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1. Introduction

The Morse lemma is a fundamental result in the theory of Gromov-hyperbolic spaces. 
It asserts that, in a δ-hyperbolic space, the Hausdorff distance between a (λ, C)-quasi-
geodesic and a geodesic segment sharing the same endpoints is bounded by a constant 
A(λ, C, δ) depending only on λ, C and δ, and not on the length of the geodesic. Many 
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proofs of this result have been given, with different expressions for A. An optimal 
value for A (up to a multiplicative constant) has only been found recently in the ar-
ticle [5] by the second author, giving A(λ, C, δ) = Kλ2(C + δ) for an explicit constant 
K = 4(78 + 133/ log(2) · exp(157 log(2)/28)) ∼ 37723.

Unfortunately, there is a gap in the proof of this theorem in [5], which was noticed 
by the first author while he was developing a library [4] on Gromov-hyperbolic spaces 
in the computer assistant Isabelle/HOL. In such a process, all proofs are formalized on 
a computer, and checked starting from the most basic axioms. The degree of confidence 
reached after such a formal proof is orders of magnitude higher than what can be obtained 
by even the most diligent reader or referee, and indeed this process shed the light on the 
gap in [5]. The gap is on Page 829: the inequality 

∑n
i=1 e

−Xi(Xi−1 − Xi) ≤
∫∞
0 e−t dt

goes in the wrong direction as the sequence Xi is decreasing.
In this paper, we fix this gap. Here is the estimate we get.

Theorem 1.1. Consider a (λ, C)-quasi-geodesic Q in a δ-hyperbolic space X, and G a 
geodesic segment between its endpoints. Then the Hausdorff distance HD(Q, G) between 
Q and G satisfies

HD(Q,G) ≤ 92λ2(C + δ).

Let us specify precisely the terms used in this statement, as there are small variations 
in the definitions in the literature. For us, a (λ, C)-quasi-geodesic is the image of a map 
f from a compact interval to X satisfying for all x, y the inequalities

λ−1 |y − x| − C ≤ d(f(x), f(y)) ≤ λ |y − x| + C.

A map satisfying these inequalities is also called a (λ, C)-quasi-isometry. We also re-
quire λ ≥ 1 and C ≥ 0 in the definition. A geodesic segment is by definition a 
(1, 0)-quasi-geodesic. We say that the space X is δ-hyperbolic if the Gromov product 
(x, y)w = (d(x, w) + d(y, w) − d(x, y))/2 satisfies for all points x, y, z, w the inequality

(x, z)w ≥ min((x, y)w, (y, z)w) − δ.

Finally, the Hausdorff distance HD(Q, G) is the smallest number r such that G is in-
cluded in the r-neighborhood of Q, and conversely.

Remark 1.2. For any λ ≥ 3, C ≥ 0 and δ ≥ 0, one can construct an example of a 
(λ, C)-quasi-geodesic Q in a δ-hyperbolic space which satisfies HD(Q, G) ≥ λ2(C + δ)/9
where G is a geodesic segment joining the endpoints of Q. This shows that Theorem 1.1
is optimal, up to the value of the multiplicative constant. Such examples for δ = 0 are 
already given in [5], and the following is a variation around these examples.

Example 1.3. Let λ ≥ 3, C ≥ 0 and δ ≥ 0. Take X = R × [0, δ] with the L1 distance. This 
is a δ-hyperbolic space. Let λ̄ = λ/3 ≥ 1. Define a quasi-geodesic f : [0, 2λ̄(C+δ) +δ/λ̄] →
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X by going always at speed λ̄ from (0, 0) to (λ̄2(C + δ), 0), then to (λ̄2(C + δ), δ), then 
to (0, δ). The Hausdorff distance between the quasi-geodesic Q defined by f and the 
geodesic G joining (0, 0) and (0, δ) is λ̄2(C + δ) = λ2(C + δ)/9. We claim that f is a 
(λ, C)-quasi-geodesic. The upper bound d(f(x), f(y)) ≤ λ |y − x| + C is obvious as f is 
λ̄-Lipschitz by construction. For the lower bound d(f(x), f(y)) ≥ λ−1 |y − x| − C, the 
most demanding points are the endpoints of the interval x = 0 and y = 2λ̄(C + δ) + δ/λ̄: 
we should check that

d(f(x), f(y)) = δ ≥ λ−1 ·
(
2(C + δ)λ̄ + δ/λ̄

)
− C.

This follows from the choice λ̄ = λ/3.

The new proof of Theorem 1.1 has been completely formalized in Isabelle/HOL 
in [4]. Therefore, the above theorem is certified. Here is this statement as proved in 
Isabelle/HOL.

In this formal statement, ’a is a type of class Gromov_hyperbolic_space. It cor-
responds to the space X of Theorem 1.1, and the associated hyperbolicity constant is
deltaG(TYPE(’a)). Instead of talking of the quasi-geodesic Q, the formal statement is 
made in terms of its parametrization f , as the notion of endpoint of a quasi-geodesic is 
not really well defined. With this correspondence, the two statements directly correspond 
to each other.

Although the proof is more involved than the original argument in [5], the constant we 
get in the end is much better (92 instead of 37724). Indeed, we have tried to optimize the 
constant as much as we could, contrary to [5], keeping in mind the foundational nature 
of the library [4]. This optimization owes a lot to the formalization process. It makes it 
possible to optimize locally one part of the proof, and see if it breaks other parts of the 
proof by checking if the proof assistant complains that the proof is not correct any more, 
or if everything goes through. The certainty of the result also makes the optimization 
worth it, as we are sure not to have forgotten for example an edge case that would spoil 
the estimates.

Having a formalized certified proof raises interesting questions about the way to write 
mathematics. We do not need to convince a reader (or a referee!) that the result is correct, 
as we have already done the much more demanding task of convincing a computer, and 
the proof with all details can be read by the interested reader in [4]. Rather, we have 
to convey the interesting ideas. We have decided to give all the precise statements we 
use (in their traditional version, but the very same statements have been formalized 
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in [4]), but skip their proofs if they are small variations around results that are already 
available in the literature. For the main proof, we will explain (with as many details 
as in a traditional mathematical paper) a simplified version of the proof that gives the 
same statement as Theorem 1.1 but not caring much about the universal constants (this 
simplified argument gives the constant 2460 instead of 92 in Theorem 1.1). Then we will 
comment without entering in too many details on the various optimizations that can be 
done, leading to the above statement.

Remark 1.4. The proof of Theorem 1.1 is delicate. However, we would like to emphasize 
that this is not due to our desire to formalize the proof on computer: the argument 
we give in this article is the simplest one we have been able to come up with, without 
any attempt to get an easy to formalize proof. And indeed this proof was not easy to 
formalize, but the mere fact that this was possible shows how powerful proof assistants 
already are today.

2. Proof of the main theorem

The proof uses the notion of quasiconvexity. We say that a subset Y ⊆ X is 
K-quasiconvex if, for any y1, y2 ∈ Y , there exists a geodesic between y1 and y2 which 
is included in the K-neighborhood of Y . For instance, geodesics are 0-quasiconvex. 
The r-neighborhood of a 0-quasiconvex set is always 8δ-quasiconvex, see [3, Proposi-
tion 10.1.2].

We follow the global strategy of [5] to prove Theorem 1.1, with a new more involved 
argument at a key technical step. Thanks to [1], we can assume without loss of generality 
that the space X is geodesic. The quasi-geodesic Q is by definition the image of a 
(λ, C)-quasi-isometric map f : [u−, u+] → X. The statement for a general quasi-isometric 
map f reduces to the one for a continuous quasi-isometric map f thanks to the following 
approximation lemma, which is a version of [5, Lemma 9] or [2, Lemma III.H.1.11].

Lemma 2.1. Consider a (λ, C)-quasi-isometry from a compact interval to a geodesic 
metric space, whose endpoints are at distance at least 2C. Then it is within Haus-
dorff distance 2C of a (λ, 4C)-quasi-geodesic with the same endpoints which is moreover 
2λ-Lipschitz.

The proof of this lemma is very classical: assume that the initial quasi-geodesic is 
defined on an interval [u−, u+]. Then the assumptions ensure that u+ −u− ≥ C/λ. Split 
suitably the interval [u−, u+] into subintervals with length in [C/λ, 2C/λ]. The new 
quasi-geodesic will coincide with the initial one on the endpoints of these subintervals, 
and be geodesic in between. The facts that this new function is a (λ, 4C)-quasi-geodesic, 
within Hausdorff distance 2C of the original one, and 2λ-Lipschitz, follow from direct 
computations.



1262 S. Gouëzel, V. Shchur / Journal of Functional Analysis 277 (2019) 1258–1268
Replacing the original quasi-geodesic by the new one given by Lemma 2.1 and C by 4C, 
we will assume from this point on that the (λ, C)-quasi-geodesic f is also continuous. 
Replacing the original hyperbolicity constant δ0 by a slightly larger constant δ (and 
letting δ tend to δ0 at the end of the argument), we can assume that the space is 
hyperbolic for a constant strictly smaller than δ, and also that δ > 0.

Consider z ∈ [u−, u+]. We want to estimate d(f(z), G). We will prove an estimate of 
the form

d(f(z), G) ≤ K0 + K1

K2

u+−u−∫
0

e−K2t dt = K0 + K1 · (1 − e−K2(u+−u−)), (2.1)

where K0, K1 and K2 are suitable parameters that do not depend on u− and u+. 
Both K0 and K1 will be of the form Ki = kiλ

2(C + δ), while K2 will be of the form 
K2 = k2/(δλ) where k0, k1, k2 are explicit positive real constants. They will be defined 
in (2.4), (2.7) and (2.6). This estimate is proved inductively over the size of u+ − u−, 
reducing the estimate over [u−, u+] to the estimate over a shorter interval [v−, v+]. 
We will have to show that the loss in this reduction process is controlled in terms of 
K1e

−K2(v+−v−) −K1e
−K2(u+−u−), to conclude the proof of (2.1) by induction.

Let us first explain why this estimate concludes the proof. It implies that d(f(z), G) ≤
K0 + K1. This proves that the image Q of f is included in the (k0 + k1)λ2(C +
δ)-neighborhood of G. To get the estimate on the Hausdorff distance, one needs to 
show that G is also included in a kλ2(C + δ)-neighborhood of Q for some k. This fol-
lows from the previous estimate and a standard argument (see [2]) that we recall now. 
Consider a point g ∈ G. Denote by Q− the set of points on Q that are within distance 
(k0+k1)λ2(C+δ) of a point of G in [f(u−), g], and by Q+ the set of points on Q that are 
within distance (k0 + k1)λ2(C + δ) of a point of G in [g, f(u+)]. The previous estimate 
implies that Q = Q1 ∪ Q2. As Q is connected, it follows that Q1 ∩ Q2 
= ∅. Denote by 
f(z) a point in this intersection, and by g− and g+ two points before and after g on G, 
at distance at most (k0 + k1)λ2(C + δ) of f(z). Using hyperbolicity in a triangle with 
vertices at g−, g+, f(z) and the fact that g is on a geodesic between g− and g+, it follows 
that the distance between g and f(z) is at most (k0 + k1)λ2(C + δ) + δ. As λ ≥ 1, this 
expression is bounded by (k0 + k1 + 1)λ2(C + δ). This concludes the argument, for the 
constant k = k0 + k1 + 1. We remind that [6] contains a stronger result (Theorem 3) 
claiming that the geodesic G is included in an A(δ log λ + C + δ)-neighborhood of the 
quasi-geodesic Q with some universal constant A.

It remains to prove the estimate (2.1). The proof will use two parameters L and D. 
For simplicity, let us take

L = D = 100δ. (2.2)

We keep separate notations for L and D because we will want to optimize the choice of 
their values later.
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Case 1. The case where d(f(z), G) ≤ L is trivial, as the estimate (2.1) holds if one 
takes K0 large enough.

Case 2. Let us therefore assume d(f(z), G) > L. We will construct several points along 
[u−, z]. To ease the reading, their order will correspond to the alphabetical order when 
possible.

Consider a projection πz of f(z) on G, and a geodesic segment H from πz to f(z). 
Denote by p : X → H a closest-point projection on H. The idea is to project the 
quasi-geodesic Q on H and to consider the subpart Q′ of Q that projects at distance at 
least L of πz. If one could show that Q′ is quantitatively shorter than Q and that the 
distance from f(z) to πz is controlled in terms of the distance from f(z) to a geodesic 
joining the endpoints of Q′, then we would be in good shape to prove (2.1) inductively, 
deducing the estimate for Q from the estimate for Q′. The real argument will be built 
around this naive idea, but in a more subtle way.

More precisely, consider two points y− ∈ [u−, z] and y+ ∈ [z, u+] such that the 
projections p(f(y−)) and p(f(y+)) are at distance roughly L of πz. In general, p is not 
uniquely defined and not continuous, but this is almost the case up to O(δ) thanks to 
the hyperbolicity of the space. With the following standard lemma and recalling that H
is 0-quasiconvex as it is a geodesic, one can find y− and y+ such that

d(p(f(y±)), πz) ∈ [L− 4δ, L]. (2.3)

Lemma 2.2. A closest-point projection of a connected set on a K-quasiconvex subset Y
of X has gaps of size at most 4δ + 2K. More precisely, if f : [a, b] → X is a continuous 
function and p(f(t)) denotes a closest point projection of f(t) on Y , then for any τ ≤
d(p(f(a)), p(f(b))), there exists t ∈ [a, b] such that d(p(f(a)), p(f(t))) ∈ [τ − 4δ− 2K, τ ]. 
Moreover, one can ensure that d(p(f(a)), p(f(s))) ≤ d(p(f(a)), p(f(t))) for all s ≤ t.

Denote by d− (respectively d+) the minimal distance of a point in f([u−, y−]) (respec-
tively f([y+, u+])) to H. These distances are realized by two points f(m−) and f(m+), 
by continuity of f .

Case 2.1. Assume that max(d−, d+) is not large, say ≤ D +C where D = 100δ is the 
constant we have chosen in (2.2) and C is the quasi-isometry parameter. This is again 
an easy case. Indeed, as the projections of f(m−) and f(m+) are within distance L of 
πz, one gets d(f(m−), f(m+)) ≤ 2D + 2C + L. By quasi-isometry,

d(m−,m+) ≤ λ(d(f(m−), f(m+)) + C) ≤ λ(2D + 3C + L).

As z is between m− and m+, one gets in particular d(m−, z) ≤ λ(2D + 3C + L). Then

d(f(z), πz) ≤ d(f(z), f(m−)) + d(f(m−), p(f(m−))) + d(p(f(m−)), πz)

≤ (λd(z,m−) + C) + (D + C) + L ≤ λ2(3D + 5C + 2L).
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This is compatible with the inequality (2.1) if one takes

K0 = 500λ2(δ + C). (2.4)

Case 2.2. Assume now that max(d−, d+) ≥ D +C, and d− ≥ d+ for instance. This is 
the interesting case. The main step in the proof is the following lemma.

Lemma 2.3. There exist two points v ≤ x in [u−, y−] and a real number d′ ≥ d− such 
that

L− 74δ ≤ 4
√

2λ(x− v)e−d′ log(2)/(10δ) (2.5)

and d(f(v), p(f(v))) ≤ 4d′.

The numerology in the lemma (74 and 4
√

2 and log(2)/10 and 4) is of no importance: 
what only matters is that L −74δ is positive, thanks to the choice of L in (2.2), and that 
the other numbers are positive and fixed.

Let us show how to conclude the proof using the lemma. We have

m+ − v = d(v,m+) ≤ λ(d(f(v), f(m+)) + C)

≤ λ
(
d(f(v), p(f(v))) + d(p(f(v)), p(f(m+))) + d(p(f(m+)), f(m+)) + C

)
≤ λ(4d′ + L + d+ + C) ≤ 6λd′,

as L + C = D + C ≤ d− ≤ d′ and d+ ≤ d− ≤ d′. Therefore, taking

K2 = log(2)/(60δλ), (2.6)

the inequality (2.5) gives

L− 74δ ≤ 4
√

2λ(x− v)e−(m+−v)·log(2)/(60δλ) = 4
√

2λ
K2

·K2(x− v)e−K2(m+−v)

≤ 4
√

2λ
K2

(eK2(x−v) − 1)e−K2(m+−v) = 4
√

2λ
K2

(e−K2(m+−x) − e−K2(m+−v))

≤ 4
√

2λ
K2

(e−K2(m+−x) − e−K2(u+−u−)).

Consider a new geodesic G′ between f(x) and f(m+). Arguing by induction, we can 
assume that the estimate (2.1) has already been proved for G′, and we want to deduce 
it for G. Since both endpoints of G′ project within distance L of πz, one checks that the 
distance from f(z) to G is controlled by the distance from f(z) to G′ (this is a version 
of [5, Lemma 5]). More specifically,
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d(f(z), G) ≤ d(f(z), G′) + L + 4δ.

Bounding d(f(z), G′) thanks to the induction assumption, and plugging in the estimate 
from the previous equation, we get

d(f(z), G) ≤ K0 +K1(1− e−K2(m+−x)) + L + 4δ
L− 74δ · 4

√
2λ

K2
(e−K2(m+−x) − e−K2(u+−u−)).

Let us take

K1 = L + 4δ
L− 74δ · 4

√
2λ

K2
. (2.7)

Then the terms K1e
−K2(m+−x) simplify in this equation, and we are left with

d(f(z), G) ≤ K0 + K1(1 − e−K2(u+−u−)).

This is (2.1), as desired. This concludes the proof of Theorem 1.1. �
It remains to prove Lemma 2.3. The argument relies on the contracting properties 

of closest-point projections on quasiconvex sets. The first such basic statement is the 
following variation around [3, Proposition 10.2.1].

Lemma 2.4. Consider a K-quasiconvex subset Y of X. Then projections px and py on Y
of two points x and y satisfy

d(px, py) ≤ max(5δ + 2K, d(x, y) − d(x, px) − d(y, py) + 10δ + 4K).

This result expresses the classical fact that a geodesic from x to y essentially follows 
a geodesic from x to px, then from px to py, then from py to y.

The second result we need is more sophisticated. Instead of a linear gain in terms of 
the distance to the set one projects on, as in the previous lemma, it gives an exponential 
gain in the upper bound, by a successive reduction process. It is proved by putting 
points along the path with gaps of size 10δ. Then, move by 5δ towards Y : this reduces 
the distance between the points by 5δ essentially thanks to the previous lemma. Then, 
discard half the points: this shows that by moving towards Y by 5δ the length of the 
path has been divided by 2. One can iterate this argument to get the exponential gain. 
We give a statement for the projection on quasiconvex sets as this is what we will need 
later on. This statement is proved in [5, Lemma 10] for the projection on a geodesic 
segment, but the case of a general quasiconvex set is analogous.
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Lemma 2.5. Consider a (λ, C)-quasi-geodesic path f : [a, b] → X, everywhere at distance 
at least D of a K-quasiconvex subset Y . Then, if D ≥ 15/2 · δ + K + C/2, projections 
pa of f(a) and pb of f(b) on Y satisfy the inequality

d(pa, pb) ≤ 2K + 8δ + max
(

5δ, 4
√

2λ(b− a) exp
(
−(D −K − C/2) log(2)/(5δ)

))
.

Using these results, we can prove Lemma 2.3.

Proof of Lemma 2.3. For k ≥ 0, let Vk denote the (2k − 1)d−-neighborhood of H. 
These sets are all 8δ-quasiconvex. We recall that p(f(x)) is a projection of f(x) on H. 
Let pk(x) denote the point on a fixed geodesic between p(f(x)) and f(x) at distance 
min((2k − 1)d−, d(p(f(x)), f(x))) of p(f(x)). Then pk(x) is a projection of f(x) on Vk, 
and moreover these projections are compatible in the following sense: for k ≤ �, then 
pk(x) is a projection of p�(x) on Vk. Moreover, p0(x) = p(f(x)).

We will do an inductive construction over k. This construction will have to stop 
at some step, where it will give the desired points. Until the argument stops, we will 
construct a point xk ∈ [u−, y−] such that

d(pk(u−), pk(xk)) ≥ L− 8δ (2.8)

and

for all w ∈ [u−, xk], d(f(w), p0(w)) ≥ (2k+1 − 1)d−. (2.9)

Let us first check that this property holds for k = 0. Take x0 = y−. The point πz is a 
projection of f(z) on the geodesic G between f(u−) and f(u+). This does not imply that 
the projection p0(u−) of f(u−) on the geodesic H between πz and f(z) is exactly at πz

(contrary to the situation in the Euclidean plane), but by hyperbolicity one checks that 
d(πz, p0(u−)) ≤ 4δ (this is a version of [5, Lemma 3]). Since d(πz, p0(y−)) ∈ [L − 4δ, L]
by (2.3) and x0 = y−, we deduce that d(p0(u−), p0(x0)) ≥ L −8δ. This is (2.8). Moreover, 
by definition of d−, the inequality (2.9) holds for k = 0.

Assume now that (2.8) and (2.9) hold at k. We will show that either we can find a 
pair of points that satisfy the conclusion of the lemma, or we can construct a point xk+1
such that (2.8) and (2.9) hold at k + 1.

As Vk is 8δ-quasiconvex, we deduce from Lemma 2.2 that the gaps of the closest-point 
projection pk are bounded by 20δ. Therefore, we can find a point xk+1 ∈ [u−, xk] whose 
projection on Vk satisfies

d(pk(u−), pk(xk+1)) ∈ [22δ, 42δ], (2.10)

and moreover all points w ∈ [u−, xk+1] satisfy

d(pk(u−), pk(w)) ≤ 42δ. (2.11)
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There are two cases to consider:
If there exists v ∈ [u−, xk+1] with d(f(v), p0(v)) ≤ (2k+2 − 1)d−. Then we claim that 

the pair (v, xk) satisfies the conclusion of Lemma 2.3, for d′ = 2kd−. First, the inequalities 
d′ ≥ d− and d(f(v), p0(v)) ≤ 4d′ hold by construction. Moreover, d(pk(v), pk(xk)) ≥
L − 50δ as pk(xk) is far from pk(u−) by (2.8), and pk(v) is close to pk(u−) by (2.11). As 
all intermediate points are at distance at least (2k+1 − 1)d− of V0 by (2.9), they are at 
distance at least 2kd− of Vk and we can apply the exponential contraction Lemma 2.5
with D = 2kd−. As Vk is 8δ-quasiconvex, we get

L− 50δ ≤ d(pk(v), pk(xk))

≤ 24δ + max
(

5δ, 4
√

2λ(xk − v) exp
(
−(2kd− − 8δ − C/2) log(2)/(5δ)

))
.

As L − 50δ > 29δ, the maximum has to be realized by the second term. Moreover, 
2kd− − 8δ − C/2 ≥ (2kd−)/2 = d′/2, as d− ≥ D + C = 100δ + C. We obtain

L− 74δ ≤ 4
√

2λ(xk − v) exp
(
−d′ log(2)/(10δ)

)
. (2.12)

This concludes the proof in this case.
Otherwise, d(f(w), p0(w)) ≥ (2k+2 − 1)d− for all w ∈ [u−, xk+1]. In this case, (2.9)

holds for k + 1. Let us check that (2.8) also holds for k + 1, by applying the projection 
Lemma 2.4 to the points pk+1(u−) and pk+1(xk+1), which project respectively to pk(u−)
and pk(xk+1) on Vk. As Vk is 8δ-quasiconvex, this lemma gives

d(pk(u−), pk(xk+1)) ≤ max(21δ,

d(pk+1(u−), pk+1(xk+1)) − d(pk+1(u−), pk(u−)) − d(pk+1(xk+1), pk(xk+1)) + 42δ).

As d(pk(u−), pk(xk+1)) ≥ 22δ by (2.10), the maximum has to be realized by the sec-
ond term. Both distances d(pk+1(u−), pk(u−)) and d(pk+1(xk+1), pk(xk+1)) are equal to 
2kd−. We obtain

2 · 2kd− − 20δ ≤ d(pk+1(u−), pk+1(xk+1)).

As d− ≥ D = 100δ, the left hand side is ≥ L − 8δ = 92δ. This concludes the proof 
of (2.8), and of the induction.

Finally, if the conclusion of the lemma does not hold, then the induction will go on 
forever. Taking in particular w = u− in (2.9), we get d(f(u−), p0(u−)) ≥ (2k+1 − 1)d−
for all k, a contradiction. �

Here are some ways to optimize the proof to get better constants. In addition to 
multiple minor optimizations, let us mention the main ones:
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• The set V0 is 0-quasiconvex, not only 8δ-quasiconvex. This means that estimates in 
the proof of Lemma 2.3 are better for k = 0. There is a different source of gain for 
k > 0, thanks to the factor 2k. Separating the two cases improves the final constant.

• There is an exponential gain in (2.12). One can spend some part of this gain, 
say exp(−(1 − α)d′ log(2)/(10δ)) ≤ exp(−(1 − α)D log(2)/(10δ)) to improve the 
multiplicative constant, and use the remaining part exp(−αd′ log(2)/(10δ)) for the 
induction (for a suitable value of α).

• Instead of formulating the induction in terms of the distance from f(z) to a geodesic 
G between f(u−) and f(u+), it is more efficient to induce over the Gromov product 
(f(u−), f(u+))f(z) (which coincides with the distance d(f(z), G) up to 2δ) as most 
inequalities are done in terms of Gromov products. The main interest of this change 
is that, with the current argument, the point f(u−) projects on H between πz and 
f(z) within distance 4δ of πz, which means there is a small loss. With the Gromov 
product approach, let m denote the point on G which is opposite to f(z) in the 
triangle [f(z), f(u−), f(u+)], i.e., it is on G at distance (f(z), f(u+))f(u−) of f(u−)
and at distance (f(z), f(u−))f(u+) of f(u+). Let πz denote the point on a geodesic H
from f(z) to m at distance (f(u−), f(u+))f(z) of f(z). This point is within distance 
2δ of m. It turns out that the projection of f(u−) on H is between m and πz, i.e., 
opposite from f(z). The above loss is suppressed in this approach.

• Finally, one can choose freely L, D and α within some range. In particular, L and D
do not have to coincide. One can optimize numerically over these parameters to get 
the best possible bound. In the end, we take L = 18δ and D = 55δ and α = 12/100
to get the value 92 in Theorem 1.1.
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