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COMPACT LOCALLY MAXIMAL HYPERBOLIC SETS

FOR SMOOTH MAPS: FINE STATISTICAL

PROPERTIES

Sébastien Gouëzel & Carlangelo Liverani

Abstract

Compact locally maximal hyperbolic sets are studied via ge-
ometrically defined functional spaces that take advantage of the
smoothness of the map in a neighborhood of the hyperbolic set.
This provides a self-contained theory that not only reproduces
all the known classical results, but also gives new insights on the
statistical properties of these systems.

1. Introduction

The ergodic properties of uniformly hyperbolic maps can be described
as follows. If T is a topologically mixing map on a compact locally
maximal hyperbolic set Λ belonging to some smooth manifold X, and
φ̄ : Λ → R is a Hölder continuous function, then there exists a unique
probability measure µφ̄ maximizing the variational principle with re-

spect to φ̄ (the Gibbs measure with potential φ̄). Moreover, this measure
enjoys strong statistical properties (exponential decay of correlations,
central and local limit theorem...). When Λ is an attractor and the
potential φ̄ is the logarithm jacobian of the map in the unstable direc-
tion (or, more generally, a function which is cohomologous to this one),
then the measure µφ̄ is the so-called SRB measure, which describes the
asymptotic behavior of Lebesgue-almost every point in a neighborhood
of Λ.

The proof of these results, due among others to Anosov, Margulis,
Sinai, Ruelle, and Bowen, is one of the main accomplishments of the
theory of dynamical systems in the ’70s. The main argument of their
proof is to code the system, that is, to prove that it is semiconjugate to
a subshift of finite type, to show the corresponding results for subshifts
(first unilateral, and then bilateral), and to finally go back to the original
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system. These arguments culminate in Bowen’s monograph [Bow75],
where all the previous results are proved. Let us also mention another
approach, using specification, which gives existence and uniqueness of
Gibbs measures (but without exponential decay of correlations or limit
theorems) through purely topological arguments [Bow74].

These methods and results have proved very fruitful for a manifold of
problems. However, problems and questions of a new type have recently
emerged, such as

• Strong statistical stability with respect to smooth or random per-
turbations.

• Precise description of the correlations.
• Relationships between dynamical properties and the zeroes of the

zeta function in a large disk.

It is possible to give partial answers to these questions using coding (see
e.g., [Rue87, Hay90, Rue97, Pol03]), but their range is limited by
the Hölder continuity of the foliation: the coding map can be at best
Hölder continuous, and necessarily loses information on the smoothness
properties of the transformation.

Recently, [BKL02] introduced a more geometric method to deal with
these problems, in the case of the SRB measure. It was still limited by
the smoothness of the foliation, but it paved the way to further progress.
Indeed, Gouëzel and Liverani could get close to optimal answers to the
first two questions (for the SRB measure of an Anosov map) in [GL06].
Baladi and Tsujii finally reached the optimal results in [Bal05, BT05]
for these two questions (for the SRB measure of an hyperbolic attractor).
A partial answer to the last question was first given in [Liv05] and a
complete solution will appear in the paper [BT06]. See also the paper
[LT06] for a very simple, although non optimal, argument.

The technical approach of these papers is as follows: they introduce
spaces B of distributions, and an operator L : B → B with good spectral
properties such that, for all smooth functions ψ1, ψ2 and all n ∈ N,

(1.1)

∫

ψ1 · ψ2 ◦ T
n dLeb = 〈Ln(ψ1 dLeb), ψ2〉.

The operator L has a unique fixed point, which corresponds to the SRB
measure of the map T . The correlations are then given by the remaining
spectral data of L. In addition, abstract spectral theoretic arguments
imply precise results on perturbations of T or zeta functions.

In this paper, we extend to the setting of Gibbs measures the results of
[GL06]. This extension is not straightforward for the following reasons.
First, the previous approaches for the SRB measure rely on the fact
that there is already a reference measure to work with, the Lebesgue
measure. For a general (yet to be constructed) Gibbs measure, there is
no natural analogous of (1.1) which could be used to define the transfer
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operator L. The technical consequence of this fact is that an element of
our space will not be a distribution on the whole manifold, but rather a
family of distributions on stable (or close to stable) leaves. Second, the
SRB measure corresponds to a potential φ̄u – minus the logarithm of
the unstable jacobian, with respect to some riemannian metric – which
is in general not smooth, while we want our spaces to deal with very
smooth objects. Notice, however, that φ̄u is cohomologous to a function
which can be written as φ(x,Es(x)) where φ is a smooth function on the
grassmannian of ds dimensional subspaces of the tangent bundle T X.1

This is the kind of potential we will deal with.
The elements of our Banach space B will thus be objects “which can

be integrated along small submanifolds of dimension ds” (where ds is the
dimension of the stable manifolds). The first idea would be to take for B
a space of differential forms of degree ds. However, if α is such a form and
φ is a potential as above, then eφα is not a differential form any more.
Hence, we will have to work with more general objects. Essentially,
the elements of B are objects which associate, to any subspace E of
dimension ds of the tangent space, a volume form on E. Such an object
can be integrated along ds dimensional submanifolds, as required, and
can be multiplied by eφ. We define then an operator L on B by Lα =
T∗(e

φπα) where π is a truncation function (necessary to keep all the
functions supported in a neighborhood of Λ, if Λ is not an attractor),
and T∗ denotes the (naturally defined) push-forward of an element of B
under T . We will construct on B norms for which L has a good spectral
behavior, in Section 2.

The main steps of our analysis are then the following.

1) Prove a Lasota-Yorke inequality for L acting on B, in Lemma 4.1
(by using the preliminary result in Lemma 3.4). This implies a
good spectral description of L on B: the spectral radius is some
abstract quantity ̺, yet to be identified, and the essential spectral
radius is at most σ̺ for some small constant σ, related to the
smoothness of the map. See Proposition 4.4 and Corollary 4.6.

2) In this general setting, we analyze superficially the peripheral spec-
trum (that is, the eigenvalues of modulus ̺), in Subsection 4.3. We
prove that ̺ is an eigenvalue, and that there is a corresponding
eigenfunction α0 which induces a measure on ds dimensional sub-
manifolds (Lemma 4.9). This does not exclude the possibility of
Jordan blocks or strange eigenfunctions.

1Take φ(x, E) = log(det DT (x)↾E
)− log(det DT (x)), where det indicates the jaco-

bian with respect to the given riemannian metric. Let φ̄(x) = φ(x, Es(x)) for x ∈ Λ.
Since the angle between the stable and unstable direction is bounded from below,
Pn−1

k=0 (φ̄ ◦ T k − φ̄u ◦ T k) is uniformly bounded on Λ. By the Livsic theorem, this

implies that φ̄ is cohomologous to φ̄u. In particular, they give rise to the same Gibbs
measure.
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3) In the topologically mixing case, we check that α0 is fully sup-
ported. By some kind of bootstrapping argument, this implies
that ‖Ln‖ ≤ C̺n, i.e., there is no Jordan block. Moreover, there
is no other eigenvalue of modulus ̺ (Theorem 5.1).

4) The adjoint of L, acting on B′, has an eigenfunction ℓ0 for the
eigenvalue ̺. The linear form ϕ 7→ ℓ0(ϕα0) is in fact a measure
µ; this will be the desired Gibbs measure. Moreover, the correla-
tions of µ are described by the spectral data of L acting on B, as
explained in Section 6.1.

5) Finally, in Section 6.2, we prove that the dynamical balls have a
very well controlled measure (bounded from below and above); see
Proposition 6.3. This yields ̺ = Ptop(φ̄) and the fact that µ is the
unique equilibrium measure (Theorem 6.4).

It is an interesting issue to know whether there can indeed be Jordan
blocks in the non topologically transitive case (this is not excluded by
our results). The most interesting parts of the proof are probably the
Lasota-Yorke estimate and the exclusion of Jordan blocks. Although
the core of the argument is rather short and follows very closely the
above scheme, the necessary presence of the truncation function induces
several technical complications, which must be carefully taken care of
and cloud a bit the overall logic. Therefore, the reader is advised to
use the previous sketch of proof to find her way through the rigorous
arguments. Note that the paper is almost completely self-contained;
it only uses the existence and continuity of the stable and unstable
foliation (and not their Hölder continuity, nor their absolute continuity).

In addition, note that the present setting allows very precise answers
to the first of the questions posed at the beginning of this introduction
thanks to the possibility of applying the perturbation theory developed
in [GL06, section 8] and based on [KL99]. Always in the spirit to help
the reader, we will give a flavor of such possibilities in Section 8, together
with some obvious and less obvious examples to which our theory can
be applied. In particular, in Proposition 8.1 we provide nice formulae
for the derivative of the topological pressure and the Gibbs measure
in the case of systems depending smoothly on a parameter.2 Finally,
a technical section (Section 9) on the properties of conformal leafwise
measures is added both for completeness and because of its possible
interest as a separate result.

Remark 1.1. Let us point out that, although we follow the strat-
egy of [GL06], similar results can be obtained also by generalizing the
Banach spaces in [BT05] (M.Tsujii, private communication).

2Note that the formulae are in terms of exponentially converging sums, and hence
they can be easily used to actually compute the above quantities within a given
precision.
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To conclude the introduction, let us give the description we obtain
for the correlation functions. We consider an open set U ⊂ X and a
map T ∈ Cr(U,X),3 diffeomorphic on its image (for some real r >
1). Suppose further that Λ :=

⋂

n∈Z
TnU is non empty and compact.

Finally, assume that Λ is a hyperbolic set for T . Such a set is a compact

locally maximal hyperbolic set. In the context of Axiom A map, such
sets are also called basic sets; they have been introduced by Smale, who
proved that the non-wandering set of an Axiom A map is always a finite
union of basic sets. Let λ > 1 and ν < 1 be two constants, respectively
smaller than the minimal expansion of T in the unstable direction, and
larger than the minimal contraction of T in the stable direction.

Denote by W0 the set of Cr−1 function φ associating, to each x ∈ U
and each ds dimensional subspace of the tangent space TxX at x, an
element of R. Denote by W1 the set of Cr functions φ : U → R. For
x ∈ Λ, set φ̄(x) = φ(x,Es(x)) in the first case, and φ̄(x) = φ(x) in the
second case. This is a Hölder continuous function on Λ. Assume that
the restriction of T to Λ is topologically mixing.

Theorem 1.2. Let φ ∈ Wι for some ι ∈ {0, 1}. Let p ∈ N
∗ and

q ∈ R
∗
+ satisfy p+q ≤ r−1+ι and q ≥ ι. Let σ > max(λ−p, νq).4 Then

there exists a unique measure µ maximizing the variational principle for

the potential φ̄,5 and there exist a constant C > 0, a finite dimensional

space F , a linear map M : F → F having a simple eigenvalue at 1 and

no other eigenvalue with modulus ≥ 1, and two continuous mappings

τ1 : Cp(U) → F and τ2 : Cq(U) → F ′ such that, for all ψ1 ∈ Cp(U),
ψ2 ∈ Cq(U) and for all n ∈ N,

(1.2)

∣

∣

∣

∣

∫

ψ1 · ψ2 ◦ T
n dµ− τ2(ψ2)M

nτ1(ψ1)

∣

∣

∣

∣

≤ Cσn|ψ2|Cq(U)|ψ1|Cp(U).

The coefficients of the maps τ1 and τ2 are therefore distributions of
order at most p and q respectively, describing the decay of correlations
of the functions. They extend the Gibbs distributions of [Rue87] to a
higher smoothness setting.

When T is C∞, we can take p and q arbitrarily large, and get a
description of the correlations up to an arbitrarily small exponential
error term. The SRB measure corresponds to a potential in W0, as
explained above, and the restriction on p, q is p + q ≤ r − 1, which

3Here, and in the following, by Cr we mean the Banach space of functions con-
tinuously differentiable ⌊r⌋ times, and with the ⌊r⌋th derivative Hölder continu-
ous of exponent r − ⌊r⌋. Such a space is equipped with a norm | · |Cr such that
|fg|Cr ≤ |f |Cr |g|Cr , that is, (Cr, | · |Cr ) is a Banach algebra. For example, if r ∈ N,

|f |Cr := supk≤r |f
(k)|∞2r−k will do.

4In fact, one can obtain better bounds by considering T n, for large n, instead of
T . We will not indulge on such subtleties to keep the exposition as simple as possible.

5Of course, this is nothing else than the classical Gibbs measure associated to the
potential φ̄.
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corresponds to the classical Kitaev bound [Kit99].6 Surprisingly, when
the weight function belongs to W1, we can get up to p+ q = r. In some
sense, the results are better for maximal entropy measures than for SRB
measures!

It is enlightening to consider our spaces for expanding maps, that is,
when ds = 0. In this case, “objects that can be integrated along stable
manifolds” are simply objects assigning a value to a point, i.e., functions.
Our Banach space Bp,q becomes the space of usual Cp functions, and we
are led to the results of Ruelle in [Rue90].

2. The functional spaces

Consider a Cr differentiable manifold X. We start with few prelimi-
naries.

2.1. A touch of functional analysis. To construct the functional
spaces we are interested in, we will use an abstract construction that
applies to each pair V,Ω, where V is a complex vector space and Ω ⊂ V

′

is a subset of the (algebraic) dual with the property supℓ∈Ω |ℓ(h)| < ∞
for each h ∈ V. In such a setting we can define a seminorm on V by

(2.1) ‖h‖ := sup
ℓ∈Ω

|ℓ(h)|.

If we call B the completion of V with respect to ‖ · ‖, we obtain a
Banach space. Note that, by construction, Ω belongs to the unit ball of
B′. When ‖ · ‖ is a norm on V, i.e., V0 :=

⋂

ℓ∈Ω ker ℓ is reduced to {0},
then V can be identified as a subspace of B. In general, however, there
is only an inclusion of the algebraic quotient V/V0 in B.

2.2. Differential geometry beyond forms. Let G be the Grassman-
nian of ds dimensional oriented subspaces of the tangent bundle T X to
X. On it we can construct the complex line bundle E := {(x,E, ω) :

(x,E) ∈ G, ω ∈
∧ds E′⊗C}. We can then consider the vector space S of

the Cr−1 sections of the line bundle E . The point is that for each α ∈ S,
each ds dimensional oriented C1 manifold W , and each ϕ ∈ C0(W,C),
we can define an integration of ϕ over W as if α was a usual differential
form, by the formula

(2.2) ℓW,ϕ(α) :=

∫

W
ϕα :=

∫

U
ϕ ◦ Φ(x)Φ∗α(Φ(x), DΦ(x)Rds)

where Φ : U → W is a chart and R
ds is taken with the orientation

determined by corresponding elements of the Grassmannian.7 A direct

6In some cases, our bound is not optimal since p is restricted to be an integer.
7If W cannot be covered by only one chart, then the definition is trivially extended,

as usual, by using a partition of unity. Recall that, given a differential form ω on W

and a base {ei} with its dual base {dxi} on R
ds , Φ∗ω = ω(DΦe1, . . . , DΦeds

) dx1 ∧
· · · ∧ dxds

.
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computation shows that this definition is independent of the chart Φ,
and hence intrinsic.

Remark 2.1. If ω is a ds-differential form, then for each (x,E) ∈ G
we can define α(x,E) to be the restriction of ω(x) to E. Thus, the
forms can be embedded in S.

Remark 2.2. A Riemannian metric defines a volume form on any
subspace of the tangent bundle of X. Thus, it defines an element of
S with the property that its integral along any nonempty compact ds
dimensional submanifold is positive.

2.2.1. Integration of elements of S. If f : G → C is Cr−1, then it is
possible to multiply an element of S by f , to obtain a new element of
S. In particular, if α ∈ S, W is a ds dimensional oriented C1 manifold
and ϕ ∈ C0(W,C), then there is a well defined integral

(2.3)

∫

W
ϕ · (fα).

For x ∈W , f̃(x) := f(x, TxW ) is a continuous function on W and so is

the function ϕf̃ . Hence, the integral

(2.4)

∫

W
(ϕf̃) · α

is also well defined. By construction, the integrals (2.3) and (2.4) coin-
cide.

Convention 2.3. We will write
∫

W ϕfα indifferently for these two
integrals. More generally, implicitly, when we are working along a sub-
manifold W , we will confuse f and f̃ .

2.2.2. Lie derivative of elements of S. If φ is a local diffeomorphism
of X, it can be lifted through its differential to a local bundle isomor-
phism of E . Hence, if α ∈ S, its pullback φ∗α is well defined. In a pedes-
trian way, an element of S is a function from F := {(x,E, e1∧· · ·∧eds

) :
(x,E) ∈ G, e1, . . . , eds

∈ E} to C, satisfying the homogeneity relation
α(x,E, λe1 ∧ · · · ∧ eds

) = λα(x,E, e1 ∧ · · · ∧ eds
). If (x,E) ∈ G and

e1, . . . , eds
is a family of vectors in E, then φ∗α is given by

(2.5) (φ∗α)(x,E, e1 ∧ · · · ∧ eds
)

= α(φ(x), Dφ(x)E,Dφ(x)e1 ∧ · · · ∧Dφ(x)eds
).

Given a vector field v, we will write Lv for its Lie derivative. Given a Ck

vector field v on X, with k ≥ 1, there is a canonical way to lift it to a
Ck−1 vector field on F , as follows. Let φt be the flow of the vector field

v. For α ∈ S, the pullback φ∗tα is well defined. The quantity
dφ∗tα

dt

∣

∣

∣

t=0
is

then given by the Lie derivative of α against a Ck−1 vector field, which
we denote by vF . The following result will be helpful in the following:
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Proposition 2.4 ([KMS93, Lemma 6.19]). The map v 7→ vF is

linear. Moreover, if v1, v2 are two C2 vector fields on X,

(2.6) [LvF1
, LvF2

] = L[v1,v2]F .

Remark 2.5. We will use systematically the above proposition to
confuse v and vF , so in the following we will suppress the superscript
F , where this does not create confusion.

If W is a compact submanifold of X with boundary, and q ∈ R+, we
will write Cq0(W ) for the set of Cq functions from W to C vanishing on
the boundary of W , and Vq(W ) for the set of Cq vector fields defined
on a neighborhood of W in X.

If v ∈ V1(W ) is tangent to W along W , and α ∈ S, then Lvα can
also be obtained along W by considering the restriction of α to W ,
which is a volume form, and then taking its (usual) Lie derivative with
respect to the restriction of v to W . Therefore, the usual Stokes formula
still applies in this context, and gives the following integration by parts
formula.

Proposition 2.6. Let W be a compact submanifold with boundary of

dimension ds, let α ∈ S, let v ∈ V1(W ) be tangent to W along W , and

let ϕ ∈ C1
0(W ). Then

(2.7)

∫

W
ϕLvα = −

∫

W
(Lvϕ)α.

2.3. The norms. Let Σ be a set of ds dimensional compact Cr sub-
manifolds of X, with boundary. To such a Σ, we will associate a family
of norms on S as follows.

Definition 2.7. A triple (t, q, ι) ∈ N×R+×{0, 1} is correct if t+q ≤
r − 1 + ι, and q ≥ ι or t = 0.

Remark 2.8. Notice that, if (t, q, ι) is correct and t ≥ 1, then (t −
1, q + 1, ι) is also correct.

For any correct (t, q, ι), consider the set

Ωt,q+t,ι =
{

(W,ϕ, v1, . . . , vt) :

W ∈ Σ, ϕ ∈ Cq+t0 (W ) with |ϕ|Cq+t(W ) ≤ 1,

v1, . . . , vt ∈ Vq+t−ι(W ) with |vi|Vq+t−ι(W ) ≤ 1
}

.

To each ω ∈ Ωt,q+t,ι, we can associate a linear form ℓω on S, by

(2.8) ℓω(α) =

∫

W
ϕ · Lv1 . . . Lvt(α).

Indeed, this is clearly defined if t = 0. Moreover, if t > 0, the vector field
vt is Cq+t−ι, and is in particular C1. Hence, the lifted vector field vFt is
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well defined, and Lvt(α) ∈ Cmin(r−2,q+t−ι−1) = Cq+t−ι−1 since q+ t− ι ≤
r−1. Going down by induction, we have in the end Lv1 . . . Lvt(α) ∈ Cq−ι,
which does not create any smoothness problem since q ≥ ι.

We can then define the seminorms

(2.9) ‖α‖−t,q+t,ι := sup
ω∈Ωt,q+t,ι

ℓω(α).

For p ∈ N, q ≥ 0, and ι ∈ {0, 1} such that (p, q, ι) is correct, we define
then

(2.10) ‖α‖p,q,ι :=

p
∑

t=0

‖α‖−t,q+t,ι.

We will use the notation Bp,q,ι for the closure of S in the above seminorm.
This construction is as described in Section 2.1.

Note that (2.10) defines in general only a seminorm on S. Indeed, if
α ∈ S vanishes in a neighborhood of the tangent spaces to elements of
Σ, then ‖α‖p,q,ι = 0.

3. The dynamics

In Section 2 the dynamics did not play any role, yet all the construc-
tion depends on the choice of Σ. In fact, such a choice encodes in the
geometry of the space the relevant properties of the dynamics. In this
chapter we will first define Σ by stating the relevant properties it must
enjoy, then define the transfer operator and study its properties when
acting on the resulting spaces.

3.1. Admissible leaves. Recall from the introduction that we have
an open set U ⊂ X and a map T ∈ Cr(U,X), diffeomorphic on its
image. Furthermore Λ :=

⋂

n∈Z
TnU is non empty and compact and Λ

is a hyperbolic set for T . In addition, once and for all, we fix an open
neighborhood U ′ of Λ, with compact closure in U , such that TU ′ ⊂ U
and T−1U ′ ⊂ U , and small enough so that the restriction of T to U ′

is still hyperbolic. For x ∈ U ′, denote by Cs(x) the stable cone at x.
Finally, let V be a small neighborhood of Λ, compactly contained in U ′.

Definition 3.1. A set Σ of ds dimensional compact submanifolds of
U ′ with boundary is an admissible set of leaves if

1) Each element W of Σ is a Cr submanifold of X, its tangent space
at x ∈ W is contained in Cs(x), and supW∈Σ |W |Cr < ∞. More-
over, for any point x of Λ, there exists W ∈ Σ containing x and
contained in W s(x). Additionally, supW∈Σ diam(W ) < ∞, and
there exists ε > 0 such that each element of Σ contains a ball of
radius ε. Moreover, to each leaf W ∈ Σ intersecting V , we asso-
ciate an enlargement W e of W , which is the union of a uniformly
bounded number of leaves W1, . . . ,Wk ∈ Σ, containing W , and



442 S. GOUËZEL & C. LIVERANI

such that dist(∂W, ∂W e) > 2δ0 for some δ0 > 0 (independent of
W ).

2) Let us say that two leaves W,W ′ ∈ Σ are (C, ε)-close if there
exists a Cr−1 vector field v, defined on a neighborhood of W , with
|v|Cr−1 ≤ ε, and such that its flow φt is uniformly bounded in Cr

by C and satisfies φ1(W ) = W ′ and φt(W ) ∈ Σ for 0 ≤ t ≤ 1. We
assume that there exists a constant CΣ such that, for all ε > 0,
there exists a finite number of leaves W1, . . . ,Wk ∈ Σ such that
any W ∈ Σ is (CΣ, ε)-close to a leaf Wi with 1 ≤ i ≤ k.

3) There exist C > 0 and a sequence εn going exponentially fast to 0
such that, for all n ∈ N

∗, for all W ∈ Σ, there exist a finite number
of leaves W1, . . . ,Wk ∈ Σ and Cr functions ρ1, . . . , ρk with values
in [0, 1] compactly supported on Wi, with |ρi|Cr(Wi) ≤ C, and such

that the set W (n) = {x ∈ W, ∀ 0 ≤ i ≤ n − 1, T−ix ∈ V } satis-

fies: T−nW (n) ⊂
⋃

Wi, and
∑

ρi = 1 on T−nW (n), and any point

of T−nW (n) is contained in at most C sets Wi. Moreover, Wi is
(CΣ, εn)-close to an element of Σ contained in the stable manifold

of a point of Λ. Finally, Tn
(

⋃k
i=1Wi

)

is contained in the enlarge-

mentW e ofW , and even in the set {x ∈W e : dist(x, ∂W e) > δ0}.

The first property of the definition means that the elements of Σ are
close to stable leaves in the C1 topology, and have a reasonable size. The
second condition means that there are sufficiently many leaves, and will
imply some compactness properties. The third property is an invariance
property and means that we can iterate the leaves backward.

In [GL06], the existence of admissible sets of leaves is proved for
Anosov systems. The proof generalizes in a straightforward way to this
setting. Hence, the following proposition holds.

Proposition 3.2. Admissible sets of leaves do exist.

We choose once and for all such an admissible set of leaves, and denote
it by Σ.

3.2. Definition of the Operator. We will consider the action of the
composition by T on the previously defined spaces. For historical rea-
sons, we will rather consider the composition by T−1, but this choice is
arbitrary. To keep the functions supported in U , we need a truncation
function. Let π be a Cr function taking values in [0, 1], equal to 1 on a
neighborhood of Λ and compactly supported in T (V ).

We need also to introduce a weight. We will consider two classes of
weights. Let W0 be the set of Cr−1 functions φ from G to R, such that
if x ∈ U and F and F ′ are the same subspace of TxU but with opposite
orientations, then φ(F ) = φ(F ′). This condition makes it possible to
define a function φ̄ on Λ by φ̄(x) = φ(x,Es(x)) (where the orientation
of Es(x) is not relevant by the previous property). Let W1 be the set of
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Cr functions from X to R. Of course, an element of W1 is an element of
W0 as well. Yet, slightly stronger results hold true for weights in W1.

For each truncation function π, and each weight φ ∈ Wι, ι ∈ {0, 1},
we define a truncated and weighted transfer operator (or simply transfer
operator) Lπ,φ : S → S by

Lπ,φα(x,E) := π(T−1x)eφ(T−1x,DT−1(x)E)T∗α(T−1x,DT−1(x)E).

In terms of the action of diffeomorphisms on elements of S defined in
(2.5), this formula can be written as Lπ,φα = T∗(πe

φα). It is clear that
an understanding of the iterates of Lπ,φ would shed light on the mixing
properties of T . The operator Lπ,φ does not have good asymptotic
properties on S with its Cr−1 norm, but we will show that it behaves
well on the spaces Bp,q,ι.

If W is a submanifold of dimension ds contained in U ′, ϕ is a continu-
ous function on W with compact support and α ∈ S, then by definition

(3.1)

∫

W
ϕLπ,φα =

∫

T−1W
ϕ ◦ Tπeφα.

Recall that this integral is well defined by Convention 2.3.

3.3. Main dynamical inequality. When (p, q, ι) is correct, i.e., p +
q−ι ≤ r−1, and q ≥ ι or t = 0, and the weight φ belongs to W ι, we can
study the spectral properties of Lπ,φ acting on Bp,q,ι. Notice that, for
a weight belonging to W1, this means that we can go up to p + q = r,
i.e., we can reach the differentiability of the map. Before proceeding,
we need a definition.

Definition 3.3. For eachW ∈ Σ and n ∈ N, let {Wj} be any covering

of T−nW (n) as given by the third item in Definition 3.1. We define

(3.2) ̺n :=



 sup
W∈Σ

∑

j

∣

∣

∣
eSnφπn

∣

∣

∣

Cr−1+ι(Wj)





1/n

,

where πn :=
∏n−1
k=0 π ◦ T k and, for each function f : X → C, Snf :=

∑n−1
k=0 f ◦ T k. Here, to define Snφ along W , we use Convention 2.3.8

The main lemma to prove Lasota-Yorke type inequalities is the fol-
lowing:

Lemma 3.4. Let t ∈ N and q ≥ 0. If (t, q, ι) is correct, there exist

constants C > 0 and Cn > 0 for n ∈ N such that, for any α ∈ S,

(3.3)
∥

∥Lnπ,φα
∥

∥

−

t,q+t,ι
≤ C̺nnλ

−tn ‖α‖−t,q+t,ι + Cn
∑

0≤t′<t

‖α‖−t′,q+t′,ι .

8Note that the volume of T−nW grows at most exponentially. Thus, given the
condition (3) of Definition 3.1 on the bounded overlap of the Wj , the cardinality of
{Wj} can grow at most exponentially as well. In turn, this means that there exists
a constant C such that ̺n ≤ C.
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Moreover, if (t, q + 1, ι) is also correct,

(3.4)
∥

∥Lnπ,φα
∥

∥

−

t,q+t,ι
≤ C̺nnν

(q+t)nλ−tn ‖α‖−t,q+t,ι

+ Cn
∑

0≤t′<t

‖α‖−t′,q+t′,ι + Cn ‖α‖
−
t,q+t+1,ι .

Proof. Take ω = (W,ϕ, v1, . . . , vt) ∈ Ωt,q+t,ι. Let ρj be an adapted

partition of unity on T−nW (n), as given in (3) of Definition 3.1. Let us
extend the vector fields vi to a neighborhood of the enlargement W e of
W , so that the norms of the new vector fields are bounded by a universal
constant C. We want to estimate

(3.5)

∫

W
ϕ · Lv1 . . . Lvt(L

n
π,φα)

=
∑

j

∫

Wj

ϕ ◦ Tnρj · Lw1 . . . Lwt(α · eSnφ
n−1
∏

k=0

π ◦ T k),

where wi = (Tn)∗(vi). Remembering that πn :=
∏n−1
k=0 π ◦ T k,

(3.6)

Lw1 . . . Lwt(α · eSnφπn) =
∑

A⊂{1,...,t}





∏

i6∈A

Lwi



 (α) ·

(

∏

i∈A

Lwi

)

(eSnφπn).

We claim that, for any A ⊂ {1, . . . , t},

(3.7)

(

∏

i∈A

Lwi

)

(eSnφπn) ∈ Cq+t−#A.

Assume first that ι = 0. Then q+t ≤ r−1. The lift wF
k of any of the vec-

tor fields wk is in Cq+t−1, hence Lwk
(eSnφπn) ∈ Cmin(r−2,q+t−1) = Cq+t−1.

Equation (3.7) then follows inductively on #A. On the other hand, if
ι = 1, the vector field wk is only Cq+t−1 (and so wF

k is only Cq+t−2,
which is not sufficient). However, there is no need to lift the vector
field wk to F since φ is defined on X. Hence, we get Lwk

(eSnφπn) ∈

Cmin(r−1,q+t−1) = Cq+t−1. Equation (3.7) easily follows.
In the right hand side of (3.5), we can compute Lw1 . . . Lwt(α·e

Snφπn)
using (3.6). Any term with A 6= ∅ is bounded by Cn ‖α‖

−
t−#A,q+t−#A,ι,

thanks to (3.7). Hence, to conclude, it suffices to estimate the remaining
term with A = ∅ :

(3.8)

∫

Wj

ϕ ◦ Tnρje
Snφπn · Lw1 . . . Lwt(α).

To this end, we decompose wi as wui + wsi where wui and wsi are Cq+t−ι

vector fields, wsi is tangent to Wj , and |wui |Cq+t−ι ≤ Cλ−n.9 Clearly

9Such a decomposition is constructed in [GL06, Appendix A]. The argument
roughly goes as follows. Consider a Cr foliation transverse to Wj , and push it by
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Lwi
= Lwu

i
+ Lws

i
. Hence, for σ ∈ {s, u}t, we must study the integrals

(3.9)

∫

Wj

ϕ ◦ Tnρje
Snφπn · Lwσ1

1
. . . Lwσt

t
(α).

Notice that, if we exchange two of these vector fields, the difference is of
the form

∫

Wj
ϕ̃Lw′

1
. . . Lw′

t−1
(α) where w′

1, . . . , w
′
t−1 are Cq+t−1−ι vector

fields. Indeed, LwLw′ = Lw′Lw +L[w,w′] by Proposition 2.4, and [w,w′]

is a Cq+t−1−ι vector field. In particular, up to Cn ‖α‖
−
t−1,q+t−1,ι, we can

freely exchange the vector fields.
Suppose first that σ1 = s. Then, by (2.7), the integral (3.9) is equal

to

(3.10) −

∫

Wj

Lws
1
(ϕ ◦ Tnρje

Snφπn) · Lwσ2
2
. . . Lwσt

t
(α).

This is bounded by Cn ‖α‖
−
t−1,q+t−1,ι. More generally, if one of the σi’s

is equal to s, we can first exchange the vector fields as described above
to put the corresponding Lws

i
in the first place, and then integrate by

parts. Finally, we have

(3.11)

∫

Wj

ϕ ◦ Tnρje
Snφπn · Lw1 . . . Lwt(α)

=

∫

Wj

ϕ ◦ Tnρje
Snφπn · Lwu

1
. . . Lwu

t
(α) + O(‖α‖−t−1,q+t−1,ι).

We are now positioned to prove (3.3). The last integral in (3.11) is
bounded by

(3.12)
∣

∣

∣ϕ ◦ Tnρje
Snφπn

∣

∣

∣

Cq+t(Wj)

t
∏

i=1

|wui |Cq+t−ι(Wj) ‖α‖
−
t,q+t,ι

≤ Cλ−tn
∣

∣

∣
eSnφπn

∣

∣

∣

Cq+t(Wj)
‖α‖−t,q+t,ι .

Summing the inequalities (3.12) over j and remembering Definition 3.3
yields (3.3).

This simple argument is not sufficient to prove (3.4), since we want

also to gain a factor ν−(q+t)n (if we are ready to pay the price of having a
term ‖α‖−t,q+t+1,ι in the upper bound). To do this, we will smoothen the
test function ϕ. Let Aεϕ be obtained by convolving ϕ with a mollifier
of size ε. If a is the largest integer less than q+ t, we have |Aεϕ−ϕ|Ca ≤

T n. Around T nWj , consider also a foliation given by translates (in some chart
with uniformly bounded Cr norm) of T nWj . Then project simply vi on these two
transverse foliations, and pull everything back under T n. This is essentially the
desired decomposition.
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Cεq+t−a, the function Aεϕ is bounded in Cq+t independently of ε, and
it belongs to Cq+t+1. We choose ε = ν(q+t)n/(q+t−a). In this way,

(3.13) |(ϕ− Aεϕ) ◦ Tn|Cq+t(Wj) ≤ Cν(q+t)n.

Then (3.11) implies
∫

Wj

ϕ ◦ Tnρje
Snφπn · Lwu

1
. . . Lwu

t
(α)

=

∫

Wj

(ϕ− Aεϕ) ◦ Tnρje
Snφπn · Lwu

1
. . . Lwu

t
(α)

+

∫

Wj

(Aεϕ) ◦ Tnρje
Snφπn · Lwu

1
. . . Lwu

t
(α).

The last integral is bounded by Cn ‖α‖
−
t,q+t+1,ι. And the previous one

is at most
∣

∣

∣(ϕ− Aεϕ) ◦ Tnρje
Snφπn

∣

∣

∣

Cq+t(Wj)

t
∏

i=1

|wui |Cq+t−ι(Wj) ‖α‖
−
t,q+t,ι

≤ Cν(q+t)n
∣

∣

∣
eSnφπn

∣

∣

∣

Cq+t(Wj)
λ−tn ‖α‖−t,q+t,ι .

Summing over j and remembering Definition 3.3, we finally have (3.4).
q.e.d.

4. Spectral properties of the Transfer Operator

In this section, we investigate the spectral radius and the essential
spectral radius of the Ruelle operator. We will use constants ¯̺> 0 and
d ∈ N such that10

(4.1) ∃C > 0,∀n ∈ N
∗, ̺nn ≤ Cnd ¯̺n.

4.1. Quasi compactness. As usual, the proof of the quasi compact-
ness of the transfer operator is based on two ingredients: a Lasota-Yorke
type inequality and a compact embedding between spaces. See [Bal00]
if unfamiliar with such ideas.

4.1.1. Lasota-Yorke inequality.

Lemma 4.1. Let ι ∈ {0, 1}. For all p ∈ N and q ≥ 0 such that

(p, q, ι) is correct, for all (¯̺, d) satisfying (4.1), there exists a constant

C > 0 such that, for all n ∈ N
∗, for all α ∈ S,

(4.2)
∥

∥Lnπ,φα
∥

∥

p,q,ι
≤ Cnd ¯̺n ‖α‖p,q,ι .

Moreover, if p > 0, the following inequality also holds:

(4.3)
∥

∥Lnπ,φα
∥

∥

p,q,ι
≤ C ¯̺n max(λ−p, νq)n ‖α‖p,q,ι + Cnd ¯̺n ‖α‖p−1,q+1,ι .

10Such constants do exist, see footnote 8.
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Finally, if p ≥ 0, there exists σ < 1 (independent of ¯̺ and d) such that

(4.4)
∥

∥Lnπ,φα
∥

∥

p,q,ι
≤ C ¯̺nσn ‖α‖p,q,ι + Cnd ¯̺n ‖α‖0,q+p,ι .

Proof. The inequality (4.4) is an easy consequence of (4.3) and an
induction on p. Moreover, (4.2) for p = 0 is a direct consequence of
Equation (3.3) with t = 0, and (4.1). Note also that (4.3) for p > 0
implies (4.2) for the same p. Hence, it is sufficient to prove that (4.2)
at p− 1 implies (4.3) at p.

Choose any λ′ > λ and ν ′ < ν respectively smaller and larger than
the best expansion and contraction constants of T in the unstable and
stable direction. Lemma 3.4 still applies with λ′ and µ′ instead of λ and
µ. Hence, there exist constants C0 and C ′

n such that, for all 0 ≤ t ≤ p,

and setting σ1 := max(λ′−p, ν ′q),

∥

∥Lnπ,φα
∥

∥

−

t,q+t,ι
≤ C0n

d ¯̺nσn1 ‖α‖−t,q+t,ι

+ C ′
n

∑

t′<t

‖α‖−t′,q+t′,ι + C ′
n ‖α‖p−1,q+1,ι .

To prove this, we use (3.3) for t = p, and (3.4) for t < p (in which case
‖α‖−t,q+t+1,ι ≤ ‖α‖p−1,q+1,ι).

Let σ = max(λ−p, νq). There exists N such that C0N
dσN1 ≤ σN/2.

We fix it once and for all. Fix also once and for all a large constant

K > 2 such that
C′

N
K−1

1−K−1 ≤ ¯̺NσN/2, and define a new seminorm on S

by ‖α‖′p,q,ι =
∑p

t=0K
−t ‖α‖−t,q+t,ι. Then

∥

∥

∥LNπ,φα
∥

∥

∥

′

p,q,ι
is at most

p
∑

t=0

K−t

(

¯̺N (σN/2) ‖α‖−t,q+t,ι + C ′
N

∑

t′<t

‖α‖−t′,q+t′,ι + C ′
N ‖α‖p−1,q+1,ι

)

≤ ¯̺N (σN/2) ‖α‖′p,q,ι + C ′
N

p
∑

t′=0

K−t′−1

1 −K−1
‖α‖−t′,q+t′,ι

+
C ′
N

1 −K−1
‖α‖p−1,q+1,ι

≤ ¯̺N (σN/2) ‖α‖′p,q,ι +
C ′
NK

−1

1 −K−1
‖α‖′p,q,ι + 2C ′

N ‖α‖p−1,q+1,ι .

Since K was chosen large enough, we therefore have

(4.5)
∥

∥LNπ,φα
∥

∥

′

p,q,ι
≤ ¯̺NσN ‖α‖′p,q,ι + 2C ′

N ‖α‖p−1,q+1,ι .

By the inductive assumption, the iterates of Lπ,φ satisfy the inequality

(4.6)
∥

∥Lnπ,φα
∥

∥

p−1,q+1,ι
≤ C1n

d ¯̺n ‖α‖p−1,q+1,ι ,
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for some constant C1. This implies by induction on m that
∥

∥

∥LmNπ,φ α
∥

∥

∥

′

p,q,ι

is bounded by

(¯̺σ)mN ‖α‖′p,q,ι + 2C ′
N

m
∑

k=1

(¯̺σ)(k−1)N
∥

∥

∥
L

(m−k)N
π,φ α

∥

∥

∥

p−1,q+1,ι

≤ (¯̺σ)mN ‖α‖′p,q,ι + 2C ′
NC1(mN)d ¯̺mN ¯̺−N

(

∞
∑

i=0

σiN

)

‖α‖p−1,q+1,ι .

Finally, taking care of the first N iterates, we obtain:

(4.7)
∥

∥Lnπ,φα
∥

∥

′

p,q,ι
≤ C ¯̺nσn ‖α‖′p,q,ι + Cnd ¯̺n ‖α‖p−1,q+1,ι .

Since the norms ‖·‖p,q,ι and ‖·‖′p,q,ι are equivalent, this concludes the
proof. q.e.d.

4.1.2. Compact embedding of Bp,q,ι in Bp−1,q+1,ι.

Lemma 4.2. Assume that (t, q, ι) is correct and that (t+ 1, q − 1, ι)
is also correct. There exists a constant C > 0 such that, for all ε > 0,
for all W,W ′ which are (CΣ, ε)-close,

11 for all α ∈ S,

sup
ω′=(W ′,ϕ′,v′1,...,v

′
t)∈Ωt,q+t,ι

|ℓω′(α)|

≤ C sup
ω=(W,ϕ,v1,...,vt)∈Ωt,q+t,ι

|ℓω(α)| + Cε ‖α‖−t+1,q+t,ι .

Proof. Let v be a vector field with |v|Cr−1 ≤ ε whose flow φu satisfies
φ1(W ) = W ′ and W u = φu(W ) ∈ Σ for 0 ≤ u ≤ 1, and is bounded in
Cr by CΣ. Start from ω′ = (W ′, ϕ′, v′1, . . . , v

′
t) ∈ Ωt,q+t,ι. Define vector

fields vui = φ∗1−uv
′
i, v

u = φ∗1−uv and functions ϕu = ϕ′ ◦ φ1−u. Let

(4.8) F (u) =

∫

W
ϕ0Lv01 . . . Lv0t (φ

∗
uα) =

∫

Wu

ϕuLvu
1
. . . Lvu

t
(α).

Then F (1) = ℓω′(α), and F (0) =
∫

W ϕ0Lv01 . . . Lv0t (α). Since the vec-

tor fields v0
i have a uniformly bounded Cq+t−ι norm, and ϕ0 is uni-

formly bounded in Cq+t, it is sufficient to prove that |F (1) − F (0)| ≤
Cε ‖α‖−t+1,q+t,ι to conclude. We will prove such an estimate for F ′(u).

We have

(4.9) F ′(u) =

∫

W
ϕ0Lv01 . . . Lv0t (φ

∗
uLvα) =

∫

Wu

ϕuLvu
1
. . . Lvu

t
Lvuα.

By definition of ‖·‖−t+1,q+t,ι, this quantity is bounded by C ‖α‖−t+1,q+t,ι,
which concludes the proof. q.e.d.

11See Definition 3.1 for the definition of (CΣ, ε)-close.
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Assume that (p, q, ι) is correct and p > 0. Hence, (p − 1, q + 1, ι) is
also correct. Moreover, for any α ∈ S, ‖α‖p−1,q+1,ι ≤ ‖α‖p,q,ι. Hence,

there exists a canonical map Bp,q,ι → Bp−1,q+1,ι extending the identity
on the dense subset S of Bp,q,ι.

Lemma 4.3. If (p, q, ι) is correct and p > 0, the canonical map from

Bp,q,ι to Bp−1,q+1,ι is compact.

Proof. The main point of the proof of Lemma 4.3 is to be able to work
only with a finite number of leaves. This is ensured by Lemma 4.2. The
rest of the proof is then very similar to [GL06, Proof of Lemma 2.1].
q.e.d.

4.1.3. Spectral gap. Lemmas 4.1 and 4.3, giving a Lasota-Yorke in-
equality and compactness, imply a precise spectral description of the
transfer operator Lπ,φ. Let

(4.10) ̺ := lim sup
n→∞

̺n.

Proposition 4.4. Assume that (p, q, ι) is correct. The operator Lπ,φ :
S → S extends to a continuous operator on Bp,q,ι. Its spectral radius is

at most ̺ and its essential spectral radius is at most max(λ−p, νq)̺.

Proof. For any ¯̺ > ̺, the inequality (4.3), the compactness Lemma
4.3, and Hennion’s Theorem [Hen93] prove that the spectral radius of
Lπ,φ acting on Bp,q,ι is bounded by ¯̺, and that its essential spectral
radius is bounded by max(λ−p, νq)¯̺. Letting ¯̺ tend to ̺, we obtain
the required upper bounds on the spectral radius and essential spectral
radius of Lπ,φ. q.e.d.

4.2. A lower bound for the spectral radius. We will prove that the
spectral radius of Lπ,φ is in fact equal to ̺. To do this, we will need the
following lower bound on ̺n. Since we will use this lemma again later,
to exclude the possibility of Jordan blocks, we formulate it in greater
generality than currently needed.

Lemma 4.5. Assume that (p, q, ι) is correct. Let α be an element

of Bp,q,ι which induces a nonnegative measure on every admissible leaf

W ∈ Σ. Assume, moreover, that there exists an open set O containing

Λ such that, for any ε > 0, there exists cε > 0 such that, for any

x ∈ O ∩
⋂

n≥0 T
nV , for any W ∈ Σ containing x with dist(x, ∂W ) > ε,

∫

BW (x,ε) α ≥ cε
12 holds. Then there exist L ∈ N and C > 0 such that,

for all large enough n,

(4.11) ̺nn ≤ C
∥

∥

∥
Ln−2L
π,φ α

∥

∥

∥

p,q,ι
.

12Here, BW (x, ε) denotes the ball of center x and radius ε in the manifold W .
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Proof. Let W ∈ Σ, and let Wj be a covering of T−nW (n) as given by
Definition 3.1. All is needed is to prove the inequality

(4.12)
∑

j

|eSnφπn|Cr−1+ι(Wj) ≤ C
∥

∥

∥Ln−2L
π,φ α

∥

∥

∥

p,q,ι
.

The lemma would have a two line proof if we could use distortion to
estimate |eSnφπn|Cr−1+ι(Wj) by

∫

Wj
eSnφπnα, but there are two problems

in doing so. First, π vanishes at some points, and hence classical distor-
tion controls do not apply. Second, the behavior of α is known only for
leaves close to Λ. To overcome these two problems, we will consider a
small neighborhood of Λ, where πn is equal to 1 and α is well behaved.
We can assume without loss of generality that π = 1 on O.

Recall the definition of the constant δ0 in the first item of Definition
3.1. Decreasing δ0 if necessary, we can assume that, for all x ∈ Λ,
B(x, 3δ0) ⊂ O. Then there exist ε > 0 and a small neighborhood O′ of
Λ with the following property: let x ∈ O′, and let Z be a submanifold of

dimension ds containing x, whose tangent space is everywhere contained

in the stable cone, and with dist(x, ∂Z) ≥ δ0. Then there exists a point

y ∈ Z∩O∩
⋂

n≥0 T
nV such that dist(y, ∂Z) ≥ ε and dist(x, y) ≤ δ0. This

is a consequence of the compactness of Λ and the uniform transversality
between the stable cones and the unstable leaves. Decreasing O′ if
necessary, we can assume that

(4.13) ∀x ∈ O′, B(x, 2δ0) ⊂ O.

We can also assume ε < δ0.
We will use the following fact: there exists L ∈ N such that, for any

point x, for any n ≥ 2L, if T ix ∈ V for all 0 ≤ i ≤ n− 1 then T ix ∈ O′

for all L ≤ i ≤ n− L.

This is a classical property of locally maximal sets, proved as follows.
If the fact were not true, we would have for all L ≥ 0 a point xL ∈ V \O′

such that T ixL ∈ V for all |i| ≤ L. An accumulation point of the
sequence xL would then belong to V \O′, and also to

⋂

n∈Z
T−nU . This is

a contradiction, since this last intersection is equal to Λ by assumption,
and is therefore contained in O′.

Let us now return to the proof. We start from the covering {Wj}

of T−nW (n). Fix some j such that πn is not zero on Wj . There ex-
ists xj ∈ Wj such that T ixj ∈ V for 0 ≤ i ≤ n − 1. The above
fact ensures that T ixj ∈ O′ for L ≤ i ≤ n − L. By definition of
the enlargement W e of W , the point Tnxj belongs to {y ∈ W e :
dist(y, ∂W e) ≥ δ0}. Since T−1 expands the distances in the stable cone,

we get dist(TLxj , ∂(T−(n−L)W e)) ≥ δ0. Therefore, the above property

shows the existence of a point yj ∈ T−(n−L)W e ∩ O ∩
⋂

n≥0 T
nV , with

dist(TLxj , yj) ≤ δ0, such that the ball Bj of center yj and radius ε in

the manifold T−(n−L)W e is well defined. This ball satisfies
∫

Bj
α ≥ cε
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by the assumption of the lemma. Moreover, by contraction of the it-
erates of T along T−(n−L)W e, we have T i(Bj) ⊂ B(TL+ixj , 2δ0) for
0 ≤ i ≤ n−L. Since TL+ixj ∈ O′ for 0 ≤ i ≤ n− 2L, (4.13) shows that
T i(Bj) ⊂ O for 0 ≤ i ≤ n− 2L. Therefore, πn−2L = 1 on Bj .

By uniform contraction of T , |πn|Cr(Wj) ≤ C. Moreover, usual dis-

tortion estimates show that |eSnφ|Cr−1+ι(Wj) ≤ C|eSnφ|C0(Wj), and that

|eSn−2Lφ|C0(TLWj) ≤ C infx∈Bj
eSn−2Lφ(x). Using these estimates, we can

compute:

|eSnφπn|Cr−1+ι(Wj) ≤ C|eSnφ|C0(Wj) ≤ C|eSn−2Lφ|C0(TLWj)

≤ C|eSn−2Lφ|C0(TLWj)

∫

Bj

α ≤ C

∫

Bj

eSn−2Lφα

= C

∫

Bj

eSn−2Lφπn−2Lα = C

∫

Tn−2LBj

Ln−2L
π,φ α.

Summing over j and using the fact that there is a bounded number of
overlap,

(4.14)
∑

j

|eSnφπn|Cr−1+ι(Wj) ≤ C

∫

O∩T−LW e

Ln−2L
π,φ α.

Since the set of integration can be covered by a uniformly bounded
number of admissible leaves, we get

(4.15)
∑

j

|eSnφπn|Cr−1+ι(Wj) ≤ C
∥

∥

∥
Ln−2L
π,φ α

∥

∥

∥

p,q,ι
.

q.e.d.

Corollary 4.6. Assume that (p, q, ι) is correct. The spectral radius

of Lπ,φ acting on Bp,q,ι is exactly ̺.

Proof. Choose once and for all an element αr of S induced by a Rie-
mannian metric, as explained in Remark 2.2. It satisfies the assumptions
of Lemma 4.5. Therefore, for some constants L > 0 and C > 0,

(4.16) ̺nn ≤ C
∥

∥

∥
Ln−2L
π,φ αr

∥

∥

∥

p,q,ι
≤ C

∥

∥

∥
Ln−2L
π,φ

∥

∥

∥

p,q,ι
.

Letting n tend to infinity, we obtain that the spectral radius of Lπ,φ is
at least lim sup ̺n = ̺. The result follows, remembering Proposition
4.4. q.e.d.

4.3. First description of the peripheral eigenvalues. In this para-
graph, we will study the eigenvalues of modulus ̺. The main goal is to
prove that the eigenfunctions for eigenvalues of modulus ̺ are in fact
measures. Fix a correct (p, q, ι).
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Denote by (γi̺)
M
i=1 the peripheral eigenvalues of Lπ,φ acting on Bp,q,ι,

with |γi| = 1. Let κ be the size of the largest Jordan block. Since
Lπ,φ : Bp,q,ι → Bp,q,ι is quasicompact, it must have the form

(4.17) Lπ,φ =

M
∑

i=1

(γi̺Sγi
+Nγi

) +R,

where Sγi
, Nγi

are finite rank operators such that Sγi
Sγj

= δijSγi
,

Sγi
Nγj

= Nγj
Sγi

= δijNγj
, Nγi

Nγj
= δijN

2
γi

, Sγi
R = RSγi

= Nγi
R =

RNγi
= 0, Nκ

γi
= 0, and R has spectral radius strictly smaller than ̺.

Accordingly, for each |γ| = 1, holds

(4.18) lim
n→∞

n−κ
n−1
∑

k=0

γ−k̺−kLkπ,φ =
1

κ!

M
∑

i=1

Nκ−1
γi

δγγi
.

In this formula, if κ = 1, then Nκ−1
γi

indicates the eigenprojection cor-
responding to the eigenvalue γi̺, i.e., Sγi

. We will denote by Fγi
the

image of Nκ−1
γi

.

Lemma 4.7. There exists C > 0 such that, for all n > 0,

(4.19) ̺nn ≤ Cnκ−1̺n.

This lemma implies, in particular, that we can apply Lemma 4.1 to
(¯̺, d) = (ρ, κ− 1).

Proof. There exists C > 0 such that
∥

∥

∥Lnπ,φ

∥

∥

∥

p,q,ι
≤ Cnκ−1̺n. Equa-

tion (4.16) then implies ̺nn ≤ Cnκ−1̺n. q.e.d.

Lemma 4.8. For all γ with |γ| = 1, and all α ∈ Fγ, there exists C >
0 such that, for all W ∈ Σ, for all t ≤ p, for all v1, . . . , vt ∈ Vq+t−ι(W )

with |vi|Cq+t−ι ≤ 1, for all ϕ ∈ Cq+t0 (W ),

(4.20)

∣

∣

∣

∣

∫

W
ϕ · Lv1 . . . Lvtα

∣

∣

∣

∣

≤ C|ϕ|Ct(W ).

The point of this lemma is that the upper bound depends only on
|ϕ|Ct while the naive upper bound would use |ϕ|Cq+t(W ).

Proof. We can apply Lemma 4.1 (and more precisely the inequality
(4.2)) to (¯̺, d) = (̺, κ− 1), and to the parameters (t, 0, ι). We get

(4.21)
∥

∥Lnπ,φ
∥

∥

t,0,ι
≤ Cnκ−1̺n.

Since S is dense in Bp,q,ι, we have Nκ−1
γ Bp,q,ι = Nκ−1

γ S. Therefore,

we can write α as Nκ−1
γ (α̃) where α̃ ∈ S. Then, by (4.18),

(4.22)
∫

W
ϕ · Lv1 . . . Lvtα = lim

n→∞

κ!

nκ

n−1
∑

k=0

(γ̺)−k
∫

W
ϕ · Lv1 . . . Lvt(L

k
π,φα̃).
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Moreover, these integrals satisfy

(4.23)

∣

∣

∣

∣

∫

W
ϕ · Lv1 . . . Lvt(L

k
π,φα̃)

∣

∣

∣

∣

≤ |ϕ|Ct(W )

∥

∥

∥
Lkπ,φα̃

∥

∥

∥

t,0,ι
,

by definition of ‖·‖t,0,ι (this last norm is well defined since α̃ ∈ S). Using

the inequality (4.21) and the last two equations, we get the lemma.
q.e.d.

Choose αr as in Corollary 4.6 and let α0 := 1
κ!N

κ−1
1 αr. Clearly

Lπ,φα0 = ̺α0.

Lemma 4.9. Assume that (p, q, ι) is correct and p > 0. Take γ with

|γ| = 1, and α ∈ Fγ. Then, for each W ∈ Σ, α defines a measure on W .

In addition, all such measures are absolutely continuous, with bounded

density, with respect to the one induced by α0.

Proof. For t = 0, Lemma 4.8 shows that
∣

∣

∫

W ϕα
∣

∣ ≤ C|ϕ|C0 . This
shows that α induces a measure on each W ∈ Σ.

For γ = 1 and α̃ = αr, t = 0, Equation (4.22) shows that α0 is a
nonnegative measure. Moreover, whenever ϕ ∈ Cq(W ), it also implies

∣

∣

∣

∣

∫

W
ϕα

∣

∣

∣

∣

≤ C

∫

W
|ϕ|α0.

This inequality extends to continuous functions by density. Hence, the
measure defined by α is absolutely continuous with respect to the one
defined by α0 (with bounded density). q.e.d.

An element α of Fγ defines a measure on each element of Σ. Moreover,
if W and W ′ intersect, and ϕ ∈ Cq is supported in their intersection,
then

∫

W ϕα =
∫

W ′ ϕα. Indeed, this is the case for any element of Bp,q,ι,
since it holds trivially for an element of S, and S is dense in Bp,q,ι.
Therefore, the measures on elements of Σ defined by an element of Fγ
match locally, and can be glued together: if an oriented submanifold of
dimension ds is covered by elements of Σ, then an element of Fγ induces
a measure on this submanifold. We will denote by Mα the measure
induced by α on each oriented stable leaf in U .

Lemma 4.10. The map α 7→ Mα is injective on each set Fγ. More-

over, α0 6= 0.

Proof. Let α ∈ Fγ satisfy Mα = 0; we will first prove that

(4.24) ‖α‖0,q,ι = 0.

Notice first that Lemma 4.2 shows that, if W ′ ∈ Σ is (CΣ, ε)-close to
an element W of Σ contained in a stable manifold, then

(4.25)

∣

∣

∣

∣

∫

W ′

ϕα

∣

∣

∣

∣

≤ Cε|ϕ|Cq(W ′).
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Indeed, the assumption Mα = 0 shows that, for any ϕ ∈ Cq0(W ),
ℓ(W,ϕ)(α) = 0.

Take now W ∈ Σ and ϕ ∈ Cq0(W ). Using the partition of unity on

T−nW (n) given by the definition of admissible leaves, we get
(4.26)
∫

W
ϕα =

∫

W
ϕ(γρ)−nLnπ,φα = (γρ)−n

k
∑

j=1

∫

Wj

ϕ ◦ Tnρjπne
Snφ · α.

Each Wj is (CΣ, εn)-close to an element of Σ contained in a stable leaf,
where εn → 0 is given by the definition of admissible sets of leaves.
Hence, (4.25) shows that

∣

∣

∫

W ϕα
∣

∣ is bounded by

(4.27) ̺−n
k
∑

j=1

Cεn|πne
Snφ|Cq(Wj) ≤ C̺−n̺nnεn.

The sequence ̺−n̺nn grows at most subexponentially, while εn goes ex-
ponentially fast to 0 by Definition 3.1. Therefore, this quantity goes to
0, hence (4.24).

Next, if α ∈ Fγ , then Lnπ,φα = (γ̺)nα. Using the Lasota-Yorke

inequality (4.4) (applied to (ρ, κ − 1) by Lemma 4.7), we get for some
σ < 1

(4.28) ‖α‖p,q,ι = ̺−n
∥

∥Lnπ,φα
∥

∥

p,q,ι
≤ Cσn ‖α‖p,q,ι ,

since ‖α‖0,q+p,ι ≤ ‖α‖0,q,ι = 0 by (4.24). Choosing n large yields

‖α‖p,q,ι = 0.
Let us now prove α0 6= 0. Otherwise, Mα0 = 0. For any α ∈ Fγ ,

the measure Mα is absolutely continuous with respect to Mα0, hence
zero. By injectivity of the map α 7→ Mα, we get α = 0. Therefore,
there is no eigenfunction corresponding to an eigenvalue of modulus ̺.
This contradicts Corollary 4.6. q.e.d.

5. Peripheral Spectrum and Topology

In this section we establish a connection between the peripheral spec-
trum of the operator and the topological properties of the dynamical
systems at hand.

5.1. Topological description of the dynamics. Let us recall the
classical spectral decomposition of a map T as above (see e.g., [HK95,
Theorem 18.3.1]). Assume that T : U → X is a diffeomorphism and that
Λ =

⋂

n∈Z
TnU is a compact locally maximal hyperbolic set. Then there

exist disjoint closed sets Λ1, . . . ,Λm and a permutation σ of {1, . . . ,m}
such that

⋃m
i=1 Λi = NW (T↾Λ), the nonwandering set of the restriction

of T to Λ. Moreover, T (Λi) = Λσ(i), and when σk(i) = i then T k↾Λi
is
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topologically mixing, and Λi is a compact locally maximal hyperbolic
set for T k.

Hence, to understand the dynamics of T on Λ (and especially its
invariant measures) when Λ = NW (T↾Λ), it is sufficient to understand
the case when T↾Λ is topologically mixing.

To deal with orientation problems, we will in fact need more than
mixing. Let Λ̄ be the set of pairs (x,E) where x ∈ Λ and E ∈ G is
Es(x) with one of its two possible orientations. Let T̄ : Λ̄ → Λ̄ be
the map induced by DT on Λ̄, and let pr : Λ̄ → Λ be the canonical
projection. We have a commutative diagram

Λ̄
T̄

−−−−→ Λ̄

pr





y





y

pr

Λ
T

−−−−→ Λ

Moreover, the fibers of pr have cardinal exactly 2. When T is topologi-
cally mixing, there are exactly three possibilities:

• Either T̄ is also topologically mixing; in this case, we say that T
is orientation mixing ;

• Or there is a decomposition Λ̄ = Λ̄1∪Λ̄2 where each Λ̄i is invariant
under T̄ , and the restriction of pr to each Λ̄i is an isomorphism.
We say that T is mixing, but orientation preserving ;

• Or there is a decomposition Λ̄ = Λ̄1 ∪ Λ̄2 such that pr is an iso-
morphism on each Λ̄i, and T̄ exchanges Λ̄1 and Λ̄2. In this case,
T 2 is orientation preserving as defined before.

To understand the spectral properties of T , it is sufficient to under-
stand the first two cases, since the last one can be reduced to the second
one by considering T 2.

In the second case, there exists an orientation of the spaces Es(x) for
x ∈ Λ, which depends continuously on x, and is invariant under DT .
Let us say arbitrarily that this orientation is positive. Consequently, if
the neighborhood U of Λ is small enough, there exists a decomposition
of {(x,E) : x ∈ U,E ∈ G with E ⊂ Cs(x)} into two disjoint sets S+

and S−, the first one corresponding to vector spaces E whose orientation
is close to the positive orientation of a nearby set Es(x), and the other
one corresponding to the opposite orientation. The sets S+ and S− are
invariant under the action of DT . Let Bp,q,ι± denote the closure in Bp,q,ι

of the elements of S which vanish on S∓. Then

Bp,q,ι = Bp,q,ι+ ⊕ Bp,q,ι− .

The transfer operator Lπ,φ leaves invariant the sets Bp,q,ι+ and Bp,q,ι− .
Moreover, there is a natural isomorphism from Bp,q,ι+ to Bp,q,ι− (corre-
sponding to reversing the orientation), which conjugates the action of
Lπ,φ on Bp,q,ι+ and Bp,q,ι− . Hence, the spectral data of Lπ,φ acting on Bp,q,ι
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are simply twice the corresponding data for the corresponding action on
Bp,q,ι+ . Therefore, when T is mixing but orientation preserving, we can
restrict ourselves to the study of Lπ,φ acting on Bp,q,ι+ .

5.2. The peripheral spectrum in the topologically mixing case.

In this paragraph we will assume that the dynamics has no wandering
parts, that is, NW (T↾Λ) = Λ. Given the discussion of the previous
section, we can thus restrict ourselves to the mixing case. Under such
an assumption we obtain a complete characterization of the periph-
eral spectrum. Note that the proof of the next theorem relies on some
general properties of conformal leafwise measures that, for the reader’s
convenience, are proved in Section 9.

Theorem 5.1. Assume that T is orientation mixing (respectively
mixing but orientation preserving). Consider the operator Lπ,φ acting

on Bp,q,ι (resp. Bp,q,ι+ ). Then ̺ is a simple eigenvalue, and there is no

other eigenvalue of modulus ̺.

Proof. We give the proof e.g., for the orientation mixing case; the
other one is analogous.

Let us first prove that κ = 1, that is, there is no Jordan block. We
will show that α0 satisfies the assumptions of Lemma 4.5. Assume on
the contrary that there exists a small ball B on which the integral of
α0 vanishes, centered at a point of

⋂

n∈N
TnV . The preimages of such a

small ball accumulate on the stable manifolds of T . By invariance, the
integral of α0 still vanishes on T−nB. Taking a subsequence and passing
to the limit, we obtain a small ball B′ in a stable manifold, centered
at a point of Λ, on which α0 = 0. There is a point x in Λ ∩ B′ such
that {T−nx} is dense in Λ. Let ε > 0 be such that the measure Mα0

induced by α0 (as defined in Paragraph 4.3) vanishes on B(x, ε). Using
the invariance of α0 and the expansion properties of T−n, this implies
that Mα0 = 0 on each ball B(T−nx, ε). By continuity and density,
Mα0 = 0. This is in contradiction with Lemma 4.10.

Therefore, we can apply Lemma 4.5 to α0, and we obtain ̺nn ≤

C
∥

∥

∥Ln−2L
π,φ α0

∥

∥

∥

p,q,ι
. Since α0 is an eigenfunction for the eigenvalue ̺, this

yields ̺nn ≤ C̺n. The Lasota-Yorke inequality (4.2) yields
∥

∥

∥Lnπ,φ

∥

∥

∥

p,q,ι
≤

C̺n. Hence, there can be no Jordan block.
Let us now prove that α0 is the only eigenfunction (up to scalar

multiplication) corresponding to an eigenvalue of modulus ̺. Let α
be such an eigenfunction, for an eigenvalue γ̺, with |γ| = 1 and α 6=
0. Notice first that the leafwise measure Mα is a continuous leafwise
measure, in the sense of Section 9. Indeed, if the test function ϕ is
Cq, then the continuity property of leafwise measures is clear for any
element of S, and extends by density to any element of Bp,q,ι. When
α ∈ Fγ , this continuity property extends from Cq test functions to C0 test
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functions by Lemma 4.9. Let us check the assumptions of Proposition
9.4 (for the map T−1). Note first that T−1 is topologically mixing on
Λ by assumption, and expanding along stable leaves. Moreover, let U
be an open set in a stable leaf, containing a point x ∈ Λ. Since T−1

is transitive, there exists a nearby point y whose orbit under T−1 is
dense in Λ. The point z = [x, y] = W s(x) ∩W u(y) belongs to Λ ∩ U
if y is close enough to x, and its orbit under T−1 is also dense in Λ.
Hence, Proposition 9.4 applies, and shows that the measure Mα is
proportional to Mα0. Since Mα 6= 0 by Lemma 4.10, it follows that
γ = 1. Moreover, the equality Mα = γ′Mα0 implies α = γ′α0, again
by Lemma 4.10. q.e.d.

In the course of the above proof, we have showed that α0 gives a
positive mass to each ball in a stable manifold, centered at a point of Λ.
By compactness of Λ and the continuity properties of α0, this implies
the following useful fact:

For any δ > 0, there exists cδ > 0 such that, for any ball B(x, δ) in
the stable manifold of a point x ∈ Λ,

(5.1)

∫

B(x,δ)
α0 ≥ cδ.

Remark 5.2. For the case of unilateral subshifts of finite type, or
more generally when the transfer operator acts on spaces of continuous
functions, there is a much simpler argument to exclude the existence of
Jordan blocks (see [Kel89] or [Bal00]), which goes as follows.

Assume that the spectral radius of L is ̺, and that there exists an
eigenfunction g > 0 corresponding to this eigenvalue. Then, for any
function f , there exists C > 0 such that |f | ≤ Cg. Therefore, if the size
κ of the corresponding Jordan block is > 1,

(5.2)
1

nκ

∣

∣

∣

∣

∣

n−1
∑

k=0

̺−kLkf

∣

∣

∣

∣

∣

≤ C
1

nκ

n−1
∑

k=0

̺−kLkg → 0.

Hence, 1
nκ

∑n−1
k=0 ̺

−kLkf converges to 0 in the C0 norm. But it converges
to the eigenprojection of f in the strong norm, so this eigenprojection
has to be 0 for all f . This is a contradiction, and κ = 1.

Unfortunately, this simple argument does not apply in our setting
since the elements of our spaces are not functions: even if we have
constructed the analogue of the function g, i.e., α0, there is no such
inequality as |α| ≤ Cα0 for a general α ∈ S. This explains why we had
to resort to a more sophisticated proof.

6. Invariant measures and the variational principle

6.1. Description of the invariant measure. In this paragraph, we
assume that T is a map on a compact locally maximal hyperbolic set,
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which is either orientation mixing, or mixing but orientation preserving.
Choose p ∈ N

∗ and q > 0 such that (p, q, ι) is correct. In the first case,
we let B = Bp,q,ι and in the second case B = Bp,q,ι+ . The transfer operator
Lπ,φ acts on B and has a simple eigenvalue at ̺ and no other eigenvalue
of modulus ̺, by Theorem 5.1.

Let α0 be the eigenfunction of ̺. The dual operator acting on B′

also has a simple eigenvalue at ̺. Let ℓ0 denote the corresponding
eigenfunction, normalized so that ℓ0(α0) = 1.

Lemma 6.1. There exists a constant C > 0 such that, for all ϕ ∈
Cr(U), |ℓ0(ϕα0)| ≤ C|ϕ|C0. Moreover, ℓ0(ϕα0) = ℓ0(ϕ ◦ T · α0).

Proof. Let us show that, for any α ∈ B,

(6.1) |ℓ0(α)| ≤ C ‖α‖0,p+q,ι .

Since ℓ0 = ̺−nL′ n
π,φℓ0,

|ℓ0(α)| = ̺−n|ℓ0(L
n
π,φα)| ≤ C̺−n

∥

∥Lnπ,φα
∥

∥

p,q,ι

≤ C̺−n
[

Cσn̺n ‖α‖p,q,ι + C̺n ‖α‖0,p+q,ι

]

for some σ < 1, by (4.4). Letting n tend to ∞, we obtain (6.1).
Lemma 4.9 for t = 0 implies that ‖ϕα0‖0,p+q,ι ≤ C|ϕ|C0 . Together

with (6.1), this leads to |ℓ0(ϕα0)| ≤ C|ϕ|C0 .
Finally, we have

ℓ0(ϕα0) = (̺−1L′
π,ϕℓ0)(ϕα0) = ̺−1ℓ0(Lπ,ϕ(ϕα0))

= ℓ0(ϕ ◦ T−1 · ̺−1Lπ,φα0) = ℓ0(ϕ ◦ T−1 · α0).

This proves the last assertion of the lemma. q.e.d.

Lemma 6.1 shows that the functional

µ : ϕ 7→ ℓ0(ϕα0),

initially defined on Cr functions, extends to a continuous functional on
continuous functions. Hence, it is given by a (complex) measure, which
we will also denote by µ. Lemma 6.1 also shows that this measure is
invariant. Hence, it is supported on the maximal invariant set in U , i.e.,
Λ.

Lemma 6.2. The measure µ is a (positive) probability measure.

Proof. By equation (4.18), the subsequent definition of α0, and The-
orem 5.1 it follows that, for each α ∈ Bp,q,ι,

(6.2) lim
n→∞

̺−nLnπ,φα = ℓ0(α)α0

with ℓ0(αr) = 1. Hence, for all ϕ1, ϕ2 ≥ 0 and W ∈ Σ holds

(6.3) 0 ≤ lim
n→∞

∫

W
ϕ1̺

−nLnπ,φ(ϕ2αr) = ℓ0(ϕ2αr)

∫

W
ϕ1α0.



HYPERBOLIC SETS 459

We know that the measure defined by α0 is nonnegative, and nonzero by
Lemma 4.10. Therefore, there exist W and ϕ1 such that

∫

W ϕ1α0 > 0.
We get, for any ϕ2 ≥ 0, ℓ0(ϕ2αr) ≥ 0. If ϕ ≥ 0, we have (since ℓ0 is an
eigenfunction of L′

π,ϕ)

ℓ0(ϕα0) = lim
n→∞

ℓ0(ϕ̺
−nLnπ,φαr)

= lim
n→∞

ℓ0(̺
−nLnπ,φ(ϕ ◦ Tnαr))

= lim
n→∞

ℓ0(ϕ ◦ Tnαr) ≥ 0.

Hence, the measure µ is positive. The normalization ℓ0(α0) = 1 ensures
that it is a probability measure. q.e.d.

Using the spectral information on L, we can now prove the charac-
terization of the correlations for the measure µ stated in Theorem 1.2.
This concludes the proof of Theorem 1.2, provided one shows that µ is
indeed the unique Gibbs measure; this will be done in Theorem 6.4.

Proof of Theorem 1.2. We will first describe an abstract setting which
implies the conclusion of the theorem, and then show that hyperbolic
maps fit into this setting.

Let T be a map on a space X, preserving a probability measure µ.
Let F1 and F2 be two spaces of functions on X. Assume that there
exist a Banach space B, a continuous linear operator L : B → B, and
two continuous maps Φ1 : F1 → B and Φ2 : F2 → B′ such that, for all
n ∈ N, for all ψ1 ∈ F1 and ψ2 ∈ F2,

(6.4)

∫

ψ1 · ψ2 ◦ T
n dµ = 〈Φ2(ψ2),L

nΦ1(ψ1)〉.

Then, for any σ strictly larger than the essential spectral radius of L,
there exist a finite dimensional space F , a linear map M on F , and two
continuous maps τ1 : F1 → F and τ2 : F2 → F ′ such that (1.2) holds.
This is indeed a direct consequence of the spectral decomposition of the
operator L.

In our specific setting, we take for B the Banach space defined above,
L = ̺−1Lπ,φ, F1 is the closure of the set of Cr functions in Cp(U) and
F2 is the closure of the set of Cr functions in Cq(U). On the set of Cr

functions, define Φ1(ψ1) = ψ1α0, and Φ2(ψ2) = ψ2ℓ0. By construction,
(6.4) holds. We have to check that Φ1 and Φ2 can be continuously
extended respectively to F1 and F2. Let us first prove

(6.5) ‖ψα0‖p,q,ι ≤ C|ψ|Cp .

This will imply that Φ1 can be extended by continuity to F1.
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To check (6.5), consider t ≤ p, let W ∈ Σ, let v1, . . . , vt ∈ Vq+t−ι(W )

and let ϕ ∈ Cq+t0 (W ). Then
(6.6)
∫

W
ϕ · Lv1 . . . Lvt(ψα0) =

∑

A⊂{1,...,t}

∫

W
ϕ

(

∏

i∈A

Lvi

)

ψ ·





∏

i6∈A

Lvi



α0.

Using Lemma 4.8 to bound each of these integrals, we get an upper
bound of the form C|ψ|Cp . This proves (6.5).

Let us now extend Φ2. By (6.1), for any α ∈ B,

|Φ2(ψ)(α)| ≤ C ‖ψα‖0,p+q,ι ≤ C ‖ψα‖0,q,ι ≤ C|ψ|Cq ‖α‖0,q,ι

≤ C|ψ|Cq ‖α‖p,q,ι .

Hence, ‖Φ2(ψ)‖ ≤ C|ψ|Cq . In particular, Φ2 can be continuously ex-
tended to F2.

The proof is almost complete, there is just a technical subtlety to
deal with. Since p is an integer, F1 = Cp(U). However, when q is not an
integer, Cr(U) is not dense in Cq(U), and hence F2 is strictly included
in Cq(U). To bypass this technical problem, we rather use q′ < q close

enough to q so that σ > max(λ−p, νq
′
) (where σ is the precision up to

which we want a description of the correlations, as in the statement of
the theorem). Let F2 be the closure of Cr(U) in Cq

′
(U). For ψ1 ∈ F1

and ψ2 ∈ F2, we get as above a description of the correlations, with
an error term at most Cσn|ψ1|Cp(U)|ψ2|Cq′ (U). Since F2 contains Cq(U),

and |ψ2|Cq′ (U) ≤ |ψ2|Cq(U), this gives the required upper bound for all

functions of Cq(U). q.e.d.

6.2. Variational principle. We will denote by Bn(x, ε) the dynamical
ball of length n for T−1, i.e.,

Bn(x, ε) = {y ∈ U : ∀ 0 ≤ i ≤ n− 1, d(T−iy, T−ix) ≤ ε}.

Proposition 6.3. For all small enough ε > 0, there exist constants

Aε, aε > 0 such that, for all n ∈ N and all x ∈ Λ,

aεe
Snφ̄(T−nx)̺−n ≤ µ(Bn(x, ε)) ≤ µ(Bn(x, ε)) ≤ Aεe

Snφ̄(T−nx)̺−n,

where φ̄ is defined by φ̄(y) = φ(y,Es(y)).

Proof. Let ϕ be a nonnegative Cr function supported in Bn(x, ε),
bounded by one, and equal to one on Bn(x, ε/2). We will prove

(6.7) aεe
Snφ̄(T−nx)̺−n ≤ µ(ϕ) ≤ Aεe

Snφ̄(T−nx)̺−n,

which will conclude the proof.
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Let W ∈ Σ, and let ϕ0 ∈ Cq0(W ) with |ϕ0|Cq(W ) ≤ 1. Then
∫

W
ϕ0ϕα0 =

∫

W
ϕ0ϕ̺

−nLnπ,φα0(6.8)

=
∑

j

∫

Wj

ρjϕ0 ◦ T
nϕ ◦ Tn̺−neSnφπn · α0,

where ρj is the partition of unity on T−nW (n) given by the definition
of admissible leaves. Since ϕ is supported in Bn(x, ε), the number of
leaves Wj on which ϕ ◦Tn is nonzero is uniformly bounded. On each of

these leaves, eSnφ is bounded by CeSnφ̄(T−nx). It follows that
∣

∣

∣

∣

∫

W
ϕ0ϕα0

∣

∣

∣

∣

≤ C̺−neSnφ̃(T−nx).

Since this estimate is uniform in W and ϕ0, the upper bound is proven.
For the (trickier) lower bound, we proceed in four steps.

First step. Let us show that, for any piece W of stable leaf containing

a point y with d(x, y) < ε/10 and dist(y, ∂W ) ≥ 10ε, we have

(6.9)

∫

W
ϕα0 ≥ Cε̺

−neSnφ̄(T−nx).

Indeed, T−nW contains a disk D centered at a point of Λ, of radius
ε/10, and contained in T−nBn(x, ε/2). The integral of α0 on such a
disk is uniformly bounded from below by a constant Cε (by (5.1)), and
ϕ ◦ Tn = 1 on D. Therefore,

∫

W
ϕα0 =

∫

W
ϕ̺−nLnπ,φα0 = ̺−n

∫

T−nW
ϕ ◦ TneSnφπnα0

≥ ̺−n
∫

D
eSnφπnα0.

Moreover, πnα0 = α0 on D by (9.1), and eSnφ ≥ CeSnφ̄(T−nx) on D.
This proves (6.9).

Second step. Let us show that, for any δ > 0, there exists M =
M(ε, δ) such that, for any m ≥ M , there exists C = C(ε, δ,m) such

that, for any piece W of stable manifold containing a point y ∈ Λ with

dist(y, ∂W ) ≥ δ,

(6.10)

∫

T−mW
ϕα0 ≥ C̺−neSnφ̄(T−nx).

This is a direct consequence of the topological mixing of T on Λ: if
m is large enough, then T−mW will contain a subset W ′ satisfying the
assumptions of the first step. Therefore, (6.9) implies the conclusion.
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Third step. Let W ∈ Σ be a piece of stable manifold containing a point

of Λ in its interior. Denote by W e its enlargement, as in Definition 3.1.
There exists C = C(ε,W ) > 0 such that, for any large enough p ∈ N,

(6.11)

∫

W e

̺−pLpπ,φ(ϕα0) ≥ C̺−neSnφ̄(T−nx).

To prove this, consider {Wj} a covering of T−pW (p) as in the defini-
tion of admissible leaves, and ρj the corresponding partition of unity.

As in the proof of Lemma 4.5, there exists an integer L with the
following property: to each Wj , we can associate a small ball B(yj , δ)

contained in T−(p−L)W e, at a bounded distance from TLWj , with yj ∈
Λ. Increasing L if necessary (this process does not decrease δ), we can
assume L ≥ M(ε, δ). Since the balls Bj have a bounded number of
overlaps,

(6.12)

∫

W e

Lpπ,φ(ϕα0) ≥ C
∑

j

∫

Bj

πp−Le
Sp−LφLLπ,φ(ϕα0).

The function πp−L is equal to 1 on a neighborhood of the support of α0,

by (9.1), so we can disregard it. Moreover, infBj
eSp−Lφ ≥ CeSp−L(yj).

We get

(6.13)

∫

W e

Lpπ,φ(ϕα0) ≥ C
∑

j

eSp−Lφ̄(yj)

∫

T−LBj

eSLφϕα0.

The second step applies to each of the sets Bj . Since eSLφ is uniformly
bounded from below, we obtain

̺n
∫

W e

Lpπ,φ(ϕα0) ≥ CeSnφ̄(T−nx)
∑

j

eSp−Lφ̄(yj)

≥ CeSnφ̄(T−nx)
∑

j

∫

TLWj

eSp−Lφα0

≥ CeSnφ̄(T−nx)

∫

W
Lp−Lπ,φ α0

= CeSnφ̄(T−nx)

∫

W
̺p−Lα0,

since α0 is an eigenfunction of Lπ,φ.

Fourth Step. Conclusion. Fix W ∈ Σ satisfying the assumptions of
the third step. When p → ∞, ̺−pLpπ,φ(ϕα0) converges to ℓ0(ϕα0)α0 =

µ(ϕ)α0. Passing to the limit in (6.11), we obtain

(6.14) µ(ϕ)

∫

W e

α0 ≥ C̺−neSnφ̄(T−nx).

This is the desired lower bound. q.e.d.
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Theorem 6.4. The spectral radius ̺ is equal to the topological pres-

sure ePtop(φ̄) of the function φ̄. In addition, the measure µ is the unique

probability measure satisfying the variational principle

hµ(T ) +

∫

φ̄dµ = Ptop(φ̄).

In other words, µ is the so-called Gibbs measure of T : Λ → Λ,
corresponding to the potential φ̄.

Proof. The theorem is a completely general consequence of Proposi-
tion 6.3. Indeed, let T be any continuous transformation on a compact
space Λ preserving an ergodic probability measure µ. Let φ̄ be a function
such that Proposition 6.3 is satisfied, and there exists C > 0 such that,

for any dynamical ball B = Bn(x, ε), supB e
Snφ̄ ≤ C infB e

Snφ̄ (which is
satisfied in our hyperbolic setting since φ̄ is Hölder continuous). Then
µ satisfies the variational principle and is the unique measure to do
so. This result is due to Dobrushin and Landford–Ruelle (in statistical
mechanics), and is proved, e.g., in [HK95, Theorem 20.3.7]. For the
convenience of the reader, let us sketch a proof.

Recall that the definition of the topological pressure of φ̄ is given by

Ptop(φ̄) : = lim
ε→0

lim inf
n→∞

1

n
lnSd(T, φ̄, ε, n)

= lim
ε→0

lim sup
n→∞

1

n
lnNd(T, φ̄, ε, n)

where

Sd(T, φ̄, ε, n) := inf

{

∑

x∈E

eSnφ̄(T−nx) : Λ ⊂
⋃

x∈E

Bn(x, ε)

}

Nd(T, φ̄, ε, n) := sup

{

∑

x∈E

eSnφ̄(T−nx) : E ⊂ Λ is (n, ε)-separated

}

.

Now in the first case

1 = µ(Λ) ≤
∑

x∈E

µ(Bn(x, ε)) ≤ Aε̺
−n
∑

x∈E

eSnφ̄(T−nx).

Taking the inf on E and the limits yields ̺ ≤ Ptop(φ̄). On the other
hand, if E is (n, ε)-separated,

1 = µ(Λ) ≥
∑

x∈E

µ(Bn(x, ε/2)) ≥ aε/2̺
−n
∑

x∈E

eSnφ̄(T−nx)

holds, which taking the sup on E and the limits, yields ̺ ≥ Ptop(φ̄).
Finally, if ν is any invariant ergodic probability measure, the Brin-

Katok local entropy theorem [BK83] states that the quantity

lim
ε→0

lim sup
n→∞

1

n
log(1/ν(Bn(x, ε)))
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converges ν almost everywhere to hν(T ). Lemma 6.3 shows that, µ-a.e.,

Ptop(φ̄) − lim sup
n→∞

Snφ̄(T−nx)

n
≥ hµ(T )

≥ Ptop(φ̄) − lim inf
n→∞

Snφ̄(T−nx)

n
.

By Birkhoff Theorem, for µ-almost all x, Snφ̄(T−nx)
n converges to

∫

φ̄ dµ.
Together with the above inequalities, we get

hµ(T ) +

∫

φ̄dµ = Ptop(φ̄).

Hence µmaximizes the variational principle. To show that the maximiz-
ing probability is unique, one can proceed exactly as in [HK95, Theo-
rem 20.3.7] where one uses Proposition 6.3 instead of [HK95, Lemma
20.3.4]. q.e.d.

Remark 6.5. Theorem 6.4 implies in particular that the measure µ
constructed using the transfer operator Lπ,φ is in fact independent of the
truncation π. This can also be checked directly by spectral arguments.
However, α0 and ℓ0 do depend on the truncation: if we take a truncation
with smaller support π′, such that π = 1 on the support of π′, then
the new eigenfunctions α′

0 and ℓ′0 are equal to α0 ·
∏N
i=1 π

′ ◦ T−i and

ℓ0 ·
∏N−1
i=0 π′ ◦ T i for any large enough N . Nevertheless, this shows that

they coincide with α0 and ℓ0 on a neighborhood of Λ.

7. Relationships with the classical theory of Gibbs measures

7.0.1. Margulis’ construction. Classically, the Gibbs measure can
be constructed by coding, but there is also a geometric construction, due
initially to Margulis. He proves the following result (for the measure of
maximal entropy in [Mar04], but the proofs extend to Gibbs measures,
see e.g., [BL98]):

There exist a family of measures µs on the stable leaves, supported
on Λ, and a family of measures µu on unstable leaves, supported on Λ,
such that

(7.1) µs = T∗(e
φ̄−Ptop(φ̄)µs), µu = T∗(e

Ptop(φ̄)−φ̄µu).

The measures µs are constructed by starting from the Riemannian
measure on a very large piece of stable leaf, and then pushing it by the

dynamics Tn (with a suitable multiplication by the weight eφ̄). The
sequence is shown to converge in some sense, to the invariant set of
measures µs. This corresponds exactly to what we do by the iteration
of the transfer operator, exhibiting α0 as the limit of Lnπ,φ(αr). The

main difference is that we get the convergence in a strong sense (norm
convergence), and for free due to the spectral properties of the operator.
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In fact, the measures µs are exactly the measures induced by α0 on the
stable leaves.

The measures µu are constructed in the same way, but iterating T−1.
The relationship with our abstract eigenfunction ℓ0 in the dual of B
is less clear at first sight. However, they are still very closely related.
Indeed, let us define an element ℓ ∈ B′ as follows: if α ∈ B, and ϕ is a Cr

function supported in a small open set foliated by small stable leaves,
and having as transversal a small unstable leaf F , define ℓ(ϕα) as
(7.2)
∫

x∈F

(

∫

y∈W s(x)
ϕ(y)

∞
∏

k=0

π ◦ T k(y)e
P∞

k=0 φ̄(Tky)−φ̄(Tkx)α

)

dµuF (x).

This is well defined since y 7→
∏∞
k=0 π ◦ T k(y)e

P∞
k=0 φ̄(Tky)−φ̄(Tkx) is

Cr−1+ι on each stable leaf (the product is in fact finite, since π ◦ T k

is uniformly equal to 1 for large enough k), and can therefore be inte-
grated against α. The Jacobian of the holonomy of the stable foliation

with respect to the measures µu is exactly e
P∞

k=0 φ̄(Tky)−φ̄(Tkx). Hence,
the local definition of ℓ is independent of the choice of the transversal
F . Using a partition of unity ϕ1, . . . , ϕn, we have a well defined element
ℓ ∈ B′.

The conformality property of the measures µu implies that L′
π,φℓ =

̺ℓ. Indeed, let us compute locally: ℓ(Lπ,φα) is equal to

∫

x∈F

(

∫

y∈W s(x)

∞
∏

k=0

π ◦ T k(y)e
P∞

k=0 φ̄(Tky)−φ̄(Tkx)Lπ,φα

)

dµuF (x),

which becomes after a change of variables

∫

x′∈T−1F

(

∫

y′∈W s(x′)

∞
∏

k=1

π ◦ T k(y′)

× e
P∞

k=1 φ̄(Tky′)−φ̄(Tkx′)π(y′)eφ̄(y′)α

)

dµuF (x).

Moreover, the equality µu = T∗(e
Ptop(φ̄)−φ̄µu) is equivalent to dµuF (x) =

ePtop(φ̄)−φ̄(x′) dµuT−1F (x′). It follows that ℓ(Lπ,φα) = ̺ℓ(α).
Since the eigenspace of L′

π,φ is one-dimensional, this shows that ℓ and
ℓ0 are proportional. Hence, the measures µu give a geometric description
of ℓ0.

Remark 7.1. This description implies that

|ℓ0(ψα)| ≤ C ‖α‖0,q,ι · sup
x∈Λ

|ψ|Cq(W s(x)).

Hence, in (1.2), |ψ|Cq(U) can be replaced with supx∈Λ |ψ|Cq(W s(x)).
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Finally, the Gibbs measure µ is constructed by “putting together lo-
cally” the measures µs and µu. In our setting, this task is automatically
performed by the functional analytic framework.

7.0.2. Currents. Another classical construction of Gibbs measures,
closely related to the previous one but expressed slightly differently,
is to work with currents, [RS75]. A current of degree k is an element of
the dual of the space of smooth differential forms of degree d−k, where
d is the dimension of the ambient manifold (which we shall assume to be
oriented in this paragraph). A differential form of degree k gives a cur-
rent of degree k, since it is possible to take its exterior product against
a form of degree d− k, and then integrate on the whole manifold.

A way to construct Gibbs measures is to find “conformal currents” in
the stable and unstable directions (i.e., currents satisfying a condition
similar to (7.1)), and then take their “intersection” to get an invariant
measure, which is the Gibbs measure.

Since the differential forms of degree ds form a subset of B (see Re-
mark 2.1), an element of the dual of B gives rise to a current of degree
du. In particular, the eigenfunction ℓ0 is a current (and (7.2) shows that
it is even a current with an interesting underlying geometric structure).
Hence, ℓ0 can be interpreted as a conformal current in the unstable
direction.

On the other hand, α0 is not a current of dimension ds in a natural
way. Indeed, there is no canonical way to multiply an element of S
with a differential form to get something which could be integrated.
However, assume that the weight φ belongs to W1 (i.e., it depends only
on the point), and that T is mixing but orientation preserving. Then
we can consider in B the closure C of the set of differential forms. An
element of C is naturally a current.13 Since φ ∈ W1, it is easy to
check that Lπ,φ leaves C invariant. Moreover, the spectral radius of
the restriction of Lπ,φ to C is still ̺ (notice that this would not hold
in the orientation mixing case). This implies that the eigenfunction α0

belongs to C, hence α0 can then be interpreted as a current. Finally, µ is
indeed constructed by “intersecting” the two conformal currents ℓ0 and
α0 (this intersection process, which is often complicated to implement
in general, is given here for free by the functional analytic framework).

7.0.3. Young-Chernov-Dolgopyat. In recent years, a new approach
has been introduced by Lai-Sang Young. It has been further simplified
by Dolgopyat and then Dolgopyat-Chernov, and has been recently re-
viewed in [Che06]. Such an approach is indeed very close to the one
described here. Essentially, it uses objects in the dual of our spaces B0,q.

13To see this we must check that, if α is a smooth form of degree du, there exists
C > 0 such that, for any form β of degree ds, |

R

α∧β| ≤ C ‖β‖
B
. This can be checked

in coordinates by using a basis of the tangent space whose elements all belong to the
stable cone.
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More precisely, Ωp,q,ι, p+q < r−1+ι, can be endowed with a topology
τ , stronger than the weak-* one, for which it is compact.14 This implies
an interesting characterization of the dual spaces of B := Bp,q,ι.

Lemma 7.2. Let ℓ∗ ∈ B′; then there exists a Borel (with respect to

the τ topology) measure ρ on Ω such that, for all h ∈ B,

ℓ∗(h) =

∫

Ω
ℓ(h) ρ(dℓ).

Proof. The first step is to construct F : B → C0(Ω,C) defined by

F (h)(ℓ) := ℓ(h),

since τ is stronger than the weak-* topology, and F (h) is continuous.
Call A := F (B); clearly A is a closed linear space in C0(Ω,C). We can
then associate to ℓ∗ the element ν ∈ A′ defined by ν(F (h)) = ℓ∗(h).
By the Hahn-Banach Theorem there exists an extension ν ′ of ν to all
C0(Ω,C). A this point, by the Riesz Representation Theorem, there
exists a measure ρ on Ω such that

ν ′(f) =

∫

Ω
f(ℓ)ρ(dℓ).

Hence, for each h ∈ B, we have

ℓ∗(h) = ν(F (h)) = ν ′(F (h)) =

∫

Ω
F (h)(ℓ)ρ(dℓ) =

∫

Ω
ℓ(h)ρ(dℓ).

q.e.d.

Accordingly, the elements (W,ϕ) ∈ Ω0,q correspond exactly to the
standard pairs in [Che06] and, by the above Lemma, the basic objects
used in [Che06] are precisely the elements of (B0,q)′.

The difference lies in the technique used to prove statistical prop-
erties: in [Che06] a probabilistic coupling technique is used (instead
of the functional analytic one) to prove statistical properties. Such an
approach yields much weaker results than the present one, but it needs
much less structure and hence it is amenable to generalizations in the
non-uniformly hyperbolic case.

7.0.4. Gouëzel-Liverani. In [GL06], we introduced an approach to
study the SRB measure of an Anosov map. In many respects, it has
the same flavor as the approach in the present paper, with admissible
leaves and norms obtained in a very similar way. There are, however,
two important differences between the two papers.

• On the technical level, the proof of the Lasota-Yorke inequality
(4.3) was more complicated since we had not realized one could
use weighted norms.

14Essentially, two manifolds are close if they are Cr−ε close, for p+q+ε < r−1+ι;
the ϕ must be Cp+q−ε close and the vector fields Cp+q−ι−ε close.
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• More conceptually, we had not distinguished between what is spe-
cific to the SRB measure and comes from the Riemannian setting,
and what is completely general. In particular, we considered our
spaces Bp,q as spaces of distributions, by integrating in the trans-
verse direction with respect to Lebesgue measure. This is very
natural in this case since Lebesgue measure is precisely the trans-
verse measure µu of Margulis, i.e., the eigenelement ℓ0 in the dual
space is already given for free at the beginning. However, this is
really a peculiarity of the SRB measure, which we had to avoid to
treat general Gibbs measures. This explains why we get spaces of
generalized differential forms instead of spaces of distributions.

8. Examples and Applications

In this section we try to give an idea of the breadth of the results by
first discussing some natural examples to which it can be applied and
then illustrating an interesting consequence: perturbation theory.

8.1. Examples.

8.1.1. Anosov and Axiom-A. The theory applies to any Anosov or,
more generally, Axiom-A system. In particular, it allows to construct
and investigate the SRB measures and the measures of maximal entropy.
In this respect the present work contains an alternative, self contained,
construction yielding the classical results contained in [Bow75].15 The
relation between the present approach and other, more classical, ones
are discussed in some detail in Section 7.

8.1.2. Open systems. Systems of physical interest are often open,
that is, the particles can leave the system. This can happen either
with certainty, once they enter in a given region (holes), or according
to some probability distribution π (holes in noisy systems). The first
case cannot be treated in the present setting since the boundaries of
the hole introduce discontinuities in the system, but the latter can be
treated provided π is smooth. For example, consider an Anosov system
(X,T ) and the following dynamics: a point disappears with probability
π(x)dx and then, if it has not disappeared, it is mapped by T . In this
situation, a typical quantity of physical interest is the escape rate with
respect to Lebesgue, that is the rate at which mass leaks out of the
system. If φ is the potential corresponding to the SRB measure, then
the transfer operator associated to the above dynamics is simply Lφ,1−π
and the escape rate is nothing else than the logarithm of its leading
eigenvalue.

15Notice, however, that we have an additional smoothness assumption on the
weight.
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8.1.3. Billiards with no eclipse conditions. An interesting concrete
system to which the present paper applies is the scattering by convex
obstacle with no-eclipse condition (that is, the convex hull of any two
scatterers does not intersect any other scatter). Although the reflec-
tion from an obstacle gives rise to singularities in the Poincaré section,
the no-eclipse condition nevertheless implies that only points that will
leave the system can experience a tangent collision (corresponding to a
singularity). Hence there exists a neighborhood of the set of the points
that keep being scattered forever in which the dynamics is smooth, and
hence falls in our setting. See [KS97] for a pleasant introduction to
such a subject. In particular, one can obtain sharper information on
the spectrum of the Ruelle operator than available by the usual coding
techniques used in [Mor91, Sto01, Mor04].

8.2. An application: smoothness with respect to parameters.

As already mentioned, the present setting easily allows us to discuss the
dependence from parameters of various physically relevant quantities.

Let us make a simple example to illustrate such a possibility. Let
(X,Tλ) be a one parameter family of Anosov maps and let φλ be a
one parameter family of potentials. Suppose that Tλ, φλ are jointly
Cr in the variable and the parameter. By applying the perturbation
theory in [GL06, Section 8] it follows that the leading eigenvalue epλ =
exp(Ptop(φλ, Tλ)) and the corresponding eigenmeasure are smooth in λ.
If, for example, we are interested in the measure of maximal entropy
(φλ = 0 in view of the variational principle given in Theorem 6.4), then
it follows that, for any ε > 0, the topological entropy hλ = Ptop(0, Tλ)

is C⌊r⌋−1−ε (this is obvious, since this quantity is constant!) and the

measure of maximal entropy µλ is a C⌊r⌋−1−ε function of λ as a function
from R to D′

r (that is, if viewed as a distribution of order r).
In fact, the formalism makes it possible to easily compute the deriva-

tives of the various objects involved. We illustrate this possibility with
the following proposition. Write Tλ as Iλ ◦ T0 where Iλ is the flow from
time 0 to time λ of a Cr−1 time dependent vector field vt. If v is a
smooth vector field, denote by vs and vu its projections on the stable
and unstable bundles (they are only Hölder continuous vector fields),
and by Lv its Lie derivative. If Φ is a smooth function on G such that
Φ(E) is independent of the orientation of E, let Φ̄(x) = Φ(x,Es(x)).
The formula (7.2) for ℓ0 shows that, for such a Φ,

(8.1) ℓ0(Φα0) = µ0(Φ̄).

Proposition 8.1. Let A = φ̄′0−
∑∞

n=0 Lvs
0
(φ̄0◦T

n
0 ). Then p′0 = µ0(A)

and, if ϕ is a C1 test function, the derivative at λ = 0 of µλ(ϕ) is

∞
∑

k=−∞

µ0(ϕ ◦T k0 (A− p′0)) +
−1
∑

k=−∞

µ0(Lvu
0
(ϕ ◦T k0 ))−

∞
∑

k=0

µ0(Lvs
0
(ϕ ◦T k0 )).



470 S. GOUËZEL & C. LIVERANI

Notice that the sums in this last equation are clearly finite (the dif-
ferent terms decay to 0 exponentially fast). Notice also that, when the
potential φλ is constant, we get p′0 = 0 and, in the same way, ̺′λ = 0.
This proves that the topological entropy is locally constant, without
using as usual the structural stability of the map.

Proof. Due to (8.1), we can omit the bars everywhere and work only
with φ0.

Let us first prove the following formula. If W is a piece of stable
manifold, v is a smooth vector field on a neighborhood of W and ϕ ∈
C1

0(W ), then

(8.2)

∫

W
ϕLvα0 = −

∫

W
Lvsϕ · α0.

Notice that Lvsϕ makes sense since vs is not differentiated here. To
prove this, for large n let vs,n and vu,n be approximations of vs and vu

as constructed in footnote 9. Then
∫

W
ϕLvu,nα0 = ̺−n

∫

W
ϕLvu,n(Ln0α0)

= ̺−n
∫

T−nW (n)

ϕ ◦ Tn0 LT ∗n
0 vu,n(πne

Snφα0).

Since T ∗n
0 vu,n has norm at most Cλ−n, this last integral is bounded by

(8.3) C̺−n̺nnλ
−n ≤ Cλ−n,

which tends to 0 when n→ ∞. Hence,

(8.4)

∫

W
ϕLvα0 =

∫

W
ϕLvu,nα0 −

∫

W
Lvs,nϕ · α0 → −

∫

W
Lvsϕ · α0.

This proves (8.2). Together with the formula (7.2) for the fixed point
of the dual operator, we get for any smooth function ϕ

(8.5) ℓ0(ϕLvα0) = −µ0(Lvsϕ) − µ0

(

ϕ
∞
∑

n=0

Lvs(φ0 ◦ T
n
0 )

)

.

Let αλ be the eigenfunction of the operator Lλ associated to Tλ and
the potential φλ, normalized so that ℓ0(αλ) = 1. Let ℓλ be the cor-
responding eigenfunction of the dual operator, with ℓλ(αλ) = 1. The
measure µλ is given by µλ(ϕ) = ℓλ(ϕαλ). The derivative at 0 of Lλα is

(8.6) L′
0α = Lv0(L0α) + L0(φ

′
0α).

Differentiating the equation Lλαλ = epλαλ, we get

(8.7) α′
0 = e−p0L0α

′
0 + Lv0α0 + φ′0 ◦ T

−1
0 α0 − p′0α0.

Applying ℓ0 to this equation, we get p′0 = µ0(φ
′
0) + ℓ0(Lv0α0). By (8.5)

applied to ϕ = 1, we obtain p′0 = µ0(A).
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Since ℓ0(αλ) = 1, we have ℓ0(α
′
0) = 0. Therefore, (e−p0L0)

nα′
0 con-

verges to 0 exponentially fast. We can therefore iterate (8.7) and get

(8.8) α′
0 =

∞
∑

k=0

(e−p0L0)
k
[

Lv0α0 + (φ′0 ◦ T
−1
0 − p′0)α0

]

.

We can use this expression to compute ℓ0(ϕα
′
0) when ϕ is a smooth

function. Let B = −
∑∞

n=0 Lvs
0
(φ0 ◦ T

n
0 ). Using (8.5) and p′0 = µ0(A),

we obtain

(8.9) ℓ0(ϕα
′
0) =

∞
∑

k=0

µ0(ϕ ◦ T k0 (B − µ0(B)))

−
∞
∑

k=0

µ0(Lvs
0
(ϕ ◦ T k0 )) +

∞
∑

k=1

µ0(ϕ ◦ T k0 (φ′0 − µ0(φ
′
0))).

For any α, we have ℓλ(Lλα) = epλℓλα. Differentiating, we get

(8.10) ℓ′0(α) = ℓ′0(e
−p0L0α) + ℓ0(Lv0e

−p0L0α) + ℓ0((φ
′
0 − p′0)α).

Since ℓλ(αλ) = 1, we have ℓ′0(α0) = −ℓ0(α
′
0) = 0. Therefore, for any α,

ℓ′0((e
−p0L0)

kα) converges exponentially fast to 0. Iterating (8.10), we
thus get

(8.11) ℓ′0(α) =
∞
∑

k=0

ℓ0(Lv0(e
−p0L0)

k+1α) + ℓ0((φ
′
0 − p′0)(e

−p0L0)
kα).

Applying this equation to α = ϕα0 where ϕ is a smooth function, and
using Lv0ϕ = Lvs

0
ϕ+ Lvu

0
ϕ as well as (8.5), we get

(8.12) ℓ′0(ϕα0) =
0
∑

k=−∞

µ0(ϕ ◦ T k0 (φ′0 − µ0(φ
′
0)))

+
−1
∑

k=−∞

µ0(Lvu
0
(ϕ ◦ T k0 )) +

−1
∑

k=−∞

µ0(ϕ ◦ T k0 (B − µ0(B))).

The derivative at 0 of µλ(ϕ) = ℓλ(ϕαλ) is given by ℓ′0(ϕα0) + ℓ0(ϕα
′
0).

Adding (8.12) and (8.9), we obtain the conclusion of the proposition.
q.e.d.

Other quantities that can be shown to depend smoothly from param-
eters are: the rate of decay of correlations and the associated distribu-
tions τi (see Theorem 1.2), the variance in the central limit theorem for
smooth observables, the rate function in the large deviation for observ-
ables (at least in the C∞ case), etc.
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9. Conformal leafwise measures

This section is formally independent from the rest of the paper, but
it is of course written with the hyperbolic setting in mind.

Let X be a locally compact space, endowed with a d-dimensional lam-
ination structure: there exists an atlas {(U,ψU )} where U is an open
subset of X and ψU is a homeomorphism from U to a set D×KU where
D is the unit disk in R

d and KU is a locally compact space. More-
over, the changes of charts send leaves to leaves, i.e., ψU ◦ ψ−1

V (x, y) =
(f(x, y), g(y)) where defined.

A continuous leafwise measure µ is a family of Radon measures on
each leaf such that, for every chart (U,ψU ) as above and every continu-
ous function ϕ supported in U ,

∫

ψ−1
U

(D×{y}) ϕ dµ depends continuously

on y ∈ KU .
Assume that, on each leaf of the lamination, a distance is given

that varies continuously with the leaf (in the sense that, for any chart
(U,ψU ) as above, the map from D ×D ×Ku to R given by (x, x′, y) 7→
d(ψ−1

U (x, y), ψ−1
U (x′, y)) is continuous). Consider then an open subset Y

of X, with compact closure, and a continuous map T : Y → X which
sends leaves to leaves and expands uniformly the distance: there exist
κ > 1 and δ0 > 0 such that, whenever x, y are in the same leaf and satisfy
d(x, y) ≤ δ0, then d(Tx, Ty) ≥ κd(x, y) (in particular, the restriction of
T to B(x, δ0) is a homeomorphism). Assume that Λ :=

⋂

n≥0 T
−nX is

a compact subset of X.
If x ∈ Y , then T is a homeomorphism on a small ball around x in

the leaf containing x. Hence, it is possible to define the pullback T ∗µ
of any continuous leafwise measure µ. Our first result is:

Theorem 9.1. Let µ be a nonnegative continuous leafwise measure,

and ν a complex continuous leafwise measure. Assume that there exists a

constant C > 0 such that, on each leaf, |ν| ≤ Cµ. Moreover, assume that

there exists a continuous function π, supported in Y ∩ T−1Y , positive

on Λ, Hölder continuous on the intersection of Λ with any leaf, such

that µ = πT ∗µ and ν = γπT ∗ν for some γ ∈ C with |γ| = 1.
Then there exist c ∈ C and an open subset U of a leaf, containing a

point of Λ, such that ν = cµ on U .

The proof is essentially a density point argument: there is a small
subset where ν is very close to a multiple of µ, and pushing this es-
timate by TN for large N we will obtain the result. Technically, the
existence of convenient density points will be proved using the martin-
gale convergence theorem. Hence, we will first need to construct good
partitions.

Notice first that

(9.1) the leafwise measure µ is supported on Λ.
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Indeed, if a compact set V of a leaf does not intersect Λ, then it can be
covered by a finite number of open subsets which are sent in X\Y by
some iterate of T . The equation µ = πT ∗µ then shows that µ gives zero
mass to each of these open sets.

By compactness of Λ, there exist δ ∈ (0, δ0) and ε0 > 0 such that,
for any x ∈ Λ, the ball B(x, δ) (in the leaf containing x) is contained in
{π > ε0}. We fix such a δ until the end of the proof.

We will say that a subset A of a leaf is good if it is open with compact
closure and µ(∂A) = 0.

Lemma 9.2. Let A be a good subset of a leaf, and let ε > 0. There

exist good subsets B and (Fi)1≤i≤K forming a partition of a full measure

subset of A, with diam(Fi) ≤ ε, such that µ(B) ≤ µ(A)/2 and, for all

i, there exist n ∈ N and x ∈ Λ such that B(x, δ/5) ⊂ TnFi ⊂ B(x, δ).

Proof. Since µ(∂A) = 0, there exists η > 0 such that V = {x ∈
A, d(x, ∂A) ≥ η} satisfies µ(V ) ≥ µ(A)/2. Choose N > 0 such that
κNε > δ and κNη > δ.

Define a distance dN on A by dN (x, y) = sup0≤i≤N d(T
ix, T iy). Let

BN (x, r) denote the ball of center x and radius r for the distance dN .
Choose a maximal δ/2-separated set for the distance dN in Λ ∩ V , say
x1, . . . , xk. The balls BN (xi, δ/4) are disjoint, and TN (BN (xi, δ/5)) =
B(TNxi, δ/5). Moreover, V ∩ Λ ⊂

⋃

BN (xi, δ/2).
For each i, there exist ai ∈ (δ/5, δ/4) with µ(∂BN (xi, ai)) = 0, and

bi ∈ (δ/2, δ) with µ(∂BN (xi, bi)) = 0. Define then the sets Fi by induc-
tion on i, by

Fi = BN (xi, bi)\





⋃

j<i

Fj ∪
⋃

j>i

BN (xi, ai)



 .

By construction, the sets Fi are good sets and B(TNxi, δ/5) ⊂ TNFi ⊂
B(TNxi, δ). Set finally B = A\

⋃

F i. The sets Fi cover almost all
V ∩ Λ, i.e., almost all V since µ is supported on Λ. This implies that
µ(B) ≤ µ(A\V ) ≤ µ(A)/2. q.e.d.

Lemma 9.3. Let A be a good subset of a leaf, and let ε > 0. There

exist good subsets (Fi)i∈N of A, with diam(Fi) ≤ ε, forming a partition

of a full measure subset of A, such that for all i ∈ N, there exist n ∈ N

and x ∈ Λ such that B(x, δ/5) ⊂ TnFi ⊂ B(x, δ).

Proof. It is sufficient to apply inductively Lemma 9.2 to A, then B,
and so on. q.e.d.

Proof of Theorem 9.1. Let us say that a set has “full µ measure” if
its intersection with any leaf has full measure in the usual sense. Let
f = dν

dµ be the leafwise Radon-Nikodym of ν with respect to µ. It is
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defined µ almost everywhere. Since |ν| ≤ Cµ, it satisfies |f | ≤ C. The
equations µ = πT ∗µ and ν = γπT ∗ν show that, for almost all x ∈ Λ,
f(Tx) = γ−1f(x).

Start from a good set A in a leaf, containing a point of Λ. Applying
inductively Lemma 9.3, we obtain a sequence of finer and finer partitions
Fn of a full measure subset of A, such that, for all F ∈ Fn, there exists
i ∈ N and x ∈ Λ such that B(x, δ/5) ⊂ T iF ⊂ B(x, δ), and with
diamF ≤ 2−n.

For µ almost every x ∈ A, there is a well defined element Fn(x) ∈ Fn
containing x. Moreover, the martingale convergence theorem ensures
that, for µ almost every x, for all ε > 0,

(9.2)
µ{y ∈ Fn(x) : |f(y) − f(x)| > ε}

µ(Fn(x))
→ 0 when n→ ∞.

Fix such a point x. Let xn ∈ Λ and i(n) ∈ N be such that B(xn, δ/5) ⊂
T i(n)Fn(x) ⊂ B(xn, δ). Since π is Hölder continuous on Λ and π ≥ ε0
on the iterates T jFn(x) for all 0 ≤ j < i(n), there exists a constant C
such that, for all y, z ∈ Fn(x) ∩ Λ,

i(n)−1
∏

j=0

π(T jy) ≤ C

i(n)−1
∏

j=0

π(T jz).

Together with (9.2) and the equation µ = πT ∗µ, this gives

µ{y ∈ T i(n)Fn(x) : |f(T−i(n)y) − f(x)| > ε}

µ(T i(n)Fn(x))
→ 0.

Moreover, f(T−i(n)y) = γi(n)f(y), and µ(T i(n)Fn(x)) ≤ µ(B(xn, δ)) is
uniformly bounded. Hence, for all ε > 0,

µ{y ∈ T i(n)Fn(x) : |f(y) − γ−i(n)f(x)| > ε} → 0.

Since T i(n)Fn(x) contains the ball B(xn, δ/5), we get in particular

(9.3) µ{y ∈ B(xn, δ/5) : |f(y) − γ−i(n)f(x)| > ε} → 0.

Taking a subsequence if necessary, we can assume that xn converges
to a point x′ and γ−i(n) converges to γ′ ∈ C with |γ′| = 1. Let ϕ be a
continuous function supported in B(x′, δ/10). Extend it to a continuous
function with compact support on nearby leaves. Then (9.3) and the
inequality |f | ≤ C show that

∫

B(xn,δ/5)
ϕ dν − f(x)γ′

∫

B(xn,δ/5)
ϕ dµ→ 0.

By the continuity properties of µ and ν, this implies that
∫

B(x′,δ/10)
ϕ dν = f(x)γ′

∫

B(x′,δ/10)
ϕ dµ.

Hence, on the ball B(x′, δ/10), we have ν = f(x)γ′µ. q.e.d.
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Proposition 9.4. Under the assumptions of Theorem 9.1, assume

moreover that the map T is topologically mixing on Λ, and that any

open set U of a leaf which contains a point of Λ also contains a point

of Λ whose orbit is dense. Then there exists c ∈ C such that ν = cµ. In

particular, γ = 1 (or ν = 0).

Proof. Note first that, if there exists an open subset U of a leaf on
which ν vanishes, then ν = 0 and the theorem is trivial. Indeed, there
exists x ∈ U ∩ Λ whose positive orbit under T is dense in Λ. Let
r ∈ (0, δ) be such that B(x, r) ⊂ U . The conformality of ν and the
expansion properties of T show that, for any n ∈ N, ν vanishes on
B(Tnx, r). Since ν is continuous, it follows that ν = 0 on Λ. Since ν is
supported on Λ, ν = 0.

Assume now that ν is nonzero on each set U as before. Since |ν| ≤ µ,
this implies the same property for µ. By Theorem 9.1, there exists an
open set U in a leaf, containing a point of Λ, and c ∈ C such that ν = cµ
on U . As above, consider x ∈ U ∩ Λ whose orbit is dense, and choose
r ∈ (0, δ) such that B(x, r) ⊂ U . The conformality of ν and µ shows
that, on B(Tnx, r), ν = cγ−nµ. By continuity of the measures, for any
y ∈ Λ, there exists f(y) ∈ C such that ν = f(y)µ on B(y, r). Moreover,
this f(y) is uniquely defined since µ is nonzero on any ball B(y, r), it
depends continuously on y ∈ Λ, and it is nonzero by assumption on ν.
Finally, f ◦ T = γ−1f .

Since T is topologically mixing, this implies that f is constant and
γ = 1. q.e.d.
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