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ABSTRACT. Consider the four punctured sphere S2
4. Each choice of four

traces, one for each puncture, determines a relative character variety for the
representations of the fundamental group of S2

4 in SL 2(C). We classify the
stationary probability measures for the action of the mapping class group
Mod(S2

4) on these character varieties.

RÉSUMÉ. Soit S2
4 la sphère privée de quatre points. À chaque choix de

quatre traces, une par épointement, est associée une variété de caractères
relative pour les représentations du groupe fondamental de S2

4 dans SL 2(C).
Nous classons les mesures de probabilité stationnaires pour l’action du grou-
pe modulaire Mod(S2

4) sur ces variétés.
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1. INTRODUCTION

1.1. Representations. Let S2
4 denote the 2-dimensional sphere with four punc-

tures. A presentation of its fundamental group is

π1(S2
4) = ⟨α,β,γ,δ | αβγδ = 1⟩ (1.1)

FIGURE 1

where the generators α, β, γ, δ corre-
spond to disjoint simple loops around
the punctures (see Figure 1, taken
from [15]). Thus, π1(S2

4) is the free
group on the three generators α, β,
and γ.

Let Rep(S2
4) be the set of representa-

tions of π1(S2
4) in SL2(C). Such a rep-

resentation ρ is uniquely determined
by the three matrices ρ(α), ρ(β), ρ(γ),
so that Rep(S2

4) can be identified to
SL2(C)3 . As in [2, 15], we associate

the following traces to such a representation

a = tr(ρ(α)), b = tr(ρ(β)), c = tr(ρ(γ)), d = tr(ρ(δ)) (1.2)

x = tr(ρ(αβ)), y = tr(ρ(βγ)), z = tr(ρ(γα)). (1.3)

Then, the polynomial map χ : Rep(S2
4)→ A7(C) defined by

χ(ρ) = (a,b,c,d,x,y,z) (1.4)

is invariant under conjugacy, its image is the hypersurface determined by the
equation

x2 + y2 + z2 + xyz = Ax+By+Cz+D (1.5)

with

A = ab+ cd, B = bc+ad, C = ac+bd, (1.6)

D = 4− (a2 +b2 + c2 +d2)−abcd, (1.7)

and χ is the quotient map for the action of SL2(C) on Rep(S2
4) by conju-

gacy, in the sense of invariant theory. We shall denote the character variety
Rep(S2

4)//SL2(C) by χ(S2
4) (instead of χ(Rep(S2

4))).
For each choice of parameters A, B, C, D, we shall denote by S(A,B,C,D)

the algebraic surface determined by the Equation (1.5); it is a cubic surface
in the affine space A3, of degree 2 with respect to each variable x, y, or z.
The family of all these surfaces will be denoted by Fam. For simplicity, we
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shall just write S instead of S(A,B,C,D) for the elements of Fam (the quadruple
(A,B,C,D) is then uniquely determined by S). If the parameters A, B, C, and
D are in a ring R, we denote by S(R) the points of S with coordinates in R.

The compactification of S in the projective space P3 will be denoted by S
and its boundary at infinity by

∂S = S\S. (1.8)

For every S ∈ Fam, ∂S is the triangle in the hyperplane at infinity given by the
equation xyz = 0.

1.2. Mapping class group and Vieta involutions. Let us view the mapping
class group Mod±(S2

4) as the subgroup of Out(π1(S2
4)) preserving the periph-

eral structure. Then, Mod±(S2
4) acts on χ(S2

4) by precomposition, the conju-
gacy class of a representation ρ being sent to the conjugacy class of ρ ◦Φ−1

for any mapping class Φ. This gives a homomorphism Φ 7→ fΦ into the group
Aut(χ(S2

4)) of automorphisms of the variety χ(S2
4). As explained in [15, Sec-

tions 2.2 and 2.3], there is an isomorphism

PGL2(Z)⋉H ≃Mod±(S2
4) (1.9)

where H is the group (Z/2Z)2, and an exact sequence

Id → Γ
±
2 → PGL2(Z)⋉H → Sym(4)→ Id (1.10)

where Sym(4) corresponds to the group of permutation of the four punctures
of S2

4 and Γ
±
2 is the congruence subgroup of PGL2(Z) modulo 2.

(1) Γ
±
2 is isomorphic to Z/2Z ⋆Z/2Z ⋆Z/2Z, generated by the three in-

volutions

σ̂x =

(
−1 2
0 1

)
, σ̂y =

(
1 0
2 −1

)
, σ̂z =

(
1 0
0 −1

)
; (1.11)

(2) Γ
±
2 is the reflection group of an ideal triangle in the upper half plane;

(3) the action of Γ
±
2 on the character variety χ(S2

4) preserves the four co-
ordinates a, b, c, d; in particular, it acts on each surface S ∈ Fam as a
group of automorphisms of S. This action is faithfull for every S, and
the image has index at most 24 in Aut(S) (see [15, Theorem 3.1]).

(4) the image of Γ
±
2 in Aut(S) is generated by the Vieta involutions

sx(x,y,z) = (−x− yz+A,y,z) (1.12)

sy(x,y,z) = (x,−y− zx+B,z) (1.13)

sz(x,y,z) = (x,y,−z− xy+C). (1.14)
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In what follows, we denote by Γ the abstract group Z/2Z ⋆Z/2Z ⋆Z/2Z.
Depending on the action we look at, Γ will determine a subgroup Γ

±
2 of isome-

tries of the upper half plane, or a group of automorphisms ΓS of S (for any S
in Fam). Our goal is to describe the stochastic dynamics of this action on each
of the surfaces S. For simplicity, we frequently write Γ instead of ΓS.

1.3. Invariant area form. On S, the 2-form

Area =
dx∧dy

2z+ xy−C
=

dy∧dz
2x+ yz−A

=
dz∧dx

2y+ zx−B
(1.15)

is regular and does not vanish. According to Lemma 3.5 of [15], singularities
of S are quotient singularities, and Area is an area form in the sense of orbifolds
(locally, in a euclidean neighborhood of the singularity, S is the quotient C2/G
for some finite group and Area is the quotient of a G-invariant symplectic 2-
form on C2).

When S is defined over R, Area is also defined over R. To distinguish
between the holomorphic 2-form on S(C) and the real 2-form on S(R), we use
the notation AreaC and AreaR.

The 2-form AreaC (resp. AreaR) is multiplied by −1 under the action of
each of the involutions sx, sy, sz.

When S is defined over R, S(R) may have a compact connected component;
we denote such a component by S(R)c (see Section 2.2 for a precise definition
when S is singular). With our notation, it may happen that S(R)c be reduced to
a point; otherwise, it is a (possibly singular) sphere and the restriction of AreaR
to S(R)c determines (a) an orientation of this sphere and (b) a probability
measure νR on S(R)c, defined by

νR(B) =
1∫

S(R)c
AreaR

∫
B

AreaR (1.16)

for any borel subset B of S(R)c. We shall refer to this measure as the sym-
plectic measure on S(R)c. It is ΓS-invariant.

1.4. Random dynamics. Let X be a locally compact metric space. We endow
the group Homeo(X) with the compact-open topology. Let µ be a probability
measure on Homeo(X). Denote by Ω the product space Homeo(X)N and en-
dow it with the probability measure µN. We shall say that a property holds
for a typical element ω ∈ Ω if it holds for ω in a measurable subset Ω′ with
µN(Ω′) = 1. For every ω = ( f0, f1, . . .) ∈ Ω, we set

f n
ω = fn−1 ◦ . . .◦ f0. (1.17)
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A probability measure ν on X is µ-stationary if∫
Homeo(X)

( f∗ν) dµ( f ) = ν, (1.18)

and such a measure is ergodic if it can not be written as a convex combination
of two distinct stationary measures. Fix a point q in X . Then, consider the
random orbit ( f n

ω(q)) and the empirical measures

νN(ω;q) =
1
N

N

∑
j=1

δ f j
ω(q)

. (1.19)

A theorem of Breiman (see [3]) says that, for a subset of measure 1 in Ω, if
νni(ω;q) converges towards a probability measure ν as ni goes to infinity, then
ν is µ-stationary. Thus, to understand how random orbits distribute, we have to
describe stationary measures. We apply this viewpoint to the dynamics of ΓS.

Main Theorem.– Let µ be a probability measure on {sx,sy,sz} with

µ(sx)µ(sy)µ(sz)> 0.

Let S be an element of Fam. Let ν be a probability measure on S(C). If ν is
µ-stationary and ergodic, then the support of ν is compact, ν is invariant, and
either ν is given by the average on a finite orbit of ΓS, or

• the parameters A, B, C, and D defining S are real and in [−2,2],
• S(R) has a unique bounded component S(R)c, of dimension 2, and
• ν coincides with the symplectic measure νR induced by AreaR on S(R)c.

This extends a result of Chung for the dynamics on the compact part S(R)c

when (A,B,C,D) = (0,0,0,D) with D ∈ [3.9,4[ (see [16, Theorem B]).

Since finite orbits have been classified, our Main Theorem gives a complete
description of all µ-stationary measures; in particular,

– on each surface S ∈ Fam, except on S(0,0,0,4), the set of µ-stationary mea-
sures is a finite dimensional simplex with at most 6 vertices, the maximum 6
being realized only by S(0,0,0,3);

– if S(R) has a compact component S(R)c that does not contain any finite
orbit, then given any q∈ S(R)c, the empirical measures νN(ω;q) almost surely
converge to the symplectic measure νR as N goes to +∞.

Our result certainly holds when the support of µ generates the group Γ and
satisfies an exponential moment condition. We wrote the proof assuming that
the support is equal to

{
sx,sy,sz

}
to simplify the exposition, as it allows us to

avoid the use of the general theory of random walks on Γ.
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2. THE MARKOV SURFACES AND THEIR AUTOMORPHISMS

2.1. Smoothness of S(C). In [2], Benedetto and Goldman study the topology
of the surfaces S ∈ Fam. Their first result says that S is singular if, and only if
at least one of the parameters a, b, c, or d is equal to ±2 or there is a reducible
representation with boundary traces a, b, c, d; moreover, the latter case occurs
if and only if the following discriminant vanishes:

∆ = (2(a2 +b2 + c2 +d2)−abcd −16)2 − (4−a2)(4−b2)(4− c2)(4−d2).

Example 2.1. The Cayley cubic SCa = S(0,0,0,4) is defined by the equation
x2 + y2 + z2 + xyz = 4. It has four singularities, the maximum for an irre-
ducible cubic surface. It is the quotient of the multiplicative group Gm ×Gm

by η(u,v) = (1/u,1/v), the quotient map being

(u,v) 7→ (−u−1/u,−v−1/v,−uv−1/(uv)). (2.1)

2.2. Topology of S(R). Let n be the number of boundary traces a, b, c, d in
the interval ]−2,2[. According to [2, Theorem 1.2], if S(R) is smooth then its
Euler characteristic is equal to 2n−2 and S(R) is homeomorphic to

(1) a quadruply punctured sphere if n = 0 and abcd < 0;
(2) a disjoint union of a triply punctured torus and a disk if n = 0 and

abcd > 0;
(3) a disjoint union of a triply punctured sphere and a disk if n = 1;
(4) a disjoint union of an annulus and two disks if n = 2;
(5) a disjoint union of four disks if n = 3;
(6) a disjoint union of four disks and a sphere if n = 4.

In particular, if S(R) has a compact connected component, then this compo-
nent is unique and is homeomorphic to a sphere.

When S is allowed to have singularities, we define the components of S(R)
as follows. Firstly, if S(R) has an isolated point, this point will be one of
the components of S(R); note that there is at most one isolated point, it must
be one of the singularities of S(R), and a well chosen perturbation of the co-
efficients (a,b,c,d) will turn this point into a small sphere (resp. will make
this point disappear). Secondly, consider the smooth part S(R)\Sing(S), and
split it as a disjoint union of connected components S(R)0

i ; then, replace each
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S0
i (R) by its closure (equivalently, add to S(R)0

i the singularities of S which
are contained in the closure of S(R)0

i ); the result

S(R)i := S(R)0
i (2.2)

will be one of the components of S(R). For instance, in the case of the Cayley
cubic, S(R) has a compact component: it contains four singularities, each of
which is contained in exactly one of the unbounded components.

With this definition at hand, the classification of Benedetto and Goldman
remains correct, except that the components are not necessarily disjoint (they
may touch at singularities) and the sphere in Case (6) can be reduced to a sin-
gular point. In particular, one gets the following result: if S(R) has a compact
component, this component is unique, and it is homeomorphic to a sphere or a
singleton. If such a component exists, it will be denoted by S(R)c; when S(R)
has an isolated point, then S(R)c is equal to this point.

2.3. Representations in the compact component. The group SL2(C) has
two real forms, one is SL2(R), the other is SU2. Since SU2 is compact,
representations in SU2 give points in S(R)c; but points of S(R)c may also
correspond to representations in SL2(R) (see [2, Proposition 1.4]). In fact,
according to [15, Lemma 2.7], the map

Π : (a,b,c,d) ∈ C4 7→ (A,B,C,D) ∈ C4 (2.3)

from Equations (1.6) and (1.7) is a ramified cover of degree 24 and Jac(Π) =

−1
2∆, where ∆ is the discriminant from Section 2.1. The following automor-

phisms of C4 generate a group Q ⊂ Aut(C4) of order 8:

(a) the simultaneous sign change of the parameters a, b, c, and d
(b) the permutations of a, b, c, and d which are a composition of two

transpositions with disjoint supports.

The ramified cover Π is invariant under the action of Q. But Π is not Galois,
and to understand the structure of the 24 points in the fibers of Π, one has to
introduce the Okamoto correspondences: see Section 3 of [15] for this.

If S(R) has a compact component, then (A,B,C,D) is contained in [−2,2]4

and Π−1{(A,B,C,D)} is also entirely contained in [−2,2]4. Moreover, differ-
ent choices of (a,b,c,d) in Π−1{(A,B,C,D)} lead to different types of rep-
resentations, as summarized in the following result (see [15, Theorem B and
Proposition 3.13]).
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Theorem 2.2. Let (A,B,C,D) be real parameters. If the smooth part of S(R)
has a bounded component, then all parameters (a,b,c,d) in Π−1{(A,B,C,D)}
are real. Moreover, the points of S(R)c are conjugacy classes of SU2 and
SL2(R)-representations, depending on the choice of (a,b,c,d): modulo the
action of the group Q, each point of S(R)c corresponds to two SU2-representa-
tions and one SL2(R)-representation.

3. INVARIANT COMPACT SUBSETS AND INVARIANT MEASURES ON THEM

In this section, we summarize some known results concerning ΓS-invariant
compact subsets of S(C) and derive from them a classification of ΓS-invariant
probability measures on S(C).

3.1. Finite orbits. Boalch, and Lisovyy and Tykhyy obtained a classification
of all finite orbits of Γ in the surfaces S ∈ Fam. We summarize their results.

3.1.1. Short orbits. Finite orbits of Γ with at most 4 elements are classified
in [22, Lemma 39]. These finite orbits come in families, depending on 3, 2, or
1 parameters, up to permutation of the coordinates. Fixed points coincide with
singularities of S, and form a 3-parameter family, the parameters (a,b,c,d)
being on the locus (4− a2)(4− b2)(4− c2)(4− d2)∆ = 0. Orbits of length
2 depend on 2 parameters, for instance {(x,0,0),(x′,0,0)} is such an orbit if
A = x+ x′, B = 0, C = 0, and D = 4+ x+ x′. Orbits of length 3 or 4 depend
on 1 parameter; for a generic choice of the parameter, the points in the orbit
correspond to representations of π1(S2

4) with an infinite image.

3.1.2. Finite groups. Let F be a finite subgroup of SL2(C). Then, each rep-
resentation of π1(S2

4) into F gives rise to a finite orbit of Γ in the character
variety χ(S2

4). Changing F into a conjugate subgroup of SL2(C) does not
change the corresponding orbit. The finite orbits obtained with this method
have been described by Boalch in [4, 5, 6]. Note that changing the parameters
(a,b,c,d) in Π−1(A,B,C,D) may turn a representation inside a finite group
into a representation with infinite image.

Example 3.1. Consider the Cayley cubic SCa = S(0,0,0,4) described in Exam-
ple 2.1. The group GL2(Z) acts by monomial transformations on the multi-
plicative group Gm(C)×Gm(C) and each point of type (e2iπp/q,e2iπp′/q′) has
a finite orbit for this action. On the other hand, this action commutes to the
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involution η and induces a subgroup of Aut(S) that contains ΓSCa as a finite
index subgroup (see [15]). Thus, their projections

(−2cos(2iπp/q),−2cos(2iπp′/q′),−2cos(2iπ(p/q+ p′/q′))) (3.1)

give points on the Cayley cubic with finite ΓSCa-orbits. The Cayley cubic is the
unique example of a surface S ∈ Fam containing infinitely many finite orbits.

3.1.3. Boalch-Klein orbit. In [5], Boalch constructs a finite orbit that is not
given by any representation into a finite subgroup of SL2(C) (it comes from
a representation into a finite subgroup of SL3(C), though). The surface is
defined by the equation

x2 + y2 + z2 + xyz = x+ y+ z (3.2)

and the orbit is made of the seven points (0,0,0), (1,0,0), (0,1,0), (0,0,1),
(1,1,0), (1,0,1), and (0,1,1). There are 24 choices of parameters (a,b,c,d)
giving rise to (A,B,C,D) = (1,1,1,0). One of them is

a = b = c = 2cos(2π/7), d = 2cos(4π/7). (3.3)

For such a choice, the image of the representation π1(S2
4)→PSL2(C) is conju-

gate to the triangle group T (2,3,7). The Galois conjugates of this representa-
tions provide two distinct representations in SU2 (corresponding to conjugates
of a, b, c, d). Modulo Okamoto symmetries, all orbits of length 7 are given by
these three representations.

3.1.4. Classification. Lisovyy and Tykhyy proved that every finite orbit of Γ

is given by one of the above examples. The parameters for finite orbits are
listed in Lemma 39 page 147, Theorem 1 page 149 and Table 4 page 150
of [22]. Each point with a finite orbit of length ≥ 5 is determined by a repre-
sentation of π1(S2

4) in a finite subgroup of SU2, except for the Boalch-Klein
orbit.

3.2. Invariant compact subsets and probability measures. From Lemma
4.3 and Theorems B and C of [15], one gets the following result.

Theorem 3.2. Let S be an element of Fam. If ΓS preserves a compact subset
K of S(C) with at least five elements then

(1) the parameters a, b, c, and d are in [−2,2];
(2) S(R) has a unique compact component S(R)c;
(3) K is either finite or equal to S(R)c.
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In [20] and [23], Goldman, Pickrell and Xia prove that the symplectic mea-
sure νR is ergodic for the action of ΓS on S(R)c. Together with Theorem 3.2,
this gives a classification of invariant probability measures with compact sup-
port (and, as we shall see in Corollary 6.3, a classification of all invariant
probability measures):

Corollary 3.3. Let ν be a ΓS-invariant probability measure on S(C) with com-
pact support. If ν is ergodic, then either ν is the counting measure on a finite
orbit of ΓS, or the parameters a, b, c, and d are in [−2,2], S(R) has a unique
compact component and ν is the symplectic measure νR introduced in Sec-
tion 1.3.

Since the proof is a simple variation on the arguments of [20], [15], and [13],
we only sketch it.

Proof. Denote by K the support of ν. If ν has an atom at a point q ∈ S(C)
then the orbit of q contains at most ν({q})−1 points because ν is a probability
measure. Then, by ergodicity, ν coincides with the counting measure on ΓS(q).

Now, suppose that ν does not have any atom. If there is an irreducible
algebraic curve C ⊂ S(C) with ν(C)> 0, then ν( f (C)∩C)= 0 for every f ∈ΓS

that does not preserve C. Thus, the orbit of C under ΓS is a union of at most
ν(C)−1 irreducible curves and we obtain a contradiction because ΓS does not
preserve any curve (see [15, Theorem D]). Thus, we may assume that K is
infinite and ν(Z) = 0 for every proper algebraic subset of S(C).

From Theorem 3.2, the parameters A, B, C, and D are real and K coincides
with S(R)c. Consider the projection π : S → R onto the first axis; its image is
contained in [−2,2]. The composition of the second and third involutions acts
on S by

g(x,y,z) = (x,−xz− y+B,x2z− z+C−Bx). (3.4)

If the fiber S(R)x0 := π−1{x0} is non-empty and smooth, then it is an ellipse,
it is diffeomorphic to a circle, and g acts on it as a rotation, the angle of
which is given by 2cos(πθ) = x0 (see [19, §5] and [15]). Thus, if x0 is not
in 2cos(2πQ), g preserves a unique probability measure λx0 on S(R)x0: this
measure is smooth, it corresponds to the Lebesgue measure on the circle.

Consider the projection νx := π∗(ν). This measure does not have any atom.
Thus, if we desintegrate ν with respect to the fibration π, the conditional
measures coincide with the measures λx0 because they are g-invariant. Now,
projecting on the second axis and applying the same argument, we obtain a



DYNAMICS ON MARKOV SURFACES 11

smooth measure νy on the base, with smooth conditional measure. This shows
that ν is absolutely continuous with respect to the symplectic measure νR, and
by the ergodicity theorem of [20, 23], ν is equal to νR. □

4. DYNAMICS AT INFINITY

We extend ΓS as a group of birational transformations of S, the completion
of S in P3, and study its dynamics near the hyperplane at infinity.

Remark 4.1. We present all computations and estimates for the complex sur-
face S(C). On the other hand, the same computations work equally well on
S(K) if K is a local field, for some non-trivial absolute value | · |. In that case,
∥ · ∥ must be a norm on K3 which is compatible with | · |. Good examples to
keep in mind are K=Qp, or K= Fp[t], p a prime.

4.1. Taylor expansion at infinity. We add a variable w to get homogeneous
coordinates [x : y : z : w] on P3; then, the hyperplane at infinity is {w = 0}, and
its intersection with S is the triangle ∂S = S\S given by the equation xyz = 0.
The vertices of this triangle are p1 = [1 : 0 : 0 : 0], p2 = [0 : 1 : 0 : 0], and
p3 = [0 : 0 : 1 : 0]. Near p3, we can use the local coordinates x,y,w, with z = 1.
The equation of S becomes, locally,

(1+ x2 + y2)w+ xy = (Ax+By+C)w2 +Dw3. (4.1)

Thus, S is smooth near p3, its tangent plane at p3 is the “horizontal” plane
w = 0, and S is locally the graph of a function ϕ3 : (x,y) 7→ w = ϕ3(x,y).
Since S intersects the plane {w = 0} on the coordinate axis, ϕ3 is divisible by
xy; then, its Taylor expansion starts by

ϕ3(x,y)
−xy

= 1− (x2 +Cxy+ y2)− (Ax+By)xy

+(x4 +3Cx3y+(2−D+2C2)x2y2 +3Cxy3 + y4)+ . . .

Hence
ϕ3(x,y)
−xy

= 1− (x2 +Cxy+ y2)− (Ax+By)xy+O(∥ (x,y) ∥4), (4.2)

where the norm is any (fixed) norm in the local (x,y)-coordinates. The coef-
ficients in this expansion are polynomial functions of (A,B,C,D) with integer
coefficients.

Similarly, we can write locally S as a graph (y,z) 7→ w = ϕ1(y,z) near p1,
and as a graph (z,x) 7→ w = ϕ2(z,x) near p2 (note the cyclic permutation of
the local coordinates); we shall use the notation
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• (u1,v1,ϕ1(u1,v1)) = (y,z,ϕ1(y,z)) near the point p1,
• (u2,v2,ϕ2(u2,v2)) = (z,x,ϕ2(z,x)) near the point p2, and
• (u3,v3,ϕ3(u3,v3)) = (x,y,ϕ3(x,y)) near the point p3.

More precisely, (ui,vi,w) are local coordinates near pi, the projection from S
to the (ui,vi)-plane being a local diffeomorphism.

We can now compute the Taylor expansion of the involutions sx, sy, and sz

near the points pi where they are well defined. For instance, at p3 both sx and
sy are well defined, while sz has an indeterminacy. From Equation (1.12),

sx[x : y : z : w] = [−xw− yz+Aw2 : yw : zw : w2] (4.3)

Since sx maps p3 = [0 : 0 : 1 : 0] to p1 = [1 : 0 : 0 : 0], we use the local co-
ordinates (u3,v3) = (x,y) and (u1,v1) = (y,z). Combining Equations (4.2)
and (4.3) with w = ϕ3(x,y), we can write sx(x,y) = (y′,z′) with

y′ = xy[1−Cxy− y2 −Bxy2]+ · · · (4.4)

z′ = x[1−Cxy− y2 −Bxy2 − x2(x2 +2Cxy+2y2)]+ · · · (4.5)

where the dots correspond to terms of degree at least 6. Thus if we start with
the point of coordinates (u3,v3), that is with the point [u3 : v3 : 1 : ϕ3(u3,v3)]∈
S, the coordinates (u′1,v

′
1) of its image by sx satisfy

u′1 = u3v3[1+O(∥ (u3,v3) ∥2)] (4.6)

v′1 = u3[1+O(∥ (u3,v3) ∥2)]. (4.7)

This is not a surprise, indeed locally sx is the blow down of the axis {u3 = 0}.
A similar computation can be done near each of the vertices of the triangle ∂S.
To summarize it, we introduce the following two matrices.

A :=
(

0 1
1 1

)
, B :=

(
1 1
1 0

)
(4.8)

We denote by (u,v) 7→ (u,v)M the monomial action of a matrix M ∈Mat2(Z);
for instance, (u,v)A = (v,uv) and (u,v)B = (uv,u).

Proposition 4.2. In the local coordinates (u1,v1) near the point p1 ∈ S, (u2,v2)

near p2, and (u3,v3) near p3, the involution sx acts by

sx(u2,v2) = (v2(1+O(∥ (u2,v2) ∥2)),u2v2(1+O(∥ (u2,v2) ∥2))

sx(u3,v3) = (u3v3(1+O(∥ (u3,v3) ∥2),v3(1+O(∥ (u3,v3) ∥2)).

Thus, sx acts as the monomial map (u2,v2)
A near p2 and as (u3,v3)

B near p3,
up to multiplication by functions of type 1+O(∥ (ui,vi) ∥2).
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FIGURE 2. On the left, one sees the triangle at infinity ∂S with
the three vertices corresponding to the indeterminacy points of the
involutions. For instance, sx maps the line {w = 0 = x} to the point
[1 : 0 : 0 : 0], and locally near [0 : 1 : 0 : 0] it behaves like the monomial
map (u2,v2)

A. On the right, one sees the two types of open sets used
to confine the dynamics near infinity: small neighborhoods Wi near
the vertices, in green, small neighborhoods V around the edges; the
neighborhoods of type V depend on the words.

Similar formulas hold for sy and sz, where the choice of A or B in the mono-
mial expansion is given on Figure 2.

Note that if we set αi = − log |ui| and βi = − log |vi|, then the action of sx

near p2 transforms (α2,β2) in (α′
1,β

′
1) with

α
′
1 = β2 +O(exp(−2 ∥ (α2,β2) ∥)) (4.9)

β
′
1 = α2 +β2 +O(exp(−2 ∥ (α2,β2) ∥)). (4.10)

Here, as (u2,v2) approaches ∂S in S, then (α2,β2) goes to ∞ in R2
+.

4.2. Dynamics of the semi-group ⟨A,B⟩s.g. on R2
+. The last paragraph shows

that, to describe the action of ΓS near ∂S, we must look at the linear dynamics
of the semi-group generated by A and B on R2

+. This semi-group is the free
semi-group on two generators ⟨A,B⟩s.g.; its elements are uniquely represented
by words in A, and B, such as w(A,B) = AABABBAAAB (we do not distinguish
a word in A and B from the corresponding element in ⟨A,B⟩s.g.); the length of
such a word is just its number of letters; a sequence of words (wn) is said to
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be increasing if wn+1 = vn ·wn is the concatenation of wn with a word vn of
positive length. In the next lemma, ∥ · ∥1 is the ℓ1-norm on R2.

Lemma 4.3. Let (α,β) be a point of R2
+. Let (wn) be an increasing sequence

of words in the semi-group ⟨A,B⟩s.g.. Then, given any point (α,β) ̸= (0,0) in
R2
+,

• either ∥ wn(α,β) ∥1 goes to +∞ as n goes to +∞,
• or α = 0 and wn = Bε(n)(AB)ℓ(n) for some increasing sequence ℓ(n) ∈
Z+ and some sequence ε(n) ∈ {0,1},

• or β = 0 and wn = Aε(n)(BA)ℓ(n) for some increasing sequence ℓ(n) ∈
Z+ and some sequence ε(n) ∈ {0,1}.

If αβ > 0, the orbit of (wn(α,β)) of (α,β) in R2
+ is discrete and contains at

most min(α,β)−1R points at distance ≤ R from the origin.

Proof. For any (α,β)∈R2
+ and for U ∈{A,B} we have ∥U(α,β) ∥1≥∥ (α,β) ∥1

+min(α,β). Thus, if wm(α,β) is in the interior of R2
+ for some m ≥ 1, then

∥ wn(α,β) ∥1≥ a(n−m) for some a > 0 and all n. Now, wn(α,β) stays per-
manently on the boundary of R2

+ if and only if α = 0 (resp. β = 0) and wn is
an alternating sequence of A and B, as stated in the lemma. □

Lemma 4.4. Let (α,β) be a point of R2
+. Let (wn) be an increasing sequence

of words in the semi-group ⟨A,B⟩s.g.. Let (α,β) be a point in R2
+ such that

αβ ̸= 0. Denote by (αn,βn) the coordinates of wn(α,β).

• either min(αn,βn) goes to +∞ as n goes to +∞,
• or there is an index n0 such that, for all n ≥ n0,

min(αn,βn) = αn0 and wn = Bε(n)(AB)ℓ(n)wn0

for an increasing sequence ℓ(n)∈Z+ and some sequence ε(n)∈{0,1}.

The proof is the same as for the previous lemma. The reason why there is
only one exceptional case is that we can change a sequence of type (BA)ℓ(n)

into a sequence of type B(AB)ℓ(n)−1v with v = A and concatenate v with wn0 .
Now, we consider the following process, acting again on R2. An increasing

sequence of words wn =UL(n)UL(n−1) · · ·U2U1 is given, but now the Uk are not
in {A,B}; each Uk is a small (non-linear) perturbation of A or B, of type

Uk(α,β) =Vk(α,β)+Pk(α,β) (4.11)

where Vk ∈ {A,B} and ∥ Pk(α,β) ∥1≤ C exp(−2 ∥ (α,β) ∥1) for some fixed
constant C (that does not depend on (α,β) or (wn)).
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Lemma 4.5. Let R be a positive number such that R ≥ 2C exp(−2R). If (α,β)
satisfies α ≥ R and β ≥ R, then for any sequence of words as above, we have

∥ wn(α,β) ∥1≥∥ (α,β) ∥1 +
R
2

n.

In particular, wn(α,β) goes to ∞ with n. Moreover, each coordinate of wn(α,β)

goes to +∞, except if there is an integer n0 such that, for all n ≥ n0,

wn = Bε(n)(AB)ℓ(n)wn0

for some increasing sequence ℓ(n) ∈ Z+, some sequence ε(n) ∈ {0,1}.

Indeed, for V ∈ {A,B} and any map P : R2 →R2 that satisfies ∥P(α,β) ∥1≤
C exp(−2 ∥ (α,β) ∥1), we obtain

∥V (α,β)+P(α,β) ∥1 ≥∥ (α,β) ∥1 +R−C exp(−2 ∥ (α,β) ∥1) (4.12)

≥∥ (α,β) ∥1 +
R
2
. (4.13)

The proof is now the same as for Lemma 4.3 and Lemma 4.4.

4.3. Application: dynamics at infinity. Sections 4.2 and 4.1 can be com-
bined as follows. Fix some open neighborhoods W1, W2, W3 of p1, p2, p3 in
S with local coordinates (ui,vi) as in § 4.1 (neighborhoods for which Proposi-
tion 4.2 holds). Set (αi,βi) = (− log |ui|,− log |vi|); there is a constant R0 such
that {(ui,vi) ; αi ≥ R0 and βi ≥ R0} is contained in Wi for each index i. Then,
Equations (4.9) and (4.10) and their siblings for other choices of involutions
and local coordinates say the following. There is a constant C such that if
(u2,v2) is in W2, then sx(u2,v2) is in W1, and if we write its coordinates in W1

as (u′1,v
′
1) = sx(u2,v2) then their logarithms α′

1 =− log |u′1| and β′
1 =− log |v′1|

satisfy
(α′

1,β
′
1) = A(α2,β2)+P1,2(α2,β2) (4.14)

where P1,2 is defined on [R0,+∞[×[R0,+∞[ and

∥ P1,2(α,β) ∥1≤C exp(−2 ∥ (α,β) ∥1). (4.15)

Similar formulas hold for the other involutions in the open sets Wi where they
are well defined; the matrices A or B are to be chosen as on Figure 2, and
the perturbations Pi, j depend on the open sets; the constant C can be chosen
uniformly, i.e. independently of the indices.

We say that a word w in sx, sy, sz is reduced if sik+1 ̸= sik for all pairs of
successive letters in w. A reduced word wn = siℓ(n) · · ·si1 gives rise to a se-
quence si1 , si2 ◦ si1 , · · · , siℓ(n) ◦ · · · ◦ si1 of birational transformations of S, for



DYNAMICS ON MARKOV SURFACES 16

any S ∈ Fam, such that sik ◦ · · · ◦ si1 contracts the generic point of the bound-
ary ∂S onto a vertex pik that does not coincide with the indeterminacy point
of sik+1 . We use the same notation wn for the reduced word, the element of Γ

determined by it, and the associated automorphism of S, for any S in Fam. On
the other hand, we prefer to use s◦s′ to denote the composition in ΓS ⊂Aut(S)
and ss′ for products in Γ ≃ Z/2Z⋆Z/2Z⋆Z/2Z.

Lemma 4.5 gives the following.

Proposition 4.6. Let S be an element of Fam. There are disjoint open neigh-
borhoods Wi of the points pi in S such that given any point q in one of the
Wi, and any increasing sequence of reduced words wn = siℓ(n) · · ·si1 in sx, sy, sz

such that the indeterminacy point of si1 is not in Wi, the sequence wn(q) stays
in W1 ∪W2 ∪W3 and goes exponentially fast to infinity as n goes to ∞.

If the three letters sx, sy, sz appear infinitely often in the words wn as n goes
to +∞, then the accumulation points of (wn(q)) in S are contained in the three
vertices of the triangle ∂S.

This proposition describes the dynamics of reduced words when q is in W1∪
W2 ∪W3. Now, our goal is to describe what happens when q is near ∂S but is
not in W1 ∪W2 ∪W3.

Remark 4.7. Set L = {z = 0 = w} ⊂ ∂S and denote by L∗ the open subset
L \ {p1, p2}. The involutions sx and sy are regular on L∗, and both of them
acts by [x : y : 0 : 0] 7→ [y : x : 0 : 0] on L∗. On the other hand, there are points
arbitrary close to [1 : −1 : 0 : 0] (for instance), for which the orbit under sx ◦ sy

does not remain close to L.

Consider an increasing sequence of reduced words wn = siℓ(n) · · ·si1 in which
each of sx, sy, and sz ultimately appears. Let k be the smallest integer such that
the three involutions appear among the first k letters si j , 1 ≤ j ≤ k. There are
integers ℓ≥ 1 and ε ∈ {0,1} such that

• for n ≥ k, wn starts with a sequence of type si3sε
i1(si2si1)

ℓ, and
• {i1, i2, i3}= {x,y,z}.

In particular, k = 2ℓ+ ε+1. Then, for all n ≥ k, the birational transformation
of S induced by wn contracts each edge of ∂S onto some vertex of ∂S. Thus, if
B(pi1) is some small neighborhood of pi1 in S, there exists a neighborhood V
of ∂S \B(pi1) in S such that wn(V ) is contained in W1 ∪W2 ∪W3 for all n ≥ k.
This neighborhood depends on B(pi1) and on k. Together with Proposition 4.6,
this proves the following corollary.



DYNAMICS ON MARKOV SURFACES 17

Corollary 4.8. Let wn = siℓ(n) · · ·si1 be an increasing sequence of reduced
words in sx, sy, sz. Suppose that wn involves each of these three letters if n
is larger than some n0. Let B be a neighborhood of the indeterminacy point
pi1 . There exists a neighborhood V of ∂S\B in S such that, for n ≥ n0,

(1) wn contracts ∂S\{pi1} onto one of the vertices of ∂S,
(2) wn maps V into W1 ∪W2 ∪W3,
(3) if q is any point of V \∂S, its orbit (wn(q)) converges towards ∂S in S.

Moreover, if each of the three letters sx, sy, sz appears infinitely often in the
sequence (si j) j≥1, the set of accumulation points of (wn(q)) is contained in
{p1, p2, p3}.

Remark 4.9. Once we know that (wn(q)) is trapped in W1 ∪W2 ∪W3, we
get the following: if siℓ(n) is equal to sx, then wn(q) is in W1; thus, if each
of the involutions appears infinitely often in the sequence of letters siℓ(n) , the
accumulation point of (wn(q)) coincides with {p1, p2, p3}.

5. FROM RANDOM PATHS TO REDUCED WORDS

5.1. Cayley graph (see [24]). Recall that the group Γ = ⟨sx,sy,sz⟩ is a free
product Z/2Z ⋆Z/2Z ⋆Z/2Z. Let GΓ be the Cayley graph of Γ for the sys-
tem of generators (sx,sy,sz): two vertices g, h ∈ Γ are connected by an edge
labelled s, for s ∈ {sx,sy,sz}, if and only if gs = h. This is a trivalent tree.
The points of the boundary ∂GΓ are in one to one correspondance with infinite
geodesic rays starting at the neutral element 1Γ.

Let µ be a probability measure on {sx,sy,sz} such that µ(sx)µ(sy)µ(sz)> 0.
We endow the set

Ω = {sx,sy,sz}N (5.1)

with the probability measure µN.
To an element ω = ( f0, f1, . . .) of Ω, we associate a path in GΓ: the path

starts at 1Γ and visits successively the vertices f0, f0 f1, . . ., f0 · · · fn, . . .. This
path is typically not a geodesic (almost surely, some of the words f0 · · · fn are
not reduced). On the other hand, with probability 1 with respect to µN, this path
goes to infinity in GΓ (at a linear speed), and converges towards a unique point
θ+(ω) of ∂GΓ. Starting at 1Γ and following the geodesic ray corresponding to
θ+(ω), one creates a sequence of vertices (wn) with dist(wn,1Γ) = n. It is an
increasing sequence of reduced words wn = si1 · · ·sin . We shall say that (wn)

is the reduced sequence attached to ω.



DYNAMICS ON MARKOV SURFACES 18

5.2. Random dynamics at infinity. Let us now come back to the dynamics
of Γ near ∂S in S, for S∈ Fam. As in Section 5.1, we consider a typical element
ω of Ω with respect to µN; then, the reduced words

wn = si1 · · ·sin (5.2)

converge. The inverse of wn is

w−1
n = sin · · ·si1. (5.3)

We can extract a subsequence (n j) to assure that (w−1
n j
) also converges to some

infinite reduced word w−1
∞ . To do that, consider a subsequence such that the

first letter of w−1
n is constant, then extract from it a subsequence such that the

second letter is also constant, and so on. Finally, apply a diagonal process.
We shall now apply Corollary 4.8 to the sequence (wn j) (note that the in-

dices are indexed from left to right for wn in Equation (5.2)). We denote by m
an element from the sequence n j. Write

w−1
∞ = s j1s j2 · · ·s jn · · · (5.4)

Note that we use indices ik for wn and jk for w−1
n , and that the reduced word

w−1
∞ provides a boundary point (and a geometric ray), denoted θ−(ω,(n j)).
Let m0 be the first integer such that s j1s j2 · · ·s jm0

involves the three letters sx,
sy, and sz. Then, wm = si1si2si3 · · ·sik · · ·s jm0

s jm0−1 · · ·s j2s j1 for m ≥ m0. Recall
that p j1 denotes the indeterminacy point of s j1 , viewed as a birational trans-
formation of S. Let B be a neighborhood of p j1 . Then, Corollary 4.8 and
Remark 4.9 provide a neighborhood V of ∂S\B in S (which depends on B and
m0) such that, for m ≥ m0 in the sequence (n j),

(1) wm contracts ∂S\{p} onto the vertex pi1 ,
(2) wm maps V into Wi1 ,
(3) if q is any point of V \∂S, its orbit (wn j(q)) converges towards pi1 in S.

Remark 5.1. Changing (n j), the point p j1 can be taken to be any of the ver-
tices of ∂S. On the other hand, pi1 is uniquely determined by ω.

Theorem 5.2. There is a subset Ω′ of Ω of full µN-measure such that for any
ω = ( f0, . . . , fn, . . .) in Ω′, there is a vertex p(ω) of ∂S with the following prop-
erty. Given any vertex q of ∂S, one can find a subsequence (n j) such that,
for every neighborhood B of q, there is a neighborhood V of ∂S \B in S that
satisfies:

(1) f0 ◦ · · · ◦ fn j contracts ∂S\{q} onto p(ω);
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(2) for all v ∈V , the sequence f0 ◦ · · · ◦ fn j(v) converges towards p(ω).

Remark 5.3. The sequence (n j) depends on ω and q, but not on B. We can
also impose that w−1

∞ starts with three distinct letters. In that case, V depends
only on (the size of) B.

Proof. As above, we consider the point θ+(ω) ∈ ∂GΓ and the parametrization
(wn) of the corresponding geodesic ray. The sequence ( f0, f1, . . .) is typically
not reduced (consecutive letters can be equal), but we can extract a subse-
quence (k j) to impose that (a) each of the products f0 · · · fk j ∈ Γ is equal to
one of the reduced words wm j and (b) f0 · · · fn ̸= wm j for all n > k j. Then,
we extract a further subsequence (n j) from (m j) (or equivalently from (k j))
such that w−1

n j
converges to an infinite reduced word that starts with the letter

si, where i is the index such that q = pi = Ind(si). This done, the conclusion
follows from our previous discussion. □

To conclude this paragraph, we add a definition that will be used in Sec-
tion 6.4. As above, starting with a typical sequence ω ∈ Ω, we associate a
boundary point θ+(ω) and a geodesic ray which starts at 1Γ. The first vertex
that this ray visits corresponds to the first letter si1 of wn (see Equation 5.2). We
shall say that si1 is the initial letter of θ+(ω); it will be denoted by In(θ+(ω)).

6. STATIONARY MEASURES

In this section, we prove our Main Theorem (see Section 1.4). We fix a prob-
ability measure µ on {sx,sy,sz} such that µ(sx)µ(sy)µ(sz) > 0 and, as in Sec-
tion 5.1, we endow the set Ω = {sx,sy,sz}N with the probability measure µN.
For ω = ( f0, f1, . . .) ∈ Ω and n ∈ N, we set

f n
ω = fn−1 ◦ . . .◦ f0 ∈ Aut(S). (6.1)

6.1. Stationary probability measures. Let ν be a µ-stationary probability
measure on S(C); this means that ν = µ(sx)(sx)∗ν+µ(sy)(sy)∗ν+µ(sz)(sz)∗ν

(see Equation (1.18)). Let ω be a typical element of Ω. In Sections 5.1
and 5.2, we introduced a boundary point θ+(ω) ∈ ∂GΓ and, for appropriate
subsequences, boundary points θ−(ω,(n j)) ∈ ∂GΓ. We shall use these con-
structions and Theorem 5.2 to describe the support of ν and the accumulation
points of stable manifolds at infinity.
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6.2. Recurrence implies compact support. Let us start with an example.
Endow GL2(Z) with a probability measure µ, the support of which is finite
and generates GL2(Z). The group GL2(Z) acts linearly on R2/Z2, fixes the
origin o = (0,0), and preserves the Lebesgue measure dvol = dx∧dy. More-
over, by [9], if q /∈ Q2/Z2, then µN-almost every random trajectory ( f n

ω(q))
equidistributes towards dvol. Now, let us restrict the action to the punctured
torus X = R2/Z2 \ {o}. If one considers the puncture as a point “at infinity”
in X , then (a) there is a stationary measure dvol with unbounded support, (b)
(µN⊗dvol)-almost every random trajectory ( f n

ω(q)) is unbounded, and (c) ev-
ery bounded orbit of GL2(Z) is finite. The following proposition excludes this
type of behavior for the dynamics of Γ on S(C), for any S ∈ Fam.

Proposition 6.1. Let ν be a µ-stationary measure on S(C). Then ν has com-
pact support.

Remark 6.2. If C is replaced by a local field K, then the same proposition
holds for µ-stationary measures on S(K) (see Remark 4.1).

Proof. Step 1.– By classical results due to Furstenberg and Guivarc’h-Raugi,
see [7, Lemma 2.1, p.19], there exists a borel subset Ω′ ⊂ Ω such that (a)
µN(Ω′) = 1, (b) for every ω ∈ Ω′, the sequence ( f0 ◦ . . . ◦ fn−1)∗ν converges
towards a probability measure νω on S(C), and (c) the family of measures
(νω)ω∈Ω′ satisfies

ν =
∫

Ω

νω dµN(ω). (6.2)

Step 2.– Now we follow the argument used by Bougerol and Picard to prove
[8, Lemma 3.3]. For every ω ∈ Ω′ and every increasing sequence of integers
(n j), set

H(ω,(n j)) = {x ∈ S(C) ; f0 ◦ . . .◦ fn j(x) does not tend to ∂S}. (6.3)

Let ϕ : S(C)→ R+ be a smooth function with compact support. We have

lim
j→+∞

∫
S(C)

ϕ( f0 ◦ . . .◦ fn j)dν =
∫

S(C)
ϕdνω. (6.4)

Since ϕ has compact support, we get ϕ( f0 ◦ . . . ◦ fn j(x)) = 0 for every x ∈
S(C) \H(ω,(n j)) and j large enough (depending on x). By the dominated
convergence theorem, we get

lim
j→+∞

∫
S(C)\H(ω,(n j))

ϕ( f0 ◦ . . .◦ fn j)dν = 0. (6.5)
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Equation (6.4) then implies

lim
j→+∞

∫
H(ω,(n j))

ϕ( f0 ◦ . . .◦ fn j)dν =
∫

S(C)
ϕdνω, (6.6)

which yields ∫
S(C)

ϕdνω ≤∥ ϕ ∥∞ ν(H(ω,(n j))). (6.7)

Let 1M : C3 → [0,1] be a smooth function equal to 1 on B(0,M) and equal to
zero on C3 \B(0,M + 1). Replacing ϕ in Equation (6.7) by the restriction of
1M to S(C) and taking the limit when M tends to infinity, we obtain

ν(H(ω,(n j)) = 1

for every ω ∈ Ω′ and every subsequence. In particular, the support of ν is con-
tained in the closure of any such H(ω,(n j)).

Step 3.– Fix ω ∈ Ω′ that satisfies also the conclusion of Theorem 5.2 and
apply this theorem for two vertices q ̸= q′ of ∂S. This provides two sequences
(n j) and (n′j) satisfying the following properties. For every neighborhood B of
q (respectively B′ of q′), there exists a neighborhood V of ∂S \B (respectively
V ′ of ∂S \B′) such that for every x ∈ V (respectively x ∈ V ′), f0 ◦ . . . ◦ fn j(x)
(respectively f0 ◦ . . .◦ fn′j

(x)) tends to p when j tends to infinity. Since p ∈ ∂S,

we get H(ω,(n j))∩∂S ⊂ B and H(ω,(n′j))∩∂S ⊂ B′; thus,

H(ω,(n j))∩∂S ⊂ {q} and H(ω,(n′j))∩∂S ⊂ {q′}. (6.8)

Since q ̸= q′, H(ω,(n j))∩H(ω,(n′j)) is a compact subset of S(C), and by Step
2, this implies that the support of ν is compact. □

6.3. Invariant probability measures. We can now strengthen Corollary 3.3.

Corollary 6.3. Let ν be a ΓS-invariant, ergodic, probability measure on S(C).
Then either ν is the counting measure on a finite orbit of ΓS, or the parameters
a, b, c, and d are in [−2,2], S(R) has a unique compact component and ν is
the symplectic measure νR on S(R)c.

Indeed, if ν is invariant it is µ-stationary, hence its support is compact, and
the conclusion follows from Corollary 3.3.
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6.4. Stable manifolds. Now that we know that the support of any stationary
measure ν is compact, we go on to conclude the proof of our Main Theorem.

Let σ denote the one sided left shift on Ω. We introduce the skew product
F : Ω×S(C)→ Ω×S(C), defined by

F(ω,q) = (σ(ω), f0(q)) (6.9)

for ω = ( fi)i≥0 ∈ Ω and q ∈ S(C). The µ-stationarity of ν is equivalent to the
F-invariance of the product measure µN×ν on Ω×S(C).

Let us assume that ν is ergodic, and that its support Supp(ν) is infinite.
According to Proposition 6.1 and Theorem 3.2, S is defined over R, S(R) has
a (unique) bounded component, and

Supp(ν) = S(R)c. (6.10)

Since Supp(ν) is compact and Supp(µ) is finite, we can apply Kingman’s sub-
additive ergodic theorem. This gives two real numbers λ+ ≥ λ− such that

λ
+ = lim

n→+∞

1
n

log ∥ Dq f n
ω ∥ and λ

− = lim
n→+∞

1
n

log ∥ (Dq f n
ω)

−1 ∥−1 (6.11)

for ν-almost every q ∈ S(R)c and µN-almost every ω ∈ Ω. These real numbers
are the Lyapunov exponents of ν; they satisfy

λ
++λ

− = 0 (6.12)

because the smooth part of S(C) is endowed with the 2-form Area and f ∗Area=
±Area for every f ∈ ΓS (see Section 1.3).

Suppose that λ+ = λ− = 0. By Ledrappier’s invariance principle (see [17],
and [21, 1] for other contexts), ν is invariant under the action of µ-almost every
element of ΓS, hence by ΓS since the support of µ generates ΓS. Thus, our Main
Theorem follows from Corollary 3.3 in that case.

From now on, we assume that ν is hyperbolic, that is

λ
+ > 0 > λ

−. (6.13)

For ν-almost every q ∈ S(C), we define the stable manifold

W s
ω(q) := {q′ ∈ S(C) ; limsup

n→+∞

1
n

logdist( f n
ω(q), f n

ω(q
′))< 0}. (6.14)

Remark 6.4. By [14, Proposition 7.8], W s
ω(q) is parametrized by an injective

entire curve ψs
ω,q : C → S(C). Let W s

ω(q) be the closure of W s
ω(q) in S. By

Liouville’s theorem, W s
ω(q)∩∂S is not empty.
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We also define

K(ω) = {q ∈ S(C) ; ( f n
ω(q))n≥0 is bounded in S(C)}. (6.15)

Observe that K differs from the subset H given in Section 6.2, since the com-
position of the fi’s is reversed. We let K(ω) be the closure of K(ω) in S.

Lemma 6.5. For ν-almost every q and µN-almost every ω, the stable manifold
W s

ω(q) is contained in K(ω). In particular, W s
ω(q)∩∂S ⊂ K(ω)∩∂S.

Proof. The orbit Orbω(q) = { f n
ω(q) ; n ≥ 0} is contained in the compact set

Supp(ν). Hence Orbω(y) is bounded for every y ∈W s
ω(q). □

Proposition 6.6. For (µN⊗ν)-almost every (ω,q),

(1) the sets K(ω)∩ ∂S and W s
ω(q)∩ ∂S are equal to the indeterminacy

point of the initial letter In(θ+(ω));
(2) K(ω) depends on ω: it is equal to one of the three vertices of ∂S, each

of them being realized with positive probability.

Proof. Write the reduced words associated to ω = ( f0, . . . , fn, . . .) as wn =

si1 · · ·sin , as done in Section 5.1. Choose an increasing sequence (n j) such
that the unreduced word f0 ◦ · · · ◦ fn j is equal, in the group Γ, to one of the
reduced words wm j and f0 ◦ · · · ◦ fn ̸= wm j for all n > n j. Let B be a small
neighborhood of the point p = pi1 = Ind(si1), and apply Corollary 4.8: there
is a neighborhood V of ∂S\B such that the orbit

f n j
ω (q) = (sim j

◦ · · · ◦ si2 ◦ si1)(q) (6.16)

of every point q ∈ V goes to ∞ in S as n j goes to +∞. Thus, K(ω)∩ ∂S is
contained in B. Shrinking B, K(ω)∩ ∂S ⊂ {pi1}. The first assertion follows
from Remark 6.4 and Lemma 6.5. The second assertion is a consequence of
the first one and Remark 5.1. □

The stable direction Es
ω(q) is the tangent to W s

ω(q) at the point q. We shall
say that the stable directions define an invariant line field if they do not depend
on ω (at least over some subset of total measure in Ω). Otherwise, we say
that they genuinely depend on ω. In fact, there are two versions of Es

ω(q),
the complex one in TqS(C)≃ C2, and the real one in TqS(R)c ≃ R2; since the
complex one is the complexification of the real one, this definition does not
depend on the version one chooses.
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Proposition 6.7. If the ergodic, hyperbolic, stationary measure ν is not invari-
ant, the stable directions Es

ω(q) depend genuinely on the random trajectory
ω = ( f0, . . . , fn, . . .).

Indeed, we only need to apply the proof of Theorem 9.1 in [14]. This theo-
rem assumes that the dynamical system is defined on a compact Kähler surface
for only two reasons. Firstly, to use Hodge theory and Nevanlinna currents in
order to show that W s

ω(q) depends genuinely on ω; in our context, this follows
from Proposition 6.6. Secondly, the compactness of the manifold is used for
certain moment conditions to be satisfied; here, the same conditions are avail-
able because, according to Proposition 6.1, the study can be done on S(R)c.

6.5. Classification of stationary measures: proof of the Main Theorem.
Let S be an element of Fam. Let ν be an ergodic, µ-stationary, probability
measure on S(C). As explained in Section 6.4, we can assume that ν is not
invariant, since otherwise our Main Theorem follows from Proposition 6.1 and
Corollary 3.3. Under this assumption, the support of ν is infinite, hence equal
to S(R)c, as above. And by Ledrappier’s invariance principle we can assume
that ν is hyperbolic. Thus, we can restrict the dynamics, i.e. ΓS and ν, to S(R)c

and apply the following theorem of Brown and Rodriguez-Hertz:

Theorem 6.8 (Theorem 3.4 of [10]). Let M be a closed surface, endowed with
a probability measure dvol given by a smooth area form. Let µ be a proba-
bility measure on Diff2(M;dvol) with finite support; let Γµ be the subgroup of
Diff2(M;dvol) generated by the support of µ. Let ν be a hyperbolic, ergodic,
and µ-stationary probability measure on M. If for ν-almost every q ∈ M the
stable direction Es

ω(q) depends genuinely on ω, then ν is invariant by Γµ.

By Proposition 6.7, the stable directions Es
ω(q) depend genuinely on ω for

ν-almost every q. By this Theorem, ν should be invariant, contradiction.

Remark 6.9. The surface S(R)c, in our case, may have singularities. But they
are quotient singularities and the group ΓS preserves the orbifold structure of
S(R), thus [10] can be applied without any change, even if S(R) is singular.

7. MARGULIS FUNCTIONS AND APPLICATIONS: AN EXAMPLE

In this final section, we study the example from Section 3.1.3, the goal being
to describe further properties satisfied by the dynamics of Γ.
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7.1. The surface. The parameters are (A,B,C,D) = (1,1,1,0). We write S
for S(1,1,1,0) and Γ for ΓS. The surface S is smooth and the compact compo-
nent S(R)c is homeomorphic to a sphere. According to [22], every orbit of
Γ in S(C) is infinite, except the orbit of the origin o = (0,0,0). Thus, our
main theorem shows that the space of stationary measures is an interval, the
endpoints of which are

• the symplectic measure νR, supported by S(R)c, and
• δΓ(o), the counting measure on the finite orbit.

We will be interested in the following problem. Fix a point q of S(C)\Γ(o).
Given ω = ( f0, . . . , fn, . . .) ∈ Ω, consider the empirical measures νN(ω;q) de-
fined in Equation (1.19). As already said in Section 1.4, for a typical ω any
cluster value ν of (νN(ω;q)) in the space of measures on S(C) is a stationary
measure (though its total mass may be < 1). The question is to determine the
decomposition of such a measure ν as a convex combination αδΓ(o)+βνR.

7.2. Expansion along Γ(o). The stabilizer of o is a subgroup of Γ of index
7 that contains f = (sy ◦ sx)

2, g = (sx ◦ sz)
2, h = (sz ◦ sy)

2. The tangent space
at the origin is given by the equation u+ v+w and can be parametrized by
(u,v,−u−v). In these coordinates, the differentials of f , g, and h at the origin
act on ToS by

D fo(u,v) = (2u+ v,−u), (7.1)

Dgo(u,v) = (u+ v,v), (7.2)

Dho(u,v) = (u,−u+ v). (7.3)

Thus, D fo, Dgo, and Dho generate the group SL2(Z)⊂ GL(ToS).
According to [12, Theorem 8.16], this implies that the finite orbit Γ(o) is ex-

panding, in the sense of [12, Section 1.3] and [16]; in other words, in average,
the dynamics of Γ is infinitesimally repelling along the orbit Γ(o). From [12,
Theorem 4.3]1), we get:

if q is a point of S(R)c \Γ(o), then for a typical ω in Ω, the empirical
measures νN(ω;q) converge towards the symplectic measure νR.

In other words, as soon as q ∈ S(R)c is not on the finite orbit, then its typical
random trajectories do not charge Γ(o).

1In this statement and in Theorem 4.4 of [12], the ambient complex manifold is assumed
to be compact, but this is not really used in the proof.
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This result is an instance of the following general phenomenon.

Proposition 7.1. Assume S is defined over R and contains a compact compo-
nent S(R)c. Let q be a smooth point of S(R)c. If the orbit Γ(q) is finite, then it
is automatically expanding.

Proof. Let Γq be the stabilizer of q in Γ, and let k be its index. We have to
prove that the subgroup of GL(TqS) given by the differentials Dqg, for g ∈ Γq,
is non-elementary. Permuting the role of the three coordinates, we can assume
that the fibers of the projections π1(x,y,z) = x and π2(x,y,z) = y containing q
are smooth and are transverse at q.

Now, consider the element h = sy ◦ sz of Γ. It acts on S by (x,y,z) 7→
(x,Hx(y,z)) where Hx is the affine transformation of the (y,z)-plane defined
by Hx(y,z) = Lx(y,z)+Tx with

Lx =

(
x2 −1 −x

x −1

)
and Tx =

(
−B−Cx

−C

)
. (7.4)

The trace of Lx is x2−2, its determinant is 1. This affine map Hx preserves the
conic Cx given by the equation of S, with x fixed, in the (y,z)-plane.

Now, write q = (x0,y0,z0), with x0, y0, z0 in [−2,2]. Our hypotheses imply
that −2 < x0, y0 < +2. Let I ⊂]− 2,2[ be an interval containing x0 above
which π1 is a submersion. For x ∈ I, the real part Cx(R) of the conic Cx is
a smooth ellipse. It can be identified to P1(R) by a homography; then, Hx

induces a homography H ′
x of P1(R) ≃ Cx(R) given by a matrix in PSL2(R),

the trace of which satisfies Tr(H ′
x)

2 = Tr(Lx)+ 2 = x2. Writing x = 2cos(θ),
we can identify P1(R) to the circle R/2πZ and (H ′

x) to the rotation of angle
θ(x) = arccos(x/2). This gives a local diffeomorphism to I ×R/2πZ that
conjugates h to the map (x,ϕ) 7→ (x,ϕ+θ(x)) = (x,ϕ+arccos(x/2)). In these
coordinates, the differential of the n-th iterate is(

1 −n/
√

4− x2

0 1

)
. (7.5)

It is a non-trivial unipotent matrix if n ̸= 0. Coming back to S, we obtain
the following: the differential of hk at the fixed point q is a unipotent matrix
Dqhk ̸= Id in GL(TqS) that fixes the direction tangent to the fiber of π1.

Now, the same is true for g = sz ◦ sx with respect to the fibration π2. Since
the two fibrations π1 and π2 are transverse at q, the differentials of gk and hk

at q generate a non-elementary subgroup of GL(TqS), as desired. □
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7.3. Expansion along S(R)c. The transformation f from the previous para-
graph act on S in the following way. It preserves the fibration π3 : S(C)→ C,
π3(x,y,z) = z. It acts by homography on each fiber x2 + y2 + z2

0 + xyz0 =

x+ y+ z0. Along S(R)c, π3 is a fibration in (topological) circles (except for
the singular fibers) along which f acts as a rotation by an angle that depends
analytically on z0. The behavior of g and h is similar, but with respect to the
other fibrations π2 and π1.

Thus, the situation is slightly different from [12], in which parabolic auto-
morphisms preserve fibrations into curves of genus 1, but the same arguments
apply. From [12, Theorem 1.5], we deduce that the dynamics is expanding
along S(R)c. Then, [12, Theorem 4.5] shows that, using the complex struc-
ture, the expansion can be transfered transversally to S(R)c, and this shows
that

if q is a point of S(C)\S(R)c and ω is typical, then the only cluster value
of (νN(ω;q)) is the zero measure: in average, the orbit of q goes to ∂S.

This argument also shows the following.
Suppose that S∈ Fam is defined over R, S(R) has a smooth compact compo-
nent S(R)c, and S(C) does not contain any finite orbit. Let q be a point from
S(C)\S(R). Then, for a typical random sequence ω, the only cluster value
of (νN(ω;q)) is the zero measure.

8. APPENDIX

We extend the study of Section 5 to relate it to hyperbolic geometry and Furstenberg
theory and to improve Proposition 6.1.

8.1. Isometries of H. The group Γ ≃ Γ
±
2 can also be viewed as a group of isometries

of the upper half plane H. Explicitly, the generators sx, sy, sz are mapped to the
involutive isometries (see Section 1.2)

σx(z) =−z̄+2, σy(z) =
z̄

2z̄−1
, σz(z) =−z̄. (8.1)

Each involution is the reflection with respect to one side of the ideal triangle with
vertices 0, 1, ∞ in ∂H = R∪{∞}. This triangle T is a fundamental domain of the
action of Γ

±
2 , its images tesselate H, and the dual graph of this tesselation can be

identified to GΓ.

Remark 8.1. The Cayley map (z− i)/(z+ i) maps the upper half plane to the unit
disk D and the triangle to the ideal triangle TD ⊂ D with vertices 1, −1 and −i.

As in Section 5.1, let ω be a typical element of Ω and let (wn) be the sequence of
reduced words derived from ω, with wn = si1 · · ·sin . The isometries σi1 ◦ · · · ◦σin map
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T to a sequence of adjacent triangles

T0 = T, T1 = σi1(T ), T2 = σi1(σi2(T )), . . . . (8.2)

the dual Then, the sequence of triangles (Tn) converges in the Hausdorff topology of
H towards a unique boundary point θ

+
H(ω).

FIGURE 3. We draw a picture in the unit disk, using the change of
variable z 7→ (z− i)/(z+ i), but we label boundary points according
to the natural parametrization ∂H = R∪ {∞}. The triangle T and
its images under the action of Γ

±
2 tesselate the hyperbolic disk. For

instance, the triangle T′ corresponds to σz(T), and the magenta points
correspond to curves of depth 2 in S2.

8.2. Matrices and Furstenberg theory (see [7]). Fix a norm ∥ · ∥ on Mat 2(R), and
we recall that the boundary ∂H is naturally identified to the projective line P1(R) =
P(R2). The isometries σx, σy, σz correspond to elements σ̂x, σ̂y, σ̂z of PGL 2(R)
(see Equation (1.11)). We lift these elements to matrices in GL 2(R), using the same
notation. Typically, the norm of the product σ̂i1 · · · σ̂in goes exponentially fast to +∞.
If we normalize σ̂i1 · · · σ̂in by dividing by its norm, we obtain a sequence of matrices

[σ̂i1 · · · σ̂in ] =
σ̂i1 · · · σ̂in

∥ σ̂i1 · · · σ̂in ∥
∈Mat 2(R), (8.3)

each of which has norm 1. Extracting a subsequence (n j), we may assume that this
sequence converges towards an element σ̂∞ of Mat 2(R); then, with probability 1 with
respect to µN, we have

(1) σ̂∞ has rank 1 and its image coincides with the line corresponding to θ
+
H(ω)

in the identification ∂H= P1(R); in particular, the image does not depend on
the subsequence.
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On the other hand the kernel does depend on (n j). More precisely, consider the in-
verse of si1 · · ·sin , which is the same thing as the reversed word sin · · ·si1 . Then, as
in Section 5.2, extract a subsequence such that each of sin j

, sin j−1 , etc, converges to-
wards an element of {sx,sy,sz}; in other words, extract a subsequence to make the
path sin j

, sin j
sin j−1, etc, converge into GΓ to a geodesic ray. This ray corresponds to

a point of ∂GΓ, to a sequence of adjacent triangles in H, and to a boundary point
θ
−
H(ω,(n j)) ∈ ∂H = P1(R). With such a choice,

(2) the kernel of σ̂∞ is the line in R2 corresponding to the point

θ
−
H(ω,(n j)) ∈ P1(R).

For a typical ω, each point of P1(R) is equal to θ
−
H(ω,(n j)) for some subsequence

(n j). This follows from two facts: (a) the limit set Lim(Γ)⊂ ∂H is equal to H and (b)
the support of the Furstenberg measure is equal to Lim(Γ).

Remark 8.2. Assume that (n j) is chosen in such a way that θ
+
H(ω) ̸= θ

−
H(ω,(n j)) Let

I ⊂ ∂H be an open neighborhood of θ
−
H(ω,(n j)). If I is small enough, its complement

Ic = ∂H \ I is a compact neighborhood of θ
+
H(ω), and in the Hausdorff topology of

∂H, the sequence σi1 ◦ · · · ◦σin(I
c) converges towards θ

+
H(ω).

8.3. Compactifications of S.

8.3.1. Let m be a positive integer. Blow-up S at the vertices of ∂S to get a compact-
ification by 6 rational curves organized in a hexagon, and repeat this process to get
a compactification Sm of S by N := 3 · 2m rational curves organized in a cycle. We
denote by ∂Sm its boundary.

8.3.2. The dual graph Cm of ∂Sm has one vertex per rational curve, and one edge
between two vertices if the corresponding curves have a point in common. Topologi-
cally, Cm is a circle with N points on it. The graph Cm is obtained from Cm−1 by adding
a new vertex in the middle of each edge, i.e. by doing a barycentric subdivision. We
say that a vertex of Cm has depth k ≤ m if it appears first in the k-th barycentric subdi-
vision Ck. The three lines of the triangle ∂S0 = ∂S correspond to vertices of depth 0.
One way to parametrize Cm is the following. In ∂H, consider the three end points of T
and their images under the action of all reduced words in {σx,σy,σz} of length ≤ m;
we obtain a circle ∂H with N marked points, hence a graph Hm; the edges of Hm are
intervals of ∂H. There is an equivariant map sending ∂H to Cm: it maps the vertices
of T to the vertices of Cm of depth 0, then the (new) vertices in σx(T), σy(T), σz(T),
etc.

8.3.3. Now, consider an element f in Γ ≃ Γ
±
2 . Suppose that the 3 vertices of f−1(T)

are contained in the interior of an edge I of Hm and that the three vertices of f−1(T)
are contained in the interior of an edge J. These edges correspond to edges I′ and
J′ of Cm, hence to vertices p and q of the cycle of rational curves ∂Sm. Then the
birational map induced by f on Sm contracts ∂Sm \ {q} onto p. Moreover, one can
construct neighborhoods Wj of the vertices of ∂Sm satisfying properties which are
analogous to the ones listed in Corollary 4.8 and then extend Theorem 5.2. We do not
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prove these properties. But they can be derived from [18] (or [11, Chapter 8]) and the
computations done in Sections 4 and 5. Nguyen Bac Dang studies the dynamics of Γ

on the space of valuations centered at infinity in S.

8.4. Application. One can now strengthen Proposition 6.1 as follows.

Theorem 8.3. Let S1, S2, . . ., Sm be elements of Fam. If ν is a stationary measure for
the diagonal action of Γ on S1(C)×·· ·×Sm(C), the support of ν is compact.

Sketch of Proof. Set M = S1 × ·· · × Sm and denote by M its closure in (P3)m. The
boundary ∂M = M \M is the union of the sets

∂iM = S1 ×·· ·×∂Si ×·· ·×Sm. (8.4)

Define H(ω,(ni)) as in the proof of Proposition 6.1, but for the diagonal dynamics of
Γ on M.

First, assume m = 2. The closure of H(ω,(ni)) in M intersects its boundary on a set
that is contained in S1 ×{q}∪{q}× S2; varying the choice of the subsequence (ni),
the point q can be chosen to be any of the vertices at infinity. Now, if q ̸= q′,

(S1 ×{q}∪{q}×S2)∩ (S1 ×{q′}∪{q′}×S2) = {(q,q′),(q′,q)}. (8.5)

Thus, the accumulation points of the support of ν in ∂M are contained in {(q,q′),(q′,q)}
for any pair of vertices (q,q′) at infinity. Since

{(q,q′),(q′,q)}∩{(q,q′′),(q′′,q)}= /0 (8.6)

when q, q′, q′′ are pairwise distinct, this shows that the support of ν is compact.
Now, let us prove the result for any m ≥ 1. For this we use Section 8.3. Blow-up

each Si at the vertices of ∂Si to get a compactification by 6 rational curves organized
in a hexagon, and repeat this process m times to get a compactification by N := 3 ·2m

rational curves organized in a cycle; let qi be the vertices of this cycle, with 1 ≤ i ≤ N.
Then, choosing correctly (ni), one sees that the accumulation points of Supp(ν) in ∂M
are contained in

B(I) = {(p1, . . . , pm) ; pi ∈ {qi1 , . . . ,qim} for each i ≤ m} (8.7)

for each multi-index I = (i1, . . . , im) ∈ {1, . . . ,N}m. The intersection of the B(I) being
empty, Supp(ν) is compact. □
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