
Ergod. Th. & Dynam. Sys. (2019), 39, 159–200
doi:10.1017/etds.2017.25

c© Cambridge University Press, 2017

Quantitative Pesin theory for Anosov
diffeomorphisms and flows
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Abstract. Pesin sets are measurable sets along which the behavior of a matrix cocycle
above a measure-preserving dynamical system is explicitly controlled. In uniformly
hyperbolic dynamics, we study how often points return to Pesin sets under suitable
conditions on the cocycle: if it is locally constant, or if it admits invariant holonomies
and is pinching and twisting, we show that the measure of points that do not return a
linear number of times to Pesin sets is exponentially small. We discuss applications to the
exponential mixing of contact Anosov flows and consider counterexamples illustrating the
necessity of suitable conditions on the cocycle.

1. Introduction and main results
Uniformly hyperbolic dynamical systems are very well understood. An approach for
studying more general systems is to see to what extent they resemble uniformly hyperbolic
ones. A very fruitful approach in this respect is the development of Pesin theory, which
requires hyperbolic features (no zero Lyapunov exponents) almost everywhere with respect
to an invariant measure, and constructs from these local stable and unstable manifolds, then
leading to results such as the ergodicity of the system under study.

A basic tool in Pesin theory is the notion of Pesin sets, made up of points for which,
along their orbits, the Oseledets decomposition is well controlled in a quantitative way.
Their existence follows from a general measure theory argument, but they are not really
explicit. Even in uniformly hyperbolic situations, Pesin sets are relevant objects as the
control of the Oseledets decomposition gives directions in which the dynamics is close to
conformal. In particular, the second author has shown in [Sto13b] that Pesin sets could be
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used in contact Anosov flows to study the decay of correlations: he proved that, if points
return exponentially fast to Pesin sets, then the correlations decay exponentially fast.

Our goal in this article is to investigate this question for Anosov diffeomorphisms
and flows. We do not have a complete answer, but our results indicate a dichotomy:
if the dynamics is not too far away from conformality (for instance, in the case of the
geodesic flow on a 1/4-pinched compact manifold of negative curvature), points return
exponentially fast to Pesin sets for generic metrics (in a very strong sense) and, possibly,
for all metrics. On the other hand, far away from conformality, this should not be the case
(we have a counterexample in a related setting, but with weaker regularity).

Such statements are related to estimates of large deviations for matrix cocycles, i.e.,
products of matrices governed by the dynamics (for Pesin theory, the cocycle is simply the
differential of the map). Indeed, we will show that such estimates of large deviations make
it possible to control the returns to Pesin sets by quantifying carefully some arguments in
the proof of Oseledets’ theorem.

Let T : X→ X be a measurable map on a space X preserving an ergodic probability
measure µ. Consider a measurable bundle E over X , where each fiber is isomorphic
to Rd and endowed with a norm. A linear cocycle is a measurable map M on E , mapping
the fiber above x to the fiber above T x in a linear way through a matrix M(x). We say
that the cocycle is log-integrable if

∫
log max(‖M(x)‖, ‖M(x)−1

‖) dµ(x) <∞. In this
case, it follows from Kingman’s theorem that one can define the Lyapunov exponents of
the cocycle, denoted by λ1 ≥ λ2 ≥ · · · ≥ λd . They are the growth rate of vectors under
iteration of the cocycle above µ-almost every point. The sum λ1 + · · · + λi is also the
asymptotic exponential growth rate of the norm of the i th exterior power 3i Mn(x), for
µ-almost every x .

The main condition for getting exponential returns to Pesin sets is an exponential large
deviation condition.

Definition 1.1. Consider a transformation T preserving a probability measure µ and a
family of functions un : X→ R. Assume that, almost everywhere, un(x)/n converges to
a limit λ. We say that the family has exponential large deviations if, for any ε > 0, there
exists C > 0 such that, for all n ≥ 0,

µ{x : |un(x)− nλ| ≥ nε} ≤ Ce−C−1n .

This general definition specializes to several situations that will be relevant in this paper.

Definition 1.2. Consider an integrable function u above an ergodic transformation (T, µ).
We say that u has exponential large deviations if its Birkhoff sums Snu have exponential
large deviations in the sense of Definition 1.1: i.e., for any ε > 0, there exists C > 0 such
that, for all n ≥ 0,

µ

{
x :
∣∣∣∣Snu(x)− n

∫
u
∣∣∣∣≥ nε

}
≤ Ce−C−1n .

Definition 1.3. Consider a log-integrable linear cocycle M above a transformation (T, µ),
with Lyapunov exponents λ1 ≥ · · · ≥ λd . We say that M has exponential large deviations
for its top exponent if the family of functions un(x)= log‖Mn(x)‖ (which satisfies
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un(x)/n→ λ1 almost everywhere) has exponential large deviations in the sense of
Definition 1.1: i.e., for any ε > 0, there exists C > 0 such that, for all n ≥ 0,

µ{x : |log‖Mn(x)‖ − nλ1| ≥ nε} ≤ Ce−C−1n .

We say that M has exponential large deviations for all exponents if, for any
i ≤ d , the functions log‖3i Mn(x)‖ satisfy exponential large deviations in the sense of
Definition 1.1: i.e., for any ε > 0, there exists C > 0 such that, for all n ≥ 0,

µ{x : |log‖3i Mn(x)‖ − n(λ1 + · · · + λi )| ≥ nε} ≤ Ce−C−1n . (1.1)

We will explain in the next paragraph that many linear cocycles above subshifts of
finite type have exponential large deviations for all exponents (see Theorem 1.5 below).
This builds on techniques developed by Bonatti, Viana and Avila (see [BV04, AV07]). The
main novelty of our work is the proof that such large deviations imply exponential returns
to Pesin sets, as we explain in §1.2. The last paragraph of this introduction discusses
consequences of these results.

1.1. Sufficient conditions for large deviations for linear cocycles. In this paragraph,
we consider a (bilateral) transitive subshift of finite type T :6→6, together with a
Gibbs measure µ for a Hölder potential. Let E be a continuous Rd -bundle over 6
endowed with a continuous linear cocycle M on E over T . For instance, one may take
E =6 × Rd ; then M(x) is simply an invertible d × d matrix depending continuously
on x . We describe in Theorem 1.5 various conditions under which such a cocycle has
exponential large deviations for all exponents, in the sense of Definition 1.3. Through the
usual coding process, similar results follow for hyperbolic basic sets of diffeomorphisms
and, in particular, for Anosov or Axiom A diffeomorphisms.

We show in Appendix A the existence of a continuous linear cocycle above a subshift of
finite type which does not have exponential large deviations for its top exponent. Hence,
additional assumptions are needed for this class of results (contrary to the case of Birkhoff
sums, where all Birkhoff sums of continuous functions over a transitive subshift of finite
type have exponential large deviations). These assumptions, as is usual in the study of
linear cocycles, are defined in terms of holonomies. In a geometric context, holonomies
are usually generated by connections. In the totally disconnected context of subshifts of
finite type, connections do not make sense, but the global notion of holonomy does.

The local stable set of x is the set W s
loc(x)= {y : yn = xn for all n ≥ 0}. In the

same way, its local unstable set is W u
loc(x)= {y : yn = xn for all n ≤ 0}. By definition,

W s
loc(x) ∩W u

loc(x)= {x}.
An unstable holonomy is a family of isomorphisms Hu

x→y from E(x) to E(y), defined
for all x and y with y ∈W u

loc(x). We require the compatibility conditions Hu
x→x = Id and

Hu
y→z ◦ Hu

x→y = Hu
x→z for any x , y and z on the same local unstable set. Moreover, we

require the continuity of (x, y) 7→ Hu
x→y (globally, i.e., not only along each leaf).

In the same way, one defines a stable holonomy as a family of maps H s
x→y from E(x)

to E(y) when x and y belong to the same local stable set, with the same continuity
requirements as above.
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Definition 1.4. A linear cocycle admits invariant continuous holonomies if there exist two
stable and unstable continuous holonomies, denoted, respectively, by H s and Hu , that
are equivariant with respect to the cocycle action. More precisely, for any x , for any
y ∈W s

loc(x) and any v ∈ E(x), one should have

M(y)H s
x→yv = H s

T x→T y M(x)v.

Similarly, for any x , for any y ∈W u
loc(x) and any v ∈ E(x), one should have

M(y)−1 Hu
x→yv = Hu

T−1x→T−1 y M(x)−1v.

Stable holonomies give a canonical way of trivializing the bundle over local stable sets.
Thus, to trivialize the whole bundle, one may choose an arbitrary trivialization over an
arbitrary local unstable set and then extend it to the whole space using the holonomies
along the local stable sets. In this trivialization, the cocycle is constant along local stable
sets, i.e., it only depends on future coordinates. Symmetrically, one can trivialize the
bundle first along a stable set, and then using unstable holonomies along the local unstable
sets. In this trivialization, the cocycle is constant along unstable sets, and it depends only
on past coordinates. Note that these two trivializations do not coincide in general unless
the stable and unstable holonomies commute; in this case, the cocycle only depends on
the coordinate x0 in the resulting trivialization, i.e., it is locally constant. Conversely, a
locally constant cocycle admits the identity as stable and unstable invariant commuting
holonomies.

We say that a linear cocycle is pinching and twisting in the sense of Avila and
Viana [AV07] if it has invariant continuous holonomies and if there exist a periodic point p
(of some period k) and a point q which is asymptotic to p both in the past and in the future
(i.e., q ∈W u

loc(p) and T i q ∈W s
loc(p) for some i which is a multiple of k), such that:

• all the eigenvalues of Mk(p) are real and different; and
• if we define a map 9 = H s

T i q→p ◦ M i (q) ◦ Hu
p→q from E(p) to itself, then, for any

subspaces U and V of E(p) which are invariant under Mk(p) (i.e., which are sums
of eigenspaces) with dim U + dim V = dim E , 9(U ) ∩ V = {0}. In other words,
the map 9 puts the eigenspaces of Mk(p) in general position.

This condition ensures that the Lyapunov spectrum of any Gibbs measure is simple, by
the main result of [AV07]. In the space of fiber-bunched cocycles (which automatically
admit invariant continuous holonomies; see §1.3 for a precise definition), this condition is
open (this is clear) and dense (this is harder as there might be pairs of complex conjugate
eigenvalues at a periodic point that cannot be destroyed by a small perturbation, but,
nevertheless, one may always find one periodic orbit which can be made pinching and
twisting after a small perturbation; see [BV04, Proposition 9.1]).

THEOREM 1.5. Let T be a transitive subshift of finite type on a space 6 and let µ be a
Gibbs measure for a Hölder-continuous potential. Consider a continuous linear cocycle M
on a vector bundle E above T . Then M has exponential large deviations for all exponents
in the following situations:
(1) if all its Lyapunov exponents coincide;
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(2) if there is a continuous decomposition of E as a direct sum of subbundles E = E1 ⊕

· · · ⊕ Ek that is invariant under M, such that the restriction of M to each Ei has
exponential large deviations for all exponents;

(3) more generally, if there is an invariant continuous flag decomposition {0} = F0 ⊆

F1 ⊆ · · · ⊆ Fk = E, such that the cocycle induced by M on each Fi/Fi−1 has
exponential large deviations for all exponents;

(4) if the cocycle M is locally constant in some trivialization of the bundle E
(this is equivalent to the existence of invariant continuous holonomies which are
commuting);

(5) if the cocycle M admits invariant continuous holonomies, and if it is pinching and
twisting in the sense of Avila–Viana;

(6) if the cocycle M admits invariant continuous holonomies, and the bundle is
two-dimensional.

The first three points are easy; the interesting ones are the last three. The various
statements can be combined to obtain other results. For instance, if each (a priori only
measurable) Oseledets subspace is, in fact, continuous (for instance, if the Oseledets
decomposition is dominated), then the cocycle has exponential large deviations for all
exponents: this follows from points (1) and (2) in the theorem. We expected that our
techniques would show a result containing (4)–(6): if a cocycle admits invariant continuous
holonomies, then it should have exponential large deviations for all exponents. However,
there is a difficulty here (see Remark 3.11). Points (1–3) are proved on page 173, (4) on
page 184, (5) on page 185 and (6) on page 185. The proofs of (4)–(6) follow the same
strategy; we will insist mainly on (4) and indicate more quickly the modifications for (5)
and (6). These proofs are essentially applications of the techniques in [BV04, AV07].

Remark 1.6. In Theorem 1.5, exponential large deviations are expressed in terms of matrix
norms: one should choose on each E(x) a norm, depending continuously on x , and then
‖Mn(x)‖ is the operator norm of Mn(x) between the two normed vector spaces E(x) and
E(T n x). The above statement does not depend on the choice of the norm (just as the value
of the Lyapunov exponents) as the ratio between two such norms is bounded from above
and from below by compactness. Hence, we may choose whatever norm we like most
on E . For definiteness, we use a Euclidean norm.

The above theorem shows that, in most usual topologies, generic linear cocycles have
exponential large deviations for all exponents. More precisely, for generic cocycles in the
C0 topology, the Oseledets decomposition is dominated (see [Via14, Theorem 9.18]), and
hence (1) and (2) in the theorem yield exponential large deviations. For generic cocycles in
the Hölder topology among fiber-bunched cocycles (the most tractable Hölder cocycles),
pinching and twisting are generic (see [BV04]), and hence (5) also gives exponential
large deviations. It makes no sense to speak of smooth topologies in the setting of
subshifts of finite type, but if instead one considers a hyperbolic locally maximal set of a
diffeomorphism on a manifold, then, among fiber-bunched cocycles, pinching and twisting
are also generic in the Ck topology of cocycles for any k ≥ 1 (see again [BV04]), and
hence (5) also gives exponential large deviations for Ck generic fiber-bunched cocycles in
this setting.
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1.2. Quantitative Pesin theory from large deviations for linear cocycles. Let T be an
invertible continuous map on a compact metric space X preserving an ergodic probability
measure µ. Let M be a continuous cocycle above T , on the trivial bundle X × Rd .
Denote by λ1 ≥ · · · ≥ λd its Lyapunov exponents, and I = {i : λi < λi−1}. Then (λi )i∈I

are the distinct Lyapunov exponents. Denote by Ei the corresponding Oseledets subspace;
its dimension di is Card{ j ∈ [1, d] : λ j = λi }. The subspaces Ei (x) are well defined
on an invariant subset X ′ of X with µ(X ′)= 1 and Ei (T (x))= M(x)Ei (x) for all
x ∈ X ′. Moreover, (1/n)log‖Mn(x)v‖→ λi as n→±∞ for all v ∈ Ei (x) \ {0}. With
this notation, the space Ei (x) is repeated di times. The distinct Oseledets subspaces are
(Ei (x))i∈I .

Let ε > 0. The basic ingredient in Pesin theory is the function

Aε(x)= sup
i∈I

A(i)ε (x)

= sup
i∈I

sup
v∈Ei (x)\{0}

sup
m,n∈Z

‖Mn(x)v‖
‖Mm(x)v‖

e−(n−m)λi e−(|n|+|m|)ε/2 ∈ [0,∞]. (1.2)

This function is slowly varying, i.e.,

e−εAε(x)≤ Aε(T x)≤ eεAε(x),

as the formulas for x and T x are the same except for a shift of 1 in n and m. Moreover, for
all k ∈ Z and all v ∈ Ei (x),

‖v‖Aε(x)e−|k|ε ≤
‖Mk(x)v‖

ekλi
≤ ‖v‖Aε(x)e|k|ε,

where one inequality follows by taking m = 0 and n = k in the definition of Aε, and the
other inequality follows by taking m = k and n = 0. The almost sure finiteness of Aε
follows from Oseledets’ theorem.

Pesin sets are sets of the form {x : Aε(x)≤ C}, for some constant C > 0. Our main goal
is to show that most points return exponentially often to some Pesin set. This is the content
of the following theorem.

THEOREM 1.7. Let T be a transitive subshift of finite type on a space 6 and let µ be a
Gibbs measure for a Hölder-continuous potential. Consider a continuous linear cocycle
M on the trivial vector bundle 6 × Rd above T . Assume that M has exponential large
deviations for all exponents, both in positive and negative times.

Let ε > 0 and δ > 0. Then there exists C > 0 such that, for all n ∈ N,

µ{x : Card{ j ∈ [0, n − 1] : Aε(T j x) > C} ≥ δn} ≤ Ce−C−1n .

One difficulty in the proof of this theorem is that the function Aε is defined in terms of
the Lyapunov subspaces, which are only defined almost everywhere in a non-constructive
way. To get such controls, we will need to revisit the proof of Oseledets’ theorem
in §5 to get more quantitative bounds, showing that an explicit control on the differences
(|log‖3i Mn(x)‖ − n(λ1 + · · · + λi )|)n∈Z at some point x implies an explicit control on
Aε(x) in Theorem 5.1. Then the number of returns to the Pesin sets is estimated using
an abstract result in subadditive ergodic theory, Theorem 4.1, that is interesting in its own
right. These two statements are finally combined in §6 to prove Theorem 1.7.
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1.3. Applications. In this paragraph, we describe several systems to which our results
on large deviations and exponential returns to Pesin sets apply.

First, code any Anosov or Axiom A diffeomorphism thanks to a Markov partition. Then
the above theorems apply to such maps, provided the matrix cocycle has exponential large
deviations. Hence, one needs to check the conditions in Theorem 1.5.

The main class of cocycles admitting stable and unstable holonomies is the class of
fiber-bunched cocycles (see [AV07, Definition A.5]).

A ν-Hölder-continuous cocycle M over a hyperbolic map T on a compact space
is s-fiber bunched if there exists θ ∈ (0, 1) such that d(T x, T y)≤ θd(x, y) and
‖M(x)‖‖M(y)−1

‖θν < 1, for all x, y on a common local stable set (or, more generally,
if this property holds for some iterate of the map and the cocycle). This means that
the expansion properties of the cocycle are dominated by the contraction properties of
the map T . This results in the fact that Mn(y)−1 Mn(x) converges exponentially fast
when n→∞, to a map which is a continuous invariant stable holonomy (see [AV07,
Proposition A.6]).

In the same way, one defines u-fiber-bunched cocycles. Finally, a cocycle is fiber
bunched if it is both s and u-fiber bunched. For instance, if T and ν are fixed, then a
cocycle which is close enough to the identity in the Cν topology is fiber bunched. Our
results apply to such cocycles if they are pinching and twisting, which is an open and
dense condition among fiber-bunched cocycles.

Our results also apply to generic cocycles in the C0 topology. Indeed, the Oseledets
decomposition is then dominated (see [Via14, Theorem 9.18]), and hence (1) and (2) in
the theorem yield exponential large deviations, and from there one deduces exponential
returns to Pesin sets by Theorem 1.7.

The main application we have in mind is to flows. The second author proved the
following theorem in [Sto13b].

THEOREM 1.8. (Stoyanov [Sto13b]) Let gt be a contact Anosov flow on a compact
manifold X, with a Gibbs measure µX .

Consider the first-return map T to a Markov section, the corresponding invariant
measure µ and the corresponding derivative cocycle M, from the tangent space of X at x
to the tangent space of X at T x. Assume that (T, M, µ) has exponential returns to Pesin
sets as in the conclusion of Theorem 1.7.

Then the flow gt is exponentially mixing: there exists C > 0 such that, for any C1

functions u and v, for any t ≥ 0,∣∣∣∣∫ u · v ◦ gt dµX −

∫
u dµX ·

∫
v dµX

∣∣∣∣≤ C‖u‖C1‖v‖C1e−C−1t .

By a standard approximation argument, exponential mixing for Hölder continuous
functions follows.

This statement is the main motivation for studying exponential returns to Pesin sets. We
deduce from Theorem 1.7 the following theorem.

THEOREM 1.9. Consider a contact Anosov flow with a Gibbs measure, for which the
derivative cocycle has exponential large deviations for all exponents. Then the flow is
exponentially mixing.
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To apply this theorem in concrete situations, we have to check whether the sufficient
conditions of Theorem 1.5 for exponential large deviations hold. The main requirement
is the existence of stable and unstable holonomies. Unfortunately, we only know their
existence when the foliation is smooth.

LEMMA 1.10. Consider a contact Anosov flow for which the stable and unstable foliations
are C1. Then the derivative cocycle admits continuous invariant holonomies with respect
to the induced map on any Markov section.

Proof. It suffices to show that the flow admits continuous invariant holonomies along weak
unstable and weak stable manifolds, as they descend to the Markov section.

We construct the holonomy along weak unstable leaves, the holonomy along weak
stable leaves being similar. Consider two points x and y on a weak unstable leaf. Then
the holonomy of the weak unstable foliation gives a local C1 diffeomorphism between
W s(x) to W s(y), sending x to y. The derivative of this map is a canonical isomorphism
between E s(x) and E s(y), which is clearly equivariant under the dynamics. There is also
a canonical isomorphism between the flow directions at x and y. It remains to construct
an equivariant isomorphism between Eu(x) and Eu(y).

For this, we use the fact that the flow is a contact flow, i.e., there exists a smooth one-
form α, invariant under the flow, with kernel E s

⊕ Eu , whose derivative dα restricts to a
symplectic form on E s

⊕ Eu . We get a map ϕ from E s to (Eu)∗, mapping v to dα(v, ·).
This map is one-to-one: a vector v in its kernel satisfies dα(v, w)= 0 for all w ∈ Eu , and
also for all w ∈ E s as E s is Lagrangian. Hence, v is in the kernel of dα, which is reduced
to zero as dα is a symplectic form. As E s and Eu have the same dimension, it follows that
ϕ is an isomorphism.

Consider now x and y on a weak unstable leaf. We have already constructed a canonical
isomorphism between E s(x) and E s(y). With the above identification, this gives a
canonical isomorphism between (Eu(x))∗ and (Eu(y))∗, and therefore between Eu(x)
and Eu(y). This identification is equivariant under the flow, as α is invariant. �

For instance, for the geodesic flow on a compact Riemannian manifold with negative
curvature, the stable and unstable foliations are C1 if the manifold is three-dimensional or
if the curvature is strictly 1/4-pinched, i.e., the sectional curvature belongs everywhere to
an interval [−b2,−a2

] with a2/b2 > 1/4, by [HP75]. Hence, we deduce the following
corollary from Theorem 1.5(1), (6) and (5), respectively.

COROLLARY 1.11. Consider the geodesic flow gt on a compact Riemannian manifold X
with negative curvature. Assume one of the following conditions.
(1) X is of dimension three.
(2) X is of dimension five and the curvature is strictly 1/4 pinched.
(3) X has any dimension, the curvature is strictly 1/4 pinched and, moreover, the flow is

pinching and twisting.
Then the flow is exponentially mixing for any Gibbs measure.

However, these results were already proved by the second author, under weaker
assumptions: exponential mixing holds if the curvature is (not necessarily strictly)
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1/4-pinched, in any dimension (without twisting and pinching). This follows from
the articles [Sto11], in which it is proved that a contact Anosov flow with Lipschitz
holonomies and satisfying a geometric condition is exponentially mixing for all Gibbs
measures, and from [Sto13a], where the aforementioned geometric condition is proved
to be satisfied in a class of flows, including geodesic flows, when the curvature is
1/4-pinched.

On the opposite side, the techniques of [Liv04] or [FT16] prove exponential mixing for
any contact Anosov flow, without any pinching condition, but for Lebesgue measure (or
for Gibbs measures, whose potential is not too far away from the potential giving rise to
Lebesgue measure): they are never able to handle all Gibbs measures.

The hope was that Theorem 1.8 would be able to bridge the gap between these results
and the results of Dolgopyat, proving exponential mixing for all contact Anosov flows and
all Gibbs measures. However, we still need geometric conditions on the manifold to be
able to proceed. The counterexample in the Appendix A shows that in general exponential
large deviations do not hold. Whether one can design similar counterexamples for nice
systems, e.g. contact Anosov flows, remains unknown at this stage. It is also unknown
whether one can prove a result similar to Theorem 1.9 without assuming exponential large
deviations for all exponents.

2. Preliminaries
2.1. Oseledets’ theorem. Let A be a linear transformation between two Euclidean
spaces of the same dimensions. We recall that, in suitable orthonormal bases at the
beginning and at the end, A can be put in diagonal form with entries s1 ≥ · · · ≥ sd ≥ 0.
The si are the singular values of A. They are also the eigenvalues of the symmetric matrix
√

At · A. The largest one s1 is the norm of A; the smallest one sd is its smallest expansion.
The singular values of A−1 are 1/sd ≥ · · · ≥ 1/s1. For any i ≤ d , denote by 3i A the i th
exterior product of A, given by

(3i A)(v1 ∧ v2 ∧ · · · ∧ vi )= Av1 ∧ Av2 ∧ · · · ∧ Avi .

Then
‖3i A‖ = s1 · · · si ,

as 3i A is diagonal in the corresponding orthonormal bases.
Consider a transformation T of a space X , together with a finite dimensional real vector

bundle E above X : all the fibers are isomorphic to Rd for some d and the bundle is locally
trivial by definition. For instance, E may be the product bundle X × Rd , but general
bundles are also allowed. In our main case of interest, T will be a subshift of finite type.
In this case, any such continuous vector bundle is isomorphic to X × Rd : by compactness,
there is some N > 0 such that the bundle is trivial on all cylinders [x−N , . . . , xN ]. As
these (finitely many) sets are open and closed, trivializations on these cylinders can be
glued together to form a global trivialization of the bundle. In the course of the proof, even
if we start with the trivial bundle, we will have to consider general bundles, but they will
be reducible to trivial bundles thanks to this procedure.

A cocycle is a map M associating to x ∈ X an invertible linear operator
M(x) : E(x)→ E(T x) (where E(x) denotes the fiber of the vector bundle above x).
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When E = X × Rd , then M(x) is simply a d × d matrix. The iterated cocycle is given
by Mn(x)= M(T n−1x) · · · M(x) for n ≥ 0. If T is invertible, one may also define
M−n(x)= M(T−n x)−1

· · · M(T−1x). In all cases, Mn(x) maps E(x) to E(T n x). Be
careful that, with this notation, M−1(x) 6= M(x)−1: the first notation indicates the inverse
of the cocycle, with the intrinsic time shift, going from E(x) to E(T−1x), while the
second one is the inverse of a linear operator, so it goes from E(T x) to E(x). In general,
M−n(x)= Mn(T−n x)−1.

Assume now that T is invertible, that it preserves an ergodic probability measure and
that the cocycle M is log-integrable. For any i ≤ d, the quantity x 7→ log‖3i (Mn(x))‖ is a
subadditive cocycle. Hence, by Kingman’s theorem, log‖3i (Mn(x))‖/n converges almost
surely to a constant quantity that we may write as λ1 + · · · + λi for some scalars λi . These
are called the Lyapunov exponents of the cocycle M with respect to the dynamics T and
the measure µ. Let I = {i : λi < λi−1} parameterize the distinct Lyapunov exponents and
let di = Card{ j : λ j = λi } be the multiplicity of λi .

In this setting, Oseledets’ theorem asserts that the λi are exactly the asymptotic growth
rates of vectors, at almost every point. Here is a precise version of this statement (see, for
instance, [Arn98, Theorem 3.4.11]).

THEOREM 2.1. (Oseledets’ theorem) Assume that the cocycle M is log-integrable.
(1) For i ∈ I , define Ei (x) to be the set of non-zero vectors v ∈ E(x) such that, when

n→±∞, then log‖Mn(x)v‖/n→ λi , to which one adds the zero vector. For
µ-almost every x, this is a vector subspace of E(x), of dimension di . These
subspaces satisfy E(x)=

⊕
i∈I Ei (x). Moreover, M(x)Ei (x)= Ei (T x).

(2) Almost surely, for any i ∈ I , log‖Mn(x)|Ei (x)‖/n→ λi when n→±∞, and
log‖Mn(x)−1

|Ei (x)
‖/n→−λi .

In other words, the decomposition of the space E(x)=
⊕

i∈I Ei (x) gives a block-
diagonal decomposition of the cocycle M , such that, in each block, the cocycle has an
asymptotic behavior given by enλi up to subexponential fluctuations.

The spaces Ei (x) can be constructed almost surely as follows. Let t (n)1 (x)≥ · · · ≥
t (n)d (x) be the singular values of Mn(x). They are the eigenvalues of the symmetric matrix
√

Mn(x)t · Mn(x), the corresponding eigenspaces being orthogonal. Write t (n)i (x)=

enλ(n)i (x). Then λ
(n)
i (x) converges to λi for almost every x . In particular, for i ∈ I ,

t (n)i−1(x) > t (n)i (x) for large enough n > 0. It follows that the direct sum of the eigenspaces

of
√

Mn(x)t · Mn(x) for the eigenvalues t (n)i (x), . . . , t (n)i+di−1(x) is well defined. Denote

it by F (n)i (x). We will write F (n)
≥i for

⊕
j≥i, j∈I F (n)j (x) and, similarly, for F (n)

≤i . In the
same way, we define similar quantities for n < 0.

THEOREM 2.2. Fix i ∈ I . With this notation, F (n)i (x) converges almost surely when
n→∞, to a vector subspace F (∞)i (x)⊆ E(x). In the same way, F (−n)

i converges almost
surely to a space F (−∞)i (x). Moreover, the direct sums F (∞)

≥i (x) and F (−∞)
≤i (x) are almost

surely transverse, and their intersection is Ei (x).

See [Arn98, Theorem 3.4.1 and p. 154]. One can reformulate the theorem as follows.
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The subspaces F (n)
≥i (x) (which are decreasing with i , i.e., they form a flag) converge when

n→∞ to the flag E≥i (x)=
⊕

j≥i, j∈I E j (x). Note that F (n)
≥i (x) is only defined in terms

of the positive times of the dynamics, and hence this is also the case of E≥i (x): this is the
set of vectors for which the expansion in positive time is at most enλi , up to subexponential
fluctuations (note that this condition is clearly stable under addition and, therefore, defines
a vector subspace, contrary to the condition that the expansion would be bounded below
by enλi ). In the same way, F (−n)

≤i (x) converges when n→∞ to E≤i (x), which therefore
only depends on the past of the dynamics. On the other hand, Ei (x), being defined as
the intersection of two spaces depending on positive and negative times, depends on the
whole dynamics and is therefore more difficult to analyze. We emphasize that Ei (x) is, in
general, different from F (∞)i (x) or F (−∞)i (x).

In the above theorem, when we mention the convergence of subspaces, we are using
the natural topology on the Grassmann manifold of linear subspaces of some given
dimension p. It comes, for instance, from the distance

d(U, V )= ‖πU→V⊥‖ = max
u∈U,‖u‖=1

‖πV⊥u‖, (2.1)

which we will use later on, where πU→V⊥ is the orthogonal projection from U to the
orthogonal V⊥ of V . It is not completely obvious that this formula indeed defines a
distance. As d(U, V )= ‖πV⊥πU‖, the triangular inequality follows from the computation
(in which we use that orthogonal projections have norm at most one)

d(U, W )= ‖πW⊥πU‖ = ‖πW⊥(πV + πV⊥)πU‖ ≤ ‖πW⊥πVπU‖ + ‖πW⊥πV⊥πU‖

≤ ‖πW⊥πV ‖ + ‖πV⊥πU‖ = d(V, W )+ d(U, V ).

For the symmetry, we note that d(U, V )=
√

1− ‖πU→V ‖
2
min, where ‖M‖min denotes the

minimal expansion of a vector by a linear map M . This is also its smallest singular value.
As πV→U = π

t
U→V , and as a (square) matrix and its transpose have the same singular

values, it follows that ‖πU→V ‖min = ‖πV→U‖min and, therefore, that d(U, V )= d(V,U ).

2.2. Oseledets decomposition and subbundles. The following lemma follows directly
from Oseledets’ theorem, by considering the Oseledets decomposition in each subbundle.

LEMMA 2.3. Consider a log-integrable cocycle M on a normed vector bundle E, over an
ergodic probability-preserving dynamical system T . Assume that E splits as a direct sum
of invariant subbundles Ei . Then the Lyapunov spectrum of M on E is the union of the
Lyapunov spectra of M on each Ei , with multiplicities.

The same holds if M , instead of leaving each Ei invariant, is upper triangular. While
this is well known, we give a full proof as this is not as trivial as one might think.

LEMMA 2.4. Consider a log-integrable cocycle M on a normed vector bundle E,
over an ergodic probability-preserving dynamical system T . Assume that there is
a measurable invariant flag decomposition {0} = F0(x)⊆ F1(x)⊆ · · · ⊆ Fk(x)= E(x).
Then the Lyapunov spectrum of M on E is the union of the Lyapunov spectra of M on
each Fi/Fi−1, with multiplicities.
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Equivalently, considering Ei a complementary subspace to Fi−1 in Fi , then the matrix
representation of M in the decomposition E = E1 ⊕ · · · ⊕ Ek is upper triangular, and the
lemma asserts that the Lyapunov spectrum of M is the union of the Lyapunov spectra of
the diagonal blocks.

Proof. Passing to the natural extension, if necessary, we can assume that T is invertible.
Let us first assume that k = 2 and that there is only one Lyapunov exponent λ in E1 and

one Lyapunov exponent µ in E2, both with some multiplicity. In matrix form, M can be
written as

(A1 B
0 A2

)
, where the growth rate of An

1 and An
2 are, respectively, given by eλn and

eµn . Then

Mn(x)=

An
1(x)

n∑
k=1

An−k
1 (T k x)B(T k−1x)Ak−1

2 (x)

0 An
2(x)

 . (2.2)

As M is a log-integrable cocycle, log‖M(T n x)‖/n tends almost surely to zero by Birkhoff
theorem. Hence, the growth of ‖B(T n x)‖ is subexponential almost surely.

First, assume that λ > µ. Define a function 8(x) : E2(x)→ E1(x) by

8(x)=−
∞∑

k=0

Ak+1
1 (x)−1 B(T k x)Ak

2(x).

The series converges almost surely as ‖Ak+1
1 (x)−1 B(T k x)Ak

2(x)‖ ≤ Ce(µ−λ)k+εk and
µ− λ < 0. This series is designed so that A1(x)8(x)+ B(x)=8(T x)A2(x), i.e., so that
the subspace Ẽ2(x)= {(8(x)v, v) : v ∈ E2(x)} is invariant under M . We have obtained
a decomposition E = E1 ⊕ Ẽ2, on which the cocycle acts, respectively, like A1 and A2.
Hence, the result follows from Lemma 2.3.

Assume now that λ < µ. Then one can solve again the equation A1(x)8(x)+ B(x)=
8(T x)A2(x), this time going towards the past, by the converging series

8(x)=
∞∑

k=0

A−k
1 (x)−1 B(T−k x)A−k−1

2 (x).

Then, one concludes as above.
Finally, assume that λ= µ. For any typical x , any n and any k ≤ n, we have

‖An−k
1 (T k x)‖ = ‖An

1(x)A
k
1(x)

−1
‖ ≤ ‖An

1(x)‖‖Ak
1(x)

−1
‖

≤ Ceλn+εn/4
· e−λk+εk/4

≤ Ceλ(n−k)+εn/2.

Hence, one deduces from the expression (2.2) of Mn(x) that its norm grows at most like
nenλ+nε almost surely. Hence, all its Lyapunov exponents are ≤λ. The same argument
applied to the inverse cocycle, for T−1, shows that all the Lyapunov exponents are also
≥λ, which concludes the proof in this case.

We turn to the general case. Subdividing further each Fi/Fi−1 into the sum of its
Oseledets subspaces, we may assume that there is one single Lyapunov exponent in each
Fi/Fi−1. Then we argue by induction over k. At step k, the induction assumption
ensures that the Lyapunov spectrum L2 of M in E/F1 is the union of the Lyapunov
spectra in the Fi/Fi−1 for i > 1. Denoting by L1 the Lyapunov spectrum in F1 (made
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of a single eigenvalue λ with some multiplicity), we want to show that the whole
Lyapunov spectrum is L1 ∪ L2, with multiplicities. Using Oseledets’ theorem in E/F1

and lifting the corresponding bundles to E , we obtain subbundles G2, . . . , G I such that,
in the decomposition E = F1 ⊕ G2 ⊕ · · · ⊕ G I , the matrix M is block diagonal, except,
possibly, for additional blocks along the first line. Each block Gi in which the Lyapunov
exponent is not λ can be replaced by a block G̃i that is really invariant under the dynamics,
as in the k = 2 case above. We are left with F1 and possibly one single additional block,
say, Gi , with the same exponent λ. The k = 2 case again shows that all the Lyapunov
exponents in F1 ⊕ Gi are equal to λ, which concludes the proof. �

3. Exponential large deviations for norms of linear cocycles
3.1. Gibbs measures. In this section, we recall basic properties of Gibbs measures, as
explained, for instance, in [Bow75] and [PP90]. By Gibbs measure, we always mean in
this article a Gibbs measure with respect to some Hölder-continuous potential.

Let ϕ be a Hölder-continuous function over a transitive subshift of finite type
T :6→6. The Gibbs measure associated to ϕ, denoted by µϕ , is the unique T -invariant
probability measure for which there exist two constants P (the pressure of ϕ) and C > 0
such that, for any cylinder [a0, . . . , an−1], and for any point x in this cylinder,

C−1
≤
µϕ[a0, . . . , an−1]

eSnϕ(x)−n P ≤ C. (3.1)

The Gibbs measure only depends on ϕ up to the addition of a coboundary and a constant:
i.e., µϕ = µϕ+g−g◦T+c.

Here is an efficient way of constructing the Gibbs measure. Any Hölder continuous
function is cohomologous to a Hölder-continuous function which only depends on positive
coordinates of points in 6. Without loss of generality, we can assume that this is the
case of ϕ, and also that P(ϕ)= 0. Denote by T+ :6+→6+ the unilateral subshift
corresponding to T . Define the transfer operator Lϕ acting on the space Cα of Hölder-
continuous functions on 6+ by

Lϕv(x+)=
∑

T+y+=x+

eϕ(y+)v(y+).

Then one shows that this operator has a simple eigenvalue 1 at 1, finitely many eigenvalues
of modulus one different from 1 (they only exist if T is transitive but not mixing) and the
rest of its spectrum is contained in a disk of radius<1. One deduces that, for any v ∈ Cα , in
Cα , (1/N )

∑N−1
n=0 Ln

ϕv→ µ+(v)v0, where v0 is a (positive) eigenfunction corresponding
to the eigenvalue 1 and µ+ is a linear form on Cα . One can normalize them by µ+(1)= 1.
By approximation, it follows that this convergence also holds in C0 for v ∈ C0. Moreover,
µ+ extends to a continuous linear form on C0, i.e., it is a probability measure.

Replacing ϕ with ϕ + log v0 − log v0 ◦ T+, one replaces the operator Lϕ (with
eigenfunction v0) with the operator Lϕ+log v0−log v0◦T+ , with eigenfunction 1. Hence,
without loss of generality, we can assume that v0 = 1. With this normalization, one
checks that the measure µ+ is T+-invariant. It is the Gibbs measure for T+, satisfying
the property (3.1). Its natural T -invariant extension µ to 6 is the Gibbs measure for T .
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For any v ∈ C0(6+),

1
N

N−1∑
n=0

Lnv(x+)→
∫
v dµ+ uniformly in x+ ∈6+. (3.2)

It follows from the construction above that the Jacobian of µ+ with respect to T+ is
given by J (x+)= (dT ∗µ+/dµ+)(x)= e−ϕ(x+).

Consider the disintegration of µ with respect to the factor µ+: there exists a family
of measures µ−x+ on W s

loc(x+) for x+ ∈6+, such that µ=
∫
µ−x+ dµ+(x+). Formally,

we write µ= µ+ ⊗ µ−x+ , even though this is not a direct product. These measures can,
in fact, be defined for all x+ (instead of almost all x+) in a canonical way; they depend
continuously on x+, they belong to the same measure class when the first coordinate (x+)0
is fixed and, moreover, their respective Radon–Nikodym derivatives are continuous in all
variables (see, for instance, [AV07, §A.2]).

Geometrically, the picture is the following. Consider some point x+ ∈6+. It has
finitely many preimages y1

+, . . . , y I
+ under T+. Then W s

loc(x+)=
⋃

i T (W s
loc(y

i
+)), and

µ−x+ =
∑

i

1
J (yi
+)

T∗µ−yi
+

=

∑
i

eϕ(y
i
+)T∗µ−yi

+

. (3.3)

3.2. First easy bounds. In this paragraph, we prove (1–3) in Theorem 1.5.

LEMMA 3.1. Let an(x)= a(n, x) be a subadditive cocycle that is bounded in absolute
value for any n. Then, for any N, there exists C > 0 with

a(n, x)≤ Sn(aN/N )(x)+ C

for any x ∈6.

Proof. This is clear for n ≤ 2N as all those quantities are bounded. Consider now n ≥ 2N .
Take p such that n = N p + r with r ∈ [N , 2N ]. For any j ∈ [0, N − 1], one may write
n = j + N p + r with r ∈ [0, 2N ]. Thus,

a(n, x)≤ a( j, x)+
p−1∑
i=0

a(N , T i N+ j x)+ a(r, T pN+ j x)≤ C +
p−1∑
i=0

N (aN/N )(T i N+ j x).

Summing over j ∈ [0, N − 1], we get

Na(n, x)≤ NC +
N−1∑
j=0

p−1∑
i=0

N (aN/N )(T i N+ j x)= NC + N SN p(aN/N )(x)

≤C ′ + N Sn(aN/N )(x).

This proves the claim. �

LEMMA 3.2. Let (T, µ) be a transitive subshift of finite type with a Gibbs measure and let
a(n, x) be a subadditive cocycle above T such that a(n, ·) is continuous for all n. Let λ
be the almost sure limit of a(n, x)/n and assume that λ >−∞. Then, for any ε > 0, there
exists C > 0 such that, for all n ≥ 0,

µ{x : a(n, x)≥ nλ+ nε} ≤ Ce−C−1n .
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Proof. By Kingman’s theorem, a(n, x)/n converges to λ almost everywhere and in L1.
Thus, one can take N such that

∫
aN/N dµ(x)≤ (λ+ ε/2)N . From the previous lemma,

we obtain a constant C such that, for all n and x ,

a(n, x)≤ Sn(aN/N )(x)+ C.

Thus,

{x : a(n, x)≥ nλ+ nε} ⊆
{

x : Sn(aN/N )(x)≥ n
∫
(aN/N )+ nε/2− C

}
.

By the large deviations inequality for continuous functions†, this set has exponentially
small measure. This proves the lemma. �

PROPOSITION 3.3. Let (T, µ) be a transitive subshift of finite type with a Gibbs measure
and let M be a continuous linear cocycle above T with Lyapunov exponents λ1 ≥ · · · ≥ λd .
For any ε > 0, there exists C > 0 such that, for all n ≥ 0 and all i ≤ d,

µ{x : log‖3i Mn(x)‖ ≥ n(λ1 + · · · + λi )+ nε} ≤ Ce−C−1n .

Proof. Fix i ≤ d . Then the result follows from the previous lemma applied to a(n, x)=
log‖3i Mn(x)‖. �

This proposition shows one of the two directions in Theorem 1.5, without any
assumption on the cocycle. Hence, to prove this theorem, it will suffice to prove the
corresponding lower bound

µ{x : log‖3i Mn(x)‖ ≤ n(λ1 + · · · + λi )− nε} ≤ Ce−C−1n, (3.4)

under the various possible assumptions of this theorem. As is usual with subadditive
ergodic theory, this lower bound is significantly harder than the upper bound. Indeed, the
analogue of Lemma 3.2 for the lower bound is false (see Proposition A.1 in Appendix A).

We already have enough tools to prove the easy cases of Theorem 1.5.

Proof of Theorem 1.5(1–3). First, we prove (1): assuming that λ1 = · · · = λd = λ, we
have to prove that

µ{x : log‖3i Mn(x)‖ ≤ niλ− nε} ≤ Ce−C−1n .

Let si (x, n) be the i th singular value of Mn(x). Then

‖3i Mn(x)‖ = s1(x, n) · · · si (x, n)≥ sd(x, n)i = ‖Mn(x)−1
‖
−i .

Hence, to conclude, it suffices to show that

µ{x : log‖Mn(x)−1
‖ ≥ −nλ+ nε} ≤ Ce−C−1n .

This follows from Proposition 3.3 applied to the cocycle M̃(x)= (M(x)−1)t , whose
Lyapunov exponents are all equal to −λ.

† This holds for continuous functions in transitive subshifts of finite type, by reduction to the mixing setting after
taking a finite iterate of the map and by reduction to Hölder continuous functions by uniform approximation.
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Let us now prove (3) for k = 2, as the general case then follows by induction over k.
Assume that E1 is an invariant continuous subbundle such that, on E1 and on E/E1, the
induced cocycle has exponential large deviations for all exponents. Denote by L1 and L2

the Lyapunov exponents of the cocycle on these two bundles. Then the Lyapunov spectrum
on E is L1 ∪ L2 with multiplicity, by Lemma 2.4. Let E2 be the orthogonal complement
to E1. We want to show (3.4), for some i . In λ1, . . . , λi , some of these exponents, say, a
number i1 of them, are the top exponents in L1. Denote their sum by 61. The remaining
i2 = i − i1 exponents are the top exponents in L2, and they add up to a number 62.

In the decomposition E = E1 ⊕ E2, the matrix M is block diagonal, of the form(M1 B
0 M2

)
. One has ‖3i M(x)‖ ≥ ‖3i1 M1(x)‖‖3i2 M2(x)‖: considering v1 and v2, which

are maximally expanded by 3i1 M1(x) and 3i2 M2(x), the expansion factor of 3i M(x)
along v1 ∧ v2 is at least ‖3i1 M1(x)‖‖3i2 M2(x)‖ thanks to the orthogonality of E1 and
E2 and the block-diagonal form of M(x). Therefore,

{x : log‖3i Mn(x)‖ ≤ n(λ1 + · · · + λi )− nε}

⊆ {x : log‖3i1 Mn
1 (x)‖ + log‖3i2 Mn

2 (x)‖ ≤ n61 + n62 − nε}

⊆ {x : log‖3i1 Mn
1 (x)‖ ≤ n61 − nε/2} ∪ {x : log‖3i2 Mn

2 (x)‖ ≤ n62 − nε/2}.

The last sets both have an exponentially small measure, as we are assuming that the
induced cocycles on E1 and E/E1 have exponential large deviations for all exponents.
Hence, µ{x : log‖3i Mn(x)‖ ≤ n(λ1 + · · · + λi )− nε} is also exponentially small. This
concludes the proof of (3).

Finally, (2) follows from (3) by taking Fi = E1 ⊕ · · · ⊕ Ei . �

3.3. u-states. Consider a linear cocycle M on a bundle E over a subshift of finite type
T :6→6, admitting invariant continuous holonomies. We define a fibered dynamic over
the projective bundle P(E) by

TP(x, [v])= (T x, [M(x)v]).

Let πP(E)→6 : P(E)→6 be the first projection.
In general, TP admits many invariant measures which project under πP(E)→6 to a given

Gibbs measure µ. For instance, if the Lyapunov spectrum of M is simple, denote by
vi (x) the vector in E(x) corresponding to the i th Lyapunov exponent. Then µ⊗ δ[vi (x)] is
invariant under TP. By this notation, we mean the measure such that, for any continuous
function f , ∫

f (x, v) d(µ⊗ δ[vi (x)])(x, v)=
∫

f (x, [vi (x)]) dµ(x).

More generally, if mx is a family of measures on P(E(x)) depending measurably on x such
that M(x)∗mx = mT x , then the measure µ⊗ mx (defined as above) is invariant under TP.
Conversely, any TP-invariant measure that projects down to µ can be written in this form,
by Rokhlin’s disintegration theorem.

To understand the growth of the norm of the cocycle, we need to distinguish among
those measures the one that corresponds to the maximal expansion, i.e., µ⊗ δ[v1(x)]. This
measure can be obtained as follows, assuming that λ1 is simple. Start from a measure on
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P(E) which is of the form µ⊗ νx , where the measures νx depend continuously on x and
give zero mass to all hyperplanes. Then

(T n
P )∗(µ⊗ νx )= µ⊗ (Mn(T−n x)∗νT−n x ).

By Oseledets’ theorem, the matrix Mn(T−n x) acts as a contraction on P(E(T−n x)),
sending the complement of an arbitrarily small neighborhood of some hyperplane to an
arbitrarily small neighborhood of [v1(x)]. As νy gives a small mass to small neighborhoods
of any hyperplane (uniformly in y), it follows that (Mn(T−n x)∗νT−n x ) converges to
δ[v1(x)]. Thus,

µ⊗ δ[v1(x)] = lim
n→∞

(T n
P )∗(µ⊗ νx ).

There is a remarkable consequence of this construction. We can start from a family
of measure νx which is invariant under the unstable holonomy Hu

x→y , i.e., such that
(Hu

x→y)∗νx = νy . Then the same is true of all the iterates (Mn(T−n x)∗νT−n x ). In the
limit n→∞, it follows that δ[v1(x)] is also invariant under unstable holonomies. (There
is something to justify here, as it is not completely straightforward that the holonomy
invariance is stable under weak convergence: the simplest way is to work with a one-
sided subshift, and then lift things trivially to the two-sided subshift; see [AV07, §4.1] for
details). This remark leads us to the following definition.

Definition 3.4. Consider a probability measure ν on P(E) which projects to µ under π .
It is called a u-state if, in the fiberwise decomposition ν = µ⊗ νx , the measures νx are
µ-almost surely invariant under unstable holonomies. It is called an invariant u-state if,
additionally, it is invariant under the dynamics.

The invariant u-states can be described under an additional irreducibility assumption of
the cocycle, i.e., strong irreducibility.

Definition 3.5. We say that a cocycle M with invariant continuous holonomies over a
subshift of finite type is reducible if there exist a dimension 0< k < d = dim E , an integer
N > 0 and, for each point x ∈6, a family of distinct k-dimensional vector subspaces
V1(x), . . . , VN (x) of E(x), depending continuously on x , such that the family as a whole
is invariant under M : i.e., for all x ,

M(x){V1(x), . . . , VN (x)} = {V1(T x), . . . , VN (T x)}.

Otherwise, we say that M is irreducible.
We say that M is holonomy-reducible if there exists a family as above which,

additionally, is invariant under the holonomies: i.e., for all x and all y ∈W u
loc(x),

Hu
x→y{V1(x), . . . , VN (x)} = {V1(y), . . . , VN (y)}, and the same holds for the stable

holonomies. Otherwise, we say that M is holonomy-irreducible.

In a locally constant cocycle, where holonomies commute (and can therefore be taken
to be the identity), the holonomy invariance reduces to the condition that each Vi is locally
constant, i.e., it only depends on x0. Note that a cocycle can be holonomy-irreducible, but
reducible (through a family which is not holonomy-invariant).

The following theorem is the main result of this paragraph. It essentially follows from
the arguments in [BV04, AV07]. It is one of the main steps in proving (4) in Theorem 1.5,
i.e., exponential large deviations for locally constant cocycles.
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THEOREM 3.6. Consider a transitive subshift of finite type T with a Gibbs measure µ. Let
M be a cocycle on a bundle E over T , which is locally constant, holonomy-irreducible
and has simple top Lyapunov exponent. Then the corresponding fibered map TP has a
unique invariant u-state, given by µ⊗ δ[v1(x)], where v1(x) is a non-zero vector spanning
the one-dimensional Oseledets subspace for the top Lyapunov exponent at x.

To prove (5) and (6) in Theorem 1.5, i.e., exponential large deviations for pinching
and twisting cocycles with holonomies, respectively, for two-dimensional cocycles with
holonomies, we will use variants of the above theorem as follows.

THEOREM 3.7. Consider a transitive subshift of finite type T with a Gibbs measure µ.
Let M be a continuous cocycle on a bundle E over T , which admits invariant continuous
holonomies and is pinching and twisting. Then the top Lyapunov exponent of M is simple.
Moreover, the corresponding fibered map TP has a unique invariant u-state, given by
µ⊗ δ[v1(x)], where v1(x) is a non-zero vector spanning the one-dimensional Oseledets
subspace for the top Lyapunov exponent at x.

This theorem is proved by Avila and Viana in [AV07]. We will, in fact, use a stronger
version in §3.6 below, but we state this version here to emphasize the correspondence with
Theorem 3.6.

THEOREM 3.8. Consider a transitive subshift of finite type T with a Gibbs measure µ.
Let M be a continuous cocycle over T , which admits invariant continuous holonomies, is
irreducible and has simple top Lyapunov exponent. Then the corresponding fibered map
TP has a unique invariant u-state, given by µ⊗ δ[v1(x)], where v1(x) is a non-zero vector
spanning the one-dimensional Oseledets subspace for the top Lyapunov exponent at x.

Note that Theorems 3.6 and 3.8 are not comparable: in the first one, we require
local constancy and holonomy-irreducibility, while, in the second one, we require the
existence of holonomies and irreducibility. The existence of holonomies is weaker than
local constancy, but irreducibility is stronger than holonomy-irreducibility. Remark 3.11
shows that the uniqueness of invariant u-states is not true if one assumes only the existence
of holonomies and holonomy-irreducibility, so, in a sense, these two statements are the best
possible.

The rest of this subsection is devoted to the proofs of Theorems 3.6 and 3.8 in
parallel. Consider a linear cocycle M admitting continuous holonomies, with a simple top
Lyapunov exponent. We have already seen that µ⊗ δ[v1(x)] is an invariant u-state; what
needs to be shown is the uniqueness, under suitable irreducibility assumptions. Consider
an invariant u-state ν; we want to prove that ν = µ⊗ δ[v1(x)].

As the cocycle admits invariant holonomies, one can consider a trivialization of the
bundle in which the cocycle only depends on future coordinates, then quotient by the
stable direction. We obtain a unilateral subshift T+ :6+→6+ with a Gibbs measure µ+,
a vector bundle E+ and a cocycle M+. The measure ν+ = (πE→E+)∗ν is then invariant
under the fibered dynamics T+,P. It can be written as µ+ ⊗ ν+x+ for some measurable
family ν+x+ of probability measures on P(E+(x+)).

The following lemma is [AV07, Proposition 4.4].
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LEMMA 3.9. Assume that ν is an invariant u-state. Then the family of measures ν+x+ ,
initially defined for µ+-almost every x+, extends to a (unique) family that depends
continuously in the weak topology on all x+ ∈6+.

For completeness, we sketch the proof, leaving aside the technical details.

Proof. The measure ν+x+ is obtained by averaging all the conditional measures νx over
all points x which have the future x+, i.e., over the points (x−, x+), with respect to a
conditional measure dµ−x+(x−). If y+ is close to x+, then y0 = x0, so the possible pasts of
y+ are the same as the possible pasts of x+. For any continuous function f on projective
space,∫

f dν+x+ =
∫ (∫

f dνx−,x+

)
dµ−x+(x−),

∫
f dν+y+ =

∫ (∫
f dνx−,y+

)
dµ−y+(x−).

When y+ is close to x+, the measures dµ−x+ and dµ−y+ are equivalent, with respective
density close to one, as we explained in §3.1. Moreover, by holonomy invariance of the
conditional measures of ν,∫

f dνx−,y+ =

∫
f ◦ Hu

(x−,x+)→(x−,y+) dνx−,x+ .

By continuity of the holonomies, the function f ◦ Hu
(x−,x+)→(x−,y+) is close to f if y+ is

close to x+. It follows that
∫

f dν+y+ is close to
∫

f dν+x+ , as desired. Details can be found
in [AV07, §4.2]. �

Henceforth, we write ν+x+ for the family of conditional measures, depending
continuously on x+. The next lemma is a version of [AV07, Proposition 5.1] in our setting.

LEMMA 3.10. Let ν be an invariant u-state and write ν+x+ for the continuous fiberwise
decomposition of Lemma 3.9. Assume, additionally, that M is locally constant and
holonomy-irreducible or that it is irreducible. Then, for any x+, for any hyperplane
L ⊂ P(E+(x+)), one has ν+x+(L)= 0.

Proof. Assume, by contradiction, that ν+x+ gives positive mass to some hyperplane, for
some x+. We will then construct a family of subspaces as in Definition 3.5, contradicting
the irreducibility of the cocycle.

Let k be the minimal dimension of a subspace with positive mass at some point. Let γ0

be the maximal mass of such a k-dimensional subspace. By continuity of x+ 7→ ν+x+ and
compactness, there exist a point a+ and a k-dimensional subspace V with ν+a+(V )= γ0

[AV07, Lemma 5.2].
Let V(x+) be the set of all k-dimensional subspaces V of E+(x+) with ν+x+(V )= γ0.

Two elements of V(x+) intersect in a subspace of dimension <k, which has measure zero
by minimality of k. Hence, γ0 Card V(x+)= ν+x+(

⋃
V∈V(x+) V ). As this is at most one,

the cardinality of V(x+) is bounded from above by 1/γ0.
Consider a point b+ where the cardinality N of V(b+) is maximal. For each V ∈ V(b+),

ν+b+(V ) is an average of ν+x+(M(x+)
−1V ) over all preimages x+ of b+ under T+ (see

[AV07, Corollary 4.7]). By maximality, all the M(x+)−1V also have mass γ0 for ν+x+ .
Iterating this process, one obtains, for all points in T−n

+ (b+), at least N subspaces with
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measure γ0 (and, in fact, exactly N by maximality). The set
⋃

n T−n
+ (b+) is dense.

Hence, any x+ is a limit of a sequence xn for which V(xn) is made of N subspaces
V1(xn), . . . , VN (xn). Taking subsequences, we can assume that each sequence Vi (xn)

converges to a subspace Vi , which belongs to V(y) by continuity of y+ 7→ ν+y+ . Moreover,
Vi 6= V j for i 6= j : otherwise, the corresponding space would have measure at least 2γ0,
which would contradict the definition of γ0. This shows that the cardinality of V(x+) is at
least N , and is therefore exactly N .

We have shown that the family V(x+) is made of exactly N subspaces everywhere, that
it depends continuously on x+ and that it is invariant under T+,P. We lift everything to the
bilateral subshift 6, setting V(x)= V(π6→6+x). By construction, the family is invariant
under the dynamic TP. As Vi does not depend on the past of the points, it is invariant
under the stable holonomy (which is just the identity when one moves along stable sets,
thanks to our choice of trivialization of the bundle). If M is irreducible, this is already a
contradiction, as desired.

Assume now that M is locally constant and holonomy-irreducible. To obtain a
contradiction, we should show that the family V is also invariant under unstable
holonomy, i.e., that V(x) (which only depends on x+), in fact, only depends on x0.
Fix some x+ and some y+ with y0 = x0. Then γ0 = ν

+
x+(Vi (x+)) is an average of the

quantities ν(x−,x+)(Vi (x+)) over all possible pasts x− of x+. One deduces from this
that ν(x−,x+)(Vi (x+))= γ0 for almost every such x− (see [AV07, Lemma 5.4]). As ν
is invariant under unstable holonomy, we obtain ν(x−,y+)(Vi (x+))= γ0 for almost every
x−. Integrating over x−, we get ν+y+(Vi (x+))= γ0. Hence, Vi (x+) ∈ V(y+). This shows
that V(x+)= V(y+) if x0 = y0 (almost everywhere and then everywhere by continuity).
Hence, V is locally constant, as claimed. �

Let us explain how the end of the proof fails if the cocycle is not locally constant, i.e., if
the holonomies do not commute. We argue in a trivialization where the stable holonomies
are the identity. The failure is at the end of the proof, when we show that the family V(x)
is invariant under unstable holonomy. We can, indeed, prove that ν(x−,x+)(Vi (x+))= γ0

for almost every x−. Then it follows that ν(x−,y+)(H
u
(x−,x+)→(x−,y+)Vi (x+))= γ0. The

problem is that the subspaces Hu
(x−,x+)→(x−,y+)Vi (x+) vary with x−, so one cannot

integrate this equality with respect to x− to obtain a subspace V with ν+y+(V )= γ0.

Proof of Theorems 3.6 and 3.8. Let ν be a u-state, let µ⊗ νx be its fiberwise
disintegration and let ν+x+ be the conditional expectation of νx with respect to the future
sigma-algebra. [AV07, Proposition 3.1 and Corollary 3.4] then show that, almost surely,

νx = lim
n→∞

Mn(T−n x)∗ν+(T−n x)+
. (3.5)

The main point of the proof is to remark that the sequence Mn(T−n x)∗ν+(T−n x)+
(or,

rather, the integral of a given function with respect to this sequence of measures) forms
a martingale with respect to a suitable filtration. Hence, the almost sure convergence
of the right-hand side of (3.5) follows from the martingale convergence theorem. The
identification of its limit with νx is then easy.
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Let ε > 0. We may find δ such that, for any x+ and any hyperplane L ⊆ E+(x+), the
δ-neighborhood of L in P(E+(x)) (for some fixed distance on projective space) satisfies
ν+x+(Nδ(L))≤ ε, thanks to Lemma 3.10 and continuity of the measures.

Let E1(x)= Rv1(x) be the top Oseledets subspace of M and let E2(x) be the sum of
the other subspaces. Let A be a compact subset of 6 with positive measure on which
the decomposition E(x)= E1(x)⊕ E2(x) is continuous and on which the convergence
in Oseledets’ theorem is uniform. Take x ∈ A. By Poincaré’s recurrence theorem, there
exists almost surely an arbitrarily large n such that T−n x ∈ A. In the decomposition E =
E1 ⊕ E2, the cocycle Mn(T−n x) is block diagonal, with the first (one-dimensional) block
dominating exponentially the other one. Hence, it sends P(E(T−n x)) \Nδ(E2(T−n x))
(whose ν+

(T−n x)+
-measure is at least 1− ε, thanks to the choice of δ) to an ε-neighborhood

of E1(x) if n is large enough. Therefore, Mn(T−n x)∗ν+(T−n x)+
(Nε([v1(x)]))≥ 1− ε.

Letting ε tend to zero, we get νx ([v1(x)])= 1, thanks to (3.5). As the measure of A
can be taken arbitrarily close to one, we finally get that νx is almost everywhere equal
to δ[v1(x)]. �

Remark 3.11. Here is an example of a holonomy-irreducible cocycle with simple
Lyapunov exponents and admitting (non-commuting) invariant continuous holonomies,
over the full shift on two symbols endowed with any Gibbs measure, which admits two
u-states.

Let 6 be the full shift, let E =6 × R3 and let M be the constant cocycle given by the

matrix
(3 0 0

0 2 0
0 0 1

)
. We introduce the holonomies

Hu
x→y =


1 0

∑
n≥0

3−n(yn − xn)

0 1
∑
n≥0

2−n(yn − xn)

0 0 1


and

H s
x→y =


1 0 0
0 1 0∑

n≤0

3n(yn − xn)
∑
n≤0

2n(yn − xn) 1

 .
One checks easily that they are indeed holonomies and that they are invariant under T .
Let ei denote the i th vector of the canonical basis. As e1 and e2 are invariant under the
unstable holonomies, they give rise to two distinct u-states.

We claim that the cocycle is holonomy-irreducible. Indeed, consider a non-zero
subbundle F of E which is invariant under T and the holonomies. We will show that
F = E . Considering the Oseledets decomposition of F under the cocycle, it follows that
F is spanned by some subfamily (ei )i∈I . If 1 ∈ I or 2 ∈ I , then the invariance under stable
holonomy implies that 3 ∈ I since H se1 and H se2 have a non-zero component along e3.
Hence, e3 ∈ F almost everywhere. Then, using the invariance under unstable holonomy,
we deduce that e1 ∈ F and e2 ∈ F almost everywhere, as Hue3 has non-zero components
along e1 and e2. Finally, F = E .
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3.4. Exponential large deviations for cocycles with a unique u-state. In this paragraph,
we show that a continuous linear cocycle admitting a unique u-state satisfies exponential
large deviations.

THEOREM 3.12. Consider a continuous cocycle over a transitive subshift of finite type
endowed with a Gibbs measure, admitting invariant continuous holonomies. Assume that
it has a unique u-state. Then the cocycle has exponential large deviations for its top
exponent.

This paragraph is devoted to the proof of Theorem 3.12. The proof follows the
classical strategy of Guivarc’h and Le Page for products of independent matrices (with
the uniqueness of the u-state replacing the uniqueness of the stationary measure), although
the technical details of the implementation are closer, for instance, to [Dol04, Proof of
Theorem 1].

Henceforth, we fix a transitive subshift of finite type T :6→6, with a Gibbs measure
µ, and a continuous cocycle M : E→ E above T that admits a unique u-state denoted
by νu . Changing coordinates in E using the unstable holonomy, we can assume, without
loss of generality, that M(x) only depends on the past x− of x .

We denote by 6− the set of pasts of points in 6. The left shift T does not induce a map
on 6− (it would be multivalued, since there would be a choice for the zeroth coordinate),
but the right shift T−1 does induce a map U on 6−. This is a subshift of finite type, for
which the induced measure µ− = (π6→6−)∗µ is invariant (and a Gibbs measure).

The measureµ has conditional expectationsµ+x− above its factorµ−: it can be written as
µ= µ− ⊗ µ

+
x− . The family of measures µ+x− is canonically defined for all points x− ∈6−

and varies continuously with x−, as we explained in §3.1 (for the opposite time direction).
To any point (x, [v]) ∈ P(E), we associate a measure ν(x,[v]) on P(E) as

follows. There is a canonical lift to E of W u
loc(x−), going through v, given by

{(x−, y+, Hu
(x−,x+)→(x−,y+)v) : y+ ∈W u

loc(x−)}. The measure µ+x− on W u
loc(x−) can be

lifted to this set, giving rise, after projectivization, to the measure ν(x,[v]). This measure is
invariant under (projectivized) unstable holonomy, it projects to µ+x− under the canonical
projection P(E)→6, and it projects to δx− under the canonical projection P(E)→6−.
By construction, for any x−, x+ and y+,

ν(x−,x+,[v]) = ν(x−,y+,[Hu
(x−,x+)→(x−,y+)

v]).

More generally, finite averages or even integrals of such measures are again Hu-
invariant.

There is a natural Markov chain on 6−, defined as follows. A point x− has several
preimages yi

− under U . By the invariance of the measureµ−, the sum over these preimages
of 1/J (yi

−) is equal to one, where J is the Jacobian of U for µ−. Hence, one defines
a Markov chain, by deciding to jump from x− to yi

− with probability 1/J (yi
−). The

corresponding Markov operator is given by

Lv(x−)=
∑

U (y−)=x−

1
J (y−)

v(y−).
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This is simply the transfer operator of §3.1 (for the map U instead of the map T ).
Replacing the potential ϕ which defines the Gibbs measure by a cohomologous potential,
we may write 1/(J (y−))= eϕ(y−).

Correspondingly, we define an operator M acting on measures on P(E), by

Mν = (TP)∗ν.

It maps ν(x,[v]) (supported on the lift V of W u
loc(x−) through [v]) to a measure supported

on TPV (which is a lift of the union of the unstable manifolds W u
loc(y−) for y− ∈6− with

U (y−)= x−). Choose on each of these submanifolds a point (y−, y+, [vy]) (where y+ is
arbitrary, and [vy] is the unique vector in TV above (y−, y+)). Then

Mν(x,[v]) =
∑

U (y−)=x−

eϕ(y−)ν(y−,y+,[vy ]). (3.6)

This follows from the equation (3.3) for the evolution of the conditional measures under
the dynamics and then the uniqueness of the Hu-invariant lift.

PROPOSITION 3.13. Let f be a continuous function on P(E). Then, uniformly in x ∈6
and v ∈ P(E), when N →∞,

1
N

N−1∑
n=0

∫
f dMnν(x,[v])→

∫
f dνu,

where νu is the unique invariant u-state of M.

Proof. It suffices to show that any weak limit ν∞ of sequences of the form

νN =
1
N

N−1∑
n=0

Mnν(xN ,[vN ])

(where xN and [vN ] may vary with N ) is an invariant u-state.
The invariance of the limiting measure is clear from the Cesaro averaging and the

definition Mν = (TP)∗ν. The Hu invariance also follows from the construction. It remains
to show that ν∞ projects to µ on 6 or, equivalently, that it projects to µ− on 6−.

The projection of νN on 6− is the Cesaro average of
∑

U n y−=(xN )−
eS−nϕ(y−)δy− , i.e.,

the position at time n of the Markov chain started from xN at time zero. For any continuous
function v on6−, we get

∫
vdπ∗νN = (1/N )

∑N−1
n=0 Lnv((xN )−). By a classical property

of transfer operators (see (3.2)), this converges uniformly to
∫
v dµ−. This proves that the

only possible weak limit for π∗(νN ) is µ−. �

Fix once and for all ε > 0, for which we want to prove the inequality

µ{x : log‖Mn(x)‖ ≤ n(λ1 − ε)} ≤ Ce−C−1n . (3.7)

LEMMA 3.14. Define a function g0 on P(E) by

g0(x, [v])= log(λ1 − ε)− log(‖M(x)v‖/‖v‖),

where the last term in this formula does not depend on the choice of the lift v of [v]. Then
there exist N and α, β > 0 such that, for any x and v,∫

eαSN g0 dν(x,[v]) ≤ e−βN .
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Proof. Define a function f0 on P(E) by

f0(x, [v])= log(‖M(x)v‖/‖v‖).

The integral of f0 with respect to the unique invariant u-state νu measures the average
expansion of a vector in the maximally expanded Oseledets subspace, which is, by
definition, equal to the maximal Lyapunov exponent λ1. Hence, it is not difficult to check
the following formula, due to Furstenberg (see, for instance, [Via14, Proposition 6.5]):∫

f0 dνu = log λ1.

It follows that ∫
g0 dνu = log(λ1 − ε)− log λ1 < 0.

Fix some c0 > 0 such that
∫

g0 dνu <−c0. By Proposition 3.13, there exists an integer N
such that, for any x and v,

1
N

N−1∑
n=0

∫
g0 dMnν(x,[v]) ≤−c0.

By definition of M,∫
SN g0 dν(x,[v]) =

N−1∑
n=0

∫
g0 dMnν(x,[v]) ≤−c0 N .

Using the inequality et
≤ 1+ t + t2e|t |, for any α ∈ (0, 1), we obtain∫

eαSN g0 dν(x,[v]) ≤ 1+ α
∫

SN g0 dν(x,[v]) + α2
∫
(SN g0)

2e|SN g0| dν(x,[v])

≤ 1− αc0 N + α2C,

where C is a constant depending on N but not on α. (For the bound in the last term,
note that the function SN g0 is uniformly bounded, as a continuous function on a compact
space.) When α is small enough, the term α2C is negligible. Hence, we obtain, for small
enough α and for β = αc0/2, the inequality∫

eαSN g0 dν(x,[v]) ≤ 1− βN ≤ e−βN . �

LEMMA 3.15. There exists a constant C such that, for any n ∈ N and any x and v,∫
eαSn g0 dν(x,[v]) ≤ Ce−βn .

Proof. It suffices to prove the lemma for times of the form nN , as the general case only
results in an additional multiplicative constant.

Fix some n. Iterating (3.6), (T nN
P )∗ν(x,[v]) is a finite linear combination of measures of

the form ν(xi ,[vi ]), with some coefficients ci > 0 adding up to one. Then∫
eαS(n+1)N g0 dν(x,[v]) =

∑
i

ci

∫
eαSnN g0◦T

−nN
P · eαSN g0 dν(xi ,[vi ]).
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In each of the integrals, the term eαSnN g0◦T−nN
is constant as g0 and M only depend on the

past of points in 6. Hence, this integral is a constant multiple of
∫

eαSN g0 dν(xi ,[vi ]), which
is ≤e−βN by Lemma 3.14. We get∫

eαS(n+1)N g0 dν(x,[v]) ≤ e−βN
∑

i

ci

∫
eαSnN g0◦T−nN

dν(xi ,[vi ])

= e−βN
∫

eαSnN g0 dν(x,[v]).

The conclusion then follows by induction on n. �

Proof of Theorem 3.12. Fix some vector v. Then the average
∫
ν(x,[v]) dµ(x) is a measure

on P(E) that projects to µ. If log‖Mn(y)‖ ≤ nλ1 − nε, then, for any vector w,
log(‖Mn(y)w‖/‖w‖)≤ n(λ1 − ε), i.e., Sng0(y, w)≥ 0. We obtain

µ{y : log‖Mn(y)‖ ≤ nλ1 − nε} ≤
∫

1(Sng0(y, w)≥ 0) dν(x,[v])(y, w) dµ(x)

≤

∫ (∫
eαSn g0 dν(x,[v])

)
dµ(x).

By Lemma 3.15, the last integral is bounded by Ce−βn . The upper bound (3.7) follows. �

3.5. Proof of Theorem 1.5(4). In this paragraph, we prove Theorem 1.5(4): if a cocycle
is locally constant above a transitive subshift of finite type, then it has exponential large
deviations for all exponents. This follows from successive reductions to Theorem 3.12.

LEMMA 3.16. Consider a locally constant cocycle which is holonomy-irreducible and has
simple top Lyapunov exponent, above a subshift of finite type with a Gibbs measure. Then
it has exponential large deviations for its top exponent.

Proof. By Theorem 3.6, the cocycle admits a unique u-state. Hence, the result follows
from Theorem 3.12. �

LEMMA 3.17. Consider a locally constant cocycle which has simple top Lyapunov
exponent, above a subshift of finite type with a Gibbs measure. Then it has exponential
large deviations for its top exponent.

Proof. We argue by induction on the dimension of the fibers of the cocycle. Consider a
cocycle M on a bundle E over a subshift of finite type T , with a simple top Lyapunov
exponent. We will show that it has exponential large deviations for its top exponent,
assuming the same results for all cocycles on fiber bundles with strictly smaller dimension.
We will prove the lower bound (3.4) (with i = 1) for M .

If the cocycle M is holonomy-irreducible, then the result follows from Lemma 3.16, so
assume that it is not. Consider an invariant family V1(x), . . . , VN (x), as in Definition 3.5,
such that N is minimal. It is invariant under the holonomies, i.e., locally constant. Let
V (x) be the span of V1(x), . . . , VN (x). It is also locally constant and invariant under the
cocycle.
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First, assume that the dimension of V is strictly smaller than that of E . Define a cocycle
MV as the restriction of M to V , and a cocycle ME/V as the cocycle induced by M on
the quotient bundle E/V . These two cocycles are locally constant. By definition of the
restriction norm and the quotient norm,

‖Mn(x)‖ ≥max(‖Mn
V (x)‖, ‖M

n
E/V (x)‖). (3.8)

Moreover, by Lemma 2.4, one of the two cocycles has λ1 as a simple top Lyapunov
exponent, and these two cocycles are locally constant and have strictly smaller fiber
dimension. By our induction assumption, we deduce that

µ{x : log‖Mn
W (x)‖ ≤ nλ1 − nε} ≤ Ce−C−1n,

where W is either V or E/V . The same bound follows for M thanks to (3.8).
Assume now that the dimension of V is equal to that of E , i.e., V = E . Consider a new

dynamics T̃ , on 6̃ =6 × {1, . . . , N }, mapping (x, i) to (T x, j), where j = j (x, i) is
the unique index such that M(x)Vi (x)= V j (T x). As M and all the Vk only depend on x0,
the function j only depends on i , x0 and x1. Hence, T̃ is a subshift of finite type. As we
chose N to be minimal, there is no invariant proper subfamily of V1, . . . , VN . Hence, T̃
is a transitive subshift. Also, let µ̃ be the product measure of µ and the uniform measure
on {1, . . . , N }; it is again a Gibbs measure for T̃ and therefore ergodic by transitivity.

Above 6̃, we consider a new bundle Ẽ(x, i)= Vi (x) and the resulting cocycle M̃ ,
which is the restriction of M to Vi . On any E(x), one can find a basis made of vectors in
the subspaces Vi (x), by assumption. It follows that ‖Mn(x)‖ ≤ C maxi ‖Mn(x)|Vi (x)‖,
for some uniform constant C . Hence, the top Lyapunov exponent of M̃ is (at least
and, therefore, exactly) λ1. Moreover, it is simple, as the top Oseledets space for M̃ in
Ẽ(x, i) is included in the top Oseledets space for M in E(x), which is one-dimensional
by assumption.

By our induction assumption, we obtain the bound (3.4) with i = 1 for the cocycle
M̃ over the subshift T̃ and the measure µ̃ (note that it is important there that we have
formulated the induction assumption for all subshifts of finite type, not only the original
one). The result follows for the original cocycle as ‖Mn(x)‖ ≥ ‖M̃n(x, 1)‖ for all x . �

LEMMA 3.18. Consider a locally constant cocycle, above a subshift of finite type with a
Gibbs measure. Then it has exponential large deviations for its top exponent.

Proof. Consider a locally constant cocycle M , and write i for the multiplicity of its top
Lyapunov exponent. Then the top Lyapunov exponent of 3i M is simple and equal to
iλ1(M). Moreover, for any matrix A (with singular values s1 ≥ s2 ≥ · · ·), ‖A‖i = si

1 ≥

‖3i A‖ = s1 · · · si . Thus,

{x : log‖Mn(x)‖ ≤ nλ1(M)− nε} ⊆ {x : log‖3i Mn(x)‖ ≤ nλ1(3
i M)− niε}.

The last set has an exponentially small measure by Lemma 3.17, as 3i M has a simple top
Lyapunov exponent, by construction, and is locally constant. The desired bound follows
for M . �

Proof of Theorem 1.5(4). Proving exponential large deviations for the cocycle M and
some index i amounts to proving exponential large deviations for 3i M and its top
Lyapunov exponent. Hence, the theorem follows from Lemma 3.18. �
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3.6. Proof of Theorem 1.5(5). Consider a cocycle M admitting invariant continuous
holonomies, which is pinching and twisting in the sense of Avila–Viana. We want to show
that it admits exponential large deviations for all exponents.

Theorem 3.7 shows that there is a unique invariant u-state on P(E), corresponding to
the maximally expanded Oseledets subspace (see the first lines of [AV07, §7]). Hence,
Theorem 3.12 applies and shows that M has exponential large deviations for its top
exponent.

To prove exponential large deviations for an exponent i , a natural strategy would be
to consider the cocycle 3i M and prove that it has exponential large deviations for its
top Lyapunov exponent. However, there is no reason why 3i M should be twisting and
pinching. What Avila and Viana proved in [AV07], however, is that M has a unique u-
state on the Grassmannian of i-dimensional subspaces. All the arguments in the proof of
Theorem 3.12 go through if one replaces everywhere the space P(E) by the corresponding
Grassmannian. Then the Grassmannian version of Theorem 3.12 shows that M has
exponential large deviations for the exponent i . �

3.7. Proof of Theorem 1.5(6). Consider a two-dimensional cocycle M admitting
continuous holonomies. We want to show that it satisfies exponential large deviations
for all exponents i . For i = 2, the norm ‖3i M(x)‖ is the absolute value of the determinant
of M(x). The desired estimate (1.1) involves an additive cocycle, the Birkhoff sums of the
continuous function log|det M(x)|. Hence, (1.1) follows from the large deviations estimate
for Birkhoff sums.

The only non-trivial case is i = 1, i.e., exponential large deviations for ‖Mn(x)‖. If
M admits a unique invariant u-state on P(E), then the result follows from Theorem 3.12,
and the proof is complete. If the two Lyapunov exponents of M are equal, then the result
follows from Theorem 1.5(1). The last case is when the Lyapunov exponents are distinct,
but there are two different invariant u-states. By Theorem 3.8, it follows that the cocycle
is reducible, through a family of one-dimensional subspaces V(x)= {V1(x), . . . , VN (x)}
depending continuously on x (but a priori not invariant under the holonomies). As in the
proof of Lemma 3.17, one can then define a new cocycle M̃ above a new dynamics T̃ ,
such that exponential large deviations for (M, T ) would follow from exponential large
deviations for (M̃, T̃ ). As V is not invariant under holonomies, the holonomies do not
descend to M̃ , and hence M̃ does not admit invariant holonomies in general (this is
what prevents us from making a genuine induction and restricts the result to dimension
two). However, M̃ is a one-dimensional cocycle, and hence it satisfies exponential large
deviations thanks to Theorem 1.5(1). The argument in Lemma 3.17 goes through to prove
that the original cocycle also satisfies exponential large deviations. �

4. Exponential returns to nice sets for subadditive cocycles
The main statement of this section is the following theorem. Note that the assumptions of
the theorem ensure that the function F below is finite almost everywhere, although it can
be infinite on points which are not typical for µ. We are trying to control how large it will
be along typical orbits, in a quantitative sense.
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THEOREM 4.1. Let T : X→ X be a continuous map preserving an ergodic probability
measure µ on a compact space. Consider a subadditive cocycle u : N× X→ R, such that
u(n, x)/n converges almost everywhere to zero and u(n, ·) is continuous for all n. Also,
let ε > 0. Define a function

F(x)= sup
n≥0
|u(n, x)| − εn.

Assume that u has exponential large deviations and that the Birkhoff sums of continuous
functions also have exponential large deviations.

Let δ > 0. Then there exists C > 0 such that, for any n ≥ 0,

µ{x : Card{ j ∈ [0, n − 1] : F(T j x) > C} ≥ δn} ≤ Ce−C−1n .

In the applications we have in mind, u will be of the form u(n, x)= log‖3i M (n)(x)‖ −
n(λ1 + · · · + λi ), for some cocycle M with Lyapunov exponents λk . The points where
F(x)≤ C are the points where all the iterates of the cocycle are well controlled.
Essentially, they belong to some Pesin sets (see Proposition 5.1 below for a precise version
of this statement). Hence, the theorem will imply that most iterates of a point return often
to Pesin sets, if the matrix cocycle has exponential large deviations for all exponents.

The proof is most conveniently written in terms of superadditive cocycles. Note that,
in the lemma below, the definition of G resembles that of F in the theorem above,
except for the lack of absolute value. Hence, the following lemma applied to v(n, x)=
−u(n, x)− nε proves one of two inequalities in Theorem 4.1.

LEMMA 4.2. Let T : X→ X preserve an ergodic probability measure µ on a compact
space. Consider a superadditive cocycle v : N× X→ R, such that v(n, x)/n converges
almost everywhere to −ε < 0 and v(n, ·) is continuous for all n. Define a function

G(x)= sup
n≥0

v(n, x).

Assume that v satisfies exponential large deviations and that the Birkhoff sums of
continuous functions also satisfy exponential large deviations.

Let δ > 0. Then there exists C > 0 such that, for any n ≥ 0,

µ{x : Card{ j ∈ [0, n − 1] : G(T j x) > C} ≥ δn} ≤ Ce−C−1n .

Proof. When N tends to +∞, the sequence vN/N tends almost surely to −ε. The
convergence also holds in L1 by Kingman’s theorem. Then vN/N + ε tends almost surely
and in L1 to zero. Then min(vN/N + ε, 0) tends almost surely and in L1 to zero. Thus,
we can take once and for all a large enough N so that∫

min(vN/N + ε, 0) dµ≥−δε/10. (4.1)

Let w = vN/N .
By Lemma 3.1 applied to the subadditive cocycle −v, there exists a constant C0 > 0

such that v(n, x)≥ Snw(x)− C0 for any x ∈ X and any n ∈ N. We will show that

µ{x : Card{ j ∈ [0, n − 1] : G(T j x) > 2C0} ≥ δn} ≤ Ce−C−1n .
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Assume, first, that x has an iterate where the cocycle is large along an extremely long
interval, i.e., x belongs to

Kn =

n−1⋃
t=0

(T t )−1
{y : ∃ j ≥ δn/2, v( j, y) > 0}.

As v has exponential large deviations and converges to a negative constant, the last set has
a measure which is exponentially small in n. As T is measure preserving, it follows that
µ(Kn) is also exponentially small.

Consider now x /∈ Kn such that Card{ j ∈ [0, n − 1] : G(T j x) > 2C0} ≥ δn. Then

Card{ j ∈ [0, n − 1− δn/2] : G(T j x) > 2C0} ≥ δn/2. (4.2)

We define inductively a sequence of times tk , as follows. We start from t0 = 0. If
G(T tk x) > 2C0 and tk ≤ n − 1− δn/2, then we say that tk belongs to the set U+ of sum-
increasing times. In this case, we can choose nk > 0 such that v(nk, T tk x) > 2C0, by
definition of G. Then we let tk+1 = tk + nk . Otherwise, we say that tk belongs to the set
U− of sum-decreasing times, and we let tk+1 = tk + 1. We stop at the first t j where t j ≥ n.

Let A+ =
⋃

tk∈U+ [tk, tk+1) and A− = [0, n − 1] \ A+. As x /∈ Kn , the lengths
nk = tk+1 − tk when tk ∈U+ are all bounded by δn/2. Hence, A+ is included in
[0, n − 1]. Moreover, the set of bad times, on the left of (4.2), is included in A+.
Therefore, Card A+ ≥ δn/2 and Card A− ≤ (1− δ/2)n.

We will also need to write the set A− as a union of intervals
⋃

j∈J [t
′

j , t ′j + n′j ) over
some index set J : i.e., we group together the times in U− that are not separated by times
in U+.

Using the decomposition of [0, n − 1] as A+ ∪ A−, the decomposition of these sets
into intervals and the superadditivity of the cocycle, we obtain the inequality

v(n, x)≥
∑

tk∈U+
v(nk, T tk x)+

∑
j∈J

v(n′j , T t ′j x)≥
∑

tk∈U+
2C0 +

∑
j∈J

v(n′j , T t ′j x),

where the last inequality follows from the definition of U+. Note that the right endpoint
of an interval in A− belongs to U+, except for the last interval. It follows that Card J ≤
Card U+ + 1≤ 2 Card U+. Hence, the above inequality implies that

v(n, x)≥
∑
j∈J

(C0 + v(n′j , T t ′j x)).

Together with the definition of C0, this gives

v(n, x)≥
∑
j∈J

Sn′j
w(T t ′j x)=

∑
k∈A−

w(T k x).

Now, let us introduce ε:

v(n, x)≥
∑

k∈A−
(w(T k x)+ ε)− ε Card(A−)

≥

∑
k∈[0,n−1]

min(w(T k x)+ ε, 0)− ε Card(A−)

≥

∑
k∈[0,n−1]

min(w(T k x)+ ε, 0)− ε(1− δ/2)n,

where the last inequality holds as Card A− ≤ (1− δ/2)n.
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The continuous function x 7→min(w(x)+ ε, 0) has exponential large deviations and
integral ≥− δε/10, by (4.1). Hence,

∑
k∈[0,n−1] min(w(T k x)+ ε, 0)≥−nδε/5, apart

from an exponentially small set. Apart from this set, we obtain

v(n, x)≥−εn + (δ/2− δ/5)εn.

As v has exponential large deviations and asymptotic average −ε, it follows that this
condition on x has exponentially small measure. �

Proof of Theorem 4.1. The function F is the maximum of the two functions

H(x)= sup
n≥0
−u(n, x)− nε, I (x)= sup

n≥0
u(n, x)− nε.

We should show that each of these functions satisfies the conclusion of the theorem. For H ,
this follows from Lemma 4.2 applied to v(n, x)=−u(n, x)− nε.

For I , let us consider N > 0 such that uN/N has integral <ε/2. By Lemma 3.1, there
exists a constant C0 such that u(n, x)≤ Sn(uN/N )+ C0 for all n. Let w = uN/N − ε.
Lemma 4.2 applied to the cocycle Snw shows that, for some constant C1 > 0,

µ{x : Card{ j ∈ [0, n − 1] : sup
n

Snw(T j x) > C1} ≥ δn} ≤ Ce−C−1n .

If u(n, x)− nε ≥ C0 + C1, then Snw(x)≥ C1. Hence, the control on I follows from the
previous equation. �

5. A deterministic control on the Pesin function
An important difficulty in proving Theorem 1.7 is that the Pesin function Aε is defined in
terms of the Oseledets subspaces Ei (x), which vary only measurably with the point and
for which we have no good control. On the other hand, Theorem 4.1 provides many returns
for sets defined in terms of functions for which we have good controls, e.g. Birkhoff sums
of continuous functions (by the large deviation principle) or norms of linear cocycles (if
one can prove exponential large deviations for them, using, for instance, Theorem 1.5).
Our goal in this section is to explain how controls on such quantities imply controls on the
Pesin function Aε. Then Theorem 1.7 will essentially follow from Theorem 4.1. To prove
such a result, we need to revisit the proof of Oseledets’ theorem and replace almost sure
controls with more explicit bounds.

Consider an invertible map T : X→ X preserving a probability measure µ, and a log-
integrable linear cocycle M above T on X × Rd . Let λ1 ≥ · · · ≥ λd be its Lyapunov
exponents, let I = {i : λi < λi−1} be a set of indices for the distinct Lyapunov exponents,
let Ei be the Lyapunov subspaces and let di be the dimension of Ei .

Given ε > 0, define functions

B+ε (x)= sup
i∈[1,d]

B(i)+ε = sup
i∈[1,d]

sup
n≥0
|log‖3i M (n)(x)‖ − n(λ1 + · · · + λi )| − nε,

B−ε (x)= sup
i∈[1,d]

B(i)−ε = sup
i∈[1,d]

sup
n≤0
|log‖3i M (n)(x)‖ − n(λd + · · · + λd−i+1)| − |n|ε
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and
Bε(x)=max(B+ε (x), B−ε (x)). (5.1)

These are the functions we can control using the tools of the previous sections.
The following proposition asserts that a control on Bε and a mild control on angles

imply a control on Aε′ for ε′ = 20dε. For i ∈ I , let us denote by F (m)
≥i (x) the

maximally contracted subspace of M (m)(x) of dimension d − i + 1 and by F (−m)
<i (x)

the maximally contracted subspace of M (−m)(x) of dimension i − 1 if these spaces are
uniquely defined, as in the statement of Theorem 2.2. We will also write F (−m)

≤i (x)=

F (−m)
< j (x), where j is the smallest number in I ∩ (i, d]: i.e., F (−m)

≤i (x) is the maximally
contracted subspace of dimension i + di − 1.

THEOREM 5.1. Assume that ‖M(x)‖ and ‖M(x)−1
‖ are bounded uniformly in x.

Consider ε ∈ (0,mini 6= j∈I |λi − λ j |/(20d)), ρ > 0 and C > 0. Then there exist m0 ∈ N
and D > 0 with the following properties.

Consider a point x satisfying Bε(x)≤ C. Then its subspaces F (n)
≥i (x) and F (−n)

≤i (x) are

well defined for all n ≥ m0 and converge to subspaces F (∞)
≥i (x) and F (−∞)

≤i (x).
Assume, additionally, that, for all i ∈ I , there exists m ≥ m0 such that the angle between

F (m)
≥i (x) and F (−m)

<i (x) is at least ρ. Then the Oseledets subspace Ei (x)= F (∞)
≥i (x) ∩

F (−∞)
≤i (x) is a well-defined di -dimensional space for all i ∈ I . Moreover, the function

A20dε(x) (defined in (1.2) in terms of these subspaces) satisfies A20dε(x)≤ D.

Note that there is no randomness involved in this statement; it is completely
deterministic.

The condition on Bε controls separately what happens in the past and in the future.
Oseledets subspaces are defined by intersecting flags coming from the past and from the
future, as explained in Theorem 2.2. Therefore, it is not surprising that there should be an
additional angle requirement to make sure that these flag families are not too singular, one
with respect to the other. Note that the angle requirement is expressed in terms of a fixed
time m. Hence, it will be easy to enforce in applications.

In this section, we prove Theorem 5.1. Once and for all, we fix T , M and µ satisfying
the assumptions of this theorem, and constants C > 0, ε ∈ (0,mini 6= j∈I |λi − λ j |/(20d))
and ρ > 0. Consider a point x satisfying Bε(x)≤ C . We want to show that if m is suitably
large (depending only on C , ε and ρ), then the subspaces F (m)

≥i (x) and F (−m)
<i (x) are

well defined and, moreover, that if the angle between them is at least ρ, then A20dε(x)
is bounded by a constant D only depending on C , ε and ρ.

We will use the notation introduced before Theorem 2.2. In particular, t (n)i (x)=

enλ(n)i (x) is the i th singular value of Mn(x). We will essentially repeat the argument from
the proof of a technical lemma in [Rue79]. A more detailed exposition is given in [Sar09,
§2.6.2].

Step 1. There exists N1 = N1(C, ε) such that, if n ≥ N1, then |λ(n)i (x)− λi | ≤ 3ε for
all i . In particular, thanks to the inequality ε <mini 6= j∈I |λi − λ j |/(20d), there is a gap
between the eigenvalues λ(n)j (x) in different blocks {i, . . . , i + di − 1}. (Note that the 20d
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is much larger than we need here. Six would be enough, but it will be important later on.)
This implies that the different subspaces (F (n)i (x))i∈I are well defined.

Proof. We know that Bε(x)≤ C . Thanks to the equality log‖3i Mn(x)‖ = n(λ(n)1 (x)+
· · · + λ

(n)
i (x)) and to the definition of B+ε , this gives for all i ,

n|λ(n)1 (x)+ · · · + λ(n)i (x)− (λ1 + · · · + λi )| ≤ εn + C.

Subtracting these equations with indices i and i − 1, we get |λ(n)i (x)− λi | ≤ 2ε + 2C/n.
If n is large enough, this is bounded by 3ε, as desired. �

From this point on, we will only consider values of n or m which are ≥N1, so
that the subspaces F (n)i (x) are well defined. We will write 5(n)i for the orthogonal
projection on this subspace and 5(n)

≥i and 5(n)<i for the projections on
⊕

j∈I, j≥i F (n)j (x)

and
⊕

j∈I, j<i F (n)j (x), respectively. They satisfy 5(n)
≥i +5

(n)
<i = Id.

Step 2. There exists a constant K1 = K1(C, ε) such that, for all m ≥ n ≥ N1, all i > j
in I and all v ∈ F (n)

≥i (x), we have

‖5
(m)
≤ j v‖ ≤ K1‖v‖e−n(λ j−λi−6(d−1)ε).

Proof. The proof is carried out in two steps.

First claim: there exists a constant K0 such that, for n ≥ N1, v ∈ F (n)
≥i (x) and j < i ,

‖5
(n+1)
j v‖ ≤ K0‖v‖e−n(λ j−λi−6ε).

Indeed, on the one hand, we have

‖Mn+1(x)v‖ = ‖M(T n x) · Mn(x)v‖ ≤ (sup
y
‖M(y)‖) · ‖Mn(x)v‖

≤ (sup
y
‖M(y)‖)en(λi+3ε)

‖v‖,

thanks to the first step and the fact that v ∈ F (n)
≥i (x). On the other hand, as Mn+1(x)

respects the orthogonal decomposition into the spaces F (n+1)
k (x), we have

‖Mn+1(x)v‖ ≥ ‖Mn+1(x)5(n+1)
j v‖ ≥ e(n+1)(λ j−3ε)

‖5
(n+1)
j v‖,

again, thanks to the first step. Putting these two equations together gives the result.

Second claim: for all j < i in I , there exists a constant Ki, j such that, for all
m ≥ n ≥ N1 and all v ∈ F (n)

≥i (x), we have

‖5
(m)
≤ j v‖ ≤ Ki, j e−n(λ j−λi−6(i− j)ε)

‖v‖. (5.2)

Once this equation is proved, then Step 2 follows by taking for K1 the maximum of the
Ki, j over j < i in I . To prove (5.2), we argue by decreasing induction over j < i , j ∈ I .
Assume thus that the result is already proved for all k ∈ I ∩ ( j, i); let us prove it for j .
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Decomposing a vector v along its components on F (m)
≤ j (x), on F (m)k (x) for k ∈ I ∩ ( j, i)

and on F (m)
≥i (x), we get

‖5
(m+1)
≤ j v‖ ≤ ‖5

(m+1)
≤ j 5

(m)
≤ j v‖ +

∑
k∈I∩( j,i)

‖5
(m+1)
≤ j 5

(m)
k v‖ + ‖5

(m+1)
≤ j 5

(m)
≥i v‖. (5.3)

The first term is bounded by ‖5(m)
≤ j v‖ as 5(m+1)

≤ j is a projection. The second term

is bounded by K0e−m(λ j−λk−6ε)
‖5

(m)
k v‖ thanks to the first claim applied to m and

5
(m)
k v∈F (m)

≥k (x). The induction hypothesis asserts that

‖5
(m)
k v‖ ≤ Ki,ke−m(λk−λi−6(i−k)ε)

‖v‖.

Overall, we get for the second term a bound which is at most∑
k∈I∩( j,i)

K0 Ki,ke−m(λ j−λi−6(i−k+1)ε)
≤ K ′e−m(λ j−λi−6(i− j)ε)

‖v‖.

Finally, the third term in (5.3) is bounded by K0e−m(λ j−λi−6ε)
‖5

(m)
≥i v‖, by the first claim

applied to m and 5(m)
≥i v ∈ F (m)

≥i (x). This is bounded by K0e−m(λ j−λi−6ε)
‖v‖ as 5(m)

≥i is a
projection.

All in all, we have proved that

‖5
(m+1)
≤ j v‖ ≤ (K ′ + K0)e−m(λ j−λi−6(i− j)ε)

‖v‖ + ‖5
(m)
≤ j v‖.

The estimate (5.2) then follows by induction over m, summing the geometric series starting
from n as λ j − λi − 6(i − j)ε > 0, thanks to the choice of ε. �

The second step controls projections from F (n)i to F (m)j , for m ≥ n, when i > j . The
third step controls projections in the other direction, and thus gives full control of the
respective projections of the spaces.

Step 3. For all m ≥ n ≥ N1, all i > j in I and all v ∈ F (n)
≤ j , we have

‖5
(m)
≥i v‖ ≤ K1‖v‖e−n(λ j−λi−6(d−1)ε).

Proof. Define a new matrix cocycle by M̃(x)= (M−1(x))t , from E∗(x) to E∗(T x).
In coordinates (identifying E(x) and E∗(x), thanks to its Euclidean structure), it is
given as follows. Write Mn(x) as k1 Ak2, where k1 and k2 are orthogonal matrices and
A is a diagonal matrix with entries t (n)1 (x)= enλ1(n)(x), . . . , t (n)d (x)= enλd (n)(x). Then
M̃n(x)= k1 A−1k2. Hence, it has the same decomposition into singular spaces as Mn(x),
the difference being that the singular values of Mn(x) are replaced by their inverses.

The proof in Step 2 only used the fact that the logarithms of the singular values were 3ε-
close to λi and that the norm of the cocycle is uniformly bounded. All these properties are
shared by M̃ . Hence, the conclusion of Step 2 also applies to M̃ , except that the inequality
between i and j has to be reversed as the ordering of singular values of M̃ is opposite to
that of M . This is the desired conclusion. �
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Overall, Steps 2 and 3 combined imply that the projection of a vector in
F (n)i (x) on (F (m)i (x))⊥ = F (m)<i (x)⊕ F (m)>i (x) has a norm bounded by 2K1e−δn for
δ =mink 6=`∈I |λk − λ`| − 6(d − 1)ε > 0. Hence, in terms of the distance d on the
Grassmannian of di -dimensional subspaces defined in (2.1), d(F (n)i (x), F (m)i (x))≤
2K1e−δn . It follows that F (n)i (x) is a Cauchy sequence, converging to a subspace F (∞)i (x),
as claimed in the statement of the theorem.

Step 4. There exist N2 ≥ N1 and a constant K2 such that, for all n ≥ N2, all i in I and
all v ∈ F (∞)i with norm one, we have

K−1
2 en(λi−6dε)

≤ ‖Mn(x)v‖ ≤ K2en(λi+6dε). (5.4)

Proof. Take a unit vector v ∈ F (∞)i (x). For j ∈ I , the norm of the projection
πF (n)j (x)→F (∞)i (x), as the limit of the projections πF (n)j (x)→F (m)i (x), is bounded by

K1e−n(|λi−λ j |−6(d−1)ε), thanks to Steps 2 and 3 (note that this bound is non-trivial only
if j 6= i). Its transpose, the projection πF (∞)i (x)→F (n)j (x), has the same norm and therefore

satisfies the same bound.
Writing v j = πF (∞)i (x)→F (n)j (x)v, we have Mn(x)v =

∑
j∈I Mn(x)v j . We have

‖v j‖ ≤ K1e−n(|λi−λ j |−6(d−1)ε). (5.5)

As Mn(x) expands by at most enλ j+3ε on F (n)j (x), thanks to Step 1, we obtain

‖Mn(x)v j‖ ≤ K1e−n(|λi−λ j |−6(d−1)ε)enλ j+3ε
≤ K1en(λi+6dε).

Here, it is essential to have in Step 2 a control in terms of λ j − λi , and not merely some
exponentially decaying term without a control on the exponent. Summing over j , this
proves the upper bound in (5.4).

For the lower bound, we write ‖Mn(x)v‖ ≥ ‖Mn(x)vi‖ as all the vectors M (n)(x)v j

are orthogonal. This is bounded from below by en(λi−3ε)
‖vi‖, by Step 1. To conclude,

it suffices to show that ‖vi‖ is bounded from below by a constant if n is large enough.
As ‖vi‖ ≥ ‖v‖ −

∑
j 6=i ‖v j‖, this follows from the fact that ‖v j‖ tends to zero with n if

j 6= i , thanks to (5.5). �

We recall that we are trying to control the behavior of Mn(x) not on F (∞)i (x), but on the
Oseledets subspace Ei (x)= F (∞)

≥i (x) ∩ F (−∞)
≤i (x). To this effect, there is, in the statement

of Theorem 5.1, an additional angle assumption that we will use now. Let ρ > 0 be given
as in the statement of the theorem. There exists δ > 0 with the property that if U and
V are two subspaces of complementary dimension making an angle at least ρ, then any
subspaces U ′ and V ′ with d(U,U ′)≤ δ and d(V, V ′)≤ δ make an angle at least ρ/2.

We fix once and for all m0 = m0(C, ε, δ)≥ N2 such that, for all i ∈ I and all m ≥ m0,
d(F (m)
≥i (x), F (∞)

≥i (x))≤ δ and d(F (−m)
≤i (x), F (−∞)

≤i (x))≤ δ. Its existence follows from the
convergence asserted at the end of Step 3 (and from the same result for T−1).

Assume now (and until the end of the proof) that, for some m ≥ m0, the angle between
F (m)
≥i (x) and F (−m)

<i (x) is≥ρ, as in the assumptions of the theorem. It follows that the angle
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between F (∞)
≥i (x) and F (−∞)<i (x) is at least ρ/2. As a consequence, the spaces F (∞)

≥i (x)

and F (−∞)
≤i (x) are transverse and their intersection is a di -dimensional space Ei (x).

Step 5. There exist constants K3 > 0 and N3 ≥ N2 such that, for all n ≥ N3, all i ∈ I
and all v ∈ Ei (x) with norm one, we have

K−1
3 en(λi−6dε)

≤ ‖Mn(x)v‖ ≤ K3en(λi+6dε). (5.6)

Proof. We have that v ∈ Ei (x)⊆ F (∞)
≥i (x). Decomposing the vector v along its

components v j ∈ F (∞)j (x) with j ∈ I ∩ [i, d] and using the upper bound of (5.4) for each
v j , the upper bound in (5.6) readily follows.

For the lower bound, we note that Ei (x), being contained in F (−∞)
≤i (x), makes an angle

at least ρ/2 with F (∞)>i (x). This implies that the norm of the projection vi of v on F (∞)i (x)
is bounded from below by a constant c0 > 0. Using both the upper and the lower bounds
of Step 4, we obtain

‖Mn(x)v‖ ≥ ‖Mn(x)vi‖ −
∑

j∈I, j>i

‖Mn(x)v j‖

≥ c0 K−1
2 en(λi−6dε)

−

∑
j∈I, j>i

K2en(λ j+6dε).

The choice of ε ensures that, for j > i in I , one has λi − 6dε > λ j + 6dε. Hence,
the sum in this equation is asymptotically negligible, and we obtain a lower bound
c0 K−1

2 en(λi−6dε)/2 if n is large enough. �

Step 6. There exists a constant K4 such that, for all n ∈ Z, all i ∈ I and all v ∈ Ei (x)
with norm one,

K−1
4 enλi−6dε|n|

≤ ‖Mn(x)v‖ ≤ K4enλi+6dε|n|. (5.7)

Proof. Step 5 shows that this control holds uniformly over n ≥ N3. The same argument
applied to the cocycle M−1 and the map T−1 gives the same control for n ≤−N3 (note
that the function Bε(x), which is bounded by C by assumption, controls both positive and
negative times). Finally, the control over n ∈ (−N3, N3) follows from the finiteness of this
interval and the uniform boundedness of M and M−1. �

We can finally conclude the proof of Theorem 5.1. We want to bound the quantity
A20dε(x) defined in (1.2). Fix i ∈ I , v ∈ Ei (x) \ {0} and m, n ∈ Z. Then, using the upper
bound of (5.7) for ‖Mn(x)v‖ and the lower bound for ‖Mm(x)v‖, we get

‖Mn(x)v‖
‖Mm(x)v‖

e−(n−m)λi e−(|n|+|m|)(20dε)/2

≤ K4enλi+6dε|n|
· K4e−mλi+6dε|m|

· e−(n−m)λi e−(|n|+|m|)(20dε)/2

= K 2
4 e−(|n|+|m|)4dε

≤ K 2
4 .

Taking the supremum over i ∈ I , v ∈ Ei (x) \ {0} and m, n ∈ Z, this shows that A20dε(x)≤
K 2

4 . This concludes the proof for D = K 2
4 . �
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6. Exponential returns to Pesin sets
In this section, we prove Theorem 1.7. As in the assumptions of this theorem, let us
consider a transitive subshift of finite type T with a Gibbs measure µ and a Hölder cocycle
M that has exponential large deviations for all exponents. Let δ > 0. We wish to show
that, for some D > 0, the set

{x : Card{k ∈ [0, n − 1] : Aε(T k x) > D} ≥ δn}

has exponentially small measure. Reducing ε, if necessary, we can assume that ε < |λi −

λ j | for all i 6= j ∈ I . Set ε′ = ε/(20d).
The angle between the Lyapunov subspaces is almost everywhere non-zero. In

particular, given i ∈ I , the angle between F (∞)
≥i (x) and F (−∞)<i (x) is positive almost

everywhere. On a set of measure>1− δ/2, it is bounded from below by a constant 2ρ > 0
for all i . These subspaces are the almost sure limit of F (m)

≥i (x) and F (−m)
<i (x), according to

Theorem 2.2. Hence, if m is large enough, say, m ≥ m1, the set

U =Um =
{

x ∈ X : ∀i ∈ I, F (m)
≥i (x) and F (−m)

<i (x) are well defined

and ∠(F (m)
≥i (x), F (−m)

<i (x)) > ρ
}

has measure >1− δ/2.
We will use the functions B(i)±

ε′
defined before (5.1). For each i ∈ [1, d] and σ ∈

{+,−}, there exists a constant Ci,σ such that

{x : Card{k ∈ [0, n − 1] : B(i)σ
ε′

(T k x) > Ci,σ } ≥ δn/(4d)}

has exponentially small measure, by Theorem 4.1 and the assumption on exponential large
deviations for all exponents. (For σ =−, this theorem should be applied to T−1.) Let
C ′ =max Ci,σ . As Bε′ is the maximum of the functions B(i)σ

ε′
, it follows that

{x : Card{k ∈ [0, n − 1] : Bε′(T k x) > C ′} ≥ δn/2}

has exponentially small measure.
We apply Theorem 5.1 with ε = ε′ and C = C ′ and ρ to obtain some integer m0 ≥ 1

and some constant D with the properties described in Theorem 5.1. Let us fix until the end
of the proof m =max(m0, m1).

The set U =Um is open, by continuity of Mm and M−m . In particular, it contains a set
V which is a finite union of cylinders, with µ(V ) > 1− δ/2. To conclude, it suffices to
show that

{x : Card{k ∈ [0, n − 1] : T k x /∈ V } ≥ δn/2} (6.1)

has exponentially small measure. Indeed, assume this holds. Then, apart from an
exponentially small set, there are at most δn bad times k in [0, n − 1] for which T k x /∈ V or
Bε′(T k x) > C ′. For the other good times, T k x ∈ V and Bε′(T k x)≤ C ′. Then Theorem 5.1
shows that Aε(T k x)= A20dε′(T k x)≤ D, as desired.

It remains to control (6.1). Let χV denote the characteristic function of V ; it is a
continuous function. The set in (6.1) is

{x : SnχV (x) < (1− δ/2)n}.

As
∫
χV = µ(V ) > 1− δ/2, by construction, the large deviation principle for continuous

functions shows that this set is indeed exponentially small. This concludes the proof of the
theorem. �
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A. Appendix. Counterexamples to exponential large deviations
In this appendix, we give two counterexamples to exponential large deviations. The first
easy one, in Proposition A.1, is for Hölder-continuous subadditive cocycles. The second
harder one, in Theorem A.3, is in the more restrictive setting of norms of matrix cocycles
(only continuous, although one expects that the same kind of result should hold for Hölder
cocycles with small Hölder exponent).

PROPOSITION A.1. Let (T, µ) be an invertible subshift with an invariant ergodic measure
µ which is not supported on a periodic orbit. Consider a positive sequence un tending to
zero. There exists a subadditive cocycle a(n, x) such that a(n, ·) is locally constant for
each n, such that a(n, x)/n→ 0 almost everywhere and such that, for infinitely many
values of n,

µ{x : a(n, x)/n ≤−1} ≥ un .

In this proposition, by locally constant, we mean that a(n, x) only depends on finitely
many coordinates x−N , . . . , xN (but, of course, N depends on n).

The proof uses the following easy variant of Rokhlin’s lemma.

LEMMA A.2. Let δ > 0 and m > 0. In a subshift in which the set of periodic points has
measure zero, there exists a subset R made of finitely many cylinders such that the sets
(T i R)0≤i<m are pairwise disjoint and cover a measure at least 1− δ.

Proof. We may find a set S such that its m first iterates are disjoint and cover a measure
≥1− δ/2, by Rokhlin’s lemma. Let S′ be a finite union of cylinders which approximates
S so well that µ(S′1S)≤ ρ for ρ = δ/(4m2). Let R = S′ \

⋃
0<i<m T i (S′). It is a finite

union of cylinder sets and the sets T i R for i < m are disjoint. We have

S′ ∩ T i (S′)⊆ (S′1S) ∪ (S ∩ T i S) ∪ (T i S1T i S′).

The middle set is empty, the other ones have measure at most ρ. Hence, the measure of
this set is at most 2ρ. Finally, µ(R)≥ µ(S′)− 2(m − 1)ρ ≥ µ(S)− 2mρ. Hence

µ

( ⋃
0≤i<m

T i R
)
=mµ(R)≥ mµ(S)− 2m2ρ

=µ

( ⋃
0≤i<m

T i S
)
− 2m2ρ ≥ 1− δ/2− 2m2ρ.

The choice of ρ ensures that the last term is 1− δ, as claimed. �

Proof of Proposition A.1. We will construct a sequence ni →∞ and a sequence of
functions fi for i ≥ 1 with the following properties.
(1) Each fi is locally constant.
(2) We have fi (x)≤ 0 for all x and

∫
fi =−2−i .

(3) We have µ{x : Sni fi (x)≤−2ni } ≥ uni .
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Let also f0 = 1 and n0 = 0. Define

a(n, x)=
∑

i :ni≤n

Sn fi (x).

As the ( fi )i≥1 are non-positive, this is a subadditive cocycle. Moreover,
∫

a(n, x)/n =∑
ni≤n

∫
fi → 0. By Kingman’s theorem, it follows that a(n, x)/n tends to zero almost

surely. Moreover, if Sni fi (x)≤−2ni , then, by non-positivity of all the fj except for j = 0,

a(ni , x)≤ Sni f0(x)+ Sni fi (x)≤ ni − 2ni ≤−ni .

Hence, the third point in the definition of fi ensures that a(ni , x)≤−ni with probability
at least uni , showing that a satisfies the conclusion of the proposition.

Let us now construct fi and ni as above. First, choose n = ni such that uni ≤ 2−i−3.
Then, let K = 2i+2ni . We use a corresponding Rokhlin tower: by Lemma A.2, there exists
a set R which is a finite union of cylinder sets such that R, . . . , T K−1 R are disjoint, and
their union covers a proportion >1/2 of the space. Then µ(R) ∈ (1/(2K ), 1/K ]. Define
fi to be equal to −ci on

⋃
k<K/2i+1 T k R and zero elsewhere, where ci is chosen so that∫

fi =−2−i . As µ(
⋃

k<K/2i+1 T k R)= (K/2i+1)µ(R)≤ 2−i−1, it satisfies ci ≥ 2. For
any x ∈

⋃
k<K/2i+2 T k R, fi (T k x)=−ci for k < K/2i+2

= ni , and therefore Sni fi (x)=
−ci ni ≤−2ni . The probability of this event is µ(

⋃
k<K/2i+2 T k R)= (K/2i+2)µ(R)≥

2−i−3
≥ uni , as desired. �

We will now construct a continuous cocycle taking values in SL(2, R) without
exponential large deviations for its top exponent. Note that a generic continuous
cocycle away from uniform hyperbolicity has only zero Lyapunov exponents, by Bochi–
Viana [BV05], so it has exponential large deviations by Theorem 1.5(1). Hence, our
construction cannot be done using Baire arguments.

THEOREM A.3. Let un be any positive sequence tending to zero. Consider the full shift
on two symbols with a fully supported invariant ergodic measure µ. Then there exists a
continuous SL(2, R)-valued cocycle M with a positive top Lyapunov λ+(M) such that,
for infinitely many values of n,

µ{x : log‖Mn(x)‖ ≤ nλ+(M)/2} ≥ un .

If un tends to zero slower than exponentially, for instance, un = 1/n, then the cocycle
M does not have exponential large deviations.

Let 6 be the full shift over two symbols zero and one, with a given invariant ergodic
measure µ of full support (what we really need is that the support of µ contains a fixed
point or, more generally, a periodic orbit, but µ is not supported on this orbit). In this
section, we will say that an object defined on 6 is locally constant if it only depends on
(xn)|n|≤N for some N . Let x∗ ∈6 be the point with all coordinates equal to one. We say
that a cocycle M taking values in SL(2, R) has property Pλ, for some λ > 0, if it satisfies
the following.
(1) The cocycle M is locally constant.
(2) Its largest Lyapunov exponent is >λ.
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(3) Its Oseledets subspaces, initially defined µ-almost everywhere, are in fact locally
constant (and therefore continuous).

(4) M(x∗)= Id.
Define a cocycle M0 by M0(x)=

(2 0
0 1/2

)
if x0 = 0 and by M0(x)= Id if x0 = 1. Then its

Oseledets subspaces are R⊕ {0} and {0} ⊕ R, and the corresponding Lyapunov exponents
are non-zero. Hence, M0 satisfies Pλ for some λ > 0.

The main lemma is the following.

LEMMA A.4. Let λ > 0 and ε > 0 and n0 > 0. Let M be a cocycle with the property Pλ.
Then there exist a time n > n0 and another cocycle M̃, again having the property Pλ, with
the following properties.
(1) For all x, ‖M̃(x)− M(x)‖ ≤ ε.
(2) There exists a set A with measure ≥un on which ‖M̃n(x)‖< eλn/2.

Let us admit the lemma for the time being. We construct inductively a sequence of
cocycles Mi , all with the property Pλ, starting with M0, as above. Suppose that we have
already constructed times n1, . . . , ni−1, sets A1, . . . , Ai−1 with µ(A j )≥ un j and the
cocycle Mi−1 such that, for each j < i , ‖M

n j
i−1(x)‖< eλn j /2 for all x ∈ A j . We wish to

construct a time ni > ni−1, a set Ai and a cocycle Mi that satisfies the same properties
for all j ≤ i . Note that, if ε = εi is small enough, then any cocycle Mi with ‖Mi (x)−
Mi−1(x)‖ ≤ ε for all x will satisfy the above properties for j < i , with the same sets A j .
Hence, it suffices to apply Lemma A.4 to M = Mi−1, with a sufficiently small ε, to get
Mi = M̃ .

We can require εi ≤ 1/2i . Then the sequence Mi converges uniformly towards a
limiting continuous cocycle M(x). By semi-continuity of the Lyapunov exponents,
λ+(M)≥ lim sup λ+(Mi )≥ λ. On the other hand, ‖Mn j (x)‖ ≤ eλn j /2 for all x ∈ A j , and
this set has measure at least un j , as claimed. This concludes the proof of Theorem A.3. �

It remains to prove Lemma A.4. The main tool to modify the cocycle is the following
lemma, due to Bochi.

LEMMA A.5. Assume that the cocycle M satisfies Pλ. Let ε > 0. Then, for almost every x,
there exist k = k(x) ∈ N and matrices Q0, . . . , Qk−1 such that ‖Qi − M(T i x)‖ ≤ ε for
all i < k, and the product Qk−1 · · · Q0 sends Eu(x) to E s(T k x) and E s(x) to Eu(T k x)
(where E s and Eu are the stable and unstable Oseledets directions of the cocycle M).

Proof. The set A of points that satisfy the conclusion of the lemma is backwards invariant
under the dynamics: if T x = y and the sequence of matrices Q0, . . . , Qk−1 works for y,
then the sequence of matrices Id, Q0, . . . , Qk−1 works for x for k(x)= k(y)+ 1. By
ergodicity, it suffices to show that A has positive measure. This follows from [Via14,
Proposition 9.10], as the cocycle M is not uniformly hyperbolic, thanks to the condition
M(x∗)= Id in P(4). (In our case, there is a direct easy proof as the cocycle is the identity
on a neighborhood of the fixed point x∗, so it can be replaced by a small rotation in suitable
coordinates, on points whose orbits spend a long enough time close to x∗.) �
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Proof of Lemma A.4. The idea is to apply Lemma A.5 at some points, modifying the
cocycle along a piece of orbit of length k, and then again the same lemma n steps later
(for some n much larger than k), to put again E s in line with E s and Eu in line with Eu .
The norm of the new cocycle will essentially not increase along these n steps, thanks
to the cancellations between the stable and unstable directions, yielding the desired set A,
while the Lyapunov exponent will essentially not be changed if these n steps are negligible
compared with the whole dynamics. Making this precise requires the use of the Rokhlin
tower, provided by Lemma A.2, and some care when choosing the constants.

The cocycle M and its Oseledets subspaces are constant on cylinders of length 2N + 1
for some N , by assumption. Replacing the original subshift by a new subshift the symbols
of which correspond to 2N + 1-cylinders of the original subshift, we may assume, without
loss of generality, that N = 0: i.e., the cocycle M(x) and the Oseledets subspaces E s(x)
and Eu(x) only depend on the coordinate x0 of x .

The minimal function k(x) provided by Lemma A.5 is measurable. Hence, it is bounded
on a set of arbitrarily large measure. We obtain an integer k > 0, a set X with µ(X) > 9/10
and, for each x ∈ X , a sequence of matrices Q0(x), . . . , Qk−1(x) with

‖Qi (x)− M(T i x)‖ ≤ ε, (A.1)

whose product Qk−1(x) · · · Q0(x) maps E s(x) to Eu(T k x) and Eu(x) to E s(T k x).
Let λ+(M) > λ be the top Lyapunov exponent of M . Let δ > 0 be small enough so that

14δ < λ. For µ-almost every x , there exists a constant C(x) <∞ such that, for all ` ∈ Z,

C(x)−1e−δ|`| ≤
‖M`(x)vu(x)‖

eλ+(M)`
≤ C(x)eδ|`|,

C(x)−1e−δ|`| ≤
‖M`(x)vs(x)‖

e−λ+(M)`
≤ C(x)eδ|`|,

where vu(x) and vs(x) are unit vectors in Eu(x) and E s(x). Shrinking X just a little bit,
we can assume that C(x) is bounded by a constant C0 on X , while retaining the estimate
µ(X) > 9/10.

As the Oseledets subspaces depend continuously on the point, by Pλ(3), the angle
between vu(x) and vs(x) is bounded from below. Hence, increasing C0, if necessary,
we can ensure that, for any matrix A and any x ,

‖A‖ ≤ C0 max(‖Avu(x)‖, ‖Avs(x)‖). (A.2)

Increasing C0 and shrinking X , if necessary, we can also assume that, for any x ∈ X ,
the global modification matrix at x given by Q̃(x)= Mk(x)−1 Qk−1(x) · · · Q0(x) (which
exchanges Eu(x) and E s(x)) expands all vectors by at most C0 and contracts them by at
most C−1

0 .
Let n ≥ k be such that C0 ≤ eδn . Let m = K n, where K ≥ 6 will be chosen later,

independently of n. Applying Lemma A.2, we obtain a set R which is a finite union of
cylinders, whose first m iterates are disjoint and cover a measure >9/10. Subdividing R
further, if necessary, we may write it as a disjoint union of cylinders Rp of length 2r + 1,
centered around zero, for some r ≥ m + k. Let Op =

⋃
i<m T i Rp; these sets are disjoint.

We will make the modifications of the cocycle separately on each Op.
The point x∗ is in at most one Op. If it belongs to O1, say, then we remove R1 from R.

Increasing r , if necessary, this removes an arbitrarily small measure from R, so the new
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R will still satisfy the condition µ(
⋃

j<m T j R) > 9/10. This means that modifying the
cocycle on the sets Op will not change its value on x∗, so that the condition M(x∗)= Id in
Pλ(4) will still be satisfied by the modified cocycle.

We say that a set Op is modifiable if there exists an index ap ∈ [0, m − 3n) such that
T ap Rp intersects X ∩ T−n X . If Op is not modifiable, then the set Õp =

⋃
a<m−3n T a Rp

(whose measure is at least µ(Op)/2 as m − 3n ≥ m/2) does not intersect X ∩ T−n X .
Hence, the union of these Õp has measure at most 1− µ(X ∩ T−n X)≤ 2/10, the union
of the corresponding Op has measure at most 4/10 and the measure of the union of the
modifiable Op is at least 9/10− 4/10= 1/2.

Let Op be modifiable. Choose a point x p ∈ T ap Rp ∩ X ∩ T−n X . On Op, we define the
cocycle M̃ to be equal to Qi (x p) on T ap+i Rp for 0≤ i < k, to Qi (T n x p) on T ap+n+i Rp
for 0≤ i < k and to M elsewhere. The cocycle M is constant on each set T i Rp (as
M(x) only depends on x0 and Rp is a cylinder of length 2r + 1 with r > m). Hence,
it follows from (A.1) that ‖M̃(x)− M(x)‖ ≤ ε everywhere. Moreover, it is clear from the
construction that M̃ is locally constant.

Let us show that the Lyapunov exponent of M̃ is >λ. Start from a point x which
is not in the modified locus

⋃
p
⋃

ap≤i<ap+n+k T i Rp. We will estimate the expansion

of M̃`(x)vu(x) when ` tends to∞. Except when T `x belongs to the modified locus, the
vector M̃`(x)vu(x) is a multiple of vu(T `x) and undergoes the same expansion under M or
M̃ . The difference is the influence of the modified locus: when one enters this locus, then
one should apply the modification operator Q̃(x p), which brings vu(x p) to vs(x p) (with an
expansion of at least C−1

0 ), then the original cocycle Mn(x p) but on the vector vs(x p) and
then the modification operator Q̃(T n x p) that brings back vs(T n x p) to vu(T n x p) (again,
with an expansion at least C−1

0 ). Then, one follows again the dynamics of the cocycle
M . During such a visit to the modified locus, the expansion under M̃ is at least C−1

0 ·

C−1
0 e−λ+(M)n−δn · C−1

0 , while the expansion under M is at most C0eλ+(M)n+δn . Hence, the
expansion loss for M̃ with respect to M is at most C−4

0 e−2λ+(M)n−2δn
≥ e−2λ+(M)n−6δn .

Moreover, such a loss happens at most once in every m steps, since a visit to Op has length
m, by construction. We get

λ+(M̃)≥ λ+(M)− (2λ+(M)+ 6δ)n/m.

By assumption, λ+(M) > λ. If the ratio K = m/n is large enough, it follows that also
λ+(M̃) > λ.

The same argument shows that, towards the past, vu(x) is exponentially contracted.
Hence, vu(x) generates the Oseledets subspace Eu(x) for M̃ . This shows that, away from
the modified locus, the Oseledets subspace is locally constant. Using its equivariance
under M̃ and the fact that M̃ is locally constant, we deduce that the Oseledets subspace of
M̃ is locally constant everywhere.

We have proved that M̃ satisfies Pλ. It remains to show the existence of a set A with
measure ≥un on which ‖M̃n(x)‖< enλ/2. We take for A the union of the sets T ap+i Rp
over i ∈ [n/2− δn/λ+(M), n/2+ δn/λ+(M)] and p such that Op is modifiable. In each
modifiable set, A takes a proportion (2δn/λ+(M))/m = 2δ/(Kλ+(M)). As the measure
of modifiable sets Op is at least 1/2, we get µ(A)≥ δ/(Kλ+(M)), a number which is
independent of n. In particular, if n is large enough, we get µ(A)≥ un as un tends to zero
with n.
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Consider x ∈ A, let us show that ‖M̃n(x)‖< enλ/2 to conclude the proof. Consider
p and i = n/2+ j with | j | ≤ δn/λ+(M) such that x ∈ T ap+i Rp. First, we estimate the
norm of M̃n(x)vs(x). This vector is obtained by iterating the original cocycle M during
n − i steps, then doing the modification Q̃(T n x p) that brings it to vu(T n x p) and then
iterating the original cocycle M during i steps. The first step results in an expansion by at
most C0e−λ+(M)(n−i)+δ(n−i) (as T n x p ∈ X ), the second one by an expansion at most C0
and the third one by an expansion at most C0eλ+(M)i+δi . In the end, we obtain

‖M̃n(x)vs(x)‖ ≤ C3
0 eδne−λ+(M)(n−i)+λ+(M)i ≤ C3

0eδne2λ+(M)| j | ≤ C3
0 e3δn .

In the same way, vu(x) is expanded by at most C0eλ+(M)(n−i)+δ(n−i) during the first n − i
iterates, then by at most C0 by the modification Q̃(T n x p) that brings it to vs(T n x p) and
then by at most C0e−λ+(M)i+δi for the last i iterates. Hence,

‖M̃n(x)vu(x)‖ ≤ C3
0eδneλ+(M)(n−i)−λ+(M)i ≤ C3

0 e3δn .

With (A.2), this gives
‖M̃n(x)‖ ≤ C4

0 e3δn
≤ e7δn < enλ/2,

thanks to the choice of δ. �
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