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Abstract. Eagleson’s theorem asserts that, given a probability-preserving map, if
renormalized Birkhoff sums of a function converge in distribution, then they also converge
with respect to any probability measure which is absolutely continuous with respect to the
invariant one. We prove a version of this result for almost sure limit theorems, extending
results of Korepanov. We also prove a version of this result, in mixing systems, when one
imposes a conditioning both at time 0 and at time n.
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Let T be an ergodic probability-preserving transformation on a probability space (X, m).
Given a measurable function f : X→ R, the question of the convergence in distribution of
renormalized Birkhoff sums Sn f =

∑n−1
k=0 f ◦ T k is central in ergodic theory. In physical

situations, where there is an a priori given reference probability measure P (for instance,
Lebesgue measure) which perhaps differs from the invariant measure, there can be a
discussion of whether it is more natural to consider such a distributional convergence
with respect to the reference measure P or to the invariant measure m. It turns out
that this question is irrelevant when P is absolutely continuous with respect to m, by
a theorem of Eagleson [Eag76]: it is equivalent to have the distributional convergence
of Sn f/Bn towards a limit Z for m or for P , if Bn→∞. Since then, this theorem has
proved extremely useful, and has been extended to cover more general situations; see, for
instance, [Aar81, Zwe07]. In particular, Eagleson’s result holds in non-singular maps for
processes which are asymptotically invariant in probability.

Eagleson’s theorem has in particular been used to deduce limit theorems for a map from
limit theorems for an induced transformation. An important step in this argument is to
replace the invariant measure for the induced map (which is the restriction of the invariant
measure to the inducing set) by another measure that takes into account the return time
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Mixing limit theorems 3369

to the set, while keeping a limit theorem, and this is proved using Eagleson’s theorem.
Recently, a similar inducing argument has been used by Melbourne and Nicol in [MN05]
to prove another kind of limit theorem, the almost sure invariance principle, asserting that
the Birkhoff sums can almost surely be coupled with trajectories of a Brownian motion,
so that the mutual difference is suitably small. However, there was a difficulty in the proof
due to the lack of an analogue of Eagleson’s result in this almost sure setting. This gap has
been fixed by Korepanov in [Kor18] using the specificities of the class of maps studied
in [MN05].

Our goal in this short note is to discuss two variations around Eagleson’s theorem.
First, in §1, we give a general argument to show that it is always equivalent to have
an almost sure limit theorem for an invariant probability measure or for an absolutely
continuous one. Then, in §2, we discuss distributional limit theorems for Sn f (x)/Bn

when one conditions on the positions of both x and T n x (where conditioning only on x
corresponds to Eagleson’s theorem, and conditioning only on T n x follows from Eagleson’s
theorem applied to T−1, but conditioning simultaneously on both positions requires a new
argument). Our proofs in this note owe much to [Zwe07, Kor18].

1. Almost sure limit theorems
In this section, we discuss a version of Eagleson’s result that applies to almost sure limit
theorems. Given two probability measures m1 and m2, the goal will be to construct a
coupling between these two measures that respects the orbit structure of the space, as
in [Kor18]. Then it will readily follow that an almost sure limit theorem with respect to
m1 implies one with respect to m2. Our argument works for general maps but, contrary
to [Kor18], our results are not quantitative. The definition of coupling we use is the
following.

Definition 1.1. Let (X, T ) be a measurable map on a measurable space. A coupling along
orbits between two probability measures m1 and m2 (or more generally between two finite
measures of the same mass) is a measure ρ on X × X whose marginals are respectively
m1 and m2, and such that, for ρ-almost every (x1, x2), there exist n1 and n2 with T n1 x1 =

T n2 x2. If there exists such a coupling, we say that m1 and m2 can be coupled along orbits.

Our goal is to show the following theorem.

THEOREM 1.2. Let (X, T ) be a measurable map on a standard measurable space.
Consider a σ -finite measure µ for which T is non-singular and ergodic. Let m1 and m2 be
two probability measures that are absolutely continuous with respect to µ. Then they can
be coupled along orbits.

Before proving the theorem, let us discuss the application to almost sure limit theorems.
An almost sure limit theorem with rate r(n) between two processes (Z1

n)n∈N and (Z2
n)n∈N

defined on two probability spaces (�1, P1) and (�2, P2) is a coupling between these
two processes, that is, a measure P on �1 ×�2 whose marginals are P1 and P2, such
that for P-almost every ω = (ω1, ω2), one has d(Z1

n(ω1), Z2
n(ω2))= o(r(n)). The most

classical instance of such a theorem is the almost sure invariance principle, asserting that
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the Birkhoff sums Z1
n = Sn f can be coupled with the trajectories Z2

n of a Brownian motion
at integer times, where the error rate r depends on the problem under study.

COROLLARY 1.3. Let T be a probability-preserving ergodic map on a space (X, m). Let
f : X→ R be measurable. Assume that the Birkhoff sums Sn f satisfy an almost sure limit
theorem with rate r for the measure m: they can be coupled with a process Wn such that,
almost surely, |Sn f −Wn| = o(r(n)). Let m′ be a probability measure which is absolutely
continuous with respect to m. Assume moreover that, m-almost surely, f (T n x)= o(r(n)).
Then Sn f can also be coupled with Wn for the measure m′, with the same almost sure
rate r .

The growth assumption is, for instance, satisfied if f is bounded and r(n) tends to
infinity, or if f ∈ L p and r(n)= n1/p (by Birkhoff’s theorem applied to | f |p). These are
the most typical situations in applications.

Proof. It suffices to construct a coupling between m and m′ such that, for almost all (x, y)
for this coupling, one has Sn f (x)− Sn f (y)= o(r(n)). We use the coupling along orbits
given by Theorem 1.2. In this case, almost every (x, y) satisfies T k1 x = T k2 y for some
k1, k2. Let z = T k1 x . Let us prove that, almost surely, Sn f (x)= Sn f (z)+ o(r(n)) and
Sn f (y)= Sn f (z)+ o(r(n)), from which the result follows. It suffices to prove the first
estimate. For this, we note that Sn f (z)− Sn f (x)= Sk1 f (T n x)− Sk1 f (x). The second
term is constant, while the first one grows almost surely at most like o(r(n)) under the
assumptions of the corollary. �

Remark 1.4. The statement we have given in Corollary 1.3 is a typical application of
Theorem 1.2, but other less standard applications readily follow from this theorem. For
instance, m′ does not need to be absolutely continuous with respect to m: to apply
Theorem 1.2, it suffices to have a third measure m′′ which is ergodic such that both m
and m′ are absolutely continuous with respect to m′′. Corollary 1.3 also holds for flows
(Tt )t∈R, as one can apply Theorem 1.2 to the time τ map Tτ of the flow, where τ is chosen
so that Tτ is ergodic (this is the case for all but countably many τ ).

Let us now turn to the proof of Theorem 1.2. Note first that, if m1 and m2 can be coupled
along orbits, as well as m2 and m3, then it follows that m1 and m3 can also be coupled along
orbits (this follows from the composition of couplings theorem; see [Kor18, Lemma A.1]).

Note that there is no invariance assumption in the theorem for the measure µ, and
that it does not have to be finite (although one can always assume that µ is a probability
measure, by replacing it with an equivalent probability measure if necessary). However,
in the applications we have in mind, µ will typically be a probability measure, invariant
under T . The fact that the invariance is not relevant for this kind of theorem was pointed
out by Zweimüller in [Zwe07]: he was able to replace the use of Birkhoff’s theorem by
a variant which is valid without invariance, due to Yosida. Denote by T̂ : L1(µ)→ L1(µ)

the transfer operator, that is, the predual of the composition by T on L∞: it satisfies∫
f · g ◦ T dµ=

∫
T̂ f · g dµ for all f ∈ L1(µ) and g ∈ L∞(µ). The following result is

Yosida’s theorem [Zwe07, Theorem 2].
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THEOREM 1.5. Let (X, T ) be a measurable map on a measurable space. Consider a
σ -finite measure µ for which T is non-singular and ergodic. Then, for any w ∈ L1(µ)

with zero average, (1/n)
∑n−1

k=0 T̂ kw tends to 0 in L1(µ).

To prove Theorem 1.2, we will couple increasingly complicated measures, relying
ultimately on Yosida’s theorem. For starters, we begin with a result that should be obvious.

LEMMA 1.6. Consider an integrable f > 0, and n > 1. Then f dµ and T̂ f dµ can be
coupled along orbits.

Proof. While this looks obvious, it is enlightening to write down the details, to understand
what a coupling is. We let ρ = (Id, T )∗( f dµ). The first marginal of ρ is f dµ, while the
second one is T∗( f dµ)= T̂ f dµ, as desired. �

It follows from this lemma that f dµ and T̂ j f dµ can be coupled along orbits.
Averaging, one gets the same result for f dµ and (1/n)

∑n−1
j=0 T̂ j f dµ.

LEMMA 1.7. Consider two probability measures m1 and m2 which are absolutely
continuous with respect to µ. Then there exist two non-negative measures p1 6 m1 and
p2 6 m2, of mass greater than or equal to 1/2, that can be coupled along orbits.

Proof. Denote by f1 and f2 the respective densities of m1 and m2 with respect
to µ. Let Fi,n = (1/n)

∑n−1
k=0 T̂ k fi for i = 1, 2 and n > 0. Also let Gn(x)=

min(F1,n(x), F2,n(x)). By Yosida’s theorem,
∫
|F1,n − F2,n| dµ tends to 0. As Gn(x)=

(F1,n(x)+ F2,n(x)− |F1,n(x)− F2,n(x)|)/2, we deduce that
∫

Gn(x) dµ→ 1. In
particular, we may choose n such that

∫
Gn dµ> 1/2.

Consider a coupling along orbits ρ between m1 = f1 dµ and ν1 = F1,n dµ, by
Lemma 1.6. Define a new measure on X × X by

dρ̃(x, y)=
Gn(y)
F1,n(y)

1F1,n(y)>0 dρ.

As Gn 6 F1,n everywhere, we have ρ̃ 6 ρ. The second marginal of ρ̃ is the measure Gndµ
by construction, of mass at least 1/2. Hence, the first marginal of ρ̃ is a measure p1 of
mass at least 1/2, dominated by the first marginal m1 of ρ. Moreover, by construction, p1

is coupled along orbits with Gndµ.
In the same way, we obtain a measure p2 6 m2 which is coupled along orbits with

Gndµ. Finally, p1 and p2 can be coupled along orbits by transitivity. They satisfy the
conclusion of the lemma. �

Proof of Theorem 1.2. Start with two probability measures m1 = m(0)
1 and m2 = m(0)

2 that
we want to couple along orbits. By Lemma 1.7, there exists a coupling ρ0 along orbits
between parts p(0)1 and p(0)2 of mass at least 1/2 of respectively m(0)

1 and m(0)
2 . Let m(1)

i =

m(0)
i − p(0)i be the uncoupled parts. They have mass at most 1/2. Applying Lemma 1.7 to

these two measures, we obtain a coupling ρ1 between parts p(1)i of these measures, leaving
parts m(2)

i uncoupled, with mass at most 1/4. Iterate this process. Then ρ =
∑
ρi is the

desired coupling along orbits between m1 and m2. �
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2. Mixing transformations
Let T be an ergodic map preserving a probability measure m. Eagleson’s theorem ensures
that, if Sn f/Bn converges in distribution with respect to m towards a random variable Z ,
and Bn→∞, then this convergence also holds with respect to any probability measure
m′ which is absolutely continuous with respect to m. We want to see what happens when
we condition on the position at two moments of time. A typical example is to fix two sets
Y1 and Y2 and only consider those trajectories that start at time 0 in Y1 and end at time n
in Y2. Conditioning at time 0 is Eagleson’s theorem, conditioning at time n follows from
Eagleson’s theorem applied in the natural extension and a change of variables, but the
simultaneous conditioning requires a new argument. When the map is mixing, we prove
that there is indeed such a limit theorem.

THEOREM 2.1. Let T be an ergodic probability-preserving map on a probability space
(X, m). Assume that T is mixing. Let f : X→ R be a measurable function such Sn f/Bn

converges in distribution to a real random variable Z, where Bn→∞. Let ϕ1, ϕ2 : X→ R
be two non-negative square integrable functions with

∫
ϕ1 dm =

∫
ϕ2 dm = 1. Define a

sequence of measures mn by mn(U )=
∫

U ϕ1 · ϕ2 ◦ T n dm. They satisfy mn(X)→ 1 by
mixing. Then the random variables Sn f/Bn on the probability spaces (X, mn/mn(X))
converge in distribution to Z.

We will express the distributional convergence through the following classical lemma
(proved by approximating uniformly a compactly supported continuous function with a
compactly supported Lipschitz function).

LEMMA 2.2. A sequence of real random variables Zn converges in distribution to Z if and
only if, for any function g : R→ R which is bounded and Lipschitz, E(g(Zn))→ E(g(Z)).

From this point on, let us fix once and for all a bounded Lipschitz function g : R→ R.
Consider also a map T : X→ X as in Theorem 2.1 and a function f : X→ R such that
Sn f/Bn→ Z with respect to m.

Consider the density ϕ of an absolutely continuous probability measure m′. By
Eagleson’s theorem, Sn f/Bn also converges in distribution to Z with respect to m′. With
Lemma 2.2, this gives ∫

g(Sn f/Bn)ϕ dm→ E(g(Z))
∫
ϕ dm. (2.1)

By linearity, this even holds for any integrable function ϕ.
What we have to do to prove Theorem 2.1 is to prove the same convergence, but when

one multiplies by two functions ϕ1 and ϕ2 ◦ T n , where ϕ1, ϕ2 ∈ L2. More precisely, thanks
to Lemma 2.2, it is enough to show that∫

ϕ1 · g(Sn f/Bn) · ϕ2 ◦ T n dm→
(∫

ϕ1 dm
)
E(g(Z))

(∫
ϕ2 dm

)
. (2.2)

Without loss of generality, we can assume that ϕ1 and ϕ2 are bounded, as a truncation
argument readily gives the general conclusion. Let us fix once and for all two such
bounded functions. As in the discussion of Eagleson’s theorem, we will in fact prove
the convergence (2.2) without assuming that the functions ϕ1 and ϕ2 are non-negative,
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although this condition is necessary for the probabilistic interpretation put forward in the
statement of Theorem 2.1. When ϕ2 is constant, the convergence (2.2) holds by Eagleson’s
theorem. Hence, we can without loss of generality replace ϕ2 with ϕ2 −

∫
ϕ2 dm, and

assume that
∫
ϕ2 dm = 0.

The proof relies on the following lemma.

LEMMA 2.3. Assume that T is mixing and ϕ1, ϕ2 are two bounded functions with∫
ϕ2 dm = 0. Let ε > 0. There exist k and N such that, for any n > N,∥∥∥∥∥∥1

k

k−1∑
j=0

ϕ1 ◦ T j
· ϕ2 ◦ T n+ j

∥∥∥∥∥∥
L2

6 ε. (2.3)

Proof. Let us expand the square:∫ (
1
k

k−1∑
j=0

ϕ1 ◦ T j
· ϕ2 ◦ T n+ j

)2

dm

=
1
k

∫
ϕ2

1 · (ϕ2 ◦ T n)2 dm +
2
k

k∑
j=1

(1− j/k)
∫
ϕ1 · ϕ1 ◦ T j

· (ϕ2 · ϕ2 ◦ T j ) ◦ T n dm.

The first term is bounded by C/k for C = ‖ϕ1‖
2
L∞‖ϕ2‖

2
L∞ . When n tends to infinity (and k

is fixed), every integral in the second term tends to the product of the integrals, by mixing.
Hence, it is bounded by 2‖ϕ1‖

2
L∞ |

∫
ϕ2 · ϕ2 ◦ T j

| if n is large enough. Choose A such that
this term is at most ε for j > A (again by mixing, and using the fact that

∫
ϕ2 = 0). If n is

large enough, we obtain a bound

C
k
+

2
k

A−1∑
j=1

C +
2
k

k−1∑
j=A

ε 6 (C + 2AC)/k + 2ε. (2.4)

This concludes the proof, first by taking k large enough but fixed so that (C + 2AC)/k 6 ε,
and then n large enough so that the above mixing argument applies. �

LEMMA 2.4. Assume that Bn→∞. We have∫
ϕ1 · g(Sn f/Bn) · ϕ2 ◦ T n dm −

∫
ϕ1 ◦ T · g(Sn f/Bn) · ϕ2 ◦ T n+1 dm→ 0. (2.5)

Proof. As the measure is invariant, the difference between these two integrals is equal to∫
ϕ1 ◦ T · (g(Sn f ◦ T/Bn)− g(Sn f/Bn)) · ϕ2 ◦ T n+1. (2.6)

Since g is bounded and Lipschitz continuous, and ϕ1 and ϕ2 are bounded, this is bounded
by

C
∫

min(1, |Sn f ◦ T − Sn f |/Bn) dm = C
∫

min(1, | f ◦ T n
− f |/Bn) dm

6 C
∫

min(1, | f ◦ T n
|/Bn) dm + C

∫
min(1, | f |/Bn) dm

= 2C
∫

min(1, | f |/Bn) dm,
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where we used the invariance of the measure for the last equality. This bound tends to 0
when n tends to infinity, as Bn→∞. �

Proof of Theorem 2.1. We prove the convergence (2.2) when ϕ1 and ϕ2 are bounded and
ϕ2 has zero average. Lemma 2.4 (iterated several times) ensures that, for any given k,∫

ϕ1 · g(Sn f/Bn) · ϕ2 ◦ T n dm

=

∫ (
1
k

k−1∑
j=0

ϕ1 ◦ T j
· ϕ2 ◦ T n+ j

)
g(Sn f/Bn) dm + on(1).

The integral on the right-hand side is bounded by a constant multiple of the L2 norm of
(1/k)

∑k−1
j=0 ϕ1 ◦ T j

· ϕ2 ◦ T n+ j . If k is fixed but large enough, this norm is bounded by
ε for large enough n, thanks to Lemma 2.3. Therefore,

∫
ϕ1 · g(Sn f/Bn) · ϕ2 ◦ T n dm is

bounded in absolute value by 2ε. This concludes the proof. �

We can generalize the result as follows. Assume that T is mixing of order p. Let Fn be a
sequence of functions, taking values in a metric space M , which is asymptotically invariant
in the sense that d(Fn, Fn ◦ T ) tends to 0 in probability, and such that Fn converges
in distribution towards a random variable Z on M . Then, for any bounded functions
ϕ1, . . . , ϕp, for any g : M→ R Lipschitz and bounded,∫ ∏

ϕi ◦ T ni · g(Fn) dm (2.7)

converges to
∏
(
∫
ϕi ) · E(g(Z)), when n and all the ni+1 − ni tend to infinity. More

formally, for any ε > 0, there exists N such that, for any n and n1 < · · ·< n p with n > N
and ni+1 − ni > N , the above integral is within ε of

∏
(
∫
ϕi ) · E(g(Z)). This asserts that

one can condition on the position of the particle at p times if these times are sufficiently
separated, and still get the same limiting behaviour.

The proof is the same as for Theorem 2.1. First, we use order-p mixing to see that
the sum (1/k)

∑k−1
j=0

∏
ϕi ◦ T ni+ j is close in L2 norm to

∏
(
∫
ϕi ) if k is large, and the

ni+1 − ni are even larger. Then, we conclude exactly as above.
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