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Limit theorems in dynamical systems using the spectral
method

Sébastien Gouëzel

Abstract. There are numerous techniques to prove probabilistic limit theo-
rems for dynamical systems. These notes are devoted to one of these methods,
the Nagaev-Guivarc’h spectral method, which extends to dynamical systems
the usual proof of the central limit theorem relying on characteristic functions.
We start with the simplest example (expanding maps of the interval), where
everything is elementary. We then consider more recent (and more involved)
applications of this method, on the one hand to get the convergence to stable
laws in intermittent maps, on the other hand to obtain precise results on the
almost sure approximation by a Brownian motion.

1. Introduction

There are many ways to prove the central limit theorem for square-integrable
independent random variables, each of them having various advantages (and weak-
nesses) that make them generalizable to different situations. While the most ver-
satile approaches are probably those relying on martingale arguments, this text is
devoted to the approach that is generally used in first-year probability courses, rely-
ing on characteristic functions. Our goal in this text is to illustrate its effectiveness
to prove the central limit theorem, or more general limit theorems, in deterministic
dynamical systems. This powerful method, which we will call the Nagaev-Guivarc’h
spectral method, was devised by Nagaev to study Markov chains [Nag57,Nag61],
and reinvented by Guivarc’h for dynamical systems [RE83,GH88]. An excellent
reference on this method is [HH01].

We start with the classical proof of the central limit theorem (see for in-
stance [Fel66, Theorem XV.5.1]), that we will revisit later in dynamical situations.

Theorem 1.1. Let Xi be a sequence of i.i.d. centered random variables in L2.
Write Sn = X1 + · · · +Xn. Then Sn/

√
n converges in distribution to a Gaussian

random variable N (0, σ2), where σ2 = E(X2
i ).

Proof. Thanks to the independence, we can compute the characteristic func-
tion of Sn: for any real t,

(1.1) E(eitSn) = λ(t)n,
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where λ(t) = E(eitX1). Since X1 is square integrable, one has for small t the
asymptotics

(1.2) λ(t) = 1 + itE(X1)−
t2

2
E(X2

1 ) + o(t2) = 1− σ2t2/2 + o(t2).

Combining those two equations, we get for every fixed t ∈ R

E(eitSn/
√
n) =

(
1− σ2t2/(2n) + o(1/n)

)n → e−σ2t2/2.

The function e−σ2t2/2 is the characteristic function of the Gaussian distribution
N (0, σ2). As pointwise convergence of characteristic functions implies convergence
in distribution (this is Lévy’s theorem, see [Fel66, Theorem XV.3.2]), the result
follows. �

There are two main points in the above proof:

• First, in (1.1), one uses independence to write E(eitSn) as λ(t)n, for some
function λ(t) (here, it is simply E(eitX1)).

• Then, in (1.2), one finds the asymptotic behavior of λ(t) for small t.

The convergence in distribution of Sn/
√
n follows.

One can abstract the above proof, to get the following statement:

Theorem 1.2 (Nagaev-Guivarc’h method, naive version). Let X1, X2, . . . be a
sequence of real random variables. Write Sn for their partial sums. Assume that
there exist δ > 0 and functions c(t), λ(t) and dn(t), defined on [−δ, δ], such that
for all t ∈ [−δ, δ] and all n ∈ N,

(1.3) E(eitSn) = c(t)λ(t)n + dn(t).

Moreover, assume that:

(1) there exist A and σ2 in C such that λ(t) = exp(iAt−σ2t2/2+o(t2)) when
t → 0;

(2) the function c is continuous at 0;
(3) the quantity ‖dn‖L∞[−δ,δ] tends to 0 when n tends to infinity.

Then A ∈ R, σ2 � 0, and (Sn − nA)/
√
n converges to a Gaussian distribution

N (0, σ2) when n tends to infinity.

Proof. The proof is essentially the same. First, taking t = 0, one gets
c(0)λ(0)n = 1 − dn(0) → 1, hence c(0) = 1 and λ(0) = 1. Then, one uses the
asymptotic expansion of λ to show that E(eit(Sn−nA)/n) tends to 1. By Lévy’s
theorem, Sn/n − A converges in distribution to 0. As Sn is real, it follows that

A ∈ R. Using again the asymptotic expansion of λ, we show that E(eit(Sn−nA)/
√
n)

converges to the function e−σ2t2/2. By Lévy’s theorem again, this has to be the
characteristic function of a real random variable, showing that σ2 � 0. �

As such, the method does not seem of great interest: in concrete non-inde-
pendent situations, how could one effectively construct functions c, λ and dn that
satisfy (1.3)? The main hindsight is that, in various contexts, these quantities will
come for free from spectral arguments: in particular, λ(t) will correspond to an
eigenvalue of an operator depending on t.

Once spectral theory tools are available, one can prove the expansion (1.3) in
several situations, that we will review in this paper. As we explained above, this
easily implies the central limit theorem. However, it has much deeper consequences:
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almost any proof in probability theory that relies on characteristic functions can
be adapted to this setting. In a dynamical system setting, one can therefore prove,
among other results (under suitable assumptions):

• the Berry-Esseen theorem, i.e., control the speed of convergence in the
central limit theorem (see [GH88] or Theorem 3.7 below). This kind
of estimates can sometimes also be proved using martingale arguments.
However, with the Nagaev-Guivarc’h method, one can characterize the
functions for which there is a given speed of convergence in the central
limit theorem [Gou10b].

• the local limit theorem, i.e., control the probability that Sn belongs to a
given interval of size of order 1 (while the central limit theorem deals with
intervals of size of order

√
n). See for instance [GH88]. Note that this

kind of fine control is impossible to prove using martingale arguments.
• deduce the local limit theorem from the central limit theorem [Her05].
• the convergence to other limit laws, for instance stable laws, see [AD01].
These results will be explained in Section 4, together with applications to
intermittent maps.

• the vector-valued almost sure invariance principle [Gou10a], see Section 5
below.

One expects that virtually any result known for i.i.d. sequences should hold for
dependent random variables if one can prove that (1.3) holds.

In this article, we concentrate on the applications of the Nagaev-Guivarc’h
method to dynamical systems. Let us note, however, that the method applies
equally well to Markov chains, and that most of the above statements have coun-
terparts for Markov chains. In this respect, see [HP10] and references therein.

In the next section, we will give the precise statements of spectral theory that
we will use all over this paper. Then, in Section 3, we will give full self-contained
proofs of how the method can be used in the simplest situation, expanding maps
of the interval (in this situation, there are numerous proofs of the central limit
theorem, so this section is really meant as an illustration of how the method works,
not of his full power). Sections 4 and 5 are then devoted to more complicated
applications, for which the Nagaev-Guivarc’h method gives the best known results.

2. A bit of spectral theory

In this paragraph, we give a brief overview of spectral theory, or more precisely
of the spectral theory we will need. A major reference on this topic is [Kat66].

Let (B, ‖·‖) be a complex Banach space, and let L be a continuous linear
operator on B (i.e., there exists a constant C such that ‖Lu‖ � C‖u‖ for all
u ∈ B). The spectrum of L, denoted by σ(L), is the set of complex numbers z such
that zI − L is not invertible.

Example 2.1 (An example to keep in mind). Let B be the set of continu-
ous functions f : [0, 1] → C with f(0) = 0. Define an operator L : B → B by
Lf(x) =

∫ x

0
f(y) dy. It is a continuous linear operator. If Lf = 0, then f = 0

(just differentiate), hence L is injective. However, it is not surjective, since its
image is made of C1 functions. Hence, 0 ∈ σ(L). For any z �= 0, the operator
zI−L is invertible (one should just solve a differential equation to invert it), hence



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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σ(L) = {0}. Note that L has no nonzero eigenfunction at all. This shows that the
behavior of operators can be very different from the finite-dimensional situation.

Let z be an isolated point in σ(L). The corresponding spectral projection Πz

is defined by Πz := 1
2iπ

∫
C(wI − L)−1 dw, where C is a small circle around z. This

definition is independent from the choice of C, by holomorphy of w �→ (wI − L)−1

outside of σ(L). When L is finite-dimensional, it is easy to check (for instance by
putting L in upper-triangular form and using the Cauchy formula for integrals) that
Πz is the projection on the generalized eigenspace associated to z, with kernel the
direct sum of the other generalized eigenspaces. In infinite dimension, an analogous
result is true: the operator Πz is a projection, its image and kernel are invariant
under L, and the spectrum of the restriction of L to the image is {z}, while the
spectrum of the restriction of L to the kernel if σ(L)− {z}. See [Kat66, Theorem
III.6.17].

We say that z ∈ C is an isolated eigenvalue of finite multiplicity of L if z is
an isolated point of σ(L), and the range of Πz is finite-dimensional. In this case,
ker(zI−L)j is independent of j for large enough j, and coincides with ImΠz. Note
that the converse is not true: in Example 2.1, we have ker(0I −L)j = {0} for all j,
but 0 is not an isolated eigenvalue of finite multiplicity (the spectral projection Π0

is the identity). If z is an isolated eigenvalue of finite multiplicity of an operator L,
its multiplicity is the dimension of the range of Πz.

We denote by σess(L) the essential spectrum of L, i.e., the set of points in σ(L)
that are not isolated eigenvalues of finite multiplicity. One can think of L as a finite
matrix outside of σess(L), and as something more complicated on σess(L). This will
make it possible to understand the asymptotics of Ln if the dominating elements of
the spectrum (i.e., the points in σ(L) with large modulus) do not belong to σess(L).
We say that such an operator is quasi-compact, or that it has a spectral gap.

The spectral radius r(L) of L is sup{|z| : z ∈ σ(L)}, and the essential spectral
radius ress(L) is sup{|z| : z ∈ σess(L)}. An operator is quasi-compact if ress(L) <
r(L). These quantities can be computed as follows: r(L) = infn>0‖Ln‖1/n, and

(2.1) ress(L) = inf‖Ln −K‖1/n,
where the infimum is over all integers n > 0 and all compact operators K. In
particular, we get that the essential spectral radius of a compact operator vanishes.
This corresponds to the classical fact that the spectrum of a compact operator is
a sequence of eigenvalues of finite multiplicity tending to 0. The above formula
also shows that the essential spectral radius is not altered by the addition of a
compact operator. Intuitively, adding a compact operator only amounts to adding
(or perturbing) isolated eigenvalues of finite multiplicity.

To estimate the essential spectral radius of an operator, the formula (2.1) is
not very convenient, since one should exhibit good compact operators to use it. A
more efficient technique relies on inequalities named in the literature after Doeblin-
Fortet or after Lasota-Yorke, that we will call DFLY inequalities. This technique
is formalized in the following lemma, essentially due to [Hen93] (the following
formulation can be found in [BGK07]).

Lemma 2.2. Consider a continuous linear operator L on a complex Banach
space B. Let M > 0. Suppose that, for some n > 0 and for all x ∈ B,
(2.2) ‖Lnx‖ � Mn‖x‖+ ‖x‖w,
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where ‖·‖w is a seminorm on B such that the unit ball of B (for ‖·‖) is relatively
compact for ‖·‖w. Then ress(L) � M .

If one could decompose L as a sum of two operators L1 + L2 bounded respec-
tively by the first and second term of (2.2), the operator L1 would have a spectral
radius (and therefore an essential spectral radius) at most M , while L2 would be
compact. Hence, (2.1) would imply that the essential spectral radius of L would be
at most M , giving the claim of the lemma. This heuristic argument motivates the
lemma, but the rigorous proof is completely different.

We will also need to describe the evolution of the spectrum when one perturbs
operators. Consider a family of operators t �→ Lt, depending continuously on t
(i.e., ‖Lt − Ls‖ tends to 0 when t tends to s). There are such situations where
the spectrum varies discontinuously: one can for instance have σ(L0) equal to the
unit disk in C, and σ(Lt) equal to the unit circle for t �= 0. However, the situation
is better for eigenvalues of finite multiplicity (where everything can be reduced to
finite-dimensional arguments), and even better for eigenvalues of multiplicity one.
We only give a precise statement for this case, since this is what we will need later
on, see [Kat66, IV.3.6 and Theorem VII.1.8] for more general statements.

Proposition 2.3. Let z0 be an isolated eigenvalue of multiplicity one of an
operator L0. Then any operator L close enough to L0 has a unique eigenvalue z(L)
close to z0. Moreover, if t �→ Lt is a family that depends on t in a C0, or Ck, or
analytic way, then the eigenvalue zt and the corresponding eigenprojection Πt and
eigenvector ξt depend on t in the same way.

Assume moreover that the rest of the spectrum of L0 is contained in a disk of
strictly smaller radius B(0, |z0| − ε). Write Qt = (I − Πt)Lt for the part of Lt

corresponding to σ(Lt)− {zt}, so that Lt = ztΠt +Qt. For any r > |z0| − ε, these
operators satisfy ‖Qn

t ‖ � Crn, for small enough t and for all n ∈ N, where the
constant C is independent of t and n.

We can now reformulate the Nagaev-Guivarc’h spectral method of Theorem 1.2
in a spectral setting:

Theorem 2.4 (Nagaev-Guivarc’h method, spectral version). Let X1, X2, . . .
be a sequence of real random variables, with partial sums denoted by Sn. Assume
that there exist a complex Banach space B and a family of operators Lt acting on
B (for |t| � δ) and ξ ∈ B, ν ∈ B∗ such that:

(1) coding: for all n ∈ N, for all |t| � δ, E(eitSn) = 〈ν,Ln
t ξ〉.

(2) spectral description: ress(L0) < 1, and L0 has a single eigenvalue of mod-
ulus � 1, located at 1. It is an isolated eigenvalue, of multiplicity one.

(3) regularity: The family t �→ Lt is C2.

Then there exist A ∈ R and σ2 � 0 such that (Sn−nA)/
√
n converges in distribution

to a Gaussian N (0, σ2).

Proof. The first part of Proposition 2.3 ensures that, for small enough t, the
operator Lt has a unique eigenvalue λ(t) close to 1. Moreover, the second part of
this proposition ensures that the rest of the spectrum of Lt is contained in a disk
of radius r < 1 (with uniform bounds for the iterates of the restricted operators).
We get

Ln
t = λ(t)nΠt +Qn

t ,
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where Πt is the eigenprojection of Lt corresponding to the eigenvalue λ(t), and Qt =
(I−Πt)Lt satisfies ‖Qn

t ‖ � Crn. It follows that E(eitSn) = λ(t)n〈ν,Πtξ〉+〈ν,Qn
t ξ〉.

This is a decomposition of the form λ(t)nc(t) + dn(t), where dn tends to 0 with n,
and c is continuous at 0. To apply Theorem 1.2, it remains to see that the function

λ(t) has an asymptotic expansion of the form eiAt−σ2t2/2+o(t2) for small t. This
follows from the fact that this function is C2, by Proposition 2.3 and the regularity
assumption. �

In a lot of applications of the above theorem, the space B will be a space of
functions, ξ will be the function 1, and ν the integration with respect to a fixed
measure. In particular, the sequence Xn belongs to the space B (see for instance
the illustration with one-dimensional expanding maps, in Section 3). However,
there are more exotic applications, such as [BGK07]. In this article, the method
is applied to a lattice of coupled expanding maps: the Banach space B is a set of
“projective limits of sequences of compatible measures on increasing sequences of
boxes” (it is therefore very far from a space of functions, or even from a space of
distributions). This justifies the seemingly abstract formulation of Theorem 2.4,
where we have not insisted that the Banach space B should be related in any sense
to the sequence X1, X2, . . . , except for the relation E(eitSn) = 〈ν,Ln

t ξ〉.

3. The Nagaev-Guivarc’h spectral method for expanding maps of the
interval

In this paragraph, we illustrate how Theorem 2.4 can be applied to prove a cen-
tral limit theorem, in one of the simplest possible situations: uniformly expanding
maps of the interval which are piecewise onto.

We consider a map T : I → I, where I = [0, 1] is written as the union of two
disjoint intervals I1 = [0, a) and I2 = [a, 1]. We assume that the restriction of T to
Ii admits a C2 extension to Ii, which is a diffeomorphism between Ii and I, and
satisfies T ′ � α > 1. Since the boundaries will not play any role in what follows,
we will abusively write Ii instead of Ii.

Theorem 3.1. Let f : I → R be a C1 function. Write Snf =
∑n−1

k=0 f ◦ T k.
There exist A ∈ R and σ2 � 0 such that, on the probability space (I,Leb), the
sequence (Snf − nA)/

√
n converges in distribution to a Gaussian N (0, σ2).

There are a lot of comments to be made about this theorem, various methods
of proof, various extensions, and so on. Since the main emphasis here is to show
a simple application of the spectral method, we first start with the proof, and will
give the comments afterwards.

To apply Theorem 2.4, we should introduce an operator L = L0 acting on a
Banach space, related to the composition with T , and with good spectral properties
(it should be quasi-compact). The first idea is to use the composition with T (also
called the Koopman operator) but there are difficulties to do so, since f ◦ Tn is
usually much wilder than f (for instance, its derivative is � Cαn → ∞). These
difficulties can be resolved by working in distribution spaces, but it is more elemen-
tary (and, often, more efficient) to consider the dual of the Koopman operator, and
work with smooth functions. Let hi : I → Ii be the inverse of T|Ii . We define an
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operator L by

(3.1) Lu(x) =
∑
i

h′
i(x)u(hix) =

∑
T (y)=x

1

T ′(y)
u(y).

This operator satisfies∫
Lu · v dLeb =

∑
i

∫
I

h′
i(x)u(hix)v(x) dx =

∑
i

∫
Ii

u(y)v(Ty) dy

=

∫
u · v ◦ T dLeb .

(3.2)

Hence, L is the adjoint of the Koopman operator, as desired. It is called the transfer
operator, or the Ruelle-Perron-Frobenius operator.

Let us now define perturbed transfer operators, as follows. Let f be a C1

function for which we want to prove a central limit theorem. We define

Ltu = L(eitfu).

Lemma 3.2. The operators Lt satisfy the identity∫
Ln
t u · v =

∫
u · eitSnf · v ◦ Tn dLeb .

Proof. We start from the right hand side, and use the duality property (3.2):∫
u · eitSnf · v ◦ Tn dLeb =

∫
(ueitf ) · (eitSn−1fv ◦ Tn−1) ◦ T dLeb

=

∫
L(ueitf ) · eitSn−1fv ◦ Tn−1 dLeb =

∫
Lt(u) · eitSn−1fv ◦ Tn−1 dLeb .

Therefore, an induction gives the result of the lemma. �

In particular, E(eitSnf ) =
∫
Ln
t 1 · 1 dLeb. This shows that the coding assump-

tion of Theorem 2.4 is satisfied, taking for ξ the constant function 1, and for ν the
integration with respect to Lebesgue measure. Note that we have not yet specified
the Banach space B on which the operators Lt will act. One could try to use the
spaces L∞ or L2, but there would be no quasi-compactness. We will rather use
B = C1. Note that t �→ eitf is analytic from R to C1 (just use the series expansion
eitf =

∑
(itf)k/k!), hence t �→ Lt is analytic, and in particular C2.

As is often the case, the only difficulty to apply Theorem 2.4 is the quasi-
compactness assumption. This is where the assumption of uniform expansion T ′ �
α > 1 will play a role (without this assumption, all we have said until now remains
true, but the theorem is false even if T ′(x0) = 1 at a single point x0, as we will see
later in Section 4).

The main point is that the iterates of T have a small distortion, i.e., if a set has
relatively small measure then its images also have relatively small measure. This
is the content of the following technical lemma. For i = (i1, . . . , in) ∈ {1, 2}n, let
hi = hi1 ◦ · · · ◦ hin . These functions are the inverse branches of Tn.

Lemma 3.3. There exists C such that, for all n, for all i of length n,

|h′′
i (x)| � Ch′

i(x).
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This lemma shows that (log h′
i)

′ is uniformly bounded. Hence, |log h′
i(x) −

log h′
i(y)| � C|x − y|. In particular, h′

i(x)/h
′
i(y) is bounded away from zero and

infinity. This implies that Leb(hiU)/Leb(hiV ) is equal to Leb(U)/Leb(V ) up to
a uniform multiplicative constant. This justifies the affirmation that the lemma
proves a bounded distortion property of Tn.

Proof. Writing the formula for the derivative of a composition, and taking
the logarithm, we get

log(h′
i) =

n∑
k=1

(log h′
ik
) ◦ hik+1

◦ · · · ◦ hin .

We differentiate again this equality, getting an expression for h′′
i /h

′
i. On the right

hand side, the derivative of the k-th term has a factor h′′
ik
/h′

ik
(bounded by a

constant C), multiplied by derivatives of the functions h′
ij

for j > k. Each of these

is � α−1 < 1, hence we get

|h′′
i /h

′
i| �

n∑
k=1

Cα−(n−k) � C ′. �

Corollary 3.4. There exists a constant C such that, for all n ∈ N, for all C1

function u,

‖Lnu‖C1 � Cα−n‖u‖C1 + C‖u‖C0 .

Proof. We have Lnu =
∑

h′
i(x)u ◦ hi(x), where the sum is over all i of

length n. Writing Ii = hi(I), the bounded distortion lemma implies that |h′
i(x)| �

C Leb(Ii). Therefore,

|Lnu(x)| � C
∑

Leb(Ii)‖u‖C0 = C‖u‖C0 ,

as
∑

Leb(Ii) = Leb(I) = 1.
Let us now control the derivative of Lnu, i.e.,∑

h′′
i (x)u ◦ hi(x) +

∑
h′
i(x)u

′ ◦ hi(x)h
′
i(x).

In the first term, |h′′
i | � C|h′

i| by Lemma 3.3. Hence, this term is bounded by

C‖u‖C0 as above. In the second term, we bound the last h′
i(x) by α−n, and the

remaining part is bounded by C‖u′‖C0 as above. �

The above corollary is a DFLY inequality. Together with Lemma 2.2 and the
compactness of the inclusion of C1 in C0, this implies that the essential spectral
radius of L acting on C1 is � α−1 < 1. Let us now control the outer spectrum
of L.

Lemma 3.5. The operator L acting on C1 has a simple eigenvalue at 1, and
no other eigenvalue of modulus � 1.

With this lemma, we can conclude the proof of Theorem 3.1 by applying The-
orem 2.4 (the spectral version of Nagaev-Guivarc’h argument). Indeed, we have
checked all its assumptions: the coding is proved in Lemma 3.2, the spectral de-
scription follows from Lemma 3.5, and the smoothness of t �→ Lt is trivial since this
family is analytic as we explained above.

It remains to prove Lemma 3.5.
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Proof of Lemma 3.5. The iterates of L have a uniformly bounded norm, by
Corollary 3.4. This shows that L has no eigenvalue of modulus > 1. Moreover, if
there are eigenvalues of modulus 1, they are semisimple (i.e., there are no Jordan
blocks). To conclude, one should control these (finitely many) eigenvalues and the
corresponding eigenfunctions.

For ρ of modulus 1, denote by Πρ the corresponding spectral projection (it
vanishes if ρ is not an eigenvalue of L). We have

1

n

n−1∑
k=0

Lk1 =
1

n

∑
ρ

n−1∑
k=0

ρkΠρ1 +O(1/n)

(where the sum over ρ involves only finitely many terms, the eigenvalues of modulus

1 of L). This converges in C1 to Π11 (since for ρ �= 1 the sequence
∑n−1

k=0 ρ
k is

bounded). By bounded distortion, the function Lk1 takes its values in an interval
[C−1, C] for some C > 0. It follows that the function ϕ = Π11 also takes its
values in [C−1, C]. In particular, Π1 is not zero, i.e., 1 is an eigenvalue, and ϕ is a
corresponding eigenfunction.

It remains to see that any other eigenfunction is in fact proportional to ϕ.
Consider an eigenfunction ψ, for an eigenvalue ρ of modulus 1. Consider x such
that M = |ψ(x)/ϕ(x)| is maximal (since ϕ � C−1, this is well defined). Then

Mϕ(x) = |ψ(x)| = |Lnψ(x)| =
∣∣∣∑h′

i(x)ψ(hix)
∣∣∣

�
∑

h′
i(x)|ψ|(hix) �

∑
h′
i(x)Mϕ(hix) = MLnϕ(x) = Mϕ(x).

It follows that all these inequalities are equalities. In particular, all the complex
numbers ψ(hix) have the same phase, and moreover |ψ|(hix) = Mϕ(hix). This
shows that ψ/ϕ is constant on T−n(x). As this set becomes more and more dense
when n tends to infinity, this shows that ψ/ϕ is constant, as desired. �

Let us give some comments about Theorem 3.1 and its proof:

(1) In the course of the proof, we have constructed an eigenfunction ϕ of the
transfer operator L. One can check that ϕ is the density of an invariant
probability measurem (i.e., it satisfiesm(T−1B) = m(B)), called the SRB
measure, or physical measure, of the system. Moreover, this measure m
is ergodic (i.e., if T−1B = B, then m(B) ∈ {0, 1}): this follows from the
fact that the eigenvalue 1 of L is simple.

(2) One can identify the quantities A and σ2 in the statement of the theorem:

one has A =
∫
f dm, and writing f̃ = f −

∫
f dm,

(3.3) σ2 =

∫
f̃2 dm+ 2

∞∑
k=1

∫
f̃ · f̃ ◦ T k dm.

Moreover, this series is converging, since the correlations
∫
f̃ · f̃ ◦ T k dm

tend to zero exponentially fast. This again follows from the spectral de-
scription of L (here, what matters is that, apart from the eigenvalue 1,
the spectrum of L is contained in a disk of radius < 1).

(3) The previous items show that the natural measure for the system is not
Lebesgue measure, but m. Hence, a central limit theorem on (I,m) would
be more natural than on (I,Leb). It turns out that these statements are
equivalent, see Theorem 4.9 below.
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We have written the proof for B the space of C1 functions, hence it only applies
if f is C1. However, essentially the same proof works for Hölder functions (the op-
erator L is still quasi-compact on the space of Hölder functions). More importantly,
the proof also applies to much more general dynamics if they retain uniform expan-
sion. Let us give a (non-exhaustive) list of examples that can be treated using such
methods. In most cases, the difficulty is to find a space on which the unperturbed
transfer operator L has a spectral gap.

• Subshifts of finite type with a Gibbs measure [GH88,PP90].
• Anosov or Axiom A systems. They can be reduced to subshifts of finite
type using coding, but one may also work directly with spaces of distribu-
tions [BT07,GL08] (these distributions should be smooth in the unstable
direction and dual of smooth in the stable direction).

• Piecewise expanding maps in dimension 1, using spaces of bounded vari-
ation functions or variations around this idea [HK82,Kel85].

• Piecewise expanding maps in higher dimension, if the expansion dominates
the local complexity in the sense of [Buz97]. See for instance [Sau00].

• Lattices of weakly coupled expanding maps [BGK07].
• Non-uniformly hyperbolic maps for which the time to wait before seeing
the hyperbolicity has exponentially small tails (including for instance bil-
liards, or unimodal maps of the interval of Collet-Eckmann type, or some
Hénon maps), see [You98].

• Billiard maps [DZ11].
• Time-one maps of contact Anosov flows [Tsu10,Tsu12]. Since there is
no hyperbolicity in the direction of the flow, the mixing in this direction
should come from a different mechanism related to the non-integrability
coming from the contact structure.

To conclude this section, let us describe a strengthening of Theorem 3.1, by
estimating the speed of convergence in the central limit theorem:

Theorem 3.6. Under the assumptions of Theorem 3.1, assume moreover that
σ2 > 0. Then there exists C > 0 such that, for any n > 0, for any real interval J ,∣∣μ{x : (Snf(x)− nA)/

√
n ∈ J} − P(N (0, σ2) ∈ J)

∣∣ � C/
√
n.

One can show that, for the interval maps under consideration, the condition
σ2 > 0 is equivalent to the fact that f is not a coboundary, i.e., it can not be
written as f = g − g ◦ T + c, where c is a scalar and g is a C1 function.

This theorem is not at all specific to interval maps, it is a general consequence of
the spectral method, more precisely of a version of the Nagaev-Guivarc’h theorem
that mimics the statement (and the proof) of the classical Berry-Esseen theorem
in the independent case:

Theorem 3.7 (Nagaev-Guivarc’h method, Berry-Esseen version). Under the
assumptions of Theorem 2.4, assume moreover that t �→ Lt is C3 and σ2 > 0.
There exists C > 0 such that, for any n > 0, for any real interval J ,∣∣P((Sn − nA)/

√
n ∈ J)− P(N (0, σ2) ∈ J)

∣∣ � C/
√
n.

The C3 assumption corresponds to the fact that, in probability theory, the
Berry-Esseen theorem is true for random variables in L3. This theorem readily
implies Theorem 3.6 since t �→ Lt is analytic in this case.
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Proof of Theorem 3.7. LetX be any real random variable, and Y be Gauss-
ian with variance σ2 > 0. The Berry-Esseen lemma (see for instance [Fel66, Lemma
XVI.3.2]) ensures that, for any real interval J , for any T > 0,

|P(X ∈ J)− P(Y ∈ J)| � C

∫ T

0

|E(eitX)− e−σ2t2/2|
t

dt+ C/T.

We will use this inequality with T = ε
√
n (for some suitably small ε � δ) and

X = (Sn − nA)/
√
n. To conclude, it suffices to show that

(3.4)

∫ ε
√
n

0

|E(eit(Sn−nA)/
√
n)− e−σ2t2/2|

t
dt � C√

n
.

By assumption, we have E(eit(Sn−nA)/
√
n) = e−it

√
nA〈ν,Ln

t/
√
n
ξ〉.

We have to deal in a special way with the interval t ∈ [0, 1/n], since the factor
1/t in (3.4) is not integrable at 0. In this case, we use a crude estimate:∣∣∣E(eit(Sn−nA)/

√
n)− e−it

√
nA

∣∣∣ = ∣∣∣〈ν,Ln
t/

√
nξ〉 − 1

∣∣∣ = ∣∣∣〈ν,Ln
t/

√
nξ〉 − 〈ν,Ln

0 ξ〉
∣∣∣

=

∣∣∣∣∣
〈
ν,

n−1∑
k=0

Lk
t/

√
n(Lt/

√
n − L0)Ln−k−1

0 ξ

〉∣∣∣∣∣.
The iterates of the operator L0 have uniformly bounded norm, by assumption. The
same holds for Lt/

√
n since its dominating eigenvalue is bounded in modulus by 1.

Finally, ‖Lt/
√
n − L0‖ � Ct/

√
n. It follows that the above quantity is bounded by

n · Ct/
√
n. Integrating over t, we obtain∫ 1/n

0

|E(eit(Sn−nA)/
√
n)− e−σ2t2/2|

t
dt

�
∫ 1/n

0

|E(eit(Sn−nA)/
√
n)− e−it

√
nA|+ |e−it

√
nA − 1|+ |1− e−σ2t2/2|

t
dt

�
∫ 1/n

0

n · Ct/
√
n+ t

√
nA+ σ2t2/2

t
dt � C√

n
.

Now, we deal with the remaining interval t ∈ [1/n, ε
√
n]. The spectral de-

composition of Lt gives a decomposition E(eitSn) = λ(t)nc(t) + dn(t), where c
is a C1 function with c(0) = 1, and dn is exponentially small (see the proof of
Theorem 2.4). Moreover, λ is C3 at 0 (since this is the case of Lt, and the
eigenvalue is as smooth as the operator by Proposition 2.3), and it has an as-

ymptotic expansion λ(t) = eiAt−σ2t2/2+t3h(t) where h(t) = O(1). We will use the

shorthand λ̃(t) = e−iAtλ(t) = e−σ2t2/2+t3h(t), designed so that E(eit(Sn−nA)) =

λ̃(t)nc(t) + e−itnAdn(t).
The contribution of dn to the integral (3.4) is exponentially small (this is why

we had to restrict to t � 1/n). The remaining quantity to be estimated is

∫ ε
√
n

t=1/n

∣∣∣λ̃(t/√n)nc(t/
√
n)− e−σ2t2/2

∣∣∣
t

dt

�
∫ ε

√
n

t=1/n

|λ̃(t/
√
n)n| |c(t/

√
n)− 1|
t

dt+

∫ ε
√
n

t=1/n

∣∣∣λ̃(t/√n)n − e−σ2t2/2
∣∣∣

t
dt.
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In the first term, we have |c(t/√n) − 1| � Ct/
√
n since c is C1 with c(0) = 1.

Moreover, λ̃(u) � e−σ2u2/4 if u is small enough, thanks to its expansion λ̃(u) =

e−σ2u2/2+u3h(u) with h(u) = O(1). Hence, if ε is small enough, this term is �
C

∫
R
e−σ2t2/4 dt/

√
n = O(1/

√
n).

For the second term, using the inequality |ex − 1| � |x|e|x|, we have∣∣∣λ̃(t/√n)n − e−σ2t2/2
∣∣∣ = e−σ2t2/2

∣∣∣et3h(t/√n)/
√
n − 1

∣∣∣
� e−σ2t2/2et

2|h(t/√n)|·t/√n · t3|h(t/
√
n)|/

√
n

� e−σ2t2/2et
2‖h‖∞ε · t3‖h‖∞/

√
n.

If ε is small enough so that ‖h‖∞ε < σ2/4, this is bounded by Ct3e−σ2t2/4/
√
n.

Dividing by t and integrating, we get that the contribution of this term is also
O(1/

√
n), as desired. �

Remark 3.8. In this proof, we used the spectral decomposition of Ln
t as

λ(t)nΠt + Qn
t , which gives E(eitSn) = λ(t)nc(t) + dn(t) where c(t) = 〈ν,Πtξ〉,

and dn(t) = 〈ν,Qn
t ξ〉 is exponentially small as ‖Qn

t ‖ is itself exponentially small.
We claim that, in fact, |dn(t)| � C|t|rn for some r < 1, with an additional factor
t which makes it possible to avoid the special treatment of the interval [0, 1/n] in
the above proof.

To show this claim, let us first note that, for any η ∈ B,
1 = E(ei0Sn) = 〈ν,Ln

0 ξ〉 = 〈ν,Π0ξ〉+ 〈ν,Qn
0 ξ〉.

Letting n tend to infinity, we get 〈ν,Π0ξ〉 = 1. With the above equation, this gives
for any n that 〈ν,Qn

0 ξ〉 = 0. Finally,

dn(t) = 〈ν,Qn
t ξ〉 = 〈ν, (Qn

t −Qn
0 )ξ〉 =

n−1∑
k=0

〈ν,Qk
t (Qt −Q0)Q

n−k−1
0 ξ〉.

As ‖Qk
t ‖ and ‖Qn−k−1

0 ‖ are both exponentially small and ‖Qt − Q0‖ = O(t), this
gives the desired conclusion.

4. Stable limit distributions for intermittent maps

In the previous section, we have described what happens to uniformly expand-
ing maps: there is so much chaos that the sequence f, f ◦ T, . . . almost behaves
like an independent sequence, and satisfies a central limit theorem. However, if T
is less chaotic, one might expect a different behavior. As we can guess from the
formula (3.3) for σ2, the critical parameter is the speed of decay of correlations: if
f has zero average for a given invariant measure, how fast does

∫
f · f ◦ Tn tend to

0? If this sequence is summable, the formula (3.3) makes sense and one expects a
central limit theorem (martingale methods make this intuition precise: if the cor-
relations are summable and some technical conditions are satisfied, then a central
limit theorem holds, see for instance [Liv96]). However, if the correlations are not
summable, one would expect a different behavior. This paragraph is devoted to
such an example, so-called intermittent maps.

An intermittent map is an expanding map of the interval, with uniform ex-
pansion except for a fixed point x0 where T ′(x0) = 1. This implies that a point
close to x0 takes a long time to drift away from x0, so that the dynamics does
not look chaotic for a long time and one expects mixing to be rather slow. The
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precise behavior depends on the fine asymptotics of T close to x0: if we have
T (x0 + h) = x0 + h+ ch1+γ(1 + o(1)), then the exponent γ dictates almost every-
thing.

While the results we will explain hold in a much wider setting (see [Zwe98]),
we will for simplicity only consider an explicit family of maps, that were introduced
by Liverani, Saussol and Vaienti in [LSV99] as a modification of the classical
Pomeau-Manneville maps [PM80]. Given γ > 0, the map Tγ : [0, 1] → [0, 1] is
defined by

Tγ(x) =

{
x(1 + 2γxγ) if x � 1/2,

2x− 1 if x > 1/2.

It has two branches, which are both onto, and is uniformly expanding away from
0. For γ < 1, it admits an absolutely continuous invariant probability measure m
(while, for γ � 1, the corresponding measure is infinite), whose density is Lipschitz
on any compact subset of (0, 1], and grows like c/xγ for small x. It is also known
that the correlations for m decay exactly like c/n1/γ−1 (see for instance [You99,
Sar02,Gou04b]). Hence, we expect a central limit theorem for γ < 1/2, and a
different behavior for γ � 1/2. This is indeed the case:

Theorem 4.1. Let f : I → R be a C1 function. Write A =
∫
f dm.

(1) If γ < 1/2, there exists σ2 � 0 such that (Snf − nA)/
√
n converges in

distribution to a Gaussian random variable N (0, σ2).
(2) If γ ∈ (1/2, 1) and f is generic in the sense that f(0) �=

∫
f dm, there

exists a stable law W of index 1/γ such that (Snf − nA)/nγ tends in
distribution to W .

(3) If γ ∈ (1/2, 1) and f(0) =
∫
f dm, there exists σ2 � 0 such that (Snf −

nA)/
√
n converges in distribution to a Gaussian random variable N (0, σ2).

The convergence in distribution in the theorem holds in both probability spaces
(I,m) and (I,Leb).

We will concentrate on the stable law case: there are numerous proofs for the
central limit theorem, while the only available proof for the stable law case relies on
the Nagaev-Guivarc’h spectral method. Contrary to the previous section, we will
not give a complete proof of the result, rather a detailed sketch of the argument.
Note that the behavior is also known for γ = 1/2: there is always convergence to a
Gaussian distribution, but with a normalization 1/

√
n logn if f(0) �=

∫
f dm, and

1/
√
n otherwise (see [Gou04a]). The proofs are very similar, so we will not say

more about this case.

Remark 4.2. Refining the method of proof below, one can also obtain a speed
of convergence towards the limit distribution, as in Theorem 3.6. See [Gou05]
for the case γ < 1/2 (convergence to a Gaussian distribution), and [GM14] for
γ > 1/2 (convergence to stable laws).

4.1. Stable laws. Stable laws are the probability distributions on R answering
the following question: if X1, X2, . . . is a sequence of i.i.d. random variables, with
partial sums Sn, what are the possible limits of (Sn − An)/Bn (where An and Bn

are suitable normalizing sequences).

Definition 4.3. A probability distribution on R (which is not a Dirac measure)
is stable if it arises as such a limit.
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For instance, a Gaussian distribution is stable (just take Xi to be in L2), but
there are other examples:

Example 4.4. Assume that the Xi are i.i.d., bounded from below and satisfy
P(Xi � z) ∼ z−β when z → ∞, for some β ∈ (1, 2). Then, for t > 0, a simple
computation shows that we have E(eitXi) = 1 + itA + ctβ(1 + o(1)) when t → 0,
where A = E(Xi) and c is a complex number. It follows that, for any t > 0,

E

(
e
itSn−nA

n1/β

)
= E(eitXi/n

1/β

)ne−nitA/n1/β

= exp
(
itA/n1/β + ctβ/n(1 + o(1))

)n
e−nitA/n1/β → ect

β

.

Since our random variable are real valued, their characteristic functions satisfy

E(e−itY ) = E(eitY ). Hence, convergence of the characteristic functions for t � 0
implies the same convergence for all t ∈ R. This shows that the characteristic func-
tion of (Sn−nA)/n1/β converges pointwise to a continuous function, and therefore
that this sequence converges in distribution. The limit W is a stable law by def-
inition, with an explicit characteristic function (in particular, it is not Gaussian).
One checks that it satisfies P(W > z) ∼ c′z−β and P(W < −z) = o(z−β) when
z → ∞, for some c′ > 0.

This example is significant: all non-Gaussian stable laws have the same kind of
behavior, characterized by an exponent β ∈ (0, 2) called the index of the stable law.
Their tails are heavy, of the order z−β . Their characteristic function are explicit,
of the form E(eitW ) = exp(itA + ctβ) for t > 0 (for some A ∈ R and c ∈ C). The
complex number c is related to a skewness parameter, in [0, 1], parameterizing the
balance between the tails at +∞ and −∞ – the above example is called totally
asymmetric since the tails at −∞ are negligible with respect to the tails at +∞,
corresponding to a skewness parameter 1. The precise classification, due to Lévy,
can for instance be found in [Fel66, Chapter XVII]. It will not be important for
us, since we will only encounter the totally asymmetric stable laws that we have
described in the above example.

Let us explain heuristically why stable laws show up for intermittent maps.
Consider a function f with

∫
f dm = 0 (so that the growth of Snf is typically

sublinear) and f(0) > 0. If x is very close to 0, so are T (x), and T (T (x)), and so
on. In particular, the Birkhoff sums Snf(x) will grow linearly, like nf(0), until Tnx
is far away from 0. The quantities one adds to the Birkhoff sums until one regains
independence behave like ϕ · f(0), where ϕ is the time to drift away from 0. If the
fixed point 0 of T is very neutral (i.e., if γ is large), then ϕ has heavy tails, and the
Birkhoff sums really behave like the addition of random variables with heavy tails,
just as in Example 4.4.

The rigorous proof of Theorem 4.1 follows this intuition. It is done in two main
steps, that we will explain with more details in the following paragraphs:

(1) to regain some independence, we replace long excursions close to 0 (in
which there are strong correlations) by a single step: in dynamical terms,
this is an inducing process. We will show the convergence to a stable law
for the induced map.

(2) Then, we need to go back from the induced map to the original map, using
general arguments. Since there is no completely general exposition of this
argument in the literature, we will give all details here.
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4.2. Stable limits for the induced map. Let Y = (1/2, 1]. The first return
time to Y of x ∈ Y is

ϕY (x) = inf{n � 1 : Tnx ∈ Y }.
The combinatorics of T ensure that all points come back to Y . We define the
induced map (or first return map) TY : Y → Y by TY (x) = TϕY (x)(x). Note that
TY is uniformly expanding, i.e., T ′

Y � α > 1, since T ′ = 2 on (1/2, 1].
Let x0 = 1, and xn+1 = T−1xn∩ [0, 1/2]. The sequence xn converges to 0. One

checks that
xn ∼ c/n1/γ , xn − xn+1 ∼ c′/n1+1/γ .

The points in [xn+1, xn] are precisely those that take n iterates to reach Y . Let
yn = T−1(xn) ∩ Y . Then the interval Yn = [yn, yn−1] comes back to Y precisely in
n steps, i.e., ϕY = n on Yn. Moreover, TY has full branches, i.e., TY (Yn) = Y for
all n � 1.

Take a C1 function f for which we want to prove a limit theorem, with
∫
f dm =

0. Define on Y the induced function

fY (x) =

ϕY (x)−1∑
k=0

f(T kx).

The Birkhoff sums of fY for the map TY (that we will denote by SY
n fY ) form a

subsequence of the Birkhoff sums of f for the map T , corresponding precisely to
those times where Tnx comes back to Y . To prove a limit theorem for Snf , the idea
will be to first prove a limit theorem for SY

n fY using the Nagaev-Guivarc’h spectral
method (this step is due to Aaronson and Denker [AD01]) and then deduce a
result for Snf (using general arguments of [MT04] and [Zwe07]). The original
argument for Theorem 4.1, given in [Gou04a], relies only on the spectral method
and is more complicated (but it allows extensions that are not available by more
elementary methods, for instance to the local limit theorem [Gou05]).

Proposition 4.5. Let γ ∈ (1/2, 1). Consider a C1 function f with
∫
f dm = 0

and f(0) > 0. There exists a stable law W of index 1/γ such that SY
n fY /n

γ

converges in distribution (on the probability space (Y,Leb|Y /Leb(Y ))) towards W .

This proposition is proved using the spectral method. We first need to under-
stand the distribution of fY . On the interval Yn (which has a measure ∼ C/n1+1/γ),

this function is equal to nf(0)+ o(n): indeed, fY (x) is the sum
∑n−1

k=0 f(T
kx), and

among the T kx most are very close to 0. Writing LebY = Leb|Y /Leb(Y ), we
obtain:

(4.1) LebY {x : fY (x) � z} ∼
∞∑

n=z/f(0)

LebY (Yn) ∼
∞∑

n=z/f(0)

C/n1+1/γ ∼ C ′/z1/γ .

This shows that the function fY has heavy tails, of the order 1/z1/γ , just as in
Example 4.4. We expect that the map TY , being uniformly expanding, will give
enough independence to ensure that SY

n fY behaves like a sum of independent ran-
dom variables. In this way, the convergence to a stable law would follow from
Example 4.4.

We define a transfer operator L for the map TY as in Section 3, in (3.1). Our
map TY has infinitely many branches, but it is uniformly expanding so that most
arguments of Section 3 still work: one checks that L, acting on the space B of C1
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functions on Y , is a quasi-compact operator, and that it has a unique eigenvalue of
modulus 1, at 1. Moreover, this eigenvalue is simple. The only difficulty is to check
the distortion lemma 3.3, even for the branches of TY , since there are infinitely
many of them. This is an elementary computation, see [You99] (one can also give
a proof using the fact that the branches of T have a negative Schwarzian derivative).

Let us define perturbed operators Lt, for small t, by Ltu = L(eitfY u). By
definition, it satisfies as in Section 3 (see Lemma 3.2) the identity

E(eitS
Y
n fY ) =

∫
Ln
t 1 dLebY .

Since the function fY is unbounded, eitfY u is in general not C1 even if u is. However,
the operator L has an additional averaging effect (and it gives a small weight to
regions where the derivative of fY is large). One can therefore check that Ltu is C1

if u is C1, i.e., Lt maps B to itself. Even more, the same computation gives that

(4.2) ‖Lt − L‖B→B � C|t|.
We are almost in a situation to apply Theorem 2.4. There is one assumption of this
theorem which is not satisfied, of course (otherwise, SY

n fY would satisfy a central
limit theorem, while we expect it to converge, suitably renormalized, to a stable
law): the family t �→ Lt is continuous by (4.2), but it is not C2. Copying the first
steps of the proof of Theorem 2.4, we obtain the following. Denote by λ(t) the
dominating eigenvalue of Lt, then

(4.3) E(eitSnf ) = c(t)λ(t)n + dn(t),

where c(t) tends to 1 when t → 0, and ‖dn‖L∞([−δ,δ]) → 0. However, we do not know

the expansion of λ(t) for small t. If we could prove that this expansion is similar to
the expansion of E(eitfY ), then we could follow the argument in Example 4.4 and
get the desired limit theorem (this is the essence of the Nagaev-Guivarc’h spectral
method: follow the proofs of the independent case).

It remains to study λ(t). We do it by hand, instead of relying on an abstract ar-

gument such as smoothness in Theorem 2.4. Denote by ξ̃t = Πt(1) an eigenfunction
of Lt for its dominating eigenvalue λ(t) (where Πt denotes the corresponding spec-
tral projection). By Proposition 2.3, t �→ Πt is as smooth as t �→ Lt. With (4.2),

we get ‖ξ̃t− ξ̃0‖C1 = O(|t|). The function ξ̃0 is the density of the invariant measure,

it is positive and therefore satisfies
∫
ξ̃0 > 0. We deduce that

∫
ξ̃t �= 0 for small

t. Hence, we can define a normalized eigenfunction ξt = ξ̃t/
∫
ξ̃t dLebY . It still

satisfies
‖ξt − ξ0‖C1 = O(|t|).

Integrating the equation λ(t)ξt = Ltξt, we get:

λ(t) =

∫
Ltξt dLebY =

∫
Lt(ξt − ξ0) dLebY +

∫
Ltξ0 dLebY

=

∫
(Lt − L0)(ξt − ξ0) dLebY +

∫
Ltξ0 dLebY ,

where we have inserted L0(ξt − ξ0) in the second line since its integral vanishes
by our normalization choice for ξt. In the first term, ‖Lt − L0‖ = O(|t|) and
‖ξt − ξ0‖ = O(|t|), hence this term is O(t2). In the second term,∫

Ltξ0 dLebY =

∫
L(eitfY ξ0) dLebY =

∫
eitfY ξ0 dLebY =

∫
eitfY dmY ,
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where mY is the measure with density ξ0 (it is the normalized restriction of the
absolutely continuous invariant measure to Y ). We have proved that

(4.4) λ(t) = EmY
(eitfY ) +O(t2).

The function fY has heavy tails, as we explain in (4.1) (there, we did the compu-
tation for Lebesgue measure, but the density ξ0 of mY is continuous and the heavy
tails all come from small neighborhoods of 1/2, so the same estimate follows for
mY ). Hence, the asymptotic expansion in Example 4.4 gives, for t > 0,

EmY
(eitfY ) = 1 + itEmY

(fY ) + ct1/γ(1 + o(1)).

Since fY is the function induced by f on Y , we have EmY
(fY ) =

1
m(Y )Em(f) = 0.

Since 1/γ < 2, the term O(t2) in (4.4) is negligible with respect to t1/γ . We get,
for t > 0,

λ(t) = 1 + ct1/γ(1 + o(1)).

We can then use (4.3) and repeat the computation in Example 4.4 to deduce that
SY
n fY /n

γ converges to a stable law of index 1/γ. This proves Proposition 4.5. �

4.3. Inducing limit theorems. In this paragraph, we explain how (under
suitable assumptions) limit theorems for an induced map imply limit theorems for
the original map. This statement is inspired by [MT04] and [CG07].

Definition 4.6. A continuous function L : R∗
+ → R

∗
+ is slowly varying if, for

any λ > 0, L(λx)/L(x) → 1 when x → ∞. A function f is regularly varying with
index d if it can be written as xdL(x) where L is slowly varying. A sequence an is
regularly varying with index d if there exists a function f , regularly varying with
index d, such that an = f(n).

Definition 4.7. A family of real random variables (Xi)i∈I is tight if there is
no possible loss of mass at infinity, i.e., for all ε > 0, there exists M > 0 such that
P(|Xi| � M) < ε for all i ∈ I.

For instance, a sequence of random variables which converges in distribution is
tight.

Theorem 4.8. Let T : X → X be an ergodic probability preserving map, let
α(n) and Bn be two sequences of integers which are regularly varying with positive
indexes, let An ∈ R, and let Y ⊂ X be a subset with positive measure. We will
denote by mY := m|Y /m(Y ) the induced probability measure.

Let ϕ : Y → N∗ be the first return time to Y for T , and TY = Tϕ : Y → Y the
induced map. Consider a measurable function f : X → R and define fY : Y → R by
fY =

∑ϕ−1
k=0 f ◦T k. Let us define the sequence of Birkhoff sums SY

n fY =
∑n−1

k=0 fY ◦
TY . Assume that (SY

n fY − An)/Bn converges in distribution (with respect to mY )
to a random variable W . Additionally, assume either that

(4.5)
SY
n ϕ− n/m(Y )

α(n)
tends in probability to 0 and max

0�k�α(n)
|SY

k fY |/Bn is tight

or

(4.6)
SY
n ϕ− n/m(Y )

α(n)
is tight and max

0�k�α(n)
|SY

k fY |/Bn tends in probability to 0.

Then (Snf −A	nm(Y )
)/B	nm(Y )
 converges in distribution (with respect to m)
to W .
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The intuition behind this theorem is the following. For x ∈ Y , one can write
SNf(x) = SY

n(x,N)fY (x) + RN (x), where n(x,N) is the number of visits of x to Y

until time N , and RN (x) is a remainder term corresponding to the last excursion.
By Birkhoff theorem, n(x,N) is close to Nm(Y ). Hence, we may write

SNf(x)−ANm(Y )

BNm(Y )
=

SY
Nm(Y )fY (x)−ANm(Y )

BNm(Y )

+
SY
n(x,N)−Nm(Y )fY (T

Nm(Y )
Y x)

BNm(Y )
+

RN (x)

BNm(Y )
.

The term on the right of the first line converges in distribution (with respect to
mY ) to W , by assumption. To conclude, we should show that the remaining two
terms are small. For the last one, this follows from a general argument. For the
middle one, one should control the growth of the Birkhoff sums of fY , on a time
scale given by the fluctuations of SY

n ϕ around its average n/m(Y ). This is exactly
the role of the assumptions (4.5) or (4.6), showing that such a good control holds
for the time scale α(n).

To complete the argument, one should finally understand how the above con-
vergence in distribution with respect to mY yields a corresponding convergence
with respect to m.

The precise technical implementation of the above idea to prove Theorem 4.8 is
given in Subsection 4.6, relying on intermediate results of independent interest that
are described in Subsections 4.4 and 4.5. Before this, we explain how Theorem 4.1
follows from the above theorem.

Proof of Theorem 4.1. We concentrate on Case (2), i.e., the case of stable
laws, and indicate briefly at the end the modifications for the other cases.

Let γ ∈ (1/2, 1), consider a C1 function f with
∫
f dm = 0 and f(0) > 0. By

Proposition 4.5, the sequence SY
n fY converges in distribution to a stable law (for the

measure LebY or for the measure mY , this is equivalent according to Theorem 4.9
below). Denote by ϕ the first return time to Y . The function ϕ − 1/m(Y ) is the
induced function on Y of the function g equal to 1−1/m(Y ) on Y , and 1 outside of
Y . Hence, Proposition 4.5 shows that (SY

n ϕ−n/m(Y ))/nγ converges in distribution
to a stable law. (Strictly speaking, g is not C1, but it is C1 on [0, 1/2] and [1/2, 1],
which is sufficient for the proposition.)

We will apply Theorem 4.8 (more precisely (4.6)) with α(n) = Bn = nγ . We
have just shown that (SY

n ϕ − n/m(Y ))/nγ is tight. To conclude, we should show
that max0�k�N |SY

k fY |/N tends in probability to 0 (where N = nγ). It suffices to
show that SY

k fY /k tends almost surely to 0. This follows from Birkhoff’s ergodic
theorem since fY is integrable. This concludes the proof of the theorem in the
stable law case.

To handle the other cases, one should show that the induced function fY sat-
isfies a central limit theorem for TY , and then induce back to T . When γ < 1/2,
or γ > 1/2 and f(0) = 0 =

∫
f dm, a simple computation shows that the induced

function is square integrable. Hence, one can for instance apply Theorem 2.4 to ob-
tain a central limit theorem for fY , or rely on the martingale arguments of [Liv96].
To go back to the original system, one may again apply Theorem 4.8. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LIMIT THEOREMS IN DYNAMICAL SYSTEMS USING THE SPECTRAL METHOD 179

4.4. Limit theorems do not depend on the reference measure. The
following theorem has been proved by Eagleson [Eag76] and popularized by Zwei-
müller (in much more general contexts, [Zwe07]). It is instrumental in the proof
of Theorem 4.8.

Theorem 4.9. Let T : X → X be a transformation preserving an ergodic
probability measure m. Let f : X → R be measurable, let An ∈ R, let Bn tend to ∞
and let m′ be an absolutely continuous probability measure. Then (Snf − An)/Bn

converges in distribution to a random variable W with respect to m if and only if
it satisfies the same convergence with respect to m′.

Proof. For the proof, let us write M(n, g, ϕ) =
∫
g((Snf − An)/Bn)ϕ dm,

where g is a bounded Lipschitz function and ϕ is an integrable function.
We claim that

(4.7) M(n, g, ϕ)−M(n, g, ϕ ◦ T ) → 0 when n → ∞.

Let us first prove this assuming that ϕ is bounded. Since g is Lipschitz and bounded,
it satisfies |g(a)− g(b)| � Cmin(1, |a− b|). Therefore,

|M(n, g, ϕ)−M(n, g, ϕ ◦ T )|

=

∣∣∣∣
∫ (

g

[
Snf(x)−An

Bn

]
− g

[
Snf(Tx)−An

Bn

])
ϕ(Tx) dm(x)

∣∣∣∣
� C

∫
min(1, |Snf(x)− Snf(Tx)|/Bn) dm

= C

∫
min(1, |f(x)− f(Tnx)|/Bn) dm

� C

∫
(min(1, |f |/Bn) + min(1, |f | ◦ Tn/Bn)) dm

= 2C

∫
min(1, |f |/Bn) dm.

This quantity converges to 0 when n → ∞, since Bn → ∞. This proves (4.7) for
bounded ϕ.

In general, we have

(4.8) |M(n, g, ψ)| � ‖g‖∞‖ψ‖L1(m).

Hence, the general case of (4.7) follows by writing ϕ = ϕ1 + ϕ2 with ϕ1 bounded
and ‖ϕ2‖L1(m) � ε: we obtain lim sup|M(n, g, ϕ)−M(n, g, ϕ ◦ T )| � 2ε‖g‖∞.

Assume now that (Snf −An)/Bn converges in distribution with respect to m′

towards W . Write dm′ = ϕ dm with ϕ integrable (and of integral 1). Let g be a
bounded Lipschitz function. Then M(n, g, ϕ) → E(g(W )), hence M(n, g, ϕ◦T k) →
E(g(W )) for any fixed k, by (4.7). Therefore, M(n, g, Skϕ/k) → E(g(W )). Let
ε > 0, choose k large enough so that ‖Skϕ/k − 1‖L1(m) � ε. Then

lim sup|M(n, g, 1)− E(g(W ))|
� lim sup|M(n, g, 1)−M(n, g, Skϕ/k)|+ lim sup|M(n, g, Skϕ/k)− E(g(W ))|.

The first term is at most ε by (4.8), while the second one is 0. Hence, M(n, g, 1)
converges to E(g(W )). This proves the convergence of (Snf − An)/Bn to W with
respect to m.
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Conversely, if (Snf−An)/Bn converges toW with respect tom, the convergence
with respect to m′ follows in the same way:

lim sup|M(n, g, ϕ)− E(g(W ))| � lim sup|M(n, g, ϕ)−M(n, g, Skϕ/k)|
+ lim sup|M(n, g, Skϕ/k)−M(n, g, 1)|+ lim sup|M(n, g, 1)− E(g(W ))|.

The third term tends to 0 by assumption, the first one tends to 0 by (4.7), and the
second one is at most C‖Skϕ/k− 1‖L1(m), which can be made arbitrarily small by

choosing k large enough. �

4.5. Limit theorems do not depend on random indices. In this para-
graph, we show that random time changes, if they do not deviate too much from
linearity, do not change the validity of limit theorems. Again, this statement is
instrumental in the proof of Theorem 4.8.

Theorem 4.10. Let T : X → X be a probability preserving map, and let
α(n) and Bn be two sequences of integers which are regularly varying with positive
indexes. Let also An ∈ R. Let f : X → R measurable be such that (Snf −An)/Bn

converges in distribution to a random variable W . Let also t1, t2, . . . be a sequence
of integer valued measurable functions on X, and let c > 0. Assume that either

(4.9)
tn − cn

α(n)
tends in probability to 0 and max

0�k�α(n)
|Skf |/Bn is tight

or

(4.10)
tn − cn

α(n)
is tight and max

0�k�α(n)
|Skf |/Bn tends in probability to 0.

Then the sequence (Stnf −A	cn
)/B	cn
 converges in distribution to W .

As in Theorem 4.8, the assumptions (4.9) or (4.10) say that tn deviates from
its average behavior cn roughly on an order α(n), which is sufficiently small so that
the Birkhoff sums of f do not vary too much on this time scale.

Proof. We will show that, under (4.9) or (4.10), there exists a sequence β(n)
of integers such that

(4.11) |tn − cn|/β(n) and max
0�k�2β(n)

|Skf |/Bn both tend in probability to 0.

Let us show how it implies the theorem. It is sufficient to prove that

m

{
x :

∣∣∣∣Stn(x)f − S	cn
f

B	cn


∣∣∣∣ � ε

}
→ 0.

Abusing notations, we will omit the integer parts. The measure of the set in the last
equation is bounded bym{|tn−cn| � β(n)}+m{∃i ∈ [γ(n), β(n)], |Scn+if−Scnf | �
εBcn}, where γ(n) = −min(cn, β(n)). The measure of the first set tends to 0
by (4.11). If x belongs to the second set, then either |Scnf − Scn+γ(n)f | � εBcn/2

or |Scn+if −Scn+γ(n)f | � εBcn/2. In both cases, max0�k�2β(n)|Skf |(T cn+γ(n)x) �
εBcn/2. Since Bn is regularly varying, there exists C such that Bcn/2 � CBn.
Hence, the measure of the second set is bounded by m{max0�k�2β(n)|Skf | �
CεBn}, which also tends to 0 by (4.11).

To conclude the proof, it is therefore sufficient to construct β(n) satisfying (4.11).
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Lemma 4.11. Let Yn be a sequence of real random variables tending in prob-
ability to 0. There exists a non-decreasing sequence A(n) → ∞ such that A(n)Yn

still tends in probability to 0.

Proof. For k > 0, let N(k) be such that, for n � N(k), P(|Yn| > 1/k2) � 1/k.
We can also assume that N(k + 1) > N(k). Define A by A(n) = k when N(k) �
n < N(k + 1), this sequence tends to infinity. Consider k ∈ N, and n � N(k). Let
� � k be such that N(�) � n < N(�+ 1). Then

P(A(n)|Yn| > 1/k) � P(A(n)|Yn| > 1/�) = P(|Yn| > 1/�2) � 1/� = 1/A(n).

Hence, P(A(n)|Yn| > 1/k) tends to 0 for any k. �

Lemma 4.12. Let Bn be a regularly varying sequence with positive index, and let
Yn be a sequence of real random variables such that Yn/Bn converges in probability
to 0. Then there exists a non-decreasing sequence ϕ(n) = o(n) such that Yn/Bϕ(n)

still converges in probability to 0. We can also ensure ϕ(n+ 1) � 2ϕ(n) for any n,
and ϕ(n) → ∞.

Proof. Applying the previous lemma to Yn/Bn, we obtain a non-decreasing
sequence A(n) tending to infinity such that A(n)Yn/Bn converges in probability
to 0. Replacing A(n) with min(A(n), logn) if necessary, we can assume A(n) =
O(logn). Write Bn = ndL(n) where L is slowly varying. Let ϕ(n) be the integer
part of n/A(n)1/(2d), it satisfies the equation ϕ(n + 1) � 2ϕ(n) since A is non-
decreasing, tends to infinity since A(n) = O(logn), and

Yn

Bϕ(n)
=

A(n)Yn

Bn
· Bn

A(n)Bϕ(n)
.

The first factor tends to 0 in probability, while the second one is equivalent to

ndL(n)

A(n)(nd/A(n)1/2)L(n/A(n)1/(2d))
.

By Potter’s bounds [BGT87, Theorem 1.5.6], for any ε > 0, there exists C > 0
such that L(n)/L(n/A(n)1/(2d)) � CA(n)ε. Taking ε = 1/4, we obtain that the
last equation is bounded by C/A(n)1/4, and therefore tends to 0. �

We can now prove (4.11).
Assume first (4.9). Applying the previous lemma to Yn = tn − cn, we obtain

a non-decreasing sequence ϕ(n) = o(n) such that (tn − cn)/α(ϕ(n)) → 0. Let
β(n) = α(ϕ(n))/2, then

(4.12) max
0�k�2β(n)

|Skf |/Bn =
Bϕ(n)

Bn
max

0�k�α(ϕ(n))
|Skf |/Bϕ(n).

The factor Bϕ(n)/Bn tends to 0 since ϕ(n) = o(n) and Bn is regularly varying with
positive index. The second factor is tight by assumption. Hence, (4.12) tends in
probability to 0, as desired.

Assume now (4.10). Applying the previous lemma to Yn = max0�k�α(n)|Skf |,
we obtain a non-decreasing sequence ϕ(n) = o(n) such that

(4.13) max
0�k�α(n)

|Skf |/Bϕ(n) tends in probability to 0.

Let ψ(n) be the smallest integer p such that ϕ(p) � n/2. Then ϕ(ψ(n)) � n/2.
Moreover, ϕ(ψ(n)−1) < n/2, hence ϕ(ψ(n)) < n by the inequality ϕ(k+1) � 2ϕ(k).
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Therefore, Bn � C−1Bϕ(ψ(n)) since the sequence Bn, being regularly varying with
positive index, is increasing up to a constant multiplicative factor.

Let β(n) = α(ψ(n))/2, we get

max
0�k�2β(n)

|Skf |/Bn = max
0�k�α(ψ(n))

|Skf |/Bn � C max
0�k�α(ψ(n))

|Skf |/Bϕ(ψ(n)).

This converges to 0 in probability by (4.13).
Since ϕ(ψ(n)) � n/2 and ϕ(k) = o(k), we have n = o(ψ(n)). Since α is

regularly varying with positive index, this yields α(n) = o(β(n)). In particular, the
tightness of (tn− cn)/α(n) implies the convergence to 0 of (tn− cn)/β(n). We have
proved (4.11) as desired. �

4.6. Proof of Theorem 4.8. In this paragraph, we prove Theorem 4.8. Go-
ing to the natural extension, we can without loss of generality assume that T is
invertible. Abusing notations, we will write Bnm(Y ) instead of B	nm(Y )
. We will
prove that (Snf − Anm(Y ))/Bnm(Y ) converges to W in distribution with respect
to mY : this will imply the desired result by Theorem 4.9, since mY is absolutely
continuous with respect to m.

For x ∈ Y and N ∈ N, let n(x,N) = Card{1 � i < N : T ix ∈ Y } denote the
number of visits of x to Y . By construction, it satisfies

(4.14) n(x,N) � k ⇐⇒ SY
k ϕ(x) < N.

Define also a function H on X by H(x) =
∑ψ(x)

k=1 f(T−kx), where ψ(x) = inf{n �
1 : T−nx ∈ Y }. By construction, for x ∈ Y ,

SNf(x) = SY
n(x,N)fY (x) +H(TNx).

Moreover, H ◦ TN/BNm(Y ) converges to 0 in distribution on X (since the measure
is invariant and Bn tends to infinity), and therefore on Y . To prove the theorem,
it is therefore sufficient to show that

SY
n(x,N)fY −ANm(Y )

BNm(Y )
→ W.

This will follow from Theorem 4.10 if we can check its assumptions (4.9) or (4.10)
for tN (x) = n(x,N) and c = m(Y ). The assumptions concerning SY

k fY are already
contained in (4.5) or (4.6) respectively, we only have to check the assumptions
about tN .

Birkhoff’s theorem ensures that n(x,N) = Nm(Y ) + o(N) for almost every
x. Therefore, along any subsequence Nk for which α(Nk) � δNk with δ > 0, we
get that |n(x,Nk) − Nkm(Y )|/α(Nk) converges in probability to 0, and there is
nothing left to prove. Thus, it is sufficient to consider only values of N along which
α(N)/N → 0.

For any a > 0, we have by (4.14)

mY

{
n(x,N)−Nm(Y )

α(N)
� a

}
= mY

{
SY
Nm(Y )+α(N)aϕ < N

}

= mY

{
SY
Nm(Y )+α(N)aϕ− (Nm(Y ) + α(N)a)/m(Y )

α(Nm(Y ) + α(N)a)

< − α(N)

α(Nm(Y ) + α(N)a)

a

m(Y )

}
.
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Since we are considering values of N for which α(N) = o(N), we have Nm(Y ) +
α(N)a � 2Nm(Y ) if N is large enough. Since α is regularly varying with positive

index, this yields α(N)
α(Nm(Y )+α(N)a) � C > 0. Hence,

(4.15) mY

{
n(x,N)−Nm(Y )

α(N)
� a

}
� mY

{
SY
p(N)ϕ− p(N)/m(Y )

α(p(N))
< −Ca

}

for some integer p(N) which tends to infinity with N .

Let us now study mY

{
n(x,N)−Nm(Y )

α(N) < −a
}
. Using again α(N) = o(N), we

get Nm(Y )− α(N)a � Nm(Y )/2 > 0 for large enough N . Hence,

mY

{
n(x,N)−Nm(Y )

α(N)
< −a

}
= mY

{
SY
Nm(Y )−α(N)aϕ � N

}

= mY

{
SY
Nm(Y )−α(N)aϕ− (Nm(Y )− α(N)a)/m(Y )

α(Nm(Y )− α(N)a)

� α(N)

α(Nm(Y )− α(N)a)

a

m(Y )

}
.

Since α(N)
α(Nm(Y )−α(N)a) � C > 0, we obtain

(4.16) mY

{
n(x,N)−Nm(Y )

α(N)
< −a

}
� mY

{
SY
q(N)ϕ− q(N)/m(Y )

α(q(N))
� Ca

}
,

for some q(N) tending to infinity with N .
The equations (4.15) and (4.16) together show that the tightness (resp. the

convergence in probability to 0) of (SY
n ϕ − n/m(Y ))/α(n) implies the tightness

(resp. the convergence in probability to 0) of (n(x,N) − Nm(Y ))/α(N). We can
therefore apply Theorem 4.10, to conclude the proof. �

5. The almost-sure invariance principle

In this section, we describe another application of the Nagaev-Guivarc’h method
to prove a limit theorem for dynamical systems, the almost sure invariance princi-
ple. This limit theorem ensures that the trajectories of a process can be coupled
with a Brownian motion so that, almost surely, the difference between the processes
is negligible with respect to their size. The precise definition is the following (we
formulate it for vector-valued observables since the Nagaev-Guivarc’h method ap-
plies directly to this case, while a lot of martingale-based arguments are restricted
to real-valued observables).

Definition 5.1. Let ρ ∈ (0, 1/2] and let Σ2 be a (possibly degenerate) d × d
symmetric nonnegative matrix. A random process (X0, X1, . . . ) taking its values in
R

d satisfies the almost sure invariance principle with error rate o(nρ) and limiting
covariance Σ2 if there exist a probability space Ω and two processes (X∗

0 , X
∗
1 , . . . )

and (B0, B1, . . . ) on Ω such that:

(1) The processes (X0, X1, . . . ) and (X∗
0 , X

∗
1 , . . . ) have the same distribution.

(2) The random variables B0, B1, . . . are i.i.d. and distributed like N (0,Σ2).
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(3) Almost surely in Ω,∣∣∣∣∣
n−1∑
�=0

X∗
� −

n−1∑
�=0

B�

∣∣∣∣∣ = o(nρ).

This property implies the central limit theorem, but it is much more precise (for
instance, it readily gives the law of the iterated logarithm, describing the almost
sure growth rate of the partial sums

∑n−1
�=0 X�). Such a result is well known for

sums of i.i.d. random variables, but it is delicate: the optimal error rate (O(n1/p)
for random variables in Lp) has only been proved for real-valued random variables
in 1975 for p � 4 [KMT75] (the case p < 4 is easier, and can be handled with
different methods, for instance using Skorokhod embedding). For Rd-valued random
variables, the result has been proved even more recently [Ein89,Zăı98], and is
really difficult.

The almost sure invariance principle can be proved for some dynamical systems
using martingale or approximation arguments, if there is a well behaved underlying
filtration (see for instance [HK82,DP84,MN09]). In this section, we describe the
results of [Gou10a] relying on the Nagaev-Guivarc’h spectral method, that give
better error bounds and apply to a whole range of dynamical systems (for instance
those described at the end of Section 3). To simplify notations, we write tx instead
of 〈t, x〉 for t ∈ Rd and x ∈ Rd. The main theorem is the following.

Theorem 5.2. Let X1, X2, . . . be a centered stationary sequence of Rd-valued
random variables, with partial sums denoted by Sn. Assume that there exist a
complex Banach space B, a family of operators Lt acting on B (for t ∈ Rd with
|t| � δ) and ξ ∈ B, ν ∈ B∗ such that:

(1) strong coding: for all n ∈ N, for all t0, . . . , tn−1 ∈ Rd with |ti| � δ,

E(ei
∑n−1

�=0 t�X�) = 〈ν,Ltn−1
Ltn−2

· · · Lt1Lt0ξ〉.
(2) spectral description: ress(L0) < 1, and L0 has a single eigenvalue of mod-

ulus � 1, located at 1. It is an isolated eigenvalue, of multiplicity one.
(3) weak regularity: there exists C > 0 such that for all |t| � δ and all n ∈ N,

we have ‖Ln
t ‖B→B � C.

(4) there exists p > 2 such that ‖Xi‖Lp � C.

Then there exists a matrix Σ2 such that Sn/
√
n converges in distribution to N (0,Σ2).

Moreover, the process (X�)�∈N satisfies the almost sure invariance principle with er-
ror rate o(nρ) for all ρ with

ρ >
p

4p− 4
=

1

4
+

1

4p− 4
.

When p = ∞, the condition on the error rate becomes ρ > 1/4. This bound
is rather good (in particular dimension-independent), although it is much weaker
than the result for i.i.d. random variables (one should be able to take any ρ > 0).
In really non-independent situations, all the methods seem to be stuck at this 1/4-
boundary, excepted the very recent paper [BLW14].

This theorem should be compared to the usual Nagaev-Guivarc’h result giving
the central limit theorem, Theorem 2.4.

• The coding assumption (1) in Theorem 5.2 is stronger (instead of looking
at only one Fourier parameter, one should be able to change it with time),
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but this is minor since operators that satisfy the usual coding property of
Theorem 2.4 usually also satisfy the strong coding property. For instance,
one readily checks that the proof of Lemma 3.2 also gives the strong coding
property for dynamical systems.

• The spectral assumption (2) on L0 is the same.
• The regularity assumption (3) is considerably weaker in Theorem 5.2:
since it does not require any continuity, the operator Lt for t �= 0 may
not have a dominating eigenvalue λ(t). In particular, the usual strategy
of the Nagaev-Guivarc’h theory (reduce everything to the study of the
dominating eigenvalue) can not work!

• The price to pay for the very weak condition (3) is an additional condition
(4) of Lp boundedness for some p > 2. This condition is not needed
in Theorem 2.4 (and, indeed, significant applications are to merely L2

functions). However, it is natural for the almost sure invariance principle
since it is necessary even for i.i.d. random variables.

Remark 5.3. If t �→ Lt is continuous, then the weak regularity condition (3) is
satisfied. Indeed, in this case, Proposition 2.3 shows that one can write for small t
a decomposition Ln

t = λ(t)nΠt+Qn
t where Πt is the eigenprojection corresponding

to the dominating eigenvalue λ(t) of Lt, and Qt = (I − Πt)Lt corresponds to the
rest of the spectrum of Lt. It satisfies ‖Qn

t ‖ � Crn for some r < 1. To prove the
condition (3), it is therefore sufficient to show that |λ(t)| � 1 for small t.

We have

E(eit
∑n−1

�=0 X�) = 〈ν,Ln
t ξ〉 = λ(t)n〈ν,Πtξ〉+ 〈ν,Qn

t ξ〉
= λ(t)n〈ν,Πtξ〉+O(rn).

(5.1)

When t → 0, by continuity, the quantity 〈ν,Πtξ〉 converges to 〈ν,Π0ξ〉 = 1. In
particular, if t is small enough, 〈ν,Πtξ〉 �= 0. As the right hand side of (5.1) should
remain bounded by 1 in modulus, this gives |λ(t)| � 1 as desired.

The Lp condition (4) hints at the fact that the proof of the theorem is not spec-
tral or dynamical, but rather probabilistic in spirit. (In this sense, although the
statement looks very similar to Theorem 2.4, the above theorem is not a genuine
application of the spectral method.) Indeed, Theorem 5.2 will follow from a corre-
sponding statement relying only on a technical decorrelation condition that we now
describe. This condition ensures that the characteristic function of the process we
consider is close enough to that of an independent process. The condition, denoted
by (H), is the following: there exist δ > 0 and C, c > 0 such that, for all n,m > 0,
for all b1 < b2 < · · · < bn+m+1, for all k > 0 and for all t1, . . . , tn+m ∈ Rd with
|tj | � δ, we have∣∣∣∣∣E

(
e
i
∑n

j=1 tj
(∑bj+1−1

�=bj
X�

)
+i

∑n+m
j=n+1 tj

(∑bj+1+k−1

�=bj+k X�

))

− E

(
e
i
∑n

j=1 tj
(∑bj+1−1

�=bj
X�

))
· E

(
e
i
∑n+m

j=n+1 tj
(∑bj+1+k−1

�=bj+k X�

))∣∣∣∣∣
� C(1 + max|bj+1 − bj |)C(n+m)e−ck.

(H)

This assumption means that, if we group the random variables in n + m blocks,
then a gap of size k between two blocks yields characteristic functions that are
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186 SÉBASTIEN GOUËZEL

exponentially close (in terms of k) to independent characteristic functions, with an
error that is, for each block, polynomial in terms of the size of the block. This
control is only required for Fourier parameters close to 0.

This condition is of course true for independent random variables. Its main
interest is that it is also satisfied under the assumptions of Theorem 5.2:

Lemma 5.4. Under the assumptions of Theorem 5.2, the property (H) is sat-
isfied.

Proof. Write Π0 for the eigenprojection associated to the dominating eigen-
value 1 of L0. Then

E

(
e
i
∑n

j=1 tj
(∑bj+1−1

�=bj
X�

)
+i

∑n+m
j=n+1 tj

(∑bj+1+k−1

�=bj+k X�

))

=
〈
ν,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Lk
0L

bn+1−bn
tn · · · Lb2−b1

t1 Lb1
0 ξ

〉
=

〈
ν,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
(Lk

0 −Π0)Lbn+1−bn
tn · · · Lb2−b1

t1 Lb1
0 ξ

〉
+

〈
ν,Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Π0Lbn+1−bn

tn · · · Lb2−b1
t1 Lb1

0 ξ
〉
.

The operators Lti all satisfy ‖Lj
ti‖ � C by the weak regularity assumption. As

‖Lk
0 − Π0‖ � Crk, we deduce that the term on the penultimate line is bounded

by Cn+mrk, which is compatible with (H). On the last line, the projection Π0

decouples both parts, hence one proves that this line is equal to

E

(
e
i
∑n

j=1 tj
(∑bj+1−1

�=bj
X�

))
· E

(
e
i
∑n+m

j=n+1 tj
(∑bj+1+k−1

�=bj+k X�

))
+O(Cmrbn+1+k).

This proves (H). �

The main probabilistic result is the following.

Theorem 5.5. Let (X0, X1, . . . ) be a centered stationary sequence of Rd-valued
random variables, in Lp for some p > 2, satisfying (H). Then

(1) The covariance matrix cov(
∑n−1

�=0 X�)/n converges to a limiting matrix
Σ2.

(2) The sequence
∑n−1

�=0 X�/
√
n converges in distribution to N (0,Σ2).

(3) The process (X0, X1, . . . ) satisfies the almost sure invariance principle
with limiting covariance Σ2 and error rate o(nρ) for any ρ > p/(4p− 4).

Theorem 5.2 readily follows from this theorem together with Lemma 5.4. Note
that Theorem 5.5 admits a non-stationary version, implying a non-stationary ver-
sion of Theorem 5.2 (see [Gou10a] for details). For simplicity, we stick to the
stationary version in these notes.

5.1. Tools for the proof of Theorem 5.5. The proof of Theorem 5.5 only
uses probabilistic tools (note that there is no dynamical system involved in the
statement of the result, and no spectral assumption). It relies in a crucial way on
the notion of coupling.

Given Z1 : Ω1 → E1 and Z2 : Ω2 → E2 two random variables on two (possibly
different) probability spaces, a coupling between Z1 and Z2 is a way to associate
those random variables, generally in order to show that they are close in a suitable
sense. Formally, a coupling between Z1 and Z2 is given by a probability space



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LIMIT THEOREMS IN DYNAMICAL SYSTEMS USING THE SPECTRAL METHOD 187

Ω′ and two random variables Z ′
1 : Ω′ → E1 and Z ′

2 : Ω′ → E2 such that Z ′
i is

distributed like Zi. By considering the distribution of (Z ′
1, Z

′
2) in E1 ×E2, one can

without loss of generality take Ω′ = E1 × E2, and Z ′
1 and Z ′

2 respectively the first
and second projection. If E1 = E2, one often tries to ensure that Z ′

1 and Z ′
2 are

close, for instance by minimizing ‖Z ′
1 − Z ′

2‖Lp for some p, or P(Z ′
1 �= Z ′

2).

Definition 5.6. Let P , Q be two probability measures on a metric space. Their
Prokhorov distance π(P,Q) is the smallest ε > 0 such that P (B) � ε+Q(Bε) for
any Borel set B, where Bε denotes the ε-neighborhood of B.

This distance is symmetric, although this is not completely trivial from the
definition. Its interest is that it makes it possible to construct good couplings,
thanks to the following Dudley-Strassen theorem [Bil99, Theorem 6.9].

Theorem 5.7. Let X and Y be two random variables taking their values in
a metric space, with respective distributions PX and PY . If π(PX , PY ) < c, there
exists a coupling between X and Y such that P(d(X,Y ) > c) < c.

To construct good couplings during the proof of Theorem 5.5, we will only
have information about the characteristic functions of the processes under study.
Hence, it will be important to estimate the Prokhorov distance just in terms of
characteristic functions. This is done in the following lemma. Let d > 0 and
N > 0. We consider RdN with the norm

|(x1, . . . , xN )|N = sup
1�i�N

|xi|,

where |x| is the Euclidean norm of x ∈ R
d.

Lemma 5.8. There exists a constant C(d) with the following property. Let F
and G be two probability measures on R

dN , with characteristic functions ϕ and γ.
For all T > 0,

π(F,G) �
N∑
j=1

F (|xj | > T ) +
(
C(d)T d/2

)N
[∫

RdN

|ϕ− γ|2
]1/2

.

Proof. Using an approximation argument, we may assume that F and G have
densities f and g. For any Borel set B,

F (B)−G(B) � F (B ∩max|xj | � T ) + F (max|xj | > T )−G(B ∩max|xj | � T )

�
∫
|x1|,...,|xN |�T

|f − g|+
N∑
j=1

F (|xj | > T ).

As a consequence, π(F,G) is bounded by the last line of this equation. To conclude,
it suffices to estimate

∫
|x1|,...,|xN |�T

|f − g|. We have∫
|x1|,...,|xN |�T

|f − g| � ‖f − g‖L2‖1|x1|,...,|xN |�T ‖L2 = ‖ϕ− γ‖L2(CT )dN/2,

since the Fourier transform is an isometry on L2, up to a multiplicative factor
(2π)dN/2. �

We illustrate the usefulness of the above tools with the following proposition.
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Proposition 5.9. Let (X0, X1, . . . ) be a centered process, bounded in Lp for
some p > 2, satisfying (H). For every η > 0, there exists C > 0 such that, for all
m,n ∈ N, ∥∥∥∥∥

m+n−1∑
�=m

X�

∥∥∥∥∥
Lp−η

� Cn1/2.

This kind of moment estimates is classical for a large class of weakly dependent
processes. The interest of the proposition is that, here, those bounds are proved
assuming only the assumption (H) on characteristic functions, which apparently
does not give any information on moments.

Proof. The crucial step is to obtain an L2 bound. The bound in Lp−η follows
using the same techniques and Rosenthal inequality for sums of independent random
variables [Ros70].

Write un = maxm∈N‖
∑m+n−1

�=m X�‖2L2 . We will show that ua+b is essentially
bounded by ua + ub, which gives the result inductively. To prove this, we de-

compose the sum
∑m+a+b−1

�=m X� as Y1 + Y2 + Y3 where Y1 =
∑m+a−1

m X� and

Y3 =
∑m+a+b−1

m+a+bα X�, while Y2 is the sum over the central interval. If α is small
enough, Y2 is negligible and can safely be ignored. Let Y ′

1 and Y ′
3 be two inde-

pendent copies of Y1 and Y3. The assumption (H) ensures that the characteristic
function of (Y1, Y3) is very close to that of (Y ′

1 , Y
′
3), for Fourier parameters close

enough to 0. Then, we regularize things to eliminate large Fourier parameters, as
follows. Let U be a fixed random variable in Lp, whose characteristic function is
supported in {|t| � δ}, and denote by U1, U3, U

′
1, U

′
3 four independent copies of U .

Then the characteristic function of (Y1+U1, Y3+U3) is everywhere close to that of
(Y ′

1 +U ′
1, Y

′
3 +U ′

3). Lemma 5.8 makes it possible to couple those random variables,
with a difference that is very small on a very big part of the space. Forgetting
about the U variables (that are bounded in Lp independently of m,n), we obtain

‖Y1 + Y3‖L2 � ‖Y1 − Y ′
1‖L2 + ‖Y3 − Y ′

3‖L2 + ‖Y ′
1 + Y ′

3‖L2 .

The first two terms are small, while the last one is equal to (‖Y ′
1‖

2
L2 + ‖Y ′

3‖
2
L2)1/2

by independence, and is therefore bounded by (ua + ub)
1/2. We have obtained the

inequality ua+b � ua+ub+r(a, b), where r(a, b) is small enough not to be a serious
problem. �

5.2. Sketch of proof of Theorem 5.5. We will now give some ideas of
the proof of Theorem 5.5. Let us consider a process (X0, X1, . . . ) satisfying the
assumptions of this theorem. The first step of the proof is to show the convergence

of cov(
∑n−1

�=0 X�)/n to some matrix Σ2. This is the same kind of argument as in
the above moment control (reduction to the independent situation by a coupling
argument, and careful control of the error), we will not say more about it. From
this point on, we will also assume that Σ2 is non-degenerate (the degenerate case
should be handled differently, it is in fact easier). Our goal is to prove the almost
sure invariance principle (from which the central limit follows), with a good control
on the error term.

The strategy of the proof is very classical: we will use small blocks of variables
that we will throw away, replacing them with gaps, and big blocks that we will
couple with independent copies (the gaps giving enough independence, thanks to
the assumption (H)). The almost sure invariance principle for independent variables
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will then be applied, giving the desired result. One should be careful enough so that
the small blocks are small enough to be negligible (this will be proved using moment
estimates such as Proposition 5.9), and large enough to give enough independence.

This method is usually implemented using blocks of polynomial size. In our
case, we obtain better results by using a Cantor-like triadic approach, as follows.
First, we write N as the union of the intervals [2n, 2n+1). In each of these intervals,
we put a small (but not too small) block in the middle, then a smaller block in
the middle of the two newly created intervals, then an even smaller block in the
middle of the four remaining intervals, and so on. The interest of this construction
is that, to obtain n well separated big blocks, the classical argument uses small
blocks whose lengths add up to n2, while here their lengths only add up to n,
making the final estimates better.

The precise construction depends on two parameters β ∈ (0, 1) and ε < 1− β.
Let f = f(n) = �βn�. We decompose [2n, 2n+1) as a union of F = 2f intervals
(In,j)0�j<F which all have the same length (the big blocks), and F small blocks
(Jn,j)0�j<F giving enough independence, constructed as explained above. The

central small block Jn,F/2 has length 2	εn
2f−1, the next two small blocks have half
size, and so on. The big and small blocks are laid alternatively and in increasing
order, as follows:

[2n, 2n+1) = Jn,0 ∪ In,0 ∪ Jn,1 ∪ In,1 · · · ∪ Jn,F−1 ∪ In,F−1.

We will write (n′, j′) ≺ (n, j) if the interval In′,j′ is to the left of In,j (this cor-
responds to the lexicographic order), and denote by in,j the smallest element of
In,j .

Let Xn,j =
∑

�∈In,j
X�, for n ∈ N and 0 � j < F (n). Denote by I =

⋃
n,j In,j

the union of the big blocks (on which we will do the coupling), and by J =
⋃

n,j Jn,j
the union of the small blocks (that we will neglect). The different steps in the proof
of Theorem 5.5 are the following:

(1) There exists a coupling between (Xn,j) and a sequence of independent
random variables (Yn,j), where Yn,j is distributed like Xn,j , such that,
almost surely, when (n, j) → ∞,

∣∣∣∣∣∣
∑

(n′,j′)≺(n,j)

Xn′,j′ − Yn′,j′

∣∣∣∣∣∣ = o(2(β+ε)n/2).

(2) There exists a coupling between (Yn,j) and a sequence of independent
Gaussian random variables Zn,j , with covariance cov(Zn,j) = |In,j |Σ2,
such that, almost surely, when (n, j) → ∞,

∣∣∣∣∣∣
∑

(n′,j′)≺(n,j)

Yn′,j′ − Zn′,j′

∣∣∣∣∣∣ = o(2(β+ε)n/2 + 2((1−β)/2+β/p+ε)n).

(3) Coupling Xn,j with Zn,j thanks to the first two steps, and writing Zn,j

as the sum of |In,j | Gaussian random variables N (0,Σ2), we obtain a
coupling between (X�)�∈I and (B�)�∈I where the B� are independent and
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distributed like N (0,Σ2). Moreover, when (n, j) → ∞,∣∣∣∣∣∣
∑

�<in,j , �∈I
X� −B�

∣∣∣∣∣∣ = o(2(β+ε)n/2 + 2((1−β)/2+β/p+ε)n).

(4) We easily check that, when (n, j) → ∞,

max
m<|In,j |

∣∣∣∣∣∣
in,j+m∑
�=in,j

X�

∣∣∣∣∣∣ = o(2((1−β)/2+β/p+ε)n).

Moreover, the B� satisfy an analogous estimate.
(5) The two last steps show that, when k tends to infinity,∣∣∣∣∣∣

∑
�<k, �∈I

X� −B�

∣∣∣∣∣∣ = o(k(β+ε)/2 + k(1−β)/2+β/p+ε).

(6) Finally, we show that the small blocks are negligible: almost surely,∑
�<k, �∈J

X� = o(kβ/2+ε),

and the B� satisfy the same estimate.

In this way, we get a coupling such that, almost surely,∣∣∣∣∣
∑
�<k

X� − B�

∣∣∣∣∣ = o(kβ/2+ε + k(1−β)/2+β/p+ε).

Finally, we choose β so that the two error terms coincide, i.e., β = p/(2p− 2). This
yields the almost sure invariance principle with error rate o(np/(4p−4)+ε), for any
ε > 0, proving Theorem 5.5.

Steps (3) and (5) above are trivial, we should justify the other ones. They are
not very difficult:

• (1) follows from the assumption (H) and from Lemma 5.8.
• For (2), we should couple independent random variables. This is certainly
the most difficult step, but luckily for us it has already been considered
in the literature (see for instance [Zăı07, Corollary 3]).

• (4) and (6) rely on the moment estimate given in Proposition 5.9. Techni-
cally, (6) is more complicated since Proposition 5.9 deals with consecutive
blocks of random variables, while the set J we have to control is far from
being connected.
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