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RANDOM WALK SPEED IS A PROPER FUNCTION
ON TEICHMÜLLER SPACE
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PABLO LESSA AND CAGLAR UYANIK
(Communicated by Carlos Matheus)

ABSTRACT. Consider a closed surface M with negative Euler characteristic,
and an admissible probability measure on the fundamental group of M with
a finite first moment. Corresponding to each point in the Teichmüller space
of M , there is an associated random walk on the hyperbolic plane. We show
that the speed of this random walk is a proper function on the Teichmüller
space of M , and we relate the growth of the speed to the Teichmüller distance
to a basepoint. One key argument is an adaptation of Gouëzel’s pivoting
techniques to actions of a fixed group on a sequence of hyperbolic metric
spaces.

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let M be a compact oriented surface with negative Euler characteristic with
a basepoint p, and let Γ = π1(M , p). Let µ be a probability measure on Γ that
is admissible, i.e., the semigroup generated by the support of µ is equal to Γ.
Further assume that µ has a finite first moment. Consider a random walk
Zn = g1 · · ·gn , where gi are i.i.d. elements of Γ with distribution µ. Fixing a
complete hyperbolic metric ρ on M , define

ℓ(ρ) := lim
n→∞

|Zn |ρ
n

,

where |Zn |ρ denotes the ρ-length of the unique hyperbolic geodesic represent-
ing the free homotopy class of the element Zn . The limit above exists almost
surely, and is well defined. The quantity ℓ(ρ) is called the speed (or drift) of the
random walk on (M ,ρ).

Let T (M) be the Teichmüller space of marked complete hyperbolic metrics
on M . Our first result is concerned with the quantitative behavior of ℓ(ρ) as one
varies the hyperbolic metric ρ on M , in other words as [ρ] varies over points
in the Teichmüller space T (M). When one moves in Teichmüller space, some
curves get longer but others get shorter, so the behavior is not obvious. However,
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one expects that most curves get longer, so one should expect ℓ(ρ) to tend
to infinity at ρ diverges to infinity in Teichmüller space. There is a difficulty,
though, that most curves become more and more parallel to each other (up to
orientation) when ρ converges to a point at infinity, as they align asymptotically
with the measured foliation at infinity. This means that consecutive steps of
the random walk are likely to be both large, but in opposite directions, thereby
cancelling each other effectively and not contributing to the speed. Our main
theorem shows that the former effect dominates the latter: The speed indeed
tends to infinity at infinity. However, this discussion hints at the fact that this is
not straightforward, and indeed our proof is rather indirect.

THEOREM A (Speed is a proper function on Teichmüller space). Assume that the
probability measure µ on Γ is admissible and has a finite first moment. Then the
function ℓ : T (M) → [0,+∞) is proper.

Recall that a function is proper if the preimage of any compact set is compact.
In our particular case, since ℓ is non-negative, properness is equivalent to the
statement that for each C > 0 there exists a compact set K ⊂ T (M) such that
ℓ(ρ) >C for all [ρ] ∉ K .

We can actually be more precise, by comparing the speed of a random walk to
the Teichmüller distance in the Teichmüller space. Let (T (M),distTeich) denote
the Teichmüller space of M endowed with the Teichmüller metric (see Section 2
for the definitions). Then, we have

THEOREM B. For each [ρ0] ∈T (M) there exists a constant c > 0 such that

ℓ(ρ) ≥ c distTeich([ρ], [ρ0])

for all [ρ] ∈T (M).

Our strategy to prove the properness of the drift function in Theorem A and
the quantitative bound in Theorem B is through a compactification argument:
we get representations at boundary points, and argue that the drift there is
nonzero. Then, by continuity (up to a natural rescaling), we deduce that the
drift inside the Teichmüller space is positive. Moreover, using extremal length
bounds we prove that the natural rescaling factor grows at least linearly along
all Teichmüller rays.

It is also possible to derive an upper bound of ℓ(ρ) ≤ c exp(2distTeich([ρ], [ρ0]))
by a direct application of Wolpert’s lemma. This direct upper bound can be
further improved using the work of Choi–Rafi [8] and is discussed in the follow
up article [2] by the first named author.

Note that the speed can also be considered as a Lyapunov exponent. More
precisely, if [ρ] ∈ T (M) is a point in Teichmüller space, we can consider [ρ]
as a conjugacy class of a discrete, faithful representation ρ :π1(M) → PSL(2,R).
Indeed, if we fix a matrix norm ∥·∥ on PSL(2,R), we have

ℓ(ρ) = lim
n→+∞

1

n

∫
log∥ρ(g1) · · ·ρ(gn)∥dµ(g1) · · ·dµ(gn),

which is the Lyapunov exponent of the random walk on PSL(2,R).
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A related argument was used in [12] to study continuity of Lyapunov expo-
nents for certain meromorphic families of π1(M)-representations in SL(2,C),
with the same idea of looking at the scaled limiting action on an R-tree. One
simple situation where both approaches can be used is when the hyperbolic
structure degenerates by only pinching a simple closed geodesic: this degen-
eracy can also be described by a meromorphic family of representations using
plumbing co-ordinates around the resulting noded surface. In this situation,
the non-Archimedean exponent defined in [12] should be zero and our bound
in Theorem A considered in plumbing co-ordinates, should give information
on the error term in [12, Theorem A]. Thus in the context of surface group rep-
resentations into PSL(2,R), the setting of our continuity result below is more
general.

The main feature of this argument is that the representations at boundary
points do not live on the same space as the original representations: the group
acts on an R-tree instead of the hyperbolic disk. These representations are
constructed in [4] and [25] (following previous work [10] and [24]). In particular,
the topological type of Gromov boundaries changes in the limit. This means
that the usual continuity argument for the drift, relying on the convergence
of stationary measures on the boundary (see [18]), does not work. However,
we are able to obtain the continuity of the drift in this context thanks to the
pivotal times argument of [15]. The notions in the next Theorem are defined in
Section 2.2.

THEOREM C (Speed is lower semi-continuous for a converging sequence of ac-
tions on uniformly hyperbolic spaces). Let Γ be a countable group, and µk be
a sequence of probability measures on Γ converging pointwise to a probability
measure µ∞. Let (Xk ,ok )k∈N∪{∞} be a uniformly hyperbolic sequence of pointed
metric spaces, and let ρk : Γ→ Isom(Xk ),k = 1,2, . . . be a sequence of isometric
actions of Γ converging to an action ρ∞. Assume that µ∞ is non-elementary
for ρ∞.

Consider for each k a random walk Z (k)
n = g (k)

1 · · ·g (k)
n , where g (k)

1 , . . . , g (k)
n , . . . is

an i.i.d. sequence with common distribution µk . Then, one has

liminfℓ(µk ) ≥ ℓ(µ∞),

where for each k ∈N∪ {∞} we define ℓ(µk ) ∈ [0,∞] as the almost sure limit

ℓ(µk ) = lim
n→+∞

1

n
dist(ok ,ρk (Z (k)

n )ok ).

Returning to the setting of Theorem A, it is well known that ℓ(ρ) > 0 for all ρ
and the random walk driven by µ converges to the boundary almost surely. In
order words, the limit

X∞ = lim
n→∞ρ(Zn)o,

exists almost surely and X∞ is in the visual boundary ∂H of H, (cf. [17]). This
limit defines a hitting measure on ∂H as follows: for any Borel set U ⊂ ∂H,

νρ(U ) :=P
(

lim
n→∞ρ(Zn)o ∈U

)
.
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The measure νρ is the unique µ-stationary measure on the visual boundary
for the ρ-action. Properties of the stationary measures associated to random
walks with finite support are quite subtle, as illustrated by the following. Here
dim(νρ) ∈ [0,1] denotes the Hausdorff dimension of the stationary measure νρ
associated to the representation ρ.

CONJECTURE (Singularity Conjecture). If µ is admissible and has finite support,
then there exists κ< 1 such that

dim(νρ) ≤ κ
for all [ρ] ∈T (M).

The conjecture above, stated in [11, Conjecture 1.21] and more generally
in [19], remains open in spite of some recent progress made in [20]. We remark
that for all ρ there exists µ with infinite support on Γ such that dim(νρ) = 1, in
fact it can be arranged that νρ is absolutely continuous. This follows from the
Furstenberg-Lyons-Sullivan discretization of Brownian motion [22], and also
from more general results of Connell and Muchnik [9].

The speed of the random walk is closely related to the Hausdorff dimension
of the stationary measure. Work in [28] shows that:

dim(νρ) = h

ℓ(ρ)
,

where h denotes the entropy of the random walk.
Therefore Theorem A immediately translates into a statement about the be-

havior of the Hausdorff dimension of the stationary measure:

COROLLARY 1.1 (Dimension drop of stationary measures). For each ε> 0 there
exists a compact K ⊂T (M) such that dim(νρ) < ε for all [ρ] ∉ K .

Proof. This follows immediately from Theorem A and the above formula for
dim(νρ).

2. PRELIMINARIES

2.1. Teichmüller Geometry. We now recall the definitions of the Teichmüller
space and Teichmüller distance. General references on the subject are [16]
and [27].

Let M = Mg ,n be a compact surface of genus g with n boundary components.
A complex structure on M is an atlas of charts zα : Uα →C, where at the inter-
section zα(Uα∩Uβ) the transition maps zβ ◦ z−1

α are biholomorphisms.
The Teichmüller space T (M) of M is defined as the equivalence classes of

complex structures on M , where two complex structures X and Y are equiva-
lent if there is a biholomorphism f : X → Y which is isotopic to the identity.
Equivalently, T (M) can be thought of as the space of equivalence classes of
hyperbolic structures on M , where two hyperbolic structures X and Y are equi-
valent if there is an isometry f : X → Y that is isotopic to identity. Yet another
definition is given by considering the representations of the fundamental group

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 815–832



RANDOM WALK SPEED IS A PROPER FUNCTION ON TEICHMÜLLER SPACE 819

Γ = π1(M). Let G = Isom+(H) be the orientation preserving isometries of the
upper half-plane. The Teichmüller space of M is also the space of discrete faith-
ful representations from Γ into G considered up to conjugation by elements of
G . We denote the equivalence class of a representation ρ : Γ→G with [ρ]. We
endow T (M) with the subspace topology inherited from the space of represen-
tations from Γ to G .

In order to define a metric on the Teichmüller space, we switch back to the
complex analytic definition and consider a map f : X → Y that sends a complex
structure X on M to a complex structure Y . Let fz and f z̄ denote the partial
derivatives with respect to z and z̄, where z is a complex co-ordinate with re-
spect to X . Let us define

K f (p) := | fz (p)|+ | f z̄ (p)|
| fz (p)|− | f z̄ (p)|

the quasi-conformal dilatation of f at p ∈ X . This quantity is well defined as a
change of coordinate is conformal.

The quasi-conformal dilatation of f is defined as

K f = sup
p∈X

{K f (p)}.

The map f is called quasiconformal if K f <∞. One can see that K f ≥ 1, and
K f = 1 if and only if f is conformal. The Teichmüller distance distTeich on T (M)
is defined as follows:

distTeich(X ,Y ) = 1

2
inf

f ≃i d

{
log(K f )

∣∣ f : X → Y
}
,

where f is any quasi-conformal map isotopic to the identity.
Let γ be a non-trivial essential simple closed curve on M , and (X ,dz) be a

complex structure on M . The extremal length of γ on X is defined as

ExtX (γ) = sup
L2
σ(γ)

A(σ)
,

where the supremum is over all conformal metrics σ(z)|dz|, and

Lσ(γ) = inf
γ∼γ′

∫
γ′
σ(z)|dz|, A(σ) =

∫
X
σ2(z)|dz|2.

2.2. Random walks on hyperbolic spaces. In this subsection we provide the
context for Theorem C. Background on random walks on groups is available
in [21], [3], and [30]. A general reference on hyperbolic spaces is [14].

Let (X ,dist) be a metric space. The Gromov product between points x, y in
X with respect to a third point o is defined as

(x, y)o = 1

2

(
dist(o, x)+dist(o, y)−dist(x, y)

)
.

The space X is called δ-hyperbolic (or hyperbolic for short) for some δ≥ 0 if
for all w, x, y, z ∈ X , it holds that

min((x, y)w , (y, z)w ) ≤ (x, z)w +δ.
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A sequence of pointed metric spaces (Xk ,ok ) is called uniformly hyperbolic if
there exists δ≥ 0 such that Xk is δ-hyperbolic for all k.

Let X be a hyperbolic space, and let Γ be a finitely generated group which
acts on X by isometries. Let µ be a probability measure on Γ which is admissible,
that is, the semi group generated by the support of µ is equal to Γ. The measure
µ determines a random walk on Γ by taking

Zn = g1g2 · · ·gn ,

where gi are i.i.d elements of Γ with common distribution µ. Fixing a base
point x ∈ X defines a sequence of points Zn x = g1g2 · · ·gn x in X , and it is called
a random walk in X driven by µ.

We say that µ has a finite first moment if
∑

g∈Γ|g |µ(g ) <∞, where |·| is some
word metric on Γ with respect to a finite generating set.

We now consider the case where X = (H,dist) is the hyperbolic plane, with the
distance function induced from the hyperbolic metric d s2 = (d x2 +d y2)/y2. Fix
a base point o ∈H, and let G = Isom+(H) be the group of orientation preserving
isometries of H. Given a discrete faithful representation ρ : Γ→G we consider
the speed (or linear drift) of the induced random walk ρ(Zn)o on H, which is
the number ℓ(ρ) (given by Kingman’s subadditive ergodic theorem) such that
almost surely

ℓ(ρ) := lim
n→+∞

1

n
dist(o,ρ(Zn)o).

This definition is equivalent to the one given in the introduction (see e.g., [13]).
We claim that ℓ is well defined as a function on T (M): suppose that ρ̃ = g−1ρg
and notice that

dist(o, ρ̃(Zn)o) = dist(o, g−1ρ(Zn)g o) = dist(g o,ρ(Zn)g o).

The claim now follows from the observation that the right-hand side of the
above equation differs from dist(o,ρ(Zn)o) in absolute value by at most
2dist(o, g o).

We now describe the set-up for Theorem C from the introduction.

DEFINITION 2.1. Consider a group Γ, and a sequence of pointed metric spaces
(Xk ,ok )k∈N∪{∞}, each of them endowed with an isometric action ρk of Γ. We say
that this sequence of actions converges if, for each g ∈ Γ, the distance
dist(ok ,ρk (g )ok ) converges to dist(o∞,ρ∞(g )o∞) as k →∞.

We say that a probability measure µ on Γ is non-elementary for an isometric
action ρ on a hyperbolic space if there exist two elements in the semigroup gen-
erated by the support of µ which act through ρ as two independent loxodromic
isometries, i.e., their sets of fixed points at infinity are disjoint.

Let Γ be a countable group, µk be a sequence of probability measures on
Γ which converges pointwise to a probability measure µ∞. Let (Xk ,ok )k∈N∪{∞}

be a uniformly hyperbolic sequence of pointed metric spaces, and ρk : Γ →
Isom(Xk ),k ∈ N be a sequence of isometric actions of Γ that converges to an
action ρ∞. Assume that µ∞ is non-elementary for ρ∞.
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Consider for each k a random walk Z (k)
n = g (k)

1 · · ·g (k)
n where g (k)

i are i.i.d. ele-
ments with common distribution µk . For each k ∈N∪ {∞}, we define ℓ(µk ) ∈
[0,+∞] as the almost sure limit

ℓ(µk ) = lim
n→+∞

1

n
dist

(
ok ,ρk (Z (k)

n )ok

)
.

Theorem C states that for such a sequence of actions, liminfℓ(µk ) ≥ ℓ(µ∞). We
will deduce Theorem C from the more precise Proposition 4.6, that gives uni-
form exponential large deviation estimates along the sequence µk .

3. PROOFS OF THEOREMS A AND B

We will now explain how we can deduce Theorems A and B from the semi-
continuity statement of Theorem C.

3.1. Proof of Theorem A. Fix a finite symmetric generating set F ⊂ Γ containing
the identity. By [4, Proposition 2.1] there exists for each ρ a basepoint oρ ∈H
such that

max
γ∈F

dist(oρ ,ρ(γ)oρ) = min
x∈H

max
γ∈F

dist(x,ρ(γ)x).

We define the rescaling factor Rρ = Rρ,F as the common value of both sides of
the equation above. From the definition, it follows that Rρ is continuous and
proper on T (M). Consider the rescaled distance distρ = R−1

ρ dist on H.
Recall that an R-tree is a non-empty metric space which is 0-hyperbolic and

such that every pair of points is joined by a unique geodesic. The following is
the main result of [4] and [25] (following previous work [10] and [24]).

LEMMA 3.1. Each sequence ρn such that [ρn] leaves every compact subset in
T (M), has a subsequence ρnk with nk →+∞ such that ρnk when viewed as an
action on H endowed with the distance distρnk

and the basepoint oρnk
, converges

to an action ρT on an R-tree (T,distT ,oT ).
Furthermore, the group ρT (Γ) acts minimally on T (i.e., there is no proper

closed invariant subtree), and for any arc I in T the set of γ ∈ Γ such that ρT

stabilizes I is a virtually abelian subgroup of Γ.

We now verify that the action ρT is non-elementary.

LEMMA 3.2 (Non-elementary action on the R-tree). Let ρT be a representation of
Γ into the isometry group of an R-tree (T,distT ) with the property that stabilizers
of arcs are virtually abelian.

Then there exist γ1,γ2 ∈ Γ such that ρT (γ1) and ρT (γ2) are loxodromic isome-
tries of T along geodesics whose intersection is either empty or a compact arc.

Proof. The action of ρT (Γ) is irreducible in the sense that there is no global fixed
point on the boundary at infinity (see [26, Proposition 2.6]). The existence of
the two required loxodromic elements now follows from [7, Proposition 3.7].

In view of the above lemmas, Theorem A follows immediately from Theo-
rem C and in fact we obtain a lower bound in terms of the rescaling factor Rρ .
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THEOREM 3.3. There exists a constant c > 0 such that ℓ(ρ) ≥ cRρ for all [ρ] ∈
T (M).

Proof. Suppose by contradiction that we may find a sequence of representa-
tions ρn for which ℓ(ρn)/Rρn tends to zero. Extracting a subsequence, we may
assume that ρnk , viewed as an action on H endowed with the distance distρnk

,
converges to a non-elementary action, either on a tree if ρn escapes to infinity
by Lemma 3.1, or on H itself otherwise.

Notice that ℓ(ρn)/Rρn is the speed of ρ(Zn)o with respect to the distance distρ .
We may apply Theorem C to deduce that the liminf of this speed is bounded
below by the speed in the limiting action. As the speed of a non-elementary
action is always positive, we deduce that this liminf is positive, which is a con-
tradiction.

3.2. Proof of Theorem B. In view of Theorem 3.3, to prove Theorem B it suffices
to find a set of curves F such that the rescaling factor Rρ = Rρ,F can be bound
from below by a multiple of distTeich([ρ0], [ρ]). We fix F ⊂ Γ to be a subset that
is finite, symmetric and filling.

We denote by lengthρ(γ) the hyperbolic length of the geodesic representative
of γ, that is

lengthρ(γ) = min
x∈H

dist(x,ρ(γ)x).

We observe that

Rρ = min
x∈H

max
γ∈F

dist(x,ρ(γ)x) ≥ max
γ∈F

lengthρ(γ).(3.1)

So to obtain Theorem B, we need a lower bound for the right-hand side above.
Let Extρ(γ) denote the extremal length of the curve γ under the conformal

structure provided by ρ. As proven by Maskit [23, Corollary 3], we have

1

2
lengthρ(γ)e lengthρ(γ)/2 ≥ Extρ(γ),(3.2)

so it suffices to obtain a lower bound on extremal length. This will be obtained
from a result of Walsh [29, Lemma 3]. While we do not need the specific details
in Walsh, we include some of them for coherence.

For a unit area quadratic differential q based at some basepoint [ρ0], denote
R(q ; t ) the point in Teichmüller space obtained after following a Teichmüller ray
for time t > 0 in the direction provided by q . Let V (q) (respectively H(q)) be
the vertical (respectively horizontal) foliation of q . The union of vertical saddle
connections of V (q) is called its critical graph. The complement of the critical
graph decomposes into finitely many components (the number bounded above
in terms of the Euler characteristic) each of which is either a cylinder C or a
minimal component V with every leaf dense. The transverse measure restricted
to a minimal component V is a linear combination

∑
j mV , j of distinct ergodic

measures mV , j . Each pair V j = (V ,mV , j ) is said to be an indecomposable com-
ponent of V (q).
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Walsh proved the following inequality

e−2t ExtR(q ;t )(γ) ≥ E 2
q (γ),(3.3)

where

E 2
q (γ) =∑

V j

i (V j ,γ)2

i (V j , H(q))

in which i (∗,∗) denotes the geometric intersection number.
We will use the fact that F is filling to derive a uniform (over q) lower bound

on maxγ∈F Eq (γ).

LEMMA 3.4. Given a basepoint [ρ0] ∈T (M) there is some c > 0 such that

inf
q∈T 1([ρ0])

max
γ∈F

Eq (γ) > c,

where the infimum is taken over all unit area quadratic differentials at [ρ0].

Proof. For any q ∈ T 1([ρ0]), we have i (V j , H(q)) ≤ i (V (q), H(q)) = Area(q) = 1.
This implies E 2

q (γ) ≥∑
V j

i (V j ,γ)2.
Assume we have a sequence qn of unit area quadratic differentials at [ρ0]

such that maxγ∈F Eqn (γ) converges to 0 for all j . Since the space of unit area
quadratic differentials at a basepoint is compact we can pass to a subsequence
that converges to some q . Furthermore, since geometric intersection number is
continuous we have Eq (γ) = 0 for all γ ∈ F . In particular, this implies i (V (q),γ) =
0 for all γ ∈ F . This is impossible because F is a filling set.

We use the above lemma to get the following global lower bound on the max-
imal lengths over F .

LEMMA 3.5. Given a basepoint [ρ0] ∈ T (M) there are some c1,c2 > 0 such that,
for all [ρ] ∈T (M),

max
γ∈F

Extρ(γ) ≥ c1e2distTeich([ρ0],[ρ])

and hence
max
γ∈F

lengthρ(γ) ≥ c2 distTeich([ρ0], [ρ]),

where distTeich denotes the Teichmüller distance.

Proof. Let q be such that [ρ] = R(q ;distTeich([ρ0], [ρ])). By Equation (3.3) we
have

max
γ∈F

Extρ(γ) ≥ e2dist([ρ0],[ρ]) max
γ∈F

E 2
q (γ),

and so by Lemma 3.4 we get the first inequality. By Equation (3.2) we have

max
γ∈F

1

2
lengthρ(γ)+ logmax

γ∈F

1

2
lengthρ(γ) ≥ 2dist([ρ0], [ρ])+ log(c1),

so the second inequality in the lemma is asymptotically satisfied for any c2

slightly smaller than 2. Furthermore, given any bounded domain we can choose
c2 small enough so the inequality is satisfied.

Together with (3.1), Lemma 3.5 gives a lower bound Rρ ≥ c2 distTeich([ρ0], [ρ]).
With Theorem 3.3, this concludes the proof of Theorem B.
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4. PROOF OF THEOREM C

In this section, we prove Theorem C. To have lighter notation, we will keep
the action implicit and write g ok instead of ρk (g )ok . Since there is only one
possible action for each basepoint ok , this should not create confusion.

4.1. Schottky sets. Following [15], a finite set of isometries S acting on a Gro-
mov hyperbolic space X , is said to be (η,C ,D)-Schottky if the following three
conditions are satisfied:

1. For all x, y ∈ X the proportion of a ∈ S such that (x, ay)o ≤ C is at least
1−η.

2. For all x, y ∈ X the proportion of a ∈ S such that (x, a−1 y)o ≤C is at least
1−η.

3. For all a ∈ S one has dist(o, ao) ≥ D .

The following is a sufficient condition for a set S to be Schottky with certain
parameters, which depends on checking conditions involving only a finite num-
ber of points. Since the notion of convergence we use in Definition 2.1 only
gives control over finitely many points at a time, this criterion will enable us
to construct finite sets which are Schottky sets uniformly along a converging
family of representations.

LEMMA 4.1 (Schottky set criterion). Let (X ,dist) be a δ-hyperbolic metric space
with a basepoint o ∈ X . Suppose S is a finite symmetric set of isometries of X
such that c1 +2δ< c2/2 where c1 = max

g ̸=h,g ,h∈S
(g o,ho)o , and c2 = min

g∈S
dist(o, g o).

Then S is an (η,C ,D)-Schottky set with η= 2
#S and C = c1 +3δ and D = c2.

Proof. Let ε ∈ (2δ,c2/2− c1) and for each g ∈ S set

V (g ) = {x ∈ X : (x, g o)o ≥ c1 +ε}.

Claim 1: If g ̸= h then V (g )∩V (h) =;.
Indeed if x ∈V (g )∩V (h) then one would have

c1 +ε≤ min{(x, g o)o , (x,ho)o} ≤ (g o,ho)o +δ≤ c1 +δ,

contradicting the fact that δ< ε.
Claim 2: If x ∉V (g−1) then g x ∈V (g ).
To see this observe that from the first condition one has

dist(o, x)+dist(o, g−1o)−dist(x, g−1o)

2
< c1 +ε,

while if g x ∉V (g ) we would have

dist(o, g x)+dist(o, g o)−dist(g x, g o)

2
< c1 +ε.

Taking the sum this would imply

c2 ≤ dist(o, g o) < 2c1 +2ε,

contradicting the fact that ε< 1
2 c2 − c1.

Claim 3: If x ∈V (g ) and y ∈V (h) for g ̸= h then (x, y)o ≤ c1 +2δ.
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By hyperbolicity one has

min((x, g o)o , (x,ho)o) ≤ (g o,ho)o +δ≤ c1 +δ.

Since (x, g o)o ≥ c1 +ε> c1 +δ this implies that (x,ho)o ≤ c1 +δ. From this we
obtain

min((y,ho)o , (x, y)o) ≤ (x,ho)o +δ≤ c1 +2δ,

but since (y,ho)o ≥ c1 +ε> c1 +2δ this implies (x, y)o ≤ c1 +2δ as claimed.
Claim 4: S is (η,C ,D)-Schottky for the constants in the statement.
Let us check the first property in the definition of Schottky sets, as the second

one follows by symmetry of S and the third one comes from the definition of c2.
Given x, y ∈ X let a1, a2 ∈ S be distinct and such that x ∉ V (a−1

i ) for i = 1,2. By
Claim 1 the ai are chosen among at least #S −1 elements of S. By Claim 2 one
has ai x ∈V (ai ) for i = 1,2. By hyperbolicity and Claim 3 one has

min((a1x, y)o , (a2x, y)o) ≤ (a1x, a2x)o +δ≤ c1 +3δ=C .

This implies that either (a1x, y)o ≤C or (a2x, y)o ≤C . Hence the subset of S
consisting of elements with (ax, y)o >C can have at most two elements.

4.2. Proof of Theorem C. In this paragraph, we prove Theorem C. Let us fix
a sequence of pointed δ-hyperbolic spaces (Xk ,ok ) endowed with actions of a
group Γ, and assume that ρk converges to ρ∞ in the sense of Definition 2.1. Let
also (µk ) be probability measures on Γ such that µk converges pointwise to µ∞
and the action of µ∞ through ρ∞ is non-elementary on X∞.

The following lemma is a classical application of a ping-pong argument.

LEMMA 4.2. Let η> 0. Then there exists C > 0 such that, for any D > 0, there exist
N and a finite symmetric set S in Γ in the support of µN∞ such that #S ≥ 2/η and

max
g ̸=h,g ,h∈S

(g o∞,ho∞)o∞ <C −3δ, min
g∈S

dist(o∞, g o∞) > D.(4.1)

Proof. This follows readily from the proof techniques of [6, Proposition A.2]
or [15, Proposition 3.12].

Let η> 0. For suitable C and D , we can consider a set S as in Lemma 4.2. By
definition of converging actions, for large n the inequalities in (4.1) also hold for
ρk . By Lemma 4.1, it follows that ρk (S) is an (η,C ,D)-Schottky set, uniformly
for all large enough k. We can then use this Schottky set as in [15], to obtain
quantitative estimates that are uniform in k. As a first example, let us get a
uniform version of [15, Lemma 4.14].

LEMMA 4.3. Let ε> 0. There exists E such that, for all large k, for any g ∈ Γ,

P
(∀n, dist(ok , g Z (k)

n ok ) ≥ dist(ok , g ok )−E
)≥ 1−ε.

The intuition behind this lemma is that, given a Schottky set, then jumps
from this Schottky set will most of the time go towards infinity, yielding linear
progress from any starting point (and in particular small probability to go back
towards the origin). This is proved in [15] using the notion of pivotal times.
There is a pedagogical difficulty here: it would not make sense to repeat exactly
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all the pivotal times computations of [15], but we can not expect our readers
to be very familiar with this article. As a middle ground, we have decided to
extract a black box from [15], in the form of the following lemma:

LEMMA 4.4. Let δ > 0, C > 0, N > 0, α > 0, ε > 0. Then there exists n0 =
n0(δ,C , N , α,ε) with the following property. Consider a probability measure
µ on the group G of isometries of a δ-hyperbolic space X , and a set S ⊆G which
is (1/100,C ,20C +100δ+1)-Schottky. Assume that µN gives mass at least α to
each element of S. Then, for any isometry g ∈G, for any o ∈ X , there exists a set U
of probability at least 1−ε in (Ω,P) = (GN,µ⊗N) such that, for each ω ∈U , there
exists j ≤ n0 with

∀n ≥ n0, dist(o, g Zno) ≥ dist(o, g Z j o)−2C −6δ,

where Zn is the position of the random walk at time n.

This technical lemma is unfortunately not stated explicitly in [15], but it is
proved there, as the first step of the proof of [15, Lemma 4.14]. The reader
may either go and check in [15] that the n0 given there indeed only depends on
δ,C , N ,α,ε, or trust us and accept this lemma as a black box.

Proof of Lemma 4.3. Let η= 1/100. Let C be given by Lemma 4.2 for this value
of η. Take D = 20C +100δ+1. By Lemma 4.2 and the discussion that follows
it, we obtain a symmetric set S ⊆ Γ in the support of µN∞ for some N , such that
ρk (S) is (η,C ,D) Schottky for all large k. For large enough k, all the measures
µN

k give a weight bounded away from zero to all elements of S, say bounded
from below by some α> 0, as µk converges pointwise to µ∞.

Let n0 = n0(δ,C , N ,α,ε/2) be given by Lemma 4.4. Then this lemma ap-
plies uniformly to all measures µk for large k: for all g ∈ Γ, there exists a set
U =U (k, g ) of probability at least 1−ε/2, and some j = j (k, g ,ω) ≤ n0 such that,
on U ,

∀n ≥ n0, dist(ok , g Z (k)
n ok ) ≥ dist(ok , g Z (k)

j ok )−2C −6δ.(4.2)

It remains to control the n0 first steps. Let F be a finite subset of Γ such that,
with probability > 1−ε/2, for all i ≤ n0, then Z (∞)

i belongs to F . This property
also holds for large enough k, by pointwise convergence of µk to µ∞. There are
finitely many points (g o∞)g∈F . By convergence of the actions, all the distances
dist(ok , g ok )g∈F are uniformly bounded for large k, by a constant C ′.

We obtain a set V =V (k) of probability at least 1−ε/2 on which

∀ i ≤ n0, dist(ok , Z (k)
i ok ) ≤C ′.(4.3)

The set U (k, g )∩V (k) has probability at least 1−ε. We claim that, on this set,
we have for all n the inequality

dist(ok , g Z (k)
n ok ) ≥ dist(ok , g ok )−2C −6δ−C ′,

proving the lemma with E = 2C +6δ+C ′. Let us check this claim. First, if n ≤ n0,
then g Z (k)

n ok is within distance C ′ of g ok by (4.3), and the result is obvious.
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Then, for n ≥ n0, the result follows from the inequality (4.2) together with the
fact that g Z (k)

j ok is within distance C ′ of g ok as j ≤ n0.

Let us now proceed to the lower estimate of the drift. As above, we extract a
black box result from [15], specifying which properties of the measures are used.

LEMMA 4.5. Let δ> 0, η> 0, α ∈ (0,1), C > 0, N > 0, A > 0, with ηA ≥C . Consider
also a nonnegative real random variable Q, and r ≥ 0 with

r < (1−40η)
E(Q)

N A
−2η.(4.4)

There exist n0 and κ> 0 only depending on these quantities, with the following
property.

Consider a probability measure µ on the group G of isometries of a δ-hyperbolic
space X , and a set S ⊆ G which is (η,C ,20C +100δ+1)-Schottky. Assume that
µ2N ≥αµ2

S , where µS is the uniform probability measure on S. Assume moreover
that the random walk Z (ν) driven by the probability measure ν= (µ2N −αµ2

S)/(1−
α) satisfies, for any g ∈G, the estimate

P
(∀n ≥ 0, dist(o, g Z (ν)

n o) ≥ dist(o, g o)−ηN A
)≥ 1−η.

Finally, assume that the length of the jumps of µN A are stochastically bounded
below by Q: for all k, we have∑

g :dist(o,g o)≥k
µN A(g ) ≥P(Q ≥ k).

Then, for all n ≥ n0,

P(dist(o, Zno) ≤ r n) ≤ e−κn ,

where Zn is the position of the random walk at time n.

Again, this lemma is not stated exactly in this form in [15], but it is proved
there at the end of Section 5.3. The strategy is to decompose the walk along
successive time intervals of length roughly N A (for which the size of the jumps
is bounded below by Q) interspersed with Schottky jumps that put the former
in general position. This ensures that the progress towards infinity is bounded
below by a sum of independent random variables distributed like Q, up to con-
trolled error terms. The precise condition on r that shows up at the end of [15,
Section 5.3] is

r +η<
(
(1−η)

E(Q)

N A
−η

)
(1−22η)(1−17η),

which follows from (4.4).
Let us deduce from this result uniform large deviations estimates along a

converging sequence of actions. We return to the standing assumptions of this
paragraph, with a converging sequence of actions of Γ on hyperbolic spaces Xk ,
and a pointwise converging sequence of probability measures µk on Γ such that
the action of µ∞ on X∞ is non-elementary.
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PROPOSITION 4.6. Let ℓ(µ∞) be the drift of the random walk on X∞. Let a <
ℓ(µ∞). Then there exists κ> 0 such that, for all large enough k, for all n ∈N,

P
(
dist(ok , Z (k)

n ok ) ≤ an
)
≤ e−κn .

Proof. Let b ∈ (a,ℓ(µ∞)). Let η > 0 be small enough (how small will be pre-
scribed at the end of the proof), with b+η< ℓ(µ∞). Let C be given by Lemma 4.2
for this value of η. Take D = 20C +100δ+1. By Lemma 4.2 and the discussion
that follows it, we obtain a symmetric set S ⊆ Γ in the support of µN∞ for some
N , such that ρk (S) is (η,C ,D) Schottky for all large k. For large enough k, all the
measures µN

k give a weight bounded away from zero to all elements of S, as µk

converges pointwise to µ∞. In particular, for some α> 0, one has µ2N
k ≥ 2αµ2

S ,
where µS is the uniform measure on S.

The probability measures νk := (µ2N
k −αµ2

S)/(1 −α) converge pointwise to

ν∞ = (µ2N∞ −αµ2
S)/(1−α). Moreover, ν∞ acts in a non-elementary way on X∞

through ρ∞, as it satisfies ν∞ ≥αµ2
S/(1−α) and therefore gives nonzero weight

to independent loxodromic elements since S is Schottky. Therefore, Lemma 4.3
applies to the sequence of measures νk for ε= η, yielding some constant E . Let
A be large enough that ηA ≥C and ηN A ≥ E .

By subadditivity, we have N Aℓ(µ∞) ≤∑
g µ

N A∞ (g )dist(o∞, g o∞). In particular,
as b +η< ℓ(µ∞), we may find a finite subset F ⊆G such that

N A(b +η) < ∑
g∈F

µN A
∞ (g )dist(o∞, g o∞).

Let ε > 0. Let Q be the real distribution with an atom of mass µN A∞ (g )− ε at
dist(o∞, g o∞)−ε for each g ∈ F , and the missing mass put at 0. For small enough
ε, this random variable has expectation > N A(b +η). Moreover, by convergence
of µk to µ∞ and ρk to ρ∞, the distribution of the size of the jumps of µN A

k
through ρk is bounded below by Q, for all large enough k.

We apply Lemma 4.5 to these quantities δ,η,α,C , N , A,Q, with

r = (1−40η)(b +η)−2η,

which is indeed < (1−40η)E(Q)/N A−2η. This lemma provides us with n0 and
κ > 0. By construction, for all large enough k, the measures µk all satisfy the
assumptions of the lemma. It follows that, uniformly in k large, we have for all
n ≥ n0

P
(
dist(ok , Z (k)

n ok ) ≤ r n
)
≤ e−κn .

When η→ 0, then r = r (η) tends to b > a. Therefore, we may choose η with
r > a. We get for all large k and all n ≥ n0 the estimate

P
(
dist(ok , Z (k)

n ok ) ≤ an
)
≤ e−κn .(4.5)

It remains to handle each n ∈ [1,n0). For each such n, there exists g with
µn∞(g ) > 0 and dist(o∞, g o∞) > an, as otherwise the drift ℓ(µ∞) would be ≤ a.
These two inequalities still hold for large k. It follows that P(dist(ok , Z (k)

n ok ) ≤
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an) is bounded away from 1, uniformly for large k. Decreasing κ if necessary,
we may therefore enforce (4.5) separately for each n ∈ [1,n0).

Proof of Theorem C. Let a < ℓ(µ∞). Proposition 4.6 implies that, for all large k,
one has almost surely eventually dist(ok , Z (k)

n ok ) > an. As ℓ(µk ) is the almost
sure limit of dist(ok , Z (k)

n ok )/n, we get ℓ(µk ) ≥ a for large k.

5. SINGULARITY CONJECTURE AND OPEN QUESTIONS

In this last section we return to the singularity conjecture and dimension
drop of stationary measures. Recall from the introduction that by the results
of [28], the stationary measure νρ is exact dimensional and its dimension is
given by

dim(νρ) = h

ℓ(ρ)
,(5.1)

where h = h(µ) is the asymptotic (or Avez) entropy defined by

h = lim
n→+∞

1

n
H(Zn),

and H(Z ) =−∑
g∈supp(Z )P(Z = g ) log(P(Z = g )) denotes the Shannon entropy of

the random variable Z . Note that h does not depend on the representation ρ.
Recall the singularity conjecture from the introduction:

CONJECTURE 5.1. If µ is admissible and has finite support then there exists δ< 1
such that

dim(νρ) ≤ δ
for all [ρ] ∈T (M).

Since the visual boundary is one-dimensional, equation (5.1) implies that
h ≤ ℓ(ρ) for all ρ. The singularity conjecture then amounts to this inequality
being strict on all of T (M).

Let us record some basic properties of ℓ.

PROPOSITION 5.2. The function ℓ : T (M) → (0,+∞) is continuous.

Proof. This follows immediately from Theorem C. An alternative argument is
via the Furstenberg formula [19, Theorem 18] for speed and convergence of the
stationary measures.

One basic result from ℓ(p) being continuous and proper is as follows

COROLLARY 5.3. The functions ℓ : T (M) → [h,+∞) and dim(ν) : T (M) → (0,1]
attain their minimum and maximum respectively.

It is natural to ask then the following question

QUESTION 5.4. Does dim(νρ) attain its maximum at a unique point in T (M)?
Equivalently is ℓ : T (M) → (0,+∞) minimized at a unique point?
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When the maximal dimension is 1 and µ is symmetric (i.e., µ(g ) =µ(g−1) for
all g ) the answer to the previous question is affirmative. That is, we have the
following.

PROPOSITION 5.5. If µ is admissible symmetric and has a finite first moment,
then there exists at most one point [ρ] ∈T (M) such that dim(νρ) = 1.

Proof. If dim(νρ) = 1 then, under the assumption that µ is symmetric, in fact νρ
is absolutely continuous with respect to the visual measure (Lebesgue measure)
on the boundary [5, Theorem 1.5]. Suppose dim(νρ1 ) = dim(νρ2 ) = 1.

There exists a quasi-conformal homeomorphism ϕ :H→H such thatϕ(o) = o
and ϕ◦ρ1(γ) = ρ2(γ)◦ϕ for all γ ∈ Γ. The quasi-conformal map ϕ extends con-
tinuously to the visual boundary in a unique way. Denoting this extension by ϕ
as well we have ϕ∗νρ1 = νρ2 .

This implies that the restriction of ϕ to the visual boundary is absolutely
continuous. However this can only happen if [ρ1] = [ρ2] (see [1]).

Another natural question to ask is the following one.

QUESTION 5.6. Is the function ℓ : T (M) → (0,+∞) (strictly) convex?
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