \mathsf{char}(\mathbf{k}) = 1$, $\langle V_i \rangle$ is unipotent; and, by Properties (1) and (2) of Section 5.3.1, $\langle V_i \rangle$ is isomorphic to $\mathbb{G}_q^{r_i}$ for some r_i . Thus

$$\varphi(\mathsf{Tr}_1)^\circ = \cup_{i>0} F_i$$

where the F_i form an increasing family of unipotent algebraic subgroups of Aut(X), each of them isomorphic to some $\mathbb{G}_a^{r_i}$. We may assume that $\dim F_0 \geq 1$.

Similarly, $\varphi(D_1)^{\circ} \subset \varphi(D_1)$ is a subgroup of countable index and

$$\varphi(\mathsf{D}_1)^\circ = \cup_{i \geq G_i},$$

where the G_i are increasing irreducible commutative algebraic subgroups of $\operatorname{Aut}(X)$ (we do not assert that G_i is of type $\mathbb{G}_m^{s_i}$ yet). We may assume that $\dim G_0 \geq 1$.

The group D_i acts by conjugation on Tr_i for every $i \le n$, this action has exactly two orbits $\{id\}$ and $Tr_i \setminus \{id\}$, and the action on $Tr_i \setminus \{id\}$ is free; hence, the same properties hold for the action of $\varphi(D_i)$ on $\varphi(Tr_i)$ by conjugation.

Let H_i be the subgroup of $\varphi(\mathsf{Tr}_1)$ generated by all $g \circ f \circ g^{-1}$ with f in F_i and g in G_i . Theorem B shows that H_i is an irreducible algebraic subgroup of $\varphi(\mathsf{Tr}_1)$. We have $H_i \subseteq H_{i+1}$ and $g \circ H_i \circ g^{-1} = H_i$ for every $g \in G_i$.

Write $H_i = \mathbb{G}_a^l$ for some $l \geq 1$. We claim that $G_i \simeq \mathbb{G}_a^r \times \mathbb{G}_m^s$ for a pair of integers $r, s \geq 0$ with $r+s \geq 1$. This follows from Properties (1) and (2) of Section 5.3.1 because, when $\operatorname{char}(\mathbf{k}) = p > 1$, the only element in $\varphi(\mathsf{D}_1)$ of order p^ℓ , $\ell \geq 0$, is the identity element. Since the action of $\varphi(\mathsf{D}_1)$ on $\varphi(\mathsf{Tr}_1 \setminus \{0\})$ is free, the action of G_i on $F_i \setminus \{0\}$ is free, and this implies r = 0 (see Lemma 4.2(2)). Let q be a prime number with $q \wedge \operatorname{char}(\mathbf{k}) = 1$. Then \mathbb{G}_m^s contains a copy of $(\mathbf{Z}/q\mathbf{Z})^s$, and D_1 does not contain such a subgroup if s > 1; so, s = 1, $G_i \simeq \mathbb{G}_m$ and $G_i = G_{i+1}$ for all $i \geq 0$. It follows that $\varphi(\mathsf{D}_1)^\circ \simeq \mathbb{G}_m$. Since the index of $\varphi(\mathsf{D}_1)^\circ$ in $\varphi(\mathsf{D}_1)$ is countable, there exists a countable subset $I \subseteq \varphi(\mathsf{D}_1)$ such that $\varphi(\mathsf{D}_1) = \sqcup_{h \in I} \varphi(\mathsf{D}_1)^\circ \circ h$.

Let $f \in F_i$ be a nontrivial element. Since the action of $\varphi(D_1)$ on $\varphi(\mathsf{Tr}_1 \setminus \{0\})$ is transitive,

(5.5)
$$F_i \setminus \{0\} = \bigcup_{h \in I} \left(\left(\bigcup_{g \in \varphi(\mathsf{D}_1)^\circ} (g \circ h) \circ f \circ (g \circ h)^{-1} \right) \cap F_i \right).$$

The right hand side is a countable union of subvarieties of $F_i \setminus \{0\}$ of dimension at most one. It follows that $\dim F_i = 1$, $F_i \simeq \mathbb{G}_a$, and $\phi(\mathsf{Tr}_1)^\circ \simeq \mathbb{G}_a$. Thus, we have

$$(5.6) \varphi(\mathsf{Tr}_1)^\circ \simeq \mathbb{G}_a, \text{ and } \varphi(\mathsf{D}_1)^\circ \simeq \mathbb{G}_m.$$

Since each $\varphi(\mathsf{Tr}_i)^\circ$ is isomorphic to \mathbb{G}_a , $\varphi(\mathsf{Tr})^\circ$ is an *n*-dimensional commutative unipotent group and its index in $\varphi(\mathsf{Tr})$ is at most countable. By Lemma 5.1, the centralizer of $\varphi^{-1}(\varphi(\mathsf{Tr})^\circ)$ in $\mathsf{Aut}(\mathbb{A}^n_k)$ is Tr . It follows that the centralizer of $\varphi(\mathsf{Tr})^\circ$ in $\mathsf{Aut}(X)$ is $\varphi(\mathsf{Tr})$. Then Theorem 4.1 implies that X is isomorphic to \mathbb{A}^n_k .

6. APPENDIX: THE DEGREE FUNCTIONS FOR RATIONAL SELF-MAPS

Here, we follow [1, 17] to prove a general version of Lemma 3.1. As above, \mathbf{k} is an algebraically closed field. We first start with the case of projective varieties.

6.1. **Degree functions on projective varieties.** Let X be a projective and normal variety over \mathbf{k} of pure dimension $d = \dim(X)$. Let H be a big and nef divisor on X. For every dominant rational self-map f of X, and every $j = 0, \ldots, d$, set

(6.1)
$$\deg_{i,H} f = (f^*(H^j) \cdot H^{d-j}).$$

Pick a normal resolution of f; by this we mean a projective and normal variety Γ , a birational morphism $\pi_1:\Gamma\to X$ and a morphism $\pi_2:\Gamma\to X$ satisfying $f=\pi_2\circ\pi_1^{-1}$. Then we have $\deg_{j,H}f=(\pi_2^*(H^j)\cdot\pi_1^*(H^{d-j}))>0$, for f is dominant. Let L be another big and nef divisor. There is c>1 such that cL-H and cH-L are big. Then we have $\deg_{j,H}f=(\pi_2^*(H^j)\cdot\pi_1^*(H^{d-j}))\leq c^d(\pi_2^*(L^j)\cdot\pi_1^*(L^{d-j}))=c^d\deg_{j,L}f$. Symetrically, we get $\deg_{j,L}f\leq (c')^d\deg_{j,H}f$ for some c'>1. Thus, two big and nef divisors give rise to comparable degree functions:

(6.2)
$$C^{-1}\deg_{j,H}(f) \le \deg_{j,L}(f) \le C\deg_{j,H}(f) \qquad (\forall 0 \le j \le d)$$

for all rational dominant maps $f: X \longrightarrow X$, and some C > 1.

Lemma 6.1. Let Y be a projective and normal variety over \mathbf{k} of pure dimension d. Let $\pi: Y \dashrightarrow X$ be a dominant and generically finite rational map. Let H and L be big and nef divisors, on X and Y respectively. Then there is a constant C > 1 such that for every $j = 0, \ldots, d$, and every pair of dominant rational self-maps $f: X \dashrightarrow X$ and $g: Y \dashrightarrow Y$ satisfying $f \circ \pi = \pi \circ g$, we have

$$C^{-1}\deg_{j,L}(g) \le \deg_{j,H}(f) \le C\deg_{j,L}(g).$$

Proof. Denote by x_1, \ldots, x_s the generic points of X and y_1, \ldots, y_r the generic points of Y. Since π is dominant and generically finite, there is a surjective map σ : $\{1, \ldots, r\} \to \{1, \ldots, s\}$ such that $\pi(y_i) = x_{\sigma(i)}, i = 1, \ldots, r$. For every $i = 1, \ldots, r$, set $t_i = \deg[\mathbf{k}(x_i) : \pi^*\mathbf{k}(y_{\sigma(i)})]$ and then

(6.3)
$$m = \min_{i=1...,s} \left(\sum_{l \in \sigma^{-1}(i)} t_l \right), \quad m' = \max_{i=1...,s} \left(\sum_{l \in \sigma^{-1}(i)} t_l \right)$$

Take a resolution of π , defined by a projective and normal variety Z, a birational morphism $\pi_1: Z \to Y$ and a morphism $\pi_2: Z \to X$ satisfying $\pi = \pi_2 \circ \pi_1^{-1}$. Set $h := \pi_1^{-1} \circ g \circ \pi_1: Z \dashrightarrow Z$. For each index $0 \le j \le d$, the projection formula gives

(6.4)
$$\deg_{i,L} g = \deg_{i,\pi_i^* L} h$$

(6.5)
$$m \deg_{j,H} f \le \deg_{j,\pi_2^*H} h \le m' \deg_{j,H} f.$$

Since π_1^*L and π_2^*H are big and nef on Z, there is a constant $C_1 > 1$ that depends only on π_1^*L and π_2^*H such that

(6.6)
$$C_1^{-1} \deg_{j,\pi_2^* H} h \le \deg_{j,\pi_2^* L} h \le C_1 \deg_{j,\pi_2^* H} h.$$

We conclude the proof by combining the last three equations.

6.2. **Equivalent functions.** Let *S* be a set. We shall say that two functions $F,G: S \to \mathbb{R}_{>0}$, are **equivalent** if there is a constant C > 1 such that

(6.7)
$$C^{-1}\max\{G,1\} \le \max\{F,1\} \le C\max\{G,1\},$$

where $\max\{G,1\}$ denotes the maximum between G and 1. We denote by [F] the equivalence class of F; the equivalence class [1] coincides with the set of bounded functions $I \to \mathbf{R}_{>0}$.

6.3. **Degree functions on varieties.** Now, let X be a variety of pure dimension d over \mathbf{k} . Let $\pi\colon Z \dashrightarrow X$ be a birational map such that Z is projective and normal, and let H be a big and nef divisor on Z. Then, define the degrees $\deg_{j,H} f$ of any rational dominant map $f\colon X \dashrightarrow X$ by $\deg_{j,H} f = \deg_{j,H} \pi^{-1} \circ f \circ \pi$. The previous paragraph shows that if we change the model (Z,π) or the divisor H (to H'), then we get two notions of degrees $\deg_{j,H}$ and $\deg_{j,H'}$ which are equivalent functions, in the sense of § 6.2, on the set of rational dominant self-maps of X. This justifies the following definition.

Let *S* be a family of dominant rational maps $f_s: X \dashrightarrow X$, $s \in S$. A **notion of degree** on *S* in codimension *j* is a function $\deg_j: S \to \mathbf{R}_{\geq 0}$ in the equivalence class $[\deg_{j,H}]$ for some normal projective model $Z \to X$ and some big and nef divisor *H* on *Z*. The equivalence class $[\deg_j]$ is unique.

Remark 6.2. Assume further that X is affine. In Section 2.1, we defined a notion of degree $f \mapsto \deg f$ (in codimension 1) on the set of automorphisms of X; this notion depends on an embedding $X \hookrightarrow \mathbb{A}^N_{\mathbf{k}}, N \geq 0$. However, its equivalence class on $\operatorname{Aut}(X)$ does not depend on the choice of such an embedding and is equal to the class $[\deg_1]$ defined in this section.

From Lemma 6.1 and the definitions, we obtain:

Proposition 6.3. Let $\pi: Y \dashrightarrow X$ be a dominant and generically finite rational map between two varieties X and Y over \mathbf{k} , each of pure dimension d. Let S be a family

of dominant rational maps $g_s: Y \dashrightarrow Y$ such that for every s in S there is a rational map $f_s: X \dashrightarrow X$ that satisfies $\pi \circ g_s = f_s \circ \pi$. Then, for each j = 0, ..., d, the equivalence classes of the degree functions $s \in S \mapsto \deg_j(g_s)$ and $s \in S \mapsto \deg_j(f_s)$ are equal.

REFERENCES

- [1] Nguyen-Bac Dang. Degrees of Iterates of Rational Maps on Normal Projective Varieties. arXiv:1701.07760, 2017.
- [2] Julie Déserti. Sur le groupe des automorphismes polynomiaux du plan affine. *J. Algebra*, 297(2):584–599, 2006.
- [3] Jean-Philippe Furter and Hanspeter Kraft. On the geometry of the automorphism groups of affine varieties. arXiv:1809.04175, 2018.
- [4] Robin Hartshorne. Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics, Vol. 156. Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili.
- [5] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
- [6] Sergei Kovalenko, Alexander Perepechko, and Mikhail Zaidenberg. On automorphism groups of affine surfaces. In *Algebraic varieties and automorphism groups*, volume 75 of *Adv. Stud. Pure Math.*, pages 207–286. Math. Soc. Japan, Tokyo, 2017.
- [7] Hanspeter Kraft. Automorphism groups of affine varieties and a characterization of affine *n*-space. *Trans. Moscow Math. Soc.*, 78:171–186, 2017.
- [8] Hanspeter Kraft, Andriy Regeta, and Immanuel van Santen. Is the affine space determined by its automorphism group? *to appear in Int. Math. Res. Not. IMRN*, 2018.
- [9] Matthias Leuenberger and Andriy Regeta. Vector fields and automorphism groups of danielewski surfaces. to appear in Int. Math. Res. Not. IMRN, 2021.
- [10] Alvaro Liendo, Andriy Regeta, and Christian Urech. Characterization of affine toric varieties by their automorphism groups. arXiv:1805.03991, 2018.
- [11] J. S. Milne. Algebraic groups, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field
- [12] Bjorn Poonen. Varieties without extra automorphisms. I. Curves. *Math. Res. Lett.*, 7(1):67–76, 2000
- [13] Herbert Popp. The singularities of the moduli schemes of curves. *J. Number Theory*, 1:90–107, 1969
- [14] Jean-Pierre Serre. *Groupes algébriques et corps de classes*. Hermann, Paris, 1975. 2nde Ed., Pub. Inst. Math. de l'Université de Nancago, No. VII, Actu. Scient. et Indus., No. 1264.
- [15] I. R. Shafarevich. On some infinite-dimensional groups. Rend. Mat. e Appl. (5), 25(1-2):208–212, 1966.
- [16] Igor R. Shafarevich. Basic algebraic geometry. 1. Springer, Heidelberg, third edition, 2013. Varieties in projective space.
- [17] Tuyen Trung Trung. Relative dynamical degrees of correspondance over a field of arbitrary characteristic. https://arXiv:1605.05049, 2016.
- [18] È. B. Vinberg and V. L. Popov. Invariant theory. In Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, pages 137–314, 315. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989.

UNIV RENNES, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE

Email address: serge.cantat@univ-rennes1.fr, junyi.xie@univ-rennes1.fr

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany

Email address: andriyregeta@gmail.com