BIRATIONAL CONJUGACIES BETWEEN ENDOMORPHISMS ON
THE PROJECTIVE PLANE

SERGE CANTAT AND JUNYI XIE

1. The statement. — Let k be an algebraically closed field of characteristic 0.
If fi and f, are two endomorphisms of a projective surface X over k and f;
is conjugate to f> by a birational transformation of X, then fj and f, have the
same topological degree. When X is the projective plane IP’I%, J1 (resp. f2) 1s
given by homogeneous formulas of the same degree d without common factor,
and d is called the degree, or algebraic degree of fi; in that case the topological
degree is d?, so, fi and f> have the same degree d if they are conjugate.

Theorem A. Let k be an algebraically closed field of characteristic 0. Let
f1 and f> be dominant endomorphisms of Pi over K. Let h: IP’IZ( -—» IP’% be a
birational map such that ho f| = fyoh. If the degree d of f1 is > 2, there exists
an isomorphism h' : P} — P2 such that h' o fi = faol.
Moreover, h itself is in Aut(IP’lz(), except may be if f| is conjugate by an
element of Aut(P}) to
(1) the composition of g4 : [x 1y :z] — [x
the coordinates,
(2) or the endomorphism (x,y) — (x4, y4 + Zj?zz a;y'7) of the open subset
AL\ {0} x Al C P, for some coefficients a; € k.

d . yd . zd] and a permutation of

Theorem A is proved in Sections 2 to 6. A counter-example is given in Sec-
tion 7 when char(k) # 0. The case d = 1 is covered by [1]; in particular, there
are automorphisms f1, f> € Aut(IP’ﬁ) which are conjugate by some birational
transformation but not by an automorphism.

Example 1. When f; = f> is the composition of g; and a permutation of the
coordinates and 7 is the Cremona involution [x:y:z] +— [x~':y~1:z71], we
have hOfl :sz]’l.

Example 2. When

d , d . .
fitny) =y + Y ap?l) and f(xy) = @y + Y a;(B/A)Y Iy
= =
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with a; € k then h(x,y) = (Ax, Bxy) conjugates fi to f> if A and B are roots of
unity of order dividing d — 1, and deg(h) = 2. On the other hand, #'[x:y: z] =
[Az/B :y : x] is an automorphism of P? that conjugates fi to f>.

Acknowledgement. — Theorem A answers a question of T. Gauthier and G.
Vigny in dimension 2. We thank them for sharing their ideas. We also thank
D.-Q. Zhang for answering our questions on the theorem of R. V. Gurjar and J.
Moraga for pointing out a mistake in the first version of Section 7.

2. The exceptional locus. — If /1 : P> --» P? is a birational map, we denote
by Ind(h) its indeterminacy locus (a finite subset of P?(k)), and by Exc(h) its
exceptional set, i.e. the union of the curves contracted by % (a finite union of
irreducible curves). Let U, = P2 \ Exc(h) be the complement of Exc(h); it is a
Zariski dense open subset of ]P’lz(. IfCC IP’i is a curve, we denote by &, (C) the
strict transform of C, i.e. the Zariski closure of 4(C \ Ind(f)).

Proposition 3. If h is a birational transformation of the projective plane, then
(1) Ind(h) C Exc(h), (2) h|y,(Un) = Uy-1, and (3) h|y, : Uy — U1 is an iso-
morphism.

Proof. There is a smooth projective surface X and two birational morphisms
T, X — P2 such that h = 1y o 751_1; we choose X minimal, in the sense that
there is no (—1)-curve C of X which is contracted by both mt; and 7, ([8]).
Pick a point p € Ind(h). The divisor 7t; ' (p) is a tree of rational curves of
negative self-intersections, with at least one (—1)-curve. If p ¢ Exc(h), any
curve contracted by 7 that intersects 7t; ' (p) is in fact contained in 7, ' (p).
But m; may be decomposed as a succession of contractions of (—1)-curves:
since it does not contract any (—1)-curve in 7, ' (p), we deduce that m; is a
local isomorphism along 7t; ' (p). This contradicts the minimality of PZ, hence
Ind(h) C Exc(h). Thus h|y, : U, — P? is regular. Since U, NExc(h) =0, h|y,
is an open immersion, 4~! is well defined on h|y, (Uy,), and A~ ! is an open
immersion on h|y, (Uy). It follows that h|y, (Uy) C U,-1. The same argument
shows that #~! |U;rl U1 — P2 is well defined and its image is in Uj,. Since
h~y, _, ohly, =id and h|y, oh™'|y, _, = id; this concludes the proof. O

Let f; and f» be dominant endomorphisms of IP’%. Let h: P> -5 P? be
a birational map such that fj =2~ ' o f> o h. Let d be the common (algebraic)
degree of f1 and f>. Recall that an algebraic subset D of IP’IZ( is totally invariant
under the action of the endomorphism g if g~ (C) = C (then g(C) = C, and if
deg(g) > 2, g ramifies along C).

Lemma 4. The exceptional set of h is totally invariant under the action of f:
fl_1 (Exc(h)) = Exc(h).
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Proof. Since ho fi = f>oh, the strict transform of f;~ Y(Exc(h)) by froh is
a finite set, but every dominant endomorphism of IP’i is a finite map, so the
strict transform of f, ' (Exc(h)) by h is already a finite set. This means that
f1 "(Exc(h)) is contained in Exc(h); this implies fi(Exc(E)) C E and then
f1 '(Exc(h)) = Exc(h) = fi(Exc(h)) because f; is onto. O

Lemma 5. Ifd > 2 then Exc(h) and Exc(h™") are two isomorphic configura-
tions of lines, and this configuration falls in the following list:

(PO) the empty set;

(P1) one line in P2;

(P2) two lines in P2,

(P3) three lines in P? in general position.

Proof. Assume Exc(h) is not empty; then, by Lemma 4, the curve Exc(h) is
totally invariant under fj. According to [6, §4] and [4, Proposition 2], Exc(h)
is one of the three curves listed in (P1) to (P3).

Changing % into A~! and permuting the role of f; and f>, we see that Exc(h_l)
is also a configuration of type (Pi) for some i. Proposition 3 shows that U, ~
U,-1. Since the four possibilities (Pi) correspond to pairwise non-isomorphic
complements, we deduce that Exc(h) and Exc(h~!) have the same type. [

Remark 6. One can also refer to [7] to prove this lemma. Indeed, f; induces a
map from the set of irreducible components of Exc(#) into itself, and since fj is
onto, this map is a permutation; the same applies to f>. Thus, replacing f1 and
fo by f{" and f3" for some suitable m > 1, we may assume that f;(C) = C for
every irreducible component C of Exc(h). Since fj is finite, Exc(k) has only
finitely many irreducible components, and fj(Exc(k)) = Exc(h), we obtain
i ! (C) = C for every component. Since f] acts by multiplication by d on
Pic(IP’lz(), the ramification index of fj along C is d > 1, and the main theorem
of [7] implies that C is a line.

Remark 7. Totally invariant hypersurfaces of endomorphisms of P> are unions
of hyperplanes, at most four of them (we refer to [9] for a proof and important
additional references, notably the work of J.-M. Hwang, N. Nakayama and D.-
Q. Zhang). So, an analog of Lemma 5 holds in dimension 3 too; but our proof
in case (P1), see § 4 below, does not apply in dimension 3, at least not directly.
(Note that [2] contains an important gap, since its main result is based on a
wrong lemma from [3]).

3. Normal forms. — Two configurations of the same type (Pi) are equivalent
under the action of Aut(IP{) = PGL3 (k). If we change / into A o ho B for some
well chosen pair of automorphisms (A, B), or equivalently if we change f into
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BofioB !and f> into A~ o f, 0 A, we may assume that Exc(h) = Exc(h™!)
and that exactly one of the following situation occurs (see also [6]):

(P0).— Exc(h) = Exc(h~!) = 0.— Then h is an automorphism of P and
Theorem A is proved.

(P1).— Exc(h) = Exc(h™!) = {=0}.— Then & induces an automorphism
of Ai and f] and f; restrict to endomorphisms of AZ = Pi \ {z=0} (that extend
to endomorphisms of P}).

(P2).- Exc(h) =Exc(h™!') = {x=0}U{z=0}— Then, U, and U, are
both equal to the open set U := {(x,y) € A?| x # 0}. Moreover,

hlu (x,y) = (Ax, Bx"y +C(x)) (D
for some regular function C(x) on A} \ {0} and m € Z, and

filu(x,y) = (x4, Fi(x,y)) )

for some rational functions F; € k(x)[y] which are regular on (A} \ {0}) x Al
and have degree d (more precisely, f; must define an endomorphism of P? of
degree d). Moreover, the signs of the exponent =d in Equation (2) are the same
for f1 and f>.

(P3).— Exc(h) =Exc(h™') = {x=0}U{y=0}U{z=0}.— In this case,
each f; is equal to a; 0 gg where gg([x:y:z]) = [x¢ : y? : z%] and each g; is an
automorphism of IPIZ( acting by permutation of the coordinates, while /4 is an
automorphism of (A'\ {0}) x (A!\ {0}).

4. Endomorphisms of Aﬁ. — This section proves Theorem A in case (P1):

Proposition 8. Let f| and f> be endomorphisms of A? that extend to endomor-
phisms of P? of degree d > 2. If h is an automorphism of A? that conjugates fi
to fp then h is an affine automorphism i.e. degh = 1.

We follow the notation from [5] and denote by V.. the valuative tree of A2 =
Spec(klx,y]) at infinity. If g is an endomorphism of A2, we denote by g, its
action on V...

Set Vi ={v e Vo; a(v) >0,A(v) <0}, where o and A are respectively the
skewness and thinness function, as defined in page 216 of [5]; the set V} is a
closed subtree of V... For v € Vi, v(F) < 0 for every F € K[x,y] \ {0}. Then V;
is invariant under each (f;)s, and if we set

Ti={veVi; (fi)ev=v} 3)

then 7 = heT;. Since each f; extends to an endomorphism of P2, the valua-
tion —deg is an element of 7} N‘%. Also, in the terminology of [5], A>(fi) =



M (f;)? = d? and deg(f") = A} = d" for all n > 1 and for i = 1 and 2, be-
cause f1 and f, extend to regular endomorphisms of Pi of degree d. So by [5,
Proposition 5.3 (a)], Z is a single point or a closed segment.

A valuation v € V., is monomial of weight (s,¢) for the pair of polynomial
functions (P, Q) € k|x, y]? if
(1) P and Q generate K[x,y]| as a k-algebra,
(2) if F is any non-zero element of k[x,y] and F =} ; jzoaijPin is its
decomposition as a polynomial function of P and Q then
V(F)=—max{si+tj; a; j#0}. 4)
We say that v is monomial for the basis (P, Q) of k[x,y], if v is monomial for
(P,Q) and some weight (s,7). In particular, —deg is monomial for (x,y), of
weight (1,1).
Lemma 9. If v € V| is monomial for (P,Q) of weight (s,t), then s,t > 0, and
min{s,t} = min{—v(F) ; F € k[x,y] \ k}.
Proof. First, assume that (P,Q) = (x,y). For an element v of Vi, v(F) < 0 for
every F in Kk[x,y], hence s = —v(x) and r = —v(y) are non-negative; and the for-
mula for min{s,z} follows from the inequality —v(F) > min{s,¢}. To get the
statement for any pair (P,Q), change v into g, 'v where g is the automorphism
defined by g(x,y) = (P(x,y), Q(x,y))- B
Lemma 10. [f —deg is monomial for (P,Q), of weight (s,t), thens =t = 1 and
P and Q are of degree one in K|x,y|.

Proof. By Lemma 9, we may assume that 1 = s <¢; thus, after an affine change
of variables, we may assume that P = x. Since K|[x, y] is generated by x and Q,
Q takes form Q = ay + C(x) where a € k* and C € k[x]. If C is a constant, we
conclude the proof. Now we assume deg(C) > 1. Then ¢ = deg(Q) = deg(C).
Since y = a~!(Q — C(x)) and —deg is monomial for (x,Q) of weight (1,¢),
we get 1 = deg(y) = max{t,degC} =r. It follows that r = degQ = 1, which
concludes the proof. 0

Proof of Proposition 8. By [5, Proposition 5.3 (b), (d)], there exists P and Q €
Kk[x,y] such that for every v € 7y, v is monomial for (P, Q). Moreover, —deg is
in 7 N‘Zy. By Lemma 10, P = x and Q =y after an affine change of coordi-
nates. Since 7y = he7}, for every v € T, v is monomial for (h*x,h*y). Since
—deg € 7, Lemma 10 implies degh*x = degh*y = 1 and this concludes the
proof. U

5. Endomorphisms of (A} \ {0}) x A]. — We now arrive at case (P2), namely
Exc(h) =Exc(h™!) = {x=0}U{z =0}, and keep the notations from Section 4.
Our first goal is to prove that,



Lemma 11. If h is not an affine automorphism of the affine plane, then after a
conjugacy by an affine transformation of the plane,

e Either fi and f» are equal to (x?,y?) and h(x,y) = (Ax, Bx"y) with A and
B two roots of unity of order dividing d — 1 and m € Z.\ {0}.

e Or, up to a permutation of fi and f>,

d d
fitey) =@y + Y ap?™) and fr(x,y) = x4y + Y a;(B/A) Xy )
j=2 j=2

with aj € K, and h(x,y) = (Ax,Bxy) with A and B two roots of unity of order
dividing d — 1; then W[x .y : 7] = [Az/B : y : x] is an automorphism of P? that
conjugates f to f>.

Proof. We split the proof in two steps.

Step 1.— We assume that f;|y (x,y) = (x?, F(x,y)), with d > 0.

Since f; extends to a degree d endomorphism of P, we can write Fj(x,y) =
apy? +Z?:1 aj(x)y?~/ where ap € k* and the a; € Kk[x] satisfy deg(a;) < j for
all j. Changing the coordinates to (x, by) with b? = ag, we assume ag = 1. We
can also conjugate f by the automorphism

1
(x0) = (5+ Jan9) ®)
and assume a; = 0. Altogether, the change of coordinates (x,y) — (x,by +
ay(x)) is affine because deg(ar) < 1, and conjugates fi to an endomorphism
(x4, Fi(x,y)) normalized by Fi(x,y) = y! + ¥4 5 a;(x)y*~/ with deg(a;) < j.
Similarly, we may assume that F>(x,y) = y? + 2?22 b;(x)y?~/ for some poly-
nomial functions b; with deg(b;) < j for all j.

Now, with the notation used in Equation (1), the two terms of the conjugacy
relation ho f = f>oh are

d
ho fi = (Ax', Bx"(y" 4} a;(x)y" /) +C(x)) (6)
=2
d .
froh= (A%, (BX"y+C(x))* + Z b;i(Ax)(BX™y+C(x))*™7).  (7)
=2
This gives A?~! = 1, and comparing the terms of degree d in y we get B~ =

1. Then, looking at the term of degree d — 1 in y, we obtain C(x) = 0. Thus
h(x,y) = (Ax, Bx"y) for some roots of unity A and B, the orders of which divide
d — 1. Since h is not an automorphism, we have

m # 0. )



Permuting the role of f; and f> (or changing / in its inverse), we suppose
m > 1. Coming back to (6) and (7), we obtain the sequence of equalities

bj(Ax) = a;(x)(Bx™)’ ©)
for all indices j between 2 and d. On the other hand, a; and b; are elements of

k[x] of degree at most j. Since m > 1, there are only two possibilities.

(a) All aj and b; are equal to 0; then fi(x,y) = f>(x,y) = (x¢,y¢), which
concludes the proof.
(b) Some a; is different from 0 and m = 1. Then all coefficients a; are

constant, and b;(x) = a; (&) for all indices j =2,...,d.

In case (b), we set & = B/A (a root of unity of order dividing d — 1), and use
homogeneous coordinates to write

d
fileiyig =4yt 4 Z a7y (10)
=2
d . . .
fz[x:y:z]:[xd:yd—i—Zajocfx/yd_J:zd]. (11)
=2

The conjugacy hfx : y : z] = [Axz : Bxy : z?] is not a linear projective automor-
phism of P2, but the automorphism defined by [x: y: z] > [z/0t: y : x] conju-
gates f] to f.

Step 2.— The only remaining case is when f; = (x~¢, F(x,y)), for i = 1,2,
with

Zaj x4 and P (x,y) = Zb dyd=i  (12)

for some polynomial functions a;,b; € Kk[x] that satisty deg(a;),deg(b;) < j
and agbo # 0. Writing the conjugacy equation /o f; = f, oh and looking at the
term of degree d in y, we get the relation

Bx M gox~%4 = by (Ax) —d (mey)d. (13)

Comparing the degree in x we get —md —d = md — d, hence m = 0. Moreover,
h conjugates f12 to fzz; thus, by the first step, & should be an affine automor-
phism since m = 0 (see Equation (8)). L]

6. Endomorphisms of (A} \ {0})2. — Denote by [x : y : z] the homogeneous
coordinates of PZ and by (x,y) the coordinates of the open subset V := (A} \
{0})? defined by xy # 0, z = 1. We write f; = a;0g, as in case (P3) of Section 3.
Since A is an automorphism of (Al \ {0})2, it is the composition #;, om, of a



8

diagonal map #;,(x,y) = (ux,vy), for some pair (u,v) € (k*)2, and a monomial
map my(x,y) = (x%y’,xy?), for some matrix

M, = ( Z Z ) € GLy(Z). (14)

Also, note that the group &3 C Bir(IPZ) of permutations of the coordinates
[x :y: 2] corresponds to a finite subgroup S3 of GL(Z).

Since my; commutes to g; and ggot, = tfl’ o g4, the conjugacy equation is
equivalent to

tho (myoayom; ') o(gaompy) =azotf o(ggomy). (15)

The automorphisms a; and a; are monomial maps, induced by elements A; and
Aj of S3, and Equation (15) implies that M), conjugates A| to Ay in GLy(Z);
indeed, the matrices can be recovered by looking at the action on the set of
units wx™y" in k(V') (or on the fundamental group mt;(V(C)) if k = C). There
are two possibilities :

(a) either A} = A, = 1d, there is no constraint on my;
(b) or Ay and A, are non-trivial permutations, they are conjugate by an
element P € S3, and M, = iAé o P, for some j € Z.
In both cases, u and v are roots of unity (there order is determined by d and the
Aj). Let p be the monomial transformation associated to P; it is a permutation
of the coordinates, hence an element of Aut(P%). Then, /' (x,y) = t,0 p is an
element of Aut(PP) that conjugates fi to f>.

7. An example in positive characteristic. — Assume that g = p® with s > 2.
Set G := xy” + (x —1)y. Then,

N ()C,y) = (xqayq +G(x7y))

defines an endomorphism of A? that extends to an endomorphism of P2.

Consider a polynomial P(x) € F,[x] such that 2 < deg(P) < % — 1. Observe
that deg(G) < deg(G(x,y+ P(x))) < g. Then g(x,y) = (x,y — P(x)) is an auto-
morphism of Alz( that conjugates fi to

fox,y) :=go fiog ' (x,y)
= (x4,y7+ P(x)?+ G(x,y + P(x)) — P(x?)) (16)
= (x1,y?+G(x,y+ P(x))).

As fi, f> is an endomorphism of A? that extends to a regular endomorphism
of P? (here we use the inequality deg(G(x,y+ P(x))) < ).
Let us prove that f; and f> are not conjugate by any automorphism of P2.

We assume that there exists 4 € PGL3(F,) such that o fj = f> o h and seek a



contradiction. Consider the pencils of lines through the point [0 : 1 : 0] in P?;
for a € F, we denote by L, the line {x = az}, and by L. the line {z = 0}. Then

{Lq; a € FqU{oo}} = {lines L such that f; 'L =L} (17)
= {lines L such that fz_lL =L}; (18)

in other words, the lines L, for a € F, U {eo} are exactly the lines which are
totally invariant under the action of fj (resp. of f3). Since & conjugates f] to
f, it permutes these lines. In particular, % fixes the point [0 : 1 : 0], and if we
identify L, N A” to A! with its coordinate y by the parametrization y — (a,y)
then A maps L, to another line L, in an affine way: h(a,y) = (d’,0y + B).

Since g conjugates f1 to f> and g fixes each of the lines L,, we know that
fi|r, is conjugated to f>|r, for every a € Fy; for a = oo, both fi|;_ and f>|..
are conjugate to y — y?. Moreover

e a = o is the unique parameter such that fi |z, is conjugate to y — y? by

an affine map y — oy + B;

e a =0 is the unique parameter such that fi|, is conjugate to y — y? —y
by an affine map;

e a =1 is the unique parameter such that f |z, is conjugate to y — y? +y”
by an affine map.

And the same properties hold for f;. As a consequence, we obtain /(Le ) = Lo,
h(Lo) = Lo and h(Ly) = Ly; this means that there are coefficients o € F," and
B,y € F, such that h(x,y) = (x,0y+ Bx+7). Writing down the relation /o f =
/> o h we obtain the relation

00+ AG(x,y) + Bt +7 = oy + Bt (19)
+ G(x,0y+ Bx+ v+ P(x)). (20)

We note that 1 < deg G(x,y) < deg G(x,ay + Px+7+ P(x)) < g. Compare the
terms of degree g, we get oy? + Bx? = ady? + B9x4. It follows that

aG(x,y) +7="1"+G(x, 0y + Bx+ v+ P(x)). 2D
Then deg G(x,y) = deg G(x, 0y + Bx + Y+ P(x)), which is a contradiction.
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