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Abstract The fundamental inequality of Guivarc’h relates the entropy and
the drift of random walks on groups. It is strict if and only if the random
walk does not behave like the uniform measure on balls. We prove that, in any
nonelementary hyperbolic group which is not virtually free, endowed with a
word distance, the fundamental inequality is strict for symmetric measures
with finite support, uniformly for measures with a given support. This answers
a conjecture of S. Lalley. For admissible measures, this is proved using previ-
ous results of Ancona and Blachère–Haïssinsky–Mathieu. For non-admissible
measures, this follows from a counting result, interesting in its own right: we
show that, in any infinite index subgroup, the number of non-distorted points
is exponentially small compared to the growth of balls in the whole group. The
uniformity is obtained by studying the behavior of measures that degenerate
towards a measure supported on an elementary subgroup.
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1 Main results

Let � be a finitely generated infinite group. Although the following discussion
makes sense in a much broader context, we will assume that � is hyperbolic
since all results of this article are devoted to this setting. There are two natural
ways to construct random elements in �:

• Let d be a proper left-invariant distance on� (for instance aword distance).
For large n, one can pick an element at random with respect to the uniform
measure ρn on the ball Bn = B(e, n) (where e denotes the identity of �).

• Let μ be a probability measure on �. For large n, one can pick an element
at random with respect to the measure μ∗n (the nth convolution of the
measureμ). Equivalently, let g1, g2, . . . be a sequence of random elements
of � that are distributed independently according to μ. Form the random
walk Xn = g1 · · · gn . Then the distribution of Xn is μ∗n .

From a theoretical point of view, these methods share a lot of properties. From
a computational point of view, the second method is much easier to implement
in general groups since it does not require the computation of the ball Bn (note
however that, in hyperbolic groups, simulating the uniform measure is very
easy thanks to the automatic structure of the group). It is therefore of interest
to find probability measures μ such that these two methods give equivalent
results, in a sense that will be made precise below. This is the main question
of Vershik in [37]. In free groups (with the word distance coming from the
usual set of generators), everything can be computed: if μ is the uniform
measure on the generators, then μ∗n and ρn behave essentially in the same
way. The situation is the same in free products of finite groups, again thanks to
the underlying tree structure. However, in more complicated groups, explicit
computations are essentially impossible, and it is expected that the methods
always differ. Our main result confirms this intuition in a special class of
groups: In hyperbolic groups which are not virtually free (i.e., there is no finite
index free subgroup), if d is a word distance, the two methods are always
different, in a precise quantitative way.

Remark 1.1 We emphasize that the question really depends on the choice of
the distance d, since the shape of the balls Bn depends on d. For instance,
for any symmetric probability measure μ on � whose support is finite and
generates �, there exists a distance d (called the Green distance, see [5]) for
which the measures ρn and μ∗n behave in the same way. A famous open
problem (to which our methods do not apply) is to understand what happens
when � acts cocompactly on the hyperbolic space H

k , and the distance d is
given by d(e, γ ) = dHk (O, γ · O) where O is a base point in H

k . In this case,
it is also expected that the two methods are always different. Here are the main
partial results in this context:
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Entropy and drift in word hyperbolic groups 1203

(1) The two methods are different for some symmetric measures with finite
support ([29], see also Theorem 5.9 below).

(2) If, instead of a cocompact lattice, one considers a lattice with cusps, the
two methods are always different [18].

(3) If, instead of a lattice, one considers a nice dense subgroup, there exist
symmetric measures with finite support for which the two methods are
equivalent [6].

This question also makes sense in continuous time, for negatively curvedman-
ifolds. A conjecture of Sullivan asserts that, in this setting, the two methods
coincide if and only if the manifold is locally symmetric, see [28].

One can give several meanings to the question “are the twomethods equiva-
lent?” Let us first discuss an interpretation in terms of behavior at infinity. The
measuresμ∗n converge in the geometric compactification�∪∂� to a measure
μ∞, supported on the boundary, called the exit measure of the random walk,
or its stationary measure. Geometrically, the random walk (Xn)n�1 converges
almost surely to a random point on the boundary ∂�, and the measure μ∞ is
its distribution. On the other hand, let ρ∞ be the Patterson–Sullivan measure
on ∂� associated to the distance d, constructed in [11] in this context. One
should think of it as the uniform measure on the boundary (it is equivalent
to the Hausdorff measure of maximal dimension on the boundary, for any
visual distance coming from d). The measures ρn do not always converge to
ρ∞, but all their limit points are equivalent to ρ∞, with a density bounded
from above and from below (this follows from the arguments of [11], see
Lemma 2.13 below). A version of the question is then to ask if the measures
μ∞ and ρ∞ are mutually singular: in this case, the random walk mainly visits
parts of the groups that are not important from the point of view of the uniform
measure.

Another version of the same question is quantitative: Does the randomwalk
visit parts of the groups that are exponentially negligible from the point of
view of the uniformmeasure? This is made precise through the notions of drift
and entropy. Define

L(μ) =
∑

g∈�

μ(g)|g|, H(μ) =
∑

g∈�

μ(g)(− logμ(g)), (1.1)

where |g| = d(e, g). The quantity L(μ) is the average distance of an element
to the identity. The quantity H(μ), called the time one entropy of μ, is the
average logarithmic weight of the points. They can both be finite or infinite.
The functions L and H both behave in a subadditive way with respect to
convolution: L(μ1∗μ2) � L(μ1)+L(μ2) and H(μ1∗μ2) � H(μ1)+H(μ2).
It follows that the sequences L(μ∗n) and H(μ∗n) are subadditive. Hence, the
following quantities are well defined:
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1204 S. Gouëzel et al.

�(μ) = lim L(μ∗n)/n, h(μ) = lim H(μ∗n)/n. (1.2)

They are called respectively the drift and the asymptotic entropy of the random
walk. They also admit characterizations along typical trajectories. If L(μ) is
finite, then almost surely �(μ) = lim |Xn|/n. In the same way, if H(μ) is
finite, then almost surely h(μ) = lim(− logμ∗n(Xn))/n. The most intuitive
characterization of the entropy is probably the following one: at time n, the
random walk is essentially supported by eh(μ)n points (see Lemma 2.4 for a
precise statement). Let us also define the exponential growth rate of the group
with respect to d, i.e.,

v = lim inf
n→∞

log |Bn|
n

, (1.3)

where Bn is the ball of radius n around e. In hyperbolic groups, it satisfies the
apparently stronger inequality C−1env � |Bn| � Cenv , by [11]. For large n,
most points for μ∗n are contained in a ball B(1+ε)�n , which has cardinality at
most e(1+2ε)�nv . Since the random walk at time n essentially visits ehn points,
we deduce the fundamental inequality of Guivarc’h [20]

h � �v.

If this inequality is an equality, this means that the walk visits most parts of the
group. Otherwise, it is concentrated in an exponentially small subset. Another
version of our main question is therefore: Is the inequality h � �v strict?

In hyperbolic groups, it turns out that the two versions of the question are
equivalent, at least for finitely supported measures, and that they also have a
geometric interpretation in terms of Hausdorff dimension. If μ is a probability
measure on a group, we write �+

μ for the semigroup generated by the support
of μ, and �μ for the group it generates. When μ is symmetric, they coincide.
We say that μ is admissible if �+

μ = �. The following result is Corollary 1.4
and Theorem 1.5 in [5] (the result is written in this reference for symmetric
measures, but the proof does not use symmetry so the result holds in general).
See also [21,36].

Theorem 1.2 Let � be a non-elementary hyperbolic group, endowed with a
left-invariant distance d which is hyperbolic and quasi-isometric to a word
distance. Let v be the exponential growth rate of (�, d). Let d∂� be a visual
distance on ∂� associated to d. Consider an admissible probability measure
μ on �, with finite support. The following conditions are equivalent:

(1) The equality h = �v holds.
(2) The Hausdorff dimension of the exit measure μ∞ on (∂�, d∂�) is equal to

the Hausdorff dimension of this space.

123



Entropy and drift in word hyperbolic groups 1205

(3) The measure μ∞ is equivalent to the Patterson–Sullivan measure ρ∞.
(4) The measure μ∞ is equivalent to the Patterson–Sullivan measure ρ∞,

with density bounded from above and from below.
(5) There exists C > 0 such that, for any g ∈ �,

|vd(e, g) − dμ(e, g)| � C,

where dμ is the “Green distance” associated to μ, i.e., dμ(e, g) =
− logP(∃n, Xn = g) where Xn is the random walk given by μ starting
from the identity (it is an asymmetric distance in general, and a genuine
distance if μ is symmetric).

The different statements in this theorem go from the weakest to the strongest:
since entropy is an asymptotic quantity, an assumption on h seems to allow
subexponential fluctuations, so the assumption (1) is rather weak. On the other
hand, (3) says that two measures are equivalent, so most points are controlled.
Finally, in (5), all points are uniformly controlled. The equivalence between
these statements is a strong rigidity theorem. The equivalence between (1) and
(2) follows from a formula for the respective dimensions. The definition of a
visual distance at infinity d∂� involves a small parameter ε. In terms of this
parameter, one has HD(μ∞) = h/(ε�) and HD(ρ∞) = HD(∂�) = v/ε, so
that these dimensions coincide if and only if h = �v.

In this theorem, thefinite support assumption canbeweakened to an assump-
tion of superexponential moment (i.e., for all M > 0,

∑
g∈� μ(g)eM|g| < ∞),

thanks to [19]. However, the most important assumption in Theorem 1.2 is
admissibility: it ensures that the random walk can see the geometry of the
whole group (which is hyperbolic). For a randomwalk living in a strict (maybe
distorted) subgroup, one would not be expecting the same nice behavior.

Our main theorem follows. It states that, in hyperbolic groups which are not
virtually free, endowed with a word distance, the different equivalent condi-
tions of Theorem 1.2 are never satisfied, uniformly on measures with a fixed
support.

Theorem 1.3 Let� be a hyperbolic groupwhich is not virtually free, endowed
with a word distance d. Let � be a finite subset of �. There exists c < 1 such
that, for any symmetric probability measure μ supported in �,

h(μ) � c�(μ)v,

where v is the exponential growth rate of balls in (�, d).

This theorem gives a positive answer to a conjecture of Lalley [27, slide 16].
In the language of Vershik [37], this theorem says that no finite subset of � is
extremal. On the other hand, if one lets � grow, h/� can converge to v:
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Theorem 1.4 Let � be a hyperbolic group, endowed with a left invariant
distance d which is hyperbolic and quasi-isometric to a word distance. Let ρi
be the uniform measure on the ball of radius i . Then h(ρi )/�(ρi ) → v, where
v is the exponential growth rate of balls in (�, d).

More precisely, we prove that �(ρi ) ∼ i and h(ρi ) ∼ iv. The only difficulty
is to prove the lower bound on h(ρi ): since h is defined in (1.2) using a
subadditive sequence, upper bounds are automatic, but to get lower bounds
one should show that additional cancellations do not happen later on. This
difficulty already appears in [15], where the authors prove that the entropy
depends continuously on the measure. Our proof of Theorem 1.4, given in
Sect. 2.5, also applies to this situation and gives a new proof of their result,
under slightly weaker assumptions. There is nothing special about the uniform
measure on balls, our proof also gives the same conclusion for the uniform
measure on spheres, or for the measures

∑
e−s|g|δg/

∑
e−s|g| when s ↘ v.

Our main result is Theorem 1.3. It is a consequence of the three following
results. Since their main aim is Theorem 1.3, they are designed to handle
finitely supported symmetric measures. However, these theorems are all valid
under weaker assumptions, which we specify in the statements as they carry
along implicit information on the techniques used in the proofs.

The first result deals with admissible (or virtually admissible) measures.

Theorem 1.5 Let� be a hyperbolic groupwhich is not virtually free, endowed
with a word distance. Let μ be a probability measure with a superexponential
moment, such that �+

μ is a finite index subgroup of �. Then h(μ) < �(μ)v.

The second result deals with non-admissible measures.

Theorem 1.6 Let � be a hyperbolic group endowed with a word distance.
Let μ be a probability measure with a moment of order 1 (i.e., L(μ) < ∞).
Assume that �(μ) > 0 and that�μ has infinite index in�. Then h(μ) < �(μ)v.

Finally, the third result is a kindof continuity statement, to get the uniformity.

Theorem 1.7 Let � be a hyperbolic group, endowed with a left-invariant
distance which is hyperbolic and quasi-isometric to a word distance. Let � be
a finite subset of � which does not generate an elementary subgroup. There
exists a probability measure μ� with finite support such that �(μ�) > 0 and

sup{h(μ)/�(μ) : μ probability measure,

Supp(μ) ⊆ �, �(μ) > 0} = h(μ�)/�(μ�).

The same statement holds if the maximum is taken over symmetric probability
measures, the resulting maximizing measure being symmetric.
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Entropy and drift in word hyperbolic groups 1207

Theorem 1.3 is a consequence of these three statements.

Proof of Theorem 1.3 using the three auxiliary theorems As in the statement
of the theorem, consider a finite subset � of �. If � generates an elementary
subgroup of �, all measures supported on � have zero entropy. Hence, one
can take c = 0 in the statement of the theorem. Otherwise, by Theorem 1.7,
there exists a symmetric measure μ� with finite support that maximizes the
quantity h(μ)/�(μ) over μ symmetric supported by �. If �μ� = �+

μ�
has

finite index, h(μ�)/�(μ�) < v by Theorem 1.5. If it has infinite index, the
same conclusion follows from Theorem 1.6. ��

The three auxiliary theorems are non-trivial. Their proofs are independent,
and use completely different tools. Here are some comments about them.

• At first sight, Theorem 1.5 seems to be the most delicate (this is the only
one with the assumption that � is not virtually free). However, this is also
the setting that has been mostly studied in the literature. Hence, we may
use several known results, including most notably results of Ancona [3], of
Blachère, Haïssinsky and Mathieu [5] (Theorem 1.2 above) and of Izumi,
Neshveyev and Okayasu [23] on rigidity results for cocycles. The proof
relies mainly on the fact that, for the word distance, the stable translation
length of hyperbolic elements is rational with bounded denominator.

• In Theorem 1.6, the difficulty comes from the lack of information on the
subgroup �μ. If it has good geometric properties (for instance if it is quasi-
convex), one may use the same kind of techniques as for Theorem 1.5.
Otherwise, the random walk does not really see the hyperbolicity of the
ambient group. The fundamental inequality always gives h � �v�μ , where
v�μ is the growth rate of the subgroup�μ (for the initialworddistanceon�).
If v�μ < v, the result follows. Unfortunately, there exist non-quasi-convex
subgroups of some hyperbolic groups with the same growth as the ambient
group. However, a random walk does not typically visit all points of �μ,
it concentrates on those points that are not distorted (i.e., their distances to
the identity in � and �μ are comparable). To prove Theorem 1.6, we will
show that in any infinite index subgroup of a hyperbolic group, the number
of non-distorted points is exponentially smaller than env .

• Theorem 1.7 is less straightforward than it may seem at first sight: it does
not claim that μ� is supported by �, and indeed this is not the case in
general (see Example 5.4). Hence, the proof is not a simple continuity
argument: We need to understand precisely the behavior of sequences of
measures that degenerate towards a measure supported on an elementary
subgroup. The proof will show that μ� is supported by K · (� ∪ {e}) · K ,
where K is a finite subgroup generated by some elements in �.

A natural question is whether Theorem 1.3 holds for non-symmetric mea-
sures. For admissible measures, (i.e., �+

μ = �), Theorem 1.5 holds. For
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non-symmetric measures such that �μ has infinite index, Theorem 1.6 applies
directly. However, since �μ 
= �+

μ for general non-symmetric measures, there
is another case to consider: the case of measures μ such that �μ = � (or �μ

has finite index in �), but �+
μ is much smaller than �. In this case, it seems

that our arguments do not suffice. We give in Sect. 6 two examples illustrating
the new difficulties:

(1) One can not rely on growth arguments, as for Theorem 1.6. Indeed, there
are subsemigroups
+ with bad asymptotic behavior, for instance such
that lim inf |Bn ∩ 
+|/|Bn| = 0 and lim sup |Bn ∩ 
+|/|Bn| > 0.

(2) The arguments of Theorem 1.5 work for finitely supported measures,
or for measures with a superexponential moment, but also more gener-
ally for measures with a nice geometric behavior (they should satisfy
so-called Ancona inequalities). In the non-symmetric situation, we give
in Proposition 6.2 explicit examples of (non-admissible)measures with an
exponential moment and a very nice geometric behavior, and such that
nevertheless h = �v. So, arguments similar to those of Theorem 1.5 can
not suffice, one needs a new argument that distinguishes in a finer way
between measures with finite support and measures with infinite support.

This article is organized as follows. In Sect. 2, we give more details on the
notions of hyperbolic group, drift and entropy. We also prove Theorem 1.4 on
the asymptotic entropy and drift of the uniform measure on large balls. The
following three sections are then devoted to the proofs of the three auxiliary
theorems. Finally,we describe in Sect. 6what can happen in the non-symmetric
setting. In particular, we show that in any torsion-free group with infinitely
many ends, there exist (non-admissible, non-symmetric) measures with an
exponential moment satisfying h = �v.

2 General properties of entropy and drift in hyperbolic groups

2.1 Hyperbolic spaces

In this paragraph, we recall classical properties of hyperbolic spaces. See for
instance [17] or [4].

Consider a metric space (X, d). The Gromov product of two points y, y′ ∈
X , based at x0 ∈ X , is by definition

(y|y′)x0 = (1/2)[d(x0, y) + d(x0, y
′) − d(y, y′)]. (2.1)

The space (X, d) is hyperbolic if there exists δ � 0 such that, for any
x0, y1, y2, y3, the following inequality holds:

(y1|y3)x0 � min((y1|y2)x0, (y2|y3)x0) − δ.
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Entropy and drift in word hyperbolic groups 1209

The main intuition to have is that, in hyperbolic spaces, configurations of
finitely many points look like configurations in trees: for any k, for any subset
F of X with cardinality at most k, there exists a map � from F to a tree such
that, for all x, y ∈ F ,

d(x, y) − 2kδ � d(�(x), �(y)) � d(x, y).

Hence, a lot of distance computations can be reduced to equivalent com-
putations in trees (which are essentially combinatorial), up to a bounded
error. Up to δ, the Gromov product (y|y′)x0 is, in the approximating tree,
the length of the part that is common to the geodesics from x0 to y and from x0
to y′.

A space (X, d) is geodesic if there exists a geodesic between any pair of
points. For such spaces, there is a convenient characterization of hyperbolic-
ity. A geodesic space (X, d) is hyperbolic if and only if there exists δ � 0
such that its geodesic triangles are δ-thin, i.e., each side is included in the
δ-neighborhood of the union of the two other sides.

Assume that (X, dX ) and (Y, dY ) are two geodesic metric spaces, and that
they are quasi-isometric. If (X, dX ) is hyperbolic, then so is (Y, dY ). Note
however that this equivalence only holds for geodesic spaces.

Let (X, d) be a geodesic hyperbolic metric space. A subset Y of X is quasi-
convex if there exists a constant C such that, for any y, y′ ∈ Y , the geodesics
from y to y′ stay in the C-neighborhood of Y .

We will sometimes encounter hyperbolic spaces which are not geodesic,
but only quasi-geodesic: there exist constants C � 0 and λ � 1 such that any
two points can be joined by a (λ,C)-quasi-geodesic, i.e., a map f from a real
interval to X such that λ−1|t ′ − t |−C � d( f (t), f (t ′)) � λ|t ′ − t |+C . When
the space is geodesic, a quasi-geodesic stays a bounded distance away from a
true geodesic. Most properties that hold or can be defined using geodesics (for
instance the notion of quasi-convexity) can be extended to this setting, simply
replacing geodesics with quasi-geodesics in the statements.

Let (X, d) be a proper geodesic hyperbolic space. Its boundary at infinity
∂X is by definition the set of geodesics originating from a base point x0,
where two such geodesics are identified if they remain a bounded distance
away. It is a compact space, which does not depend on x0. The space X ∪ ∂X
is also compact. If X is only quasi-geodesic, all these definitions extend using
quasi-geodesics instead of geodesics.

Any isometry (or, more generally, quasi-isometry) of a hyperbolic space
extends continuously to its boundary, giving a homeomorphism of ∂X .

The Gromov product may be extended to X ∪ ∂X : we define (ξ |η)x0 as the
infimum limit of (xn|yn)x0 for xn and yn converging respectively to ξ and η.
The choice to take the infimum is arbitrary, one could also take the supremum
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1210 S. Gouëzel et al.

or any accumulation point, those quantities differ by at most a constant only
depending on δ. Hence, one should think of the Gromov product at infinity to
be canonically defined only up to an additive constant. Heuristically, (ξ |η)x0
is the time after which two geodesics from x0 to ξ and to η start diverging.

Let (X, d) be a proper geodesic (or quasi-geodesic) hyperbolic space. For
any small enough ε > 0, one may define a visual distance d∂X,ε on ∂X such
that d∂X,ε(ξ, η) � e−ε(ξ |η)x0 (meaning that the ratio between these quantities
is uniformly bounded from above and from below).

Let (X, d) be a proper hyperbolic metric space. One can define another
boundary of X , the Busemann boundary (or horoboundary), as follows. Let
x0 be a fixed basepoint in X . To x ∈ X , one associates its inner horofunction
hx (y) = d(y, x) − d(x0, x), normalized so that hx (x0) = 0. The map � :
x �→ hx is an embedding of X into the space of 1-Lipschitz functions on X ,
with the topology of uniform convergence on compact sets. The horoboundary
is obtained by taking the closure of �(X). In other words, a sequence xn ∈ X
converges to a boundary point if hxn (y) converges, uniformly on compact sets.
Its limit is the horofunction hξ associated to the corresponding boundary point
ξ (it is also called the Busemann function associated to ξ ). We denote by ∂B X
the Busemann boundary of X . There is a continuous projection πB : ∂B X →
∂X , which is onto but not injective in general. The boundary ∂B X is rather
sensitive to fine scale details of the distance d, while ∂X only depends on its
quasi-isometry class.

Any isometry ϕ of X acts on inner horofunctions, by the formula hϕ(x)(y) =
hx (ϕ−1y) − hx (ϕ−1x0). This implies that ϕ extends to a homeomorphism on
∂B X , given by the same formula hϕ(ξ)(y) = hξ (ϕ

−1y) − hξ (ϕ
−1x0). Note

that, contrary to the action on the geometric boundary, this only works for
isometries of X , not quasi-isometries.

2.2 Hyperbolic groups

Let � be a finitely generated group, with a finite symmetric generating set S.
Denote by d = dS the corresponding word distance. The group � is hyper-
bolic if the metric space (�, dS) is hyperbolic. Since hyperbolicity is invariant
under quasi-isometry for geodesic spaces, this notion does not depend on the
choice of the generating set S. However, if one considers another left-invariant
distance on � which is equivalent to dS but not geodesic, its hyperbolicity is
not automatic. Hence, one should postulate its hyperbolicity if it is needed, as
in the statement of Theorem 1.2. We say that the pair (�, d) is a metric hyper-
bolic group if the group� is hyperbolic for one (or, equivalently, for any) word
distance, and if the distance d is left-invariant, hyperbolic, and quasi-isometric
to one (or equivalently, any) word distance. Such a distance d does not have to
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be geodesic, but it is quasi-geodesic since geodesics for a given word distance
form a system of quasi-geodesics for d, going from any point to any point.

Let (�, d) be ametric hyperbolic group. The left-multiplication by elements
of � is isometric. Hence, � acts by homeomorphisms on its compactifications
� ∪ ∂� and � ∪ ∂B�. Moreover, any infinite order element g ∈ � acts hyper-
bolically on � ∪ ∂�: it has two fixed points at infinity g− and g+, the points
in � ∪ ∂� \ {g−} are attracted to g+ by forward iteration of g, and the points
in � ∪ ∂� \ {g+} are attracted to g− by backward iteration of g.

Definition 2.1 Consider an action of a group � on a space Z . A function
c : � × Z → R is a cocycle if, for any g, h ∈ � and any ξ ∈ Z ,

c(gh, ξ) = c(g, hξ) + c(h, ξ). (2.2)

The cocycle is Hölder-continuous if Z is a metric space and each function
ξ �→ c(g, ξ) is Hölder-continuous.

There is a choice to be made in the definition of cocycles, since one may com-
pose with g or g−1. Our definition is the most customary. With this definition,
the map cB : � × ∂B� → R given by cB(g, ξ) = hξ (g−1) is a cocycle, called
the Busemann cocycle.

A subgroup H of � is nonelementary if its action on ∂� does not fix a
finite set. Equivalently, H is not virtually the trivial group or Z. We say that
a probability measure μ on � is nonelementary if the subgroup �μ generated
by its support is itself nonelementary.

Let μ be a probability measure on �. Since � acts by homeomorphisms on
the compact space ∂�, it admits a stationarymeasure: there exists a probability
measure ν on ∂� such that μ ∗ ν = ν, i.e.,

∑
g∈� μ(g)g∗ν = ν. If μ is

nonelementary, this measure is unique, and has no atom (see [24]). It is also
the exit measure of the corresponding random walk Xn = g1 · · · gn: almost
every trajectory Xn(ω) converges to a point X∞(ω) ∈ ∂�, and moreover the
distribution of X∞ is precisely ν.

In the sameway, since� acts on ∂B�, it admits a stationarymeasure νB there.
This measure is not unique in general, even if μ is nonelementary. However,
all such measures project under πB to the unique stationary measure on ∂�.

2.3 The drift

Let (�, d) be a metric hyperbolic group. Consider a probability measure μ on
�, with finite first moment L(μ) [defined in (1.1)]. The drift of the random
walk has been defined in (1.2) as �(μ) = lim L(μ∗n)/n. Let Xn = g1 · · · gn
be the position at time n of the random walk generated by μ (where the gi
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1212 S. Gouëzel et al.

are independent and distributed according to μ). Then, almost surely, �(μ) =
lim |Xn|/n.

The drift also admits a description in terms of the Busemann boundary. The
following result is well-known (compare with [26, Theorem 18]).

Proposition 2.2 Let (�, d) be a metric hyperbolic group. Let μ be a nonele-
mentary probability measure on � with finite first moment. Let νB be a
μ-stationary measure on ∂B�. Then

�(μ) =
∫

�×∂B�

cB(g, ξ) dμ(g) dνB(ξ). (2.3)

Proof Let Xn be the position of the random walk at time n. Using the cocycle
property of the Busemann cocycle, we have

∫
cB(Xn(ω), ξ) dP(ω) dνB(ξ) =

∫
cB(g1 · · · gn, ξ) dμ(g1) · · · dμ(gn) dνB(ξ)

=
n∑

k=1

∫
cB(gk, gk+1 · · · gnξ) dμ(gk)

· · · dμ(gn) dνB(ξ).

Since themeasure νB is stationary, the point gk+1 · · · gnξ is distributed accord-
ing to νB . Hence, the terms in the above sum do not depend on k. We get

∫

�×∂B�

cB(g, ξ) dμ(g) dνB(ξ) = 1

n

∫
cB(Xn(ω), ξ) dP(ω) dνB(ξ).

Let Yn = gn · · · g1. It is distributed like Xn , so that the above equation gives

∫

�×∂B�

cB(g, ξ) dμ(g) dνB(ξ) = 1

n

∫
cB(Yn(ω), ξ) dP(ω) dνB(ξ). (2.4)

The point Y−1
n = g−1

1 · · · g−1
n follows a random walk for the driving measure

μ̌ given by μ̌(g) = μ(g−1). As |g| = |g−1|, the drift of this random walk is
the same as the drift � of the original random walk. Moreover, Y−1

n converges
almost surely to a point on the boundary ∂�, distributed according to the
exit measure of μ̌, which has no atom. It follows that, for all ξ , the trajectory
Yn(ω)−1 converges almost surely to a point different from πB(ξ). This implies
that, almost surely, one has cB(Yn, ξ) = hξ (Y−1

n ) = |Y−1
n | + O(1), giving

in particular cB(Yn, ξ)/n → � almost surely. Moreover, |cB(Yn, ξ)|/n �
|Y−1

n |/n, which converges in L1 and almost surely to �. Hence, the sequence
of functions cB(Yn(ω), ξ)/n is uniformly integrable on � × ∂B�. Therefore,
the result follows by taking the limit in n in the equality (2.4). ��
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This formula easily implies that the drift depends continuously on the mea-
sure, as explained in [15].

Proposition 2.3 Let (�, d) be ametric hyperbolic group. Consider a sequence
of probability measures μi with finite first moment, converging simply to a
nonelementary probability measure μ (i.e., μi (g) → μ(g) for all g ∈ �).
Assume moreover that L(μi ) → L(μ). Then �(μi ) → �(μ).

Proof Let νi be stationary measures for μi on ∂B�. Taking a subsequence
if necessary, we may assume that νi converges to a limiting measure ν. By
continuity of the action on the boundary, it is stationary for μ.

For each g ∈ �, the quantity
∫
∂B�

cB(g, ξ) dνi (ξ) converges to
∫
∂B�

cB(g, ξ)

dν(ξ) since ξ �→ cB(g, ξ) is continuous. Averaging over g (and using the
assumption L(μi ) → L(μ) to get a uniform domination), we deduce that

∑

g∈�

μi (g)
∫

∂B�

cB(g, ξ) dνi (ξ) →
∑

g∈�

μ(g)
∫

∂B�

cB(g, ξ) dν(ξ).

Together with the formula (2.3) for the drift, this completes the proof. ��
In this proposition, it is important that μ is nonelementary: the result is

wrong otherwise. For instance, in the infinite dihedral group Z � Z/2, the
measures μi = (1 − 2−i )δ(1,0) + 2−iδ(0,1) have zero drift since the Z/2
element symmetrizes everything in Z, while the limiting measure μ = δ(1,0)
has drift 1. The reason is the non-uniqueness of the stationary measure for μ

on the Gromov boundary, and correspondingly the failure of Proposition 2.2.

2.4 The entropy

Let � be a countable group. Consider a probability measure μ on �, with
finite time one entropy H(μ) [defined in (1.1)]. The entropy of the random
walk has been defined in (1.2) as h(μ) = lim H(μ∗n)/n. Let Xn = g1 · · · gn
be the position at time n of the random walk generated by μ (where the gi
are independent and distributed according to μ). Then, almost surely, h(μ) =
lim(− logμ∗n(Xn))/n. The fundamental inequality (1.3) shows that if h > 0
then � > 0.

The entropy has several equivalent characterizations. The first one is in
terms of the size of the typical support of the random walk: This support has
size roughly ehn . The following lemma follows from [21, Proposition 1.13].

Lemma 2.4 Consider a probability measure μ with H(μ) < ∞ on a count-
able group. Let h = h(μ) be its asymptotic entropy. Let η > 0 and ε > 0.

(1) For large enough n, there exists a subset Kn of � with μ∗n(Kn) � 1 − η

and |Kn| � e(h+ε)n.
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1214 S. Gouëzel et al.

(2) For large enough n, there exists no subset Kn of � with μ∗n(Kn) � η and
|Kn| � e(h−ε)n.

Another description is in terms of the Poisson boundary of the walk. To
avoid general definitions, let us only state this description for measures on
hyperbolic groups. The following proposition is a consequence of [24].

Proposition 2.5 Let� beahyperbolic group. Letμbeanonelementary proba-
bility measure on� with H(μ) < ∞. Let ν be its unique stationarymeasure on
∂�. Define theMartin cocycle on�×∂� by cM(g, ξ) = − log(dg−1∗ ν/ dν)(ξ).
Then

h(μ) �
∫

�×∂�

cM(g, ξ) dμ(g) dν(ξ), (2.5)

with equality if μ has a finite logarithmic moment.

When μ has a finite logarithmic moment, this proposition has a very simi-
lar flavor to Proposition 2.2 expressing the drift of a random walk. Indeed,
for symmetric measures, [5] interprets Proposition 2.5 as a special case of
Proposition 2.2, for a distance d = dμ related to the random walk, the Green
distance, which we defined in Theorem 1.2. This distance is hyperbolic if μ is
admissible and has a superexponential moment, by [3,19]. It is not geodesic in
general, but this is not an issue since we were careful enough to state Proposi-
tion 2.2without this assumption. TheBusemann cocycle for theGreen distance
is precisely the Martin cocycle.

An important difference between the formulas (2.3) for the drift and (2.5) for
the entropy is that, in the latter situation, the cocycle cM depends on themeasure
ν (and, therefore, on μ). This makes it more complicated to prove continu-
ity statements such as Proposition 2.3 for the entropy. Nevertheless, Erschler
and Kaimanovich proved in [15] that, in hyperbolic groups, the entropy also
depends continuously on the measure. As h(μ) = inf H(μ∗n)/n by subaddi-
tivity, it is easy to prove that whenμi → μ one has lim sup h(μi ) � h(μ). The
main difficulty to prove the continuity is to get lower bounds. We will need a
slightly stronger (and more pedestrian) version of the results of [15] to prove
Theorem 1.4. Although our argument may seem very different at first sight
from the arguments in [15], the techniques are in fact closely related (an illustra-
tion is that we can recover with our techniques the result of Kaimanovich that,
for measures with finite logarithmic moment, equality holds in (2.5), i.e., the
Poisson boundary coincides with the geometric boundary, see Remark 2.11).
Our main criterion to get lower bounds on the entropy is the following. We
write S

k = {g ∈ � : |g| ∈ (k − 1, k]} for the thickened sphere, so that the
union of these spheres covers the whole group.

Theorem 2.6 Let (�, d) be a metric hyperbolic group. Let μi be a sequence
of nonelementary probability measures on � with H(μi ) < ∞. Let νi be the
unique stationary measure for μi on ∂�. Assume that:
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(1) The limit points of νi have no atom.
(2) The sequence

hi =
∑

k

∑

g∈Sk

μi (g)(− log(μi (g)/μi (S
k))) (2.6)

tends to infinity.

Then lim inf h(μi )/hi � 1.

The quantity hi can be written as

hi =
∑

g∈�

μi (g)(− logμi (g)) −
∑

k

μi (S
k)(− logμi (S

k)).

The first term is the time one entropy H(μi ) of the measure μi . In most
reasonable cases where the support ofμi increasingly covers the whole group,
the second term is negligible. The theorem then states that the asymptotic
entropy h(μi ) is comparable to the time one entropy H(μi ). In other words,
if the measure is supported close to infinity, and sufficiently spread out in the
group (this is the meaning of the assumption that the limit points of νi have
no atom), then there are few coincidences and the entropy does not decrease
significantly with time.

To prove this theorem, we will use the following technical lemma.

Lemma 2.7 On a probability space (X, μ), consider a nonnegative function
f with average 1. For any subset A of X,

∫

X
(− log f ) � μ(A)

(
− log

∫

A
f

)
− 2e−1.

Proof As the function x �→ − log x is convex, Jensen’s inequality gives∫
(− log f ) � − log(

∫
f ). The last quantity vanishes when

∫
f = 1.

Let B ⊆ X with μ(B) > 0. Write a = ∫
B f dμ/μ(B). The measure

dμ/μ(B) is a probability measure on B, and the function f/a has integral 1
for thismeasure. Theprevious inequality gives

∫
B(− log( f/a)) dμ/μ(B) � 0,

that is,
∫

B
(− log f ) dμ � −μ(B) log a = −μ(B) log

(∫

B
f

)
+ μ(B) logμ(B).

The quantity μ(B) logμ(B) is bounded from below by inf [0,1] x log x =
−e−1. Therefore,

∫

B
(− log f ) dμ � −μ(B) log

(∫

B
f

)
− e−1.
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1216 S. Gouëzel et al.

This inequality is also trivially true when μ(B) = 0.
We apply this inequality to the complement Ac of A. As− log

(∫
Ac f

)
� 0,

we get a lower bound −e−1. Let us also apply this inequality to A, and add
the results. We obtain

∫

X
(− log f ) dμ � −μ(A) log

(∫

A
f

)
− 2e−1.

��
We will use the notion of shadow, due to Sullivan and considered in this

context by Coornaert [11]. Let C > 0 be large enough. The shadow O(g,C)

of g ∈ � is {ξ ∈ ∂� : (g|ξ)e � |g| − C}. In geometric terms (and assuming
the space is geodesic), this is essentially the trace at infinity of geodesics orig-
inating from e and going through the ball B(g,C). We will use the following
properties of shadows [11]:

(1) Their covering number is finite. More precisely, there exists D > 0
(depending on C) such that, for any integer k, for any ξ ∈ ∂�,

|{g ∈ S
k : ξ ∈ O(g,C)}| � D.

(2) The preimages of shadows are large. More precisely, for any η > 0, there
exists C > 0 such that, for all g ∈ �, the complement of g−1O(g,C) has
diameter at most η (for a fixed visual distance on the boundary).

Proof of Theorem 2.6 Fix ε > 0. As the limit points of νi have no atom,
there exists η > 0 such that any ball of radius η in ∂� has measure at most
ε for νi , for i large enough. We can then choose a shadow size C so that
g−1O(g,C) has for all g a complement with diameter at most η. This yields
νi (g−1O(g,C)) � 1 − ε.

By (2.5), the entropy of μi satisfies

h(μi ) �
∑

g∈�

μi (g)
∫

∂�

(
− log

dg−1∗ νi

dνi
(ξ)

)
dνi (ξ).

The function fi,g = dg−1∗ νi
dνi

(ξ) is nonnegative and has integral 1. For any
A ⊆ ∂�, Lemma 2.7 gives

∫

∂�

(
− log

dg−1∗ νi

dνi
(ξ)

)
dνi (ξ) � −νi (A) log

(∫

A

dg−1∗ νi

dνi
(ξ) dνi (ξ)

)
− 2e−1

= −νi (A) log(g−1∗ νi (A)) − 2e−1

= −νi (A) log(νi (gA)) − 2e−1.
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Let us take A = g−1O(g,C), so that νi (A) � 1− ε. Summing over g, we get

h(μi ) � (1 − ε)
∑

g∈�

μi (g)(− log νi (O(g,C))) − 2e−1. (2.7)

We split the sum according to the spheres S
k . Let�k = ∑

g∈Sk νi (O(g,C)),
it is at most D since the shadows have a covering number bounded by D. We
have

∑

g∈Sk

μi (g)(− log νi (O(g,C)))

= −μi (S
k)

∑

g∈Sk

μi (g)

μi (Sk)

[
log

(
νi (O(g,C))

�kμi (g)/μi (Sk)

)
+ log�k

+ log(μi (g)/μi (S
k))

]
.

The point of this decomposition is that the function on S
k given by ϕ : g �→

νi (O(g,C))

�kμi (g)/μi (S
k)

has integral 1 for the probability measure μi (g)/μi (S
k). By

Jensen’s inequality, the integral of − logϕ is nonnegative. With the inequality
�k � D, this yields

∑

g∈Sk

μi (g)(− log νi (O(g,C))) � −μi (S
k) log D

+
∑

g∈Sk

μi (g)(− log(μi (g)/μi (S
k)).

Summing over k, we deduce from (2.7) the inequality

h(μi ) � (1 − ε)hi − 2e−1 − log D.

As hi tends to infinity, this gives h(μi ) � (1 − 2ε)hi for large enough i ,
completing the proof. ��

To apply the previous theorem, we need to estimate hi . In this respect, the
following lemma is often useful.

Lemma 2.8 Let Ri � 1. The quantity hi defined in (2.6) satisfies

hi �
∑

|g|�Ri

μi (g)(− logμi (g)) − log(2 + Ri ).
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1218 S. Gouëzel et al.

Proof In the definition of hi , all the terms are nonnegative. Restricting the sum
to those g with |g| � Ri , we get

hi �
∑

k�Ri

∑

g∈Sk

μi (g)(− log(μi (g)/μi (S
k)))

=
∑

|g|�Ri

μi (g)(− logμi (g)) −
∑

k�Ri

μi (S
k)(− logμi (S

k)).

A probability measure supported on a set with N elements has entropy at
most log N . The numbers μi (S

k) for 0 � k � Ri do not form a probability
measure in general, let us add a last atom with mass m = μi (

⋃
k>Ri S

k). We
are considering a space of cardinality Ri + 2, hence

m(− logm) +
∑

k�Ri

μi (S
k)(− logμi (S

k)) � log(2 + Ri ),

completing the proof. ��
Let us see how Theorem 2.6 implies a slightly stronger version of the con-

tinuity result for the entropy of Erschler and Kaimanovich [15].

Theorem 2.9 Let � be a hyperbolic group. Consider a probability measure μ

with finite time one entropy andfinite logarithmicmoment. Letμi be a sequence
of probability measures converging simply to μ with H(μi ) → H(μ). Then
h(μi ) → h(μ).

The assumption H(μi ) → H(μ) ensures that there is no additional entropy in
μi coming from neighborhoods of infinity that would disappear in the limit.
It is automatic if the support of μi is uniformly bounded or if μi satisfies a
uniform L1 domination, but it is much weaker. For instance, it is allowed that
the μi have no finite logarithmic moment.

The main lemma for the proof is a lower bound on the entropy, following
from Theorem 2.6.

Lemma 2.10 Let � be a hyperbolic group. Consider a probability measure
μ with finite time one entropy and finite logarithmic moment. Let μi be a
sequence of measures converging simply to μ. Then lim inf h(μi ) � h(μ).

Proof Since the result is trivial if h(μ) = 0, we can assume that h(μ) > 0.
Let ε > 0. For large n, most atoms for μ∗n have a probability at most

e−(1−ε)nh(μ). Moreover, since μ has a finite logarithmic moment, log |Xn|/n
tends almost surely to 0 by [1, Proposition 2.3.1]. Therefore, the set

Kn = {g : μ∗n(g) � e−(1−ε)nh(μ), |g| � eεn}

123



Entropy and drift in word hyperbolic groups 1219

has measure tending to 1. In particular μ∗n(Kn) � 1 − ε for large n. We get

∑

|g|�eεn

μ∗n(g)(− logμ∗n(g)) �
∑

g∈Kn

μ∗n(g)(− logμ∗n(g)) �
∑

g∈Kn

μ∗n(g)(1 − ε)nh(μ)

= μ∗n(Kn)(1 − ε)nh(μ) � (1 − ε)2nh(μ).

For each fixed n, the measures μ∗n
i converge to μ∗n when i tends to infinity.

Hence, we get for large enough i the inequality

∑

|g|�eεn

μ∗n
i (g)(− logμ∗n

i (g)) � (1 − ε)3nh(μ).

Letting ε tend to 0 (and, therefore, n to infinity), we deduce the existence
of sequences ni → ∞ and εi → 0 such that, for any i ,

∑

|g|�eεi ni

μ
∗ni
i (g)(− logμ

∗ni
i (g)) � (1 − εi )

3nih(μ).

Let μ̃i = μ
∗ni
i . Its stationarymeasure νi is also the stationarymeasure ofμi , by

uniqueness. Any limit point of νi is stationary for μ, and is therefore atomless
since μ is nonelementary as h(μ) > 0. The assumptions of Theorem 2.6 are
satisfied by the sequence μ̃i . Moreover, Lemma 2.8 yields

hi � (1 − εi )
3nih(μ) − 2εi ni � (1 − Cεi )nih(μ).

Theorem 2.6 ensures that lim inf h(μ̃i )/hi � 1. As h(μ̃i ) = nih(μi ), this
gives lim inf h(μi ) � h(μ) as desired. ��
Proof of Theorem 2.9 For fixed n, the sequence μ∗n

i converges simply to μ∗n .
Moreover, H(μ∗n

i ) → H(μ∗n) since there is no loss of entropy at infinity by
assumption. Choose n such that H(μ∗n) � n(1+ε)h(μ).We get H(μ∗n

i )/n �
(1 + 2ε)h(μ) for large enough i . As h(μi ) � H(μ∗n

i )/n, this shows that
lim sup h(μi ) � h(μ) (this is the classical semi-continuity property of entropy,
valid in any group).

For the reverse inequality lim inf h(μi ) � h(μ), we apply Lemma 2.10. ��
Remark 2.11 Leth(μ, ∂�) = ∫

�×∂�
(− log dg−1∗ ν/ dν)(ξ) dμ(g) dν(ξ)where

ν is the stationary measure for μ on ∂�. In general, h(μ) � h(μ, ∂�)

with equality if and only if (∂�, ν) is the Poisson boundary of (�, μ). A
theorem of Kaimanovich [24] asserts that, when μ has finite entropy and
finite logarithmic moment, h(μ, ∂�) = h(μ). We can recover this theo-
rem using the previous arguments. Indeed, what the proof of Theorem 2.6
really shows is that lim inf h(μi , ∂�)/hi � 1. Hence, Lemma 2.10 proves
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that lim inf h(μi , ∂�) � h(μ) if μi converges simply to a measure μ with
a logarithmic moment. Taking μi = μ for all i , we obtain in particular
h(μ, ∂�) � h(μ), as desired.

2.5 A criterion to bound the entropy from below

In order to prove Theorem 1.4 on the entropy of the uniform measure on balls,
we want to apply Theorem 2.6. Thus, we need a criterion to check that limit
points of stationary measures have no atom.

Lemma 2.12 Let� be a hyperbolic group. Letμi be a sequence of probability
measures on �. Assume that, on the space � ∪ ∂�, the sequence μi converges
to a limit ν which is supported on ∂�. Assume moreover that the limit points of
μ̌i (defined by μ̌i (g) = μi (g−1)) have no atom. Then the stationary measures
νi associated to μi also converge to ν.

Proof We fix a word distance d on �. Let f be a continuous function on
� ∪ ∂�. Let us show that, uniformly in ξ ∈ ∂�, the integral

∫
f (gξ) dμi (g)

is close to
∫

f (g) dμi (g). We estimate the difference as

∣∣∣∣
∫

( f (gξ) − f (g)) dμi (g)

∣∣∣∣ �
∫

| f (gξ) − f (g)|1((gξ |g)e > C) dμi (g)

+ 2‖ f ‖∞
∫

1((gξ |g)e � C) dμi (g),

where C is a fixed constant. If C is large enough, | f (x) − f (y)| � ε when
(x |y)e > C , by uniform continuity of f . Hence, the first integral is bounded
by ε. For the second integral, we use the formula (gx |g)e = |g| − (x |g−1)e,
valid for any x ∈ � (it follows readily from the definition (2.1) of the Gromov
product). This equality does not extend to the boundary since the Gromov
product there is only well defined up to an additive constant D. Nevertheless,
we get (gξ |g)e � |g| − (ξ |g−1)e − D. Hence, the second integral is bounded
by

μi {g : |g| − C − D � (ξ |g−1)e}. (2.8)

If |g| is large, the points g with (ξ |g−1)e � |g| − C − D are such that g−1

belongs to a small neighborhood of ξ in � ∪ ∂�. As the limit points of μ̌i are
supported on ∂� and have no atom, it follows that (2.8) converges to 0 when
i tends to infinity, uniformly in ξ .

We have proved that

sup
ξ∈∂�

∣∣∣∣
∫

f (gξ) dμi (g) −
∫

f (g) dμi (g)

∣∣∣∣ → 0.
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By stationarity,

∫

ξ∈∂�

f (ξ) dνi (ξ) =
∫

ξ∈∂�

(∫
f (gξ) dμi (g)

)
dνi (ξ).

Combining these equations, we get
∫

f (ξ) dνi (ξ)−∫
f (g) dμi (g) → 0. This

shows that the limit points of νi and μi are the same. ��
Let us now consider the uniform measure ρi on the ball of radius i , as in

Theorem 1.4. The next lemma follows from the techniques of [11].

Lemma 2.13 Let (�, d) be a metric hyperbolic group. Let ρi be the uniform
measure on the ball of radius i . Let ρ∞ be the Patterson–Sullivan of (�, d)

constructed in [11] (it is supported on ∂� and atomless). Then the limit points
of ρi are equivalent to ρ∞, with a density bounded from above and from below.

Proof Let C be large enough. We will use the shadows O(g,C) as defined
before the proof of Theorem 2.6. The main property of ρ∞ is that it satisfies

K−1
0 e−v|g| � ρ∞(O(g,C)) � K0e

−v|g|, (2.9)

where K0 is a constant only depending on C and v is the growth of (�, d)

(Proposition 6.1 in [11]).
Let μi be the uniform measure on thickened spheres Si = {g : i � |g| �

i + L}, where L is large enough so that the cardinality of Si grows like eiv ,
see the proof of Theorem 7.2 in [11]. Let us push μi to a measure μ̃i on ∂�,
by choosing for each g ∈ Si a corresponding point in its shadow. It is clear
that μi and μ̃i have the same limit points, since the diameter of the shadows
tends uniformly to 0 when i → ∞. We will prove that the limit points of μ̃i
are equivalent to ρ∞. The same result follows for μi and then ρi .

The shadows of g ∈ Si have a covering number which is bounded from
above by a constant D, and from below by 1 if C is large enough. Hence, the
measures μ̃i satisfy

K−1
1 e−iv � μ̃i (O(g,C)) � K1e

−iv,

for any g ∈ Si . This is comparable to ρ∞(O(g,C)) by (2.9), up to a multi-
plicative constant K2. Consider a limit μ̃ of a sequence μ̃in , let us prove that
it is uniformly equivalent to ρ∞. We will only prove that μ̃ � DK2ρ∞, the
other inequality is proved in the same way. By regularity of the measures, it
suffices to check this inequality on compact sets.

Let A be a compact subset of ∂�, and ε > 0. By regularity of the measure
ρ∞, there is an open neighborhood U of A with ρ∞(U ) � ρ∞(A) + ε.
Consider B a compact neighborhood of A, included in U , with μ̃(∂B) = 0
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(such a set exists, since among the sets Br = {ξ : d(ξ, A) � r}, at most
countably of them many have a boundary with nonzero measure). For large
enough i , the shadows O(g,C) with g ∈ Si which intersect B are contained
in U . Therefore,

μ̃i (B) �
∑

g∈Si ,O(g,C)∩B 
=∅
μ̃i (O(g,C))

� K2

∑

g∈Si ,O(g,C)∩B 
=∅
ρ∞(O(g,C)) � DK2ρ∞(U ).

As μ̃(∂B) = 0, the sequence μ̃in (B) tends to μ̃(B). We obtain μ̃(B) �
DK2ρ∞(U ). As A is included in B, we get μ̃(A) � DK2(ρ∞(A) + ε).
Letting ε tend to 0, this gives μ̃(A) � DK2ρ∞(A), as desired. ��
Proof of Theorem 1.4 Let ρi be the uniform measure on the ball of radius i
(which has cardinality in [C−1eiv,Ceiv]). We wish to apply Theorem 2.6 to
this sequence of measures. First, by Lemmas 2.12 and 2.13, the limit points of
the stationary measures νi are equivalent to the Patterson–Sullivan measure.
Therefore, they have no atom. Second, Lemma 2.8 shows that the quantity hi
in (2.6) satisfies hi � iv − logC − log(2 + i). This tends to infinity. Hence,
Theorem 2.6 applies, and gives h(ρi ) � (1 − ε)iv for large i .

Using the fundamental inequality h � �v and the trivial bound �(ρi ) �
L(ρi ) � i , we get

(1 − ε)iv � h(ρi ) � �(ρi )v � iv.

It follows that h(ρi ) ∼ iv and �(ρi ) ∼ i . ��
Remark 2.14 Our technique also applies to estimate the entropy of other mea-
sures, for instance the measure μs = ∑

e−s|g|δg/
∑

e−s|g| classically used
in the construction of the Patterson–Sullivan measure. Indeed, μs converges
when s ↘ v to ρ∞, which has no atom. Moreover, writing Zs = ∑

e−s|g|,
we have H(μs) = sL(μs) + log Zs . One checks that log Zs is negligible with
respect to H(μs), and that the quantity hs from (2.6) is also equivalent to
H(μs). Hence, Theorem 2.6 gives

H(μs)(1 + o(1)) � hs(1 + o(1)) � h(μs) � �(μs)v

� L(μs)v � H(μs)(1 + o(1)).

These inequalities show that h(μs)/�(μs) → v.

Remark 2.15 One could imagine another strategy to find finitely supported
measures μi for which h(μi )/�(μi ) → v. First, find a nice measure μ for
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which the stationary measure ν at infinity is precisely the Patterson–Sullivan
measure (which implies that h(μ) = �(μ)v since the Martin cocycle and the
Busemann cocycle coincide). Letμi be a truncation ofμ. Since it converges to
μ, the continuity results for the drift and the entropy imply that h(μi )/�(μi ) →
h(μ)/�(μ) = v.

Wewere not able to implement successfully this strategy.Given ameasure ν,
there is a general technique due to Connell and Muchnik [10] to get a measure
μ on � with μ ∗ ν = ν. This technique requires a continuity assumption on
ξ �→ (dg∗ν/ dν)(ξ), which is not satisfied in our setting for ν = ρ∞. However,
in nice groups such as surface groups, this function is, for every g, continuous
at all but finitely many points. The technique of [10] can be adapted to such a
situation (in the proof of their Theorem 6.2, one should just take sets Yn that
avoid the discontinuities of the spikes we have already used). Unfortunately,
the resulting measure μ (which satisfies μ ∗ ν = ν) has infinite moment and
infinite entropy, and is therefore useless for our purposes.

3 Rigidity for admissible measures

In this section, we prove Theorem 1.5. Assume that (�, d) is a hyperbolic
group endowed with a word distance, which is not virtually free. Let μ be a
probability measure on �, with a superexponential moment, such that �+

μ is
a finite index subgroup of �. We want to prove that h(μ) < �(μ)v. We argue
by contradiction, assuming that h(μ) = �(μ)v. Assume first that �+

μ = �.
Since we are assuming the equality h(μ) = �(μ)v, Theorem 1.2 implies

that there exists a constant C such that, for every g ∈ �,

|dμ(e, g) − vd(e, g)| � C.

As a warm-up, let us first deal with the baby caseC = 0. Then the distances
dμ and d are proportional, hence they define the same Busemann boundary.
TheBusemann boundary ∂B� corresponding to d is totally discontinuous since
the distance d takes integer values (it is a word distance). On the other hand, the
Busemann boundary associated to the Green metric dμ is known as the Martin
boundary of the random walk (�, μ). By [3] and [19], it is homeomorphic to
the boundary ∂� of �. Since the group � is not virtually free, its boundary ∂�

is not totally discontinuous (see [25, Theorem 8.1]), hence a contradiction.
Let us now go back to the general situation, when C is nonzero (but still

assuming�+
μ = �). The argument is more complicated, but it still relies on the

same facts: the boundary is not totally disconnected, while the word distance
is integer valued (we will not use directly this fact, rather the fact that stable
translation lengths are rational, see Lemma 3.4). These two opposite features
will give rise to a contradiction.
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In order to get rid of the constant C , we will need a homogenized version
of the inequality |dμ(e, g) − vd(e, g)| � C . This is Lemma 3.1 below. The
homogenized quantity associated to the distance d is called the stable transla-
tion length. For an element g of �, it is defined by l(g) = lim |gn|/n (it exists
by subadditivity).

Recall that we write cM(g, ξ) for the Martin cocycle associated to the
randomwalk, defined in Proposition 2.5. It satisfies the cocycle relation ofDef-
inition 2.1. We will not use its probabilistic definition, but rather the fact that
the Martin cocycle is the Busemann cocycle associated to the Green distance
dμ of Theorem 1.2. In other words, cM(g, ξ) = limx→ξ dμ(g−1, x)−dμ(e, x)
(and this limit exists).

Lemma 3.1 For g ∈ � with infinite order, cM(g, g+) = vl(g).

Proof Recall that we are assuming that the equality h(μ) = �(μ)v holds,
therefore we have |dμ(e, g) − vd(e, g)| � C . It follows that the cocycle
cM corresponding to dμ and the cocycle cB corresponding to the distance
d satisfy |cM − vcB | � 2C . Note that cB is not defined on the geometric
boundary, but on the horoboundary, so the proper way to write this inequality
is |cM(g, πB(ξ)) − vcB(g, ξ)| � 2C for any g ∈ � and any ξ ∈ ∂B�.

Let ξ ∈ ∂B� with πB(ξ) 
= g−. Then lim cB(gn, ξ)/n = lim hξ (g−n)/n =
l(g). We choose ξ with πB(ξ) = g+, to get

lim cM(gn, g+)/n = lim vcB(gn, ξ)/n ± 2C/n = vl(g).

As g+ is g-invariant, the cocycle equation for cM on ∂� gives cM(g, g+) =
cM(gn, g+)/n. This converges to vl(g) when n → ∞ by the previous
equation. ��

The proof of Theorem 1.5 uses the following general result on cocycles.

Proposition 3.2 Let � be a hyperbolic group which is not virtually free. Let
c : � × ∂� → R be a Hölder cocycle, such that any hyperbolic element g
satisfies c(g, g+) ∈ Z. Then there exists a hyperbolic element g ∈ � with
c(g, g−) = c(g, g+).

Applied to the Busemann cocycle, this proposition implies that if a convex
cocompact negatively curved manifold has a fundamental group which is not
virtually free, then its length spectrum is not arithmetic, i.e., the lengths of its
closed geodesics generate a dense subgroup ofR. This result is already known,
see [12, Page 205]. It is proved in this article using crossratios. This argument
based on crossratios can be used to prove Proposition 3.2 in full generality.
However, we will give a different, more direct, proof.

We will use the following topological lemma.
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Lemma 3.3 Let g be a hyperbolic element in a hyperbolic group 
 with
connected boundary. There exists an arc I (i.e., a subset of ∂
 homeomorphic
to [0, 1]) joining g− and g+, invariant under an iterate gi of g.

Proof We will use nontrivial results on the topology of ∂
. When it is con-
nected, then it is also locally connected by [35]. Hence, it is also path connected
and locally path connected, see [22, Theorem3-16].Moreover, for any ξ ∈ ∂
,
the space ∂
 \ {ξ} has finitely many ends by [8].

Consider g as in the statement of the lemma. Its action permutes the ends of
∂
 \ {g−}. Taking an iterate of g, we can assume it stabilizes the ends. If ξ is
close to g−, it is also the case of gξ . As they belong to the same end, one can
join them by a small arc J that avoids g− (and g+). Then

⋃
n∈Z

gn J joins g−
to g+, and it is invariant under g. However, it is not necessarily an arc if gi J
intersects J in a nontrivial way for i 
= 0. To get a real arc, we will shorten J
as follows.

As gn J converges to g± when n tends to ±∞, the arc J can only intersect
finitely many gi J . Let us fix a parametrization u : [0, 1] → J . The quantity

inf{|t − s| : s, t ∈ [0, 1] and ∃i 
= 0, u(t) = giu(s)}

is realized by compactness (since i remains bounded), for some parameters
s, t, i . Replacing s, t, i with t, s, −i if necessary, we may assume i > 0. As
g− and g+ are the only fixed points of gi , we have s 
= t . Let K = u([s, t]),
this is an arc between η = u(s) and giη = u(t). Moreover, g j K does not
intersect K , except maybe at its endpoints for j = ±i : otherwise, there would
exist x in the interior of K such that g j x also belongs to K , contradicting the
minimality of |s − t |.

It follows that
⋃

n∈Z
gni K is an arc from g− to g+, invariant under gi . ��

Proof of Proposition 3.2 Let us consider the cocycle c̄ = c mod Z. The
assumption of the proposition ensures that c̄(g, g+) = 0 for all hyperbolic
elements g. In geometric terms, this would correspond to an assumption that
the cocycle has vanishing average on all closed orbits. Hence, we may apply
a version of Livsic’s theorem, due in this context to [23] (Theorem 5.1). It
ensures that the cocycle c̄ is a coboundary: there exists a Hölder continuous
function b̄ : ∂� → R/Z such that, for all ξ ∈ ∂�, for all g ∈ �,

c̄(g, ξ) = b̄(gξ) − b̄(ξ). (3.1)

Recall that, since the group � is not virtually free, its boundary is not totally
discontinuous (see [25,Theorem8.1]). The stabilizer of a nontrivial component
L of ∂� is a subgroup
 of�, quasi-convex hence hyperbolic, whose boundary
is L (see the discussion on top of Page 55 in [7]).
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Let us consider an infinite order element g ∈ 
. Lemma 3.3 constructs an
arc I from g− to g+ in ∂
 ⊆ ∂�, invariant under an iterate gi of g. Replacing
g with gi , we may assume i = 1.

The restriction of the function b̄ to the arc I admits a continuous lift b : I →
R, as I is simply connected. The function F : ξ �→ c(g, ξ) − b(gξ) + b(ξ) is
well defined on I , continuous, and it vanishes modulo Z by (3.1). Hence, it is
constant. In particular, c(g, g−) = F(g−) = F(g+) = c(g, g+). ��

In order to apply Proposition 3.2, we will need the following result on stable
translation lengths in hyperbolic groups ([4, Theorem III.�.3.17]).

Lemma 3.4 Let (�, d) be a hyperbolic group with a word distance. Then there
exists an integer N such that, for any g ∈ �, one has Nl(g) ∈ Z.

The combination of Lemma 3.1 and Lemma 3.4 shows that the cocycle
c′ = NcM/v satisfies c′(g, g+) ∈ Z for any hyperbolic element g. Moreover,
this cocycle is Hölder-continuous since theMartin cocycle cM is itself Hölder-
continuous. This follows from [23] if μ has finite support, and from [19] if it
has a superexponential moment. Now, Proposition 3.2 implies the existence of
a hyperbolic element g such that cM(g, g+) = cM(g, g−). This is a contradic-
tion since c(g, g+) = vl(g) > 0 and c(g, g−) = −c(g−1, g−) = −vl(g) < 0
again by Lemma 3.1. This concludes the proof of Theorem 1.5 when �+

μ = �.
If �+

μ is a finite index subgroup of �, the same proof almost works in �+
μ to

conclude that �+
μ is virtually free if h = �v, implying that � is also virtually

free. The only difficulty is that the distance we are considering on �+
μ is not a

word distance for a system of generators of �+
μ . However, the only properties

of the distance we have really used are:

(1) It is hyperbolic and quasi-isometric to a word distance (to apply Theo-
rem 1.2).

(2) The stable translation lengths are rational numbers with bounded denom-
inators.

These two properties are clearly satisfied for the restriction of the distance d to
�+

μ . Hence, the above proof also works in this case. This completes the proof
of Theorem 1.5. ��
Remark 3.5 If
 is a quasi-convex subgroup of a hyperbolic group �, then the
restriction to
 of a word distance on � also satisfies the above two properties.
Hence, Theorem 1.5 also holds in 
 for such a distance.

4 Growth of non-distorted points in subgroups

Our goal in this section is to proveTheorem1.6 on the entropy of a randomwalk
on an infinite index subgroup 
 of a hyperbolic group �. Since the geometry
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of such random walks is complicated to describe in general, our argument
is indirect: we will show that, in any infinite index subgroup, the number of
points that the random walk effectively visits is exponentially small compared
to the growth of �. This is trivial if the growth v
 = lim infn→∞ log |Bn∩
|

n is
strictly smaller than v = v� . When v
 = v, on the other hand, we will argue
that the randomwalk does not typically visit all of
, but only a subset made of
non-distorted points. To prove Theorem 1.6, the main step is to show that, even
when v
 = v, the number of such non-distorted points is exponentially smaller
than env . We introduce the notion of non-distorted points in Sect. 4.1, prove
this main geometric estimate in Sect. 4.2, and apply this to random walks
in Sect. 4.4. Section 4.3 is devoted to the case v
 < v, where unexpected
phenomena happen even in distorted subgroups.

4.1 Non-distorted points

There are at least two different ways to define a notion of non-distorted point.

Definition 4.1 Let � be a finitely generated group endowed with a word dis-
tance d = d� , and let 
 be a subgroup of �.

• For ε > 0 and M > 0, we say that g ∈ 
 is (ε, M)-quasi-convex if any
geodesic γ from e to g spends at least a proportion ε of its time in the
M-neighborhood of 
, i.e.,

|{i ∈ [1, |g|] : d(γ (i), 
) � M}| � ε|g|.

We write 
QC(ε,M) for the set of points in 
 which are (ε, M)-quasi-
convex.

• Assume additionally that
 is finitely generated, and endowed with a word
distance d
. For D > 0, we say that g ∈ 
 is D-undistorted if d
(e, g) �
Dd�(e, g). We write 
UD(D) for the set of D-undistorted points.

Up to a change in the constants, these notions do not depend on the choice
of the distance d. The first definition has the advantage to work for infinitely
generated subgroups, but it may seem less natural than the second one. If
 is a
quasi-convex subgroup of a hyperbolic group �, then all its points are (1, M)-
quasi-convex if M is large enough, and all its points are also D-undistorted
for large enough D. In the general case, a quasi-convex point does not have
to be undistorted: it may happen that the times i such that d(γ (i), 
) � M
are all included in [1, |g|/2], while between |g|/2 and |g| one needs to make
a huge detour to follow 
, making d
(e, g) much larger than d�(e, g). On
the other hand, an undistorted point is automatically quasi-convex, at least in
hyperbolic groups:
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Proposition 4.2 Let � be a hyperbolic group, let 
 be a finitely generated
subgroup of �, and let D > 0. There exist ε > 0 and M > 0 such that any
D-undistorted point is also (ε, M)-quasi-convex, i.e., 
UD(D) ⊆ 
QC(ε,M).

Proof Consider g ∈ 
 which is not (ε, M)-quasi-convex, we have to show
that d
(e, g) is much bigger than n = d�(e, g). The intuition is that, away
from a �-geodesic from e to g, the progress towards g is much slower by
hyperbolicity.

Let us consider a geodesic from e to g in
, with length d
(e, g). Replacing
each generator of 
 by the product of a uniformly bounded number of gen-
erators of �, we obtain a path γ
 in the Cayley graph of �, remaining in the
C0-neighborhood of
 (for someC0 > 0) and with length |γ
| � C0d
(e, g).

Let us consider a geodesic γ� from e to g for the distance d� . For each
x ∈ �, we can consider its projection π(x) on γ� , i.e., the point on γ� that is
closest to x (if several points correspond, we take the closest one to e). This
projection is 1-Lipschitz up to an additive constant C1 which only depends on
the hyperbolicity constant of �, i.e., it satisfies d�(π(x), π(y)) � d�(x, y) +
C1, see for instance [4, Proposition III.�.3.11]. In particular, the projection of
γ
 covers the whole geodesic γ� up to C1.

Let us fix an integer L , large enough with respect to the hyperbolicity
constant of �. Along γ� , let us consider the points at distance kL from e,
i.e., x0 = e, xL , x2L , . . . , xmL with m = �n/L�. Denote by yi L the first
point on γ
 whose projection π(yi L) is within distance C1 of xi L . If L
is large enough, these points are in increasing order along 
. In particu-
lar, |γ
| �

∑
i d�(yi L , y(i+1)L). Moreover, a tree approximation shows that

d�(yi L , y(i+1)L) � d�(yi L , xi L) + L + d�(x(i+1)L , y(i+1)L) − C2 (where C2
only depends on the hyperbolicity constant of �). Choosing L � C2, we get

|γ
| �
m∑

i=0

d�(xi L , yi L) �
m∑

i=0

(d�(xi L , 
) − C0).

Since we assume that g is not (ε, M)-quasi-convex, the set of indices i with
d�(xi , 
) � M has cardinality at most εn. Taking M � C0, the previous
equation is bounded from below by

(m + 1 − εn)M − (m + 1)C0 � (n/L − εn)M − nC0/L .

Finally, we get

d
(e, g) � |γ
|/C0 � n(1/L − ε)M/C0 − n/L .

If ε is small enough andM is large enough so that (1/L−ε)M/C0−1/L > D,
we obtain d
(e, g) > Dn, i.e., g /∈ 
UD(D), as desired. ��
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From this point on, we will mainly work with the notion of quasi-convex
points, since counting results on such points imply results on undistorted points
by the previous proposition.

4.2 Non-distorted points in subgroups with v� = v

In this section, we show that there are exponentially few quasi-convex points
in infinite-index subgroups of hyperbolic groups.

Theorem 4.3 Let � be a nonelementary hyperbolic group endowed with a
word distance. Let 
 be an infinite index subgroup of �. Then

|Bn ∩ 
| = o(|Bn|). (4.1)

Moreover, for all ε > 0 and M > 0, there exists η > 0 such that, for all large
enough n,

|Bn ∩ 
QC(ε,M)| � e−ηn|Bn|. (4.2)

Onemaywonderwhywe put the estimate (4.1) in the statement of the theorem,
while the main emphasis is on counting quasi-convex points. It turns out that
this estimate is not trivial, and that its proof uses the same techniques as for the
proof of (4.2). To illustrate that it is not trivial, let us remark that this estimate
is not true without the hyperbolicity assumption. For instance, in � = F2 × Z

(with its canonical generating system, and the corresponding word distance),
the infinite index subgroup 
 = F2 satisfies |
 ∩ Bn|/|Bn| � c > 0.

Theorem 4.3 is trivial if the growth rate v
 of 
 is strictly smaller than the
growth rate v of �, since in this case |Bn ∩ 
| itself is exponentially smaller
than |Bn|. However, this is not always the case, even for finitely generated
subgroups.

Consider for instance a compact hyperbolic 3-manifold which fibers over
the circle, obtained as a suspension of a hyperbolic surface with a pseudo-
Anosov. Its fundamental group � surjects into Z = π1(S

1). The kernel 
 of
this morphism ϕ is the fundamental group of the fiber. It is finitely generated,
with infinite index, and |Bn ∩ 
| ∼ c|Bn|/√n, see [34].

Heuristically, one can understand in this case why there are exponentially
few quasi-convex points in 
. Let us consider a geodesic of length n in �. It
projects under ϕ to a path in Z, which behaves roughly like a random walk. In
particular, e−nv|Sn ∩ 
| behaves like the probability that a random walk on Z

comes back to the identity at time n. This is of order 1/
√
n, in accordance with

the rigorous results of [34]. Such an element is quasi-convex if the random
walk in Z spends a big proportion of its time close to the origin. A large
deviation estimate shows that this is exponentially unlikely.
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The proof of the theorem consists in making this heuristic precise, in the
general case where the subgroup
 is not normal (so that there is no morphism
ϕ at hand). An important point in the proof is that a hyperbolic group is
automatic, i.e., there exists a finite state automaton that recognizes a system of
geodesics parameterizing bijectively the points in the group. Counting points
in the group then amounts to a random walk on the graph of this automaton,
while counting points in 
 amounts to a fibred random walk, on this graph
times 
\�. As this space is infinite, the random walk spends most of its time
outside of finite sets, i.e., far away from 
.

To formalize this argument, we will reduce the question to Markov chains
on graphs, where we will use the following probabilistic lemma.

Lemma 4.4 Consider a Markov chain (Xn) on a countable set V , with a
stationary measure m (i.e., m(x) = ∑

y m(y)p(y, x) for all x). Let Ṽ be the
set of points x ∈ V such that

∑
x→y m(y) = +∞, where we write x → y if

there exists a positive probability path from x to y. Then, for all x ∈ V and
x ′ ∈ Ṽ ,

Px (Xn = x ′) → 0 when n → ∞. (4.3)

Take x ∈ Ṽ and ε > 0. There exists η > 0 such that, for all large enough n,

Px (Xn = x and Xi visits x at least εn timesbetween times 0 and n) � e−ηn.

(4.4)

Proof In countable stateMarkov chains, a point x canbe either transient, or null
recurrent, or positive recurrent. Let us first show that points in Ṽ are not positive
recurrent, by contradiction. Otherwise, the points that can be reached from x
form an irreducible class C, which admits a stationary probability measure p.
The restriction of m to C is an excessive measure. By uniqueness (see [33,
Theorem 3.1.9]), the measure m is proportional on C to p. In particular, it has
finite mass there. This contradicts the assumption

∑
x→y m(y) = +∞.

Let us now show that, for all x ∈ V and x ′ ∈ Ṽ , the probabilityPx (Xn = x ′)
tends to 0. Otherwise, conditioning on the first visit to x ′, we deduce that
Px ′(Xn = x ′) does not tend to 0. This implies that x ′ is positive recurrent, a
contradiction.

Let us now prove (4.4). Consider x ∈ Ṽ , it is either transient or null recur-
rent. If it is transient, the probability p to come back to x is < 1. Hence,
the probability to come back εn times is bounded by pεn , and is therefore
exponentially small as desired.

Assume now that x is null recurrent: almost surely, theMarkov chain comes
back to x , but the waiting time τ has infinite expectation. Let τ1, τ2, . . . be the
length of the successive excursions based at x . They are independent and
distributed like τ , by the Markov property. The probability in (4.4) is bounded
by P(

∑εn
i=1 τi � n), which is bounded for any M by P(

∑εn
i=1 τi1τi�M �
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n). The random variables τi1τi�M are bounded, independent and identically
distributed. If M is large enough, they have expectation > 1/ε. A standard
large deviation result then shows that P(

∑εn
i=1 τi1τi�M � n) is exponentially

small, as desired. ��
We will also need the following technical lemma, which was explained to

us by B. Bekka.

Lemma 4.5 Let 
 be a subgroup of a group �. Assume that there exists a
finite subset B of � such that B
B = �. Then 
 has finite index in �.

Proof We have by assumption � = ⋃
i, j bi
b j = ⋃

i, j 
i bi b j , where 
i =
bi
b−1

i is a conjugate of 
 (and has therefore the same index). A theorem of
Neumann [31] ensures that a group is never a finite union of right cosets of
infinite index subgroups. Hence, one of the 
i has finite index in �, and so
has 
. ��

Let � be a hyperbolic group, with a finite generating set S. Consider a finite
directed graph A = (V, E, x∗) with vertex set V , edges E , a distinguished
vertex x∗, and a labeling α : E → S. We associate to any path γ in the graph
(i.e., a sequence of edges σ0, σ1, . . . , σm−1 where the endpoint of σi is the
beginning of σi+1) a path in the Cayley graph starting from the identity and
following the edges labeled α(σ0), then α(σ1), and so on. The endpoint of this
path is α∗(γ ) := α(σ0) · · ·α(σm−1). We always assume that any vertex can
be reached by a path starting at x∗.

A hyperbolic group is automatic (see, for instance, [9]): there exists such a
graph with the following properties.

(1) For any path γ in the graph, the corresponding path α(γ ) is geodesic in
the Cayley graph.

(2) The map α∗ induces a bijection between the set of paths in the graph
starting from x∗ and the group �.

In particular, the paths of length n in the graph originating from x∗ parameterize
the sphere S

n of radius n in the group. The existence of such a structure makes
it for instance possible to prove that the growth series of a hyperbolic group
is rational. We will use such an automaton to count the points in the subgroup

, and in particular the quasi-convex points.

We define a transition matrix A, indexed by V . By definition, Axy is the
number of edges from x to y. Hence, (An)xy is the number of paths of length
n from x to y. In particular, the number of paths of length n starting from
x∗ is

∑
y(A

n)x∗y . Write u for the line vector with 1 at position x∗ and 0
elsewhere, and ũ for the column vector with 1 everywhere. This number of
paths reads uAnũ. Therefore, |Sn| = uAnũ, proving the rationality of the
growth function of the group. Let v be the growth rate of balls in �. It satisfies
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C−1env � |Bn| � Cenv , by [11]. Hence, the spectral radius of A is ev , and A
has no Jordan block for this maximal eigenvalue.

Consider now an infinite index subgroup 
 of �. To understand it, we
consider an extension A
 of A, with fibers 
\�. Its vertex set V
 is made
of the pairs (x, 
g) ∈ V × 
\�. For any edge σ in A, going from x to y
and with label α(σ), we put for any g ∈ � an edge in A
 from (x, 
g) to
(y, 
gα(σ)). A path γ in A, from x to y, lifts to a path γ̃ in A
 originating
from (x, 
e). By construction, its endpoint is (y, 
α∗(γ )). This shows that
the paths in the graph A
 remember the current right coset of 
.

The next lemma proves that the relevant components of this fibred graph
are infinite.

Lemma 4.6 Let x̃0 = (x0, 
g0) belong to A
. Let C be the component of x0
in A (i.e., the set of points that can be reached from x0 and from which one
can go back to x0). Let AC be the restriction of the matrix A to the points in
C. Assume that its spectral radius ρ(AC) is equal to ev . Then, starting from x̃0
in the graph C
 (the restriction of A
 to C × 
\�), one can reach infinitely
many different points of C
.

Proof It suffices to show that one can reach infinitely many points whose
component in C is x0. Assume by contradiction that one can only reach a finite
number of classes (x0, 
gi ).

Given w ∈ � and C > 0, let Yw,C be the set of points in � that have a
geodesic expression in which, for any subword w̃ of this expression and for
any a, b with length at most C , one has w 
= aw̃b. In other words, the points
in Yw,C are those that never see w (nor even a thickening of w of size C) in
their geodesic expressions. Theorem 3 in [2] proves the existence of C0 such
that, for any w, the quantity |Bn ∩ Yw,C0 |/|Bn| tends to 0 (the important point
is that C0 does not depend on w).

Fix w ∈ �. The number of paths in C originating from x0 grows at least
like c|Bn| since the spectral radius of AC is ev . These paths give rise to distinct
points in �. Hence, there exists such a path γ0 such that α∗(γ0) /∈ Yw,C0 . In
particular, there exists a subpath γ1 such that α∗(γ1) can be written as a1wb1
with |a1| � C0 and |b1| � C0. We can choose a path from x0 to the starting
point of γ1, with fixed length (since C is finite), and another path from the
endpoint of γ1 to x0. Concatenating them, we get a path γ2 from x0 to itself
with α∗(γ2) = a2wb2 and |a2|, |b2| � C1 = C0 + 2 diam(C). By assumption,

g0α∗(γ2) is one of the finitely many
gi since we are returning to x0. Hence,
there existsλ ∈ 
 such that g0a2wb2 = λgi . This shows thatw ∈ B
B,where
B is the ball of radius C1 + maxi d(e, gi ). As this holds for any w, we have
proved that B
B = �. By Lemma 4.5, this shows that 
 has finite index in
�, a contradiction. ��
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Lemma 4.7 Let K (n, x̃0, ε0) denote the set of paths inA
 starting at a point
x̃0, of length n, coming back to x̃0 at time n, and spending a proportion at least
ε0 of the time at x̃0. Consider x̃0 ∈ A
 and ε0 > 0. Then there exist η > 0
and C > 0 such that, for all n ∈ N,

|K (n, x̃0, ε0)| � Cen(v−η).

Proof Write x̃0 = (x0, 
g0). Let C be the component of x0 in A. If the
spectral radius of the restricted transition matrix AC is < ev , we simply bound
|K (n, x̃0, ε0)| by the number of paths in C from x0 to itself. This is at most
‖An

C‖, which is exponentially smaller than env as desired.
Assume now that ρ(AC) = ev . We will understand the number of paths in

C (and in its lift C
) in terms of a Markov chain. The matrix AC has a unique
eigenvector q corresponding to the eigenvalue ev . It is positive by Perron-
Frobenius’s theorem. By definition, p(x, y) = e−vAxyq(y)/q(x) satisfies,
for any x ∈ C,

∑

y∈C
p(x, y) = e−v

q(x)

∑

y∈C
Axyq(y) = 1.

This means that p(x, y) is a transition kernel on C. Denote by (Xn)n∈N the
corresponding Markov chain. By construction,

Px (Xn = y) = e−nv(An)xyq(y)/q(x).

Moreover, (An)xy is the number of paths of length n inA from x to y. Hence,
up to a bounded multiplicative factor q(y)/q(x), the transition probabilities of
the Markov chain Xn count the number of paths in the graph C. Let m denote
the unique stationary probability for the Markov chain on C.

We lift everything to C
, assigning to an edge the transition probability of
its projection in C. The stationary measure m lifts to a stationary measure m
,
which is simply the product of m and of the counting measure in the direction

\�. Denoting by X


n the Markov chain in C
, we have

e−nv|K (n, x̃0, ε0)| = Px̃0(X


n = x̃0 and X


i

visits x̃0 at least ε0n times inbetween).

By Lemma 4.6, the Markov chain starting from x̃0 can reach infinitely many
points. Equivalently, since m is bounded from below, it can reach a set of
infinitem
-measure. Therefore, Lemma 4.4 applies, and shows that the above
quantity is exponentially small. ��
Proof of Theorem 4.3 Let us first prove (4.2). Counting the points in S

n ∩

QC(ε,M) amounts to counting the paths of length n in A
, starting from
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(x∗, 
e) and spending a proportion at least ε of their time in the finite subset
F = V × 
BM ⊆ V
. Such a path spends a proportion at least ε0 = ε/|F |
of its time at a given point x̃ ∈ F . Let k and k + m denote the first and last
visits to x̃ (with m � ε0n since there are at least ε0n visits). Such a path is
the concatenation of a path from (x∗, 
e) to x̃ of length k (their number is
bounded by the corresponding number of paths in A, at most ‖Ak‖ � Cekv),
of a path in K (m, x̃, ε0), and of a path starting from x̃ of length n − k − m
(their number is again bounded by the number of corresponding paths in A,
at most Ce(n−k−m)v). Hence, their number is at most Ce(n−m)v|K (m, x̃, ε0)|.
Summing over the points x̃ ∈ F , over the at most n possible values of k, and
the values of m, we get the inequality

|Sn ∩ 
QC(ε,M)| � Cnenv
∑

x̃∈F

n∑

m=ε0n

e−mv|K (m, x̃, ε0)|.

Lemma 4.7 shows that this is exponentially smaller than env .
Let us now prove (4.1), using similar arguments. A point in S

n ∩ 
 corre-
sponds to a path of length n inA
, starting from (x∗, 
e) and ending at a point
(x, 
e). We say that a component C in the graph A is maximal if the spectral
radius of the corresponding restricted matrix AC is ev . Since the matrix A has
no Jordan block corresponding to the eigenvalue ev, a path in the graph encoun-
ters at most one maximal component. The paths in A
 whose projection in
A spends a time k in non-maximal components give an overall contribution
to |Sn ∩ 
| bounded by Ce(n−k)v+k(v−η) � Ce−ηk |Bn|. Given ε > 0, their
contribution for k � k0(ε) is bounded by ε|Bn|. Hence, it suffices to control
the paths for fixed k. Let us fix the beginning of such a path, from (x∗, 
e)
to a point (x0, 
g0) where x0 is in a maximal component C, and its end from
(x1, 
g1) with x1 ∈ C to a point (x, 
e). To conclude, one should show that
the number of paths of length n from (x0, 
g0) to (x1, 
g1) is o(env). This
follows from the probabilistic interpretation in the proof of Lemma 4.7 and
from (4.3). ��

4.3 Non-distorted points in subgroups with v� < v

Let
 be a subgroup of a hyperbolic group�. Let v
 and v� be their respective
growths, for a word distance on �. If v
 = v� , Theorem 4.3 proves that there
is a dichotomy:

(1) Either 
 is quasi-convex (equivalently, 
 has finite index in �). Then
|Bn ∩ 
| � cenv
 , and all points in 
 are quasi-convex.
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(2) Or 
 is not quasi-convex (equivalently, it has infinite index in �). Then
|Bn ∩ 
| = o(env
), and there are exponentially few quasi-convex points
in 
.

Consider now a general subgroup 
 with v
 < v� . If it quasi-convex,
then (1) above is still satisfied: |Bn ∩ 
| � cenv
 by [11], and all points in

 are quasi-convex. One may ask if these properties are equivalent, and if
they characterize quasi-convex subgroups. This question is reminiscent of a
question of Sullivan in hyperbolic geometry: Are convex cocompact groups
the only ones to have finite Patterson–Sullivanmeasure? Peigné showed in [32]
that the answer to this question is negative. His counterexamples adapt to our
situation, giving also a negative answer to our question.

Proposition 4.8 There exists a finitely generated subgroup 
 of a hyperbolic
group � endowed with a word distance, which is not quasi-convex, but for
which C−1env
 � |Bn ∩ 
| � Cenv
 . Moreover, most points of 
 are quasi-
convex: there exist ε and η such that

|Bn ∩ 
 \ 
QC(ε,0)| � Cen(v
−η). (4.5)

Proof The example is the same as in [32], but his geometric proofs are replaced
by combinatorial arguments based on generating series.

Let G be a finitely generated non-quasi-convex subgroup of a hyperbolic
group G̃ (take for instance for G̃ the fundamental group of a hyperbolic 3-
manifold which fibers over the circle, and for G the fundamental group of the
fiber of this fibration). Let H = Fk , with k large enough so that vH � vG . We
take 
 = G ∗ H ⊂ � = G̃ ∗ H . It is not quasi-convex, because of the factor
G. Writing v
 for its growth, we claim that, for some c > 0,

|Sn ∩ 
| ∼ cenv
. (4.6)

We compute with generating series. Let FG(z) be the growth series for G,
given by FG(z) = ∑

n�0 |Sn ∩ G|zn . Likewise, we define FH and F
. Since
any word in 
 has a canonical decomposition in terms of words in G and H ,
a classical computation (see [13, Prop. VI.A.4]) gives

F
 = FGFH

1 − (FG − 1)(FH − 1)
. (4.7)

Let zG = e−vG � zH = e−vH be the convergence radii of FG and FH . At
zH , we have FH (zH ) = +∞, since the cardinality of spheres in the free
group is exactly of the order of envH . When z increases to zH , the function
(FG(z) − 1)(FH (z) − 1) takes the value 1, at a number z = z
. Since this is
the first singularity of F
, we have z
 = e−v
 . Moreover, the function F
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is meromorphic at z
, with a pole of order 1 (since the function (FG − 1)
(FH − 1) has positive derivative, being a power series with nonnegative coef-
ficients). It follows from a simple tauberian theorem (see, for instance, [16,
Theorem IV.10]) that the coefficients of F
 behave like cz−n


 , proving (4.6).
Let us estimate the number of non-quasi-convex points in 
. Consider a

word w ∈ 
 of length n, for instance starting with a factor in G and ending
with a factor in H . It can be written as g1h1g2h2 · · · hs . Along a geodesic
from e to w, all the words g1h (with h prefix of h1) belong to 
. So do all
the words g1h1g2h with h prefix of h2, and so on. Therefore, the proportion
of time that the geodesic spends outside of 
 is at most

∑ |gi |/n. Such a
point in 
 \
QC(ε,0) satisfies

∑ |gi | � (1− ε)n and
∑ |hi | � εn. Assuming

ε � 1/2, this gives
∑ |hi | � (ε/2)

∑ |gi |. In particular, for any α > 0, we
have eα(

∑ |gi |−2ε−1 ∑ |hi |) � 1. Let un = |Sn ∩ 
 \ 
QC(ε,0)|. Its generating
series satisfies the following equation (wherewe onlywrite in details thewords
starting with G and ending in H , the other ones being completely analogous):

∑
unz

n �
∑

��1

∑

a1+b1+a2+···+b�=n

eα(
∑

ai−2ε−1 ∑
bi )|Sa1 ∩ G||Sb1 ∩ H | · · · |Sb� ∩ H |zn + · · ·

=
∑

��1

[
(FG(eαz) − 1)(FH (e−2αε−1

z) − 1)
]� + · · ·

= FG(eαz)FH (e−2αε−1
z)

1 − (FG(eαz) − 1)(FH (e−2αε−1 z) − 1)
.

This is the same formula as in (4.7), but the factor z has been shifted in FG
and FH . Choose α > 0 such that eαz
 < zG , and then ε small enough so
that (FG(eαz
) − 1)(FH (e−2αε−1

z
) − 1) < 1. We deduce that the series∑
unzn converges for z = z
, and even slightly to its right. It follows that un

is exponentially small compared to z−n

 . This proves (4.5). ��

4.4 Application to random walks in infinite index subgroups

In this paragraph, we use Theorem 4.3 to prove Theorem 1.6 on randomwalks
given by a measure μ on a hyperbolic group �, assuming that �μ has infinite
index in �.

Before proving Theorem 1.6, we give another easier result, pertaining to
the case where μ has a finite moment for a word distance on �μ (which
should be finitely generated): In this case, the random walk typically visits
undistorted points. This easy statement is not used later on, but it gives a
heuristic explanation to Theorem 1.6.

Lemma 4.9 Let 
 be a finitely generated subgroup of a finitely generated
group �. Let d
 and d� be the two corresponding word distances. Consider a
probability measure μ on 
, with a moment of order 1 for d
 (and therefore
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for d�), with nonzero drift for d� . Let Xn denote the corresponding random
walk. There exists D > 0 such that P(Xn ∈ 
UD(D)) → 1.

Proof Almost surely, d�(e, Xn) ∼ ��n, for some nonzero drift �� . In the
same way, d
(e, Xn) ∼ �
n. For any D > �
/�� , we get almost surely
d
(e, Xn) � Dd�(e, Xn) for large enough n, i.e., Xn ∈ 
UD(D). ��

This lemma readily implies Theorem 1.6 under the additional assumption
that 
 is finitely generated and that μ has a moment of order 1 for d
.
Indeed, for large n, with probability at least 1/2, the point Xn belongs to
B(�+ε)n ∩ 
UD(D), whose cardinality is bounded by Ce(�+ε)n(v−η) according
toTheorem4.3.Lemma2.4yieldsh � (�+ε)(v−η), henceh � �(v−η) < �v,
completing the proof.

However, the assumptions of Theorem 1.6 are much weaker: even when 


is finitely generated, it is much more restrictive to require a moment of order
1 on 
 than on �, precisely because the �-distance is smaller than the 
-
distance on distorted points, which make up most of
. The general proof will
not use undistorted points (which are not even defined when 
 is not finitely
generated), but rather quasi-convex points: we will show that, typically, the
random walk concentrates on quasi-convex points. With the previous argu-
ment, Theorem 1.6 readily follows from the next lemma.

Lemma 4.10 Let 
 be a subgroup of a hyperbolic group � endowed with
a word distance d = d� . Let us consider a probability measure μ on 
,
with a moment of order 1 for d� . There exist ε > 0 and M > 0 such that
P(Xn ∈ 
QC(ε,M)) � 1/2 for large enough n.

Proof The lemma is trivial ifμ is elementary, since all the elements of�μ ⊆ 


are then quasi-convex. We may therefore assume that μ is non-elementary.
The randomwalk at time n is given by Xn = g1 · · · gn , where gi are indepen-

dent and distributed like μ. We will show that most products g1 · · · gi (which
belong to 
) are within distance M of a geodesic from e to Xn (this amounts
to the classical fact that trajectories of the randomwalk follow geodesics in the
group), andmoreover that they approximate a proportion at least ε of the points
on this geodesic. This will give Xn ∈ 
QC(ε,M) as desired. The second point
is more delicate: we should for instance exclude the situation where, given a
geodesic γ , one has Xn = γ (a(n)) where a(n) is the smallest square larger
than n. In this case, Xn follows the geodesic γ at linear speed, but nevertheless
the proportion of γ it visits tends to 0. This behavior will be excluded thanks to
the fact that, with high probability, the jumps of the randomwalk are bounded.

The argument is probabilistic and formulated in terms of the bilateral version
of the random walk. On � = �Z with the product measure P = μ⊗Z, let gn
be the nth coordinate. The gn are independent, identically distributed, and
correspond to the increments of a random walk (Xn)n∈Z with X0 = e and
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X−1
n Xn+1 = gn+1. Almost surely, Xn converges when n → ±∞ towards two

random variables ξ± ∈ ∂�, with ξ+ 
= ξ− almost surely since these random
variables are independent and atomless. Following Kaimanovich [24], denote
by S(ξ−, ξ+) the union of all the geodesics from ξ− to ξ+. Let π be the
projection on S(ξ−, ξ+), i.e., π(g) is the closest point to g on S(ξ−, ξ+). It is
not uniquely defined, but any two possible choices are within distance C0, for
some C0 only depending on � and the word distance we consider.

Let us choose L > 0 large enough (how large will only depend on the
hyperbolicity constant of the space). Any measurable function is bounded on
sets with arbitrarily large measure. Hence, there exists K > 0 such that, with
probability at least 9/10,

(1) For every |k| � K , the projections π(Xk) are distant from π(X0) by at
least L (and they are closer to ξ+ if k > 0, and to ξ− if k < 0).

(2) We have d(e, S(ξ−, ξ+)) � K .

As everything is equivariant, we deduce that, for all i ∈ Z, the point Xi satisfies
the same properties with probability at least 9/10, i.e.,

d(Xi , S(ξ−, ξ+)) � K and, for all |k| � K , d(π(Xi ), π(Xi+k)) � L .

(4.8)
Let n be a large integer. Write m = �n/K �. Among the integers

K , 2K , . . . ,mK � n, we consider the set In(ω) of those i such that Xi satis-
fies (4.8). We have E(|In|) � m · 9/10. As |In| � m, we get

9m

10
� E(|In|) � m

10
P(|In| < m/10) + mP(|In| � m/10)

= m

10
+ 9m

10
P(|In| � m/10).

This gives P(|In| � m/10) � 8/9. Let η = 1/(20K ). Let �n be the set of ω

such that |In(ω)| � ηn + 1, and X0 and Xn satisfy (4.8), and d(Xn, e) � 2�n
(where � is the drift of μ). It satisfies P(�n) � 1/2 if n is large enough. This
is the set of good trajectories for which we can control the position of many
of the Xi .

Let ω ∈ �n . We write Yi for a projection of Xi on a geodesic γ from e to
Xn . Let Ĩn = In \ {mK }, so that the elements of Ĩn are at distance at least K
of 0 and n. As X0 and Xn satisfy (4.8), the projections π(Xi ) for i ∈ Ĩn are
located between π(X0) and π(Xn), and are at a distance at least L of these
points (see Fig. 1). If L is large enough, we obtain d(π(Xi ), Yi ) � C1 by
hyperbolicity, where C1 only depends on � and its word distance. This gives

d(Yi , 
) � d(Yi , π(Xi )) + d(π(Xi ), Xi ) � C1 + K ,
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ξ−
π(X0) π(Xi) π(Xn)

ξ+

X0 = e Xn

Xi

Yi γ

Fig. 1 The projections on γ and S

thanks to (4.8) for Xi .When i 
= j belong to Ĩn ,wehaved(π(Xi ), π(X j )) � L
again thanks to (4.8), hence d(Yi , Y j ) � L −2C1. If L was chosen larger than
2C1 + 1, this shows that Yi 
= Y j . We have found along γ at least |In| − 1
distinct points, within distance C1 + K of 
. Moreover, for large enough n,

|In| − 1 � ηn � 2�n · (η/2�) � d(e, Xn) · (η/2�).

Let ε = η/2� and M = C1 + K . We have shown that, for ω ∈ �n (whose
probability is at least 1/2), the point Xn(ω) belongs to 
QC(ε,M). ��

5 Construction of maximizing measures

In this section, we prove Theorem 1.7: Given any finite subset � in a hyper-
bolic group �, there exists a measure μ� maximizing the quantity h(μ)/�(μ)

over all measures μ supported on � with �(μ) > 0. To prove this result, we
start with a sequence of measures μi supported on � such that h(μi )/�(μi )

converges to the maximum M of these quantities. We are looking for μ� with
h(μ�)/�(μ�) = M . Replacing μi with (μi + δe)/2 (this multiplies entropy
and drift by 1/2, and does not change their ratio) and adding e to �, we can
always assume μi (e) � 1/2, to avoid periodicity problems.

Extracting a subsequence, we can ensure that μi converges to a limit prob-
ability measure μ. We treat separately the two following cases:

(1) �μ is non-elementary.
(2) �μ is elementary.

Let us handle first the easy case,where�μ is non-elementary. In this case, the
entropy and the drift are continuous atμ, by Proposition 2.3 and Theorem 2.9,
both due to Erschler and Kaimanovich in [15]. Therefore, h(μi )/�(μi ) tends
to h(μ)/�(μ), since in this case �(μ) > 0. One can thus take μ� = μ.

The case where �μ is elementary is much more interesting. Let us describe
heuristically what should happen, in a simple case. We assume that μi =
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(1 − ε)μ + εν where ν is a fixed measure, and ε tends to 0. The random
walk for μi can be described as follows. At each jump, one picks μ (with
probability 1 − ε) or ν (with probability ε), then one jumps according to
the chosen measure. After time N , the measure ν is chosen roughly εN times,
with intervals of length 1/ε in between, whereμ is chosen. Thus,μ∗N

i behaves
roughly like (μ∗1/ε ∗ ν)εN .

When �μ is finite, the measure μ∗1/ε is close, when ε is small, to the
uniform measure π on �μ. Therefore, μ∗N

i is close to (π ∗ ν)εN . We deduce
h(μi ) ∼ εh(π ∗ ν) and �(μi ) ∼ ε�(π ∗ ν). In particular, h(μi )/�(μi ) →
h(π ∗ ν)/�(π ∗ ν). One can take μ� = π ∗ ν.

When �μ is infinite, it is virtually cyclic. Assuming that μ is centered
for simplicity, the walk given by μ∗1/ε arrives essentially at distance 1/

√
ε

of the origin, by the central limit theorem. Then, one jumps according to ν,
in a direction transverse to �μ, preventing further cancellations. Hence, the
walk given by (μ∗1/ε ∗ ν)εN is at distance roughly εN/

√
ε from the origin,

yielding �(μi ) ∼ √
ε. On the other hand, each stepμ∗1/ε only visits 1/ε points,

hence the measure (μ∗1/ε ∗ ν)εN is supported by roughly (1/ε)εN points,
yielding h(μi ) ∼ ε| log ε|. In particular, h(μi ) = o(�(μi )). This implies that
h(μi )/�(μi ), which tends to 0, can not tend to the maximum M . Therefore,
this case can not happen.

The rigorous argument is considerably more delicate. One difficulty is that
μi does not decompose in general as (1− ε)μ + εν: there can be in μi points
with a very small probability (which are not seen byμ), but much larger than ε,
the probability to visit a nonelementary subset of �. These points will play an
important role on the relevant time scale, i.e., 1/ε. Hence, we have to describe
the different time scales that happen in μi .

For each a ∈ �, we have a weight μi (a), which tends to 0 if a is not in the
support of μ. Reordering the ak and extracting a subsequence, we can assume
that � = {a1, . . . , ap} with μi (a1) � · · · � μi (ap) (and a1 = e). Extracting
a further subsequence, we may also assume that μi (ak)/μi (ak−1) converges
for all k, towards a limit in [0, 1].

Let �k be the subgroup generated by a1, . . . , ak . We consider the smallest
r such that �r is non-elementary. Then, we consider the largest s < r such
that μi (r) = o(μi (s)). Roughly speaking, the random walk has enough time
to spread on the elementary subgroup �s , before seeing ar . It turns out that the
asymptotic behavior will depend on the nature of �s (finite or virtually cyclic
infinite).

We will decompose the measure μi as the sum of two components (1 −
εi )αi + εiβi , where εi tends to 0, the measure αi mainly lives on �s , and the
measure βi corresponds to the remaining part of μi , on {as+1, . . . , ap}. The
precise construction depends on the nature of �s :
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• If �s is finite.Let β
(0)
i be the normalized restriction ofμi to {as+1, . . . , ap}.

To avoid periodicity problems, we rather consider βi = (δe + β
(0)
i )/2. We

decompose μi = (1 − εi )αi + εiβi , where αi is supported on a1, . . . , as .
By construction, the probability of any element in the support of αi is much
bigger than εi .

• If �s is virtually cyclic infinite.The group�s contains a hyperbolic element
g0, with repelling and attracting points at infinity denoted by g−

0 and g+
0 .

The elements of �s all fix the set {g−
0 , g+

0 }. We take for αi the normalized
restriction of μi to those elements in � that fix {g−

0 , g+
0 }, and for βi the

normalized restriction ofμi to the other elements. Once again, we canwrite
μi = (1 − εi )αi + εiβi .

In both cases, εi is comparable to the probability μi (ar ), and is therefore
negligible with respect toμi (as).Wewill writeμi = με (and, in the sameway,
we will replace all indices i with ε, since the main parameter is ε = εi ). The
measure με converges to μ when ε tends to 0, while βε tends to a probability
measure β, supported on e, as+1, . . . , ap. If the measures με are symmetric
to begin with, the measures αε and βε are also symmetric by construction.

Togenerate the randomwalk given byμε, one canfirst independently choose
random measures ρn for each n: one takes ρn = αε with probability 1 − ε,
and ρn = βε with probability ε. Then, one chooses elements gn randomly
according to ρn , and one multiplies them: the product g1 · · · gn is distributed
like the random walk given by με at time n.

We will group together successive gk , into blocks where the equidistribu-
tion on �s can be seen. More precisely, denote by t1, t2, . . . the successive
times n where ρn = βε (and t0 = 0). They are stopping times, the successive
differences are independent and identically distributed, with a geometric dis-
tribution of parameter ε (i.e., P(t1 = n) = (1−ε)n−1ε), with mean 1/ε. Write
LN = gtN−1+1 · · · gtN . By construction, the Li are independent, identically
distributed, and the random walk they define, i.e., L1 · · · LN , is a subsequence
of the original random walk g1 · · · gn . Let λε be the distribution of Li on �,
i.e.,

λε =
∞∑

n=0

(1 − ε)nεα∗n
ε ∗ βε.

Lemma 5.1 Themeasureλε has finite first moment and finite time one entropy.
Moreover, �(με) = ε�(λε) and h(με) = εh(λε).

Proof As the mean of t1 is 1/ε, the randomwalk generated by λε is essentially
the random walk generated by με, but on a time scale 1/ε. This justifies
heuristically the statement.

For the rigorous proof, let us first check that λε has finite first moment (and
hence finite time one entropy). Since all the measures have finite support, we
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have |L1| � Ct1. Since a geometric distribution has moments of all order, the
same is true for |L1|.

The strong law of large numbers ensures that, almost surely, tN ∼ N/ε.
Therefore, almost surely,

�(λε) = lim
|L1 · · · LN |

N
= lim

|g1 · · · gtN |
N

= lim
|g1 · · · gtN |

tN
· tN
N

= �(με) · 1/ε.

This proves the statement of the lemma for the drift.
For the entropy, we use the characterization of Lemma 2.4. We will show

that h(με) � εh(λε) and h(με) � εh(λε). Let Kn be a set of cardinality
at most e(h(με)+η)n which contains g1 · · · gn with probability at least 1/2. Let
N = εn.With large probability, tN is close ton, up toη′n (whereη′ is arbitrarily
small). Hence, with probability at least 1/3, the point L1 · · · LN belongs to the
Cη′n-neighborhood of Kn , whose cardinality is at most

|Kn| · eC ′η′n � e(h(με)+η+C ′η′)n = e(h(με)+η+C ′η′)N/ε.

As η and η′ are arbitrary, this shows that h(λε) � h(με)/ε. The converse
inequality is proved in the same way. ��

The previous lemma shows that we should understand λε. We define an
auxiliary probability measure α̃ε so that λε = α̃ε ∗ βε, by

α̃ε =
∞∑

n=0

(1 − ε)nεα∗n
ε . (5.1)

In this formula, most weight is concentrated around those n of the order of 1/ε.
Hence, we have to understand the iterates of αε in time 1/ε. When �s is finite,
we will see that it has enough time to equidistribute on �s (even though αε

may give a very small weight to some elements, this weight is by construction
much larger than ε, so that 1/ε iterates are enough to equidistribute). When �s
is virtually cyclic, we will see that the random walk has enough time to drift
away significantly from the identity.

In both cases, we will need quantitative results on basic groups, but in
weakly elliptic cases (i.e., the transition probabilities are not bounded from
below). There are techniques to get quantitative estimates in such settings,
especially comparison techniques (due for instance to Varopoulos, Diaconis,
Saloff-Coste): one can compare weakly elliptic walks to elliptic ones (which
we understand well) thanks to Dirichlet forms arguments: these arguments
make it possible to transfer results from the latter to the former (modulo some
loss in the constants, due to the lack of ellipticity). We will rely on such results
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when �s is infinite. When it is finite, such techniques can also be used, but we
will rather give a more elementary argument.

We start with the case where �s is finite. We need to quantify the speed
of convergence to the stationary measure in finite groups, with the following
lemma.

Lemma 5.2 Let 
 be a finite group. Let �
 ⊆ 
 be a generating subset
(it does not have to be symmetric). Let π
 be the uniform measure on 
,
and let d(μ, π
) be the euclidean distance between a measure μ and π


(i.e.,
(∑

(μ(g) − π
(g))2
)1/2

). For any δ > 0, there exists K > 0 with the
following property. Let η > 0. Consider a probability measure μ on 
 with
μ(σ) � η for any σ ∈ �
 ∪ {e}. Then, for all n > K/η,

d(μ∗n, π
) � δ.

In other words, the time to see the equidistribution towards the stationary mea-
sure is bounded by 1/η, where η is the minimum of the transition probabilities
on �
.

Proof Endow the spaceM(
)of signedmeasures on
with the scalar product
corresponding to the quadratic form |ν|2 = ∑

ν(g)2. Denote by H = {ν :∑
ν(g) = 0} the hyperplane π⊥


 of zero mass measures. For any probability
measure ρ, denote by Mρ the left-convolution operator on M(
), that is
Mρ(ν) = ρ ∗ ν. Since convolution preserves mass, H is Mρ-invariant. Let
us prove that the operator norm of Mρ is bounded by 1. Indeed, put uρ(g) =∑

h∈
 ρ(h)ρ(hg), this is a probability measure on 
. We have

|Mρν|2 =
∑

g∈


(
Mρν(g)

)2 =
∑

(g,h1,h2)∈
3

ρ(gh−1
1 )ρ(gh−1

2 )ν(h1)ν(h2)

=
∑

(h1,h2)∈
2

ν(h1)ν(h2)uρ(h1h
−1
2 ) =

∑

(g,h)∈
2

ν(h)ν(g−1h)uρ(g)

�
∑

g∈


(
∑

h∈


|ν(h)|2
)1/2 (

∑

h∈


|ν(g−1h)|2
)1/2

uρ(g) =
∑

g∈


|ν|2uρ(g) = |ν|2.

This proves that ‖Mρ‖ � 1. Now fix ρo to be the uniform probability on the set
�
 ∪ {e}. Notice that uρo(g) > 0 for any g ∈ �
 ∪ {e}, since ρo(e) > 0. We
claim that Mρo restricted to H has an operator norm c < 1. Would it be not the
case, therewould exist ν ∈ H−{0} such that the previous inequalitieswould be
equalities. Thanks to the equality case in the Cauchy–Schwarz inequality, this
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implies that, for any g ∈ �
, the two measures h �→ ν(h) and h �→ ν(g−1h)

are positively proportional. Since their norms are equal, they must be equal.
Since �
 generates 
, ν is 
-invariant and belongs to H , so it must be zero.

By assumption, the probability μ can be decomposed as

μ = ηρo + (1 − η)ν,

where ν is some probability measure. This implies that Mμ restricted to H has
operator norm at most ηc + (1 − η). Therefore,

d(μ∗n, π
) = |μ∗n − π
| = |Mn
μ(δe − π
)| � 2(1 − (1 − c)η)n.

This inequality implies the result. ��
We can now describe the asymptotic behavior of με when the group �s is

finite.

Lemma 5.3 Assume that �s is finite. Define a new probability measure λ =
π�s ∗β (it generates a non-elementary subgroup). When ε tends to 0, we have
h(με) ∼ εh(λ) and �(με) ∼ ε�(λ).

Proof The random variable t1, being geometric of parameter ε, is of the order
of 1/ε with high probability (i.e., for any δ > 0, there exists u > 0 such
that P(t1 > u/ε) � 1 − δ). Writing �s = {a1, . . . , as} for the support of αε,
we have minσ∈�s αε(σ ) = (1 − ε)−1με(as), which is much bigger than ε by
definition of s. Lemma 5.2 shows that the measures α∗n

ε are close to π�s for
n � u/ε. This implies that α̃ε [defined in (5.1)] converges to π�s when ε → 0.
As βε converges to β, this shows that λε converges to λ.

The support of the measure λ contains �s and as+1, . . . , ar (as the support
of β contains {e, as+1, . . . , ar } by construction). Hence, �λ contains the non-
elementary subgroup�r . It follows that the entropy and the drift are continuous
at λ, by Proposition 2.3 and Theorem 2.9. We get h(λε) → h(λ) and �(λε) →
�(λ). With Lemma 5.1, this completes the proof. ��

We deduce from the lemma that h(με)/�(με) tends to h(λ)/�(λ). Hence,
themeasureμ� = λ satisfies the conclusion of the theorem, at least in the non-
symmetric case. In the symmetric case, where we are looking for a symmetric
measure μ� , the measure λ = π�s ∗ β is not an answer to the problem.
However, λ′ = π�s ∗β ∗π�s is symmetric, and it clearly has the same entropy
and drift as λ (since π�s ∗ π�s = π�s ). Hence, we can take μ� = λ′. This
completes the proof of Theorem 1.7 when the group �s is finite.

Example 5.4 Let � = Z/2 ∗ Z/4, with � = {a, b, b−1} (where a is the
generator of Z/2 and b the generator of Z/4), with the word distance coming
from �. [30, Section 5.1] shows that the supremum over measures supported
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on � of h(μ)/�(μ) is the growth v of the group (note that � is virtually free),
and that it is not realized by a measure supported on �. This shows that, in
Theorem 1.7, the fact that μ� may need a support larger than � is not an
artefact of the proof.

In this example, any symmetric measure on � is of the form με = (1 −
ε)δa + εβ where β is uniform on {b, b−1}. The above proof shows that, when
ε tends to 0, h(με)/�(με) converges to h(λ)/�(λ) where λ = π�s ∗ β =
1
2 (δe + δa) ∗ 1

2 (δb + δb−1) is the uniform measure on {b, b−1, ab, ab−1}.
It remains to treat the case where �s is virtually cyclic infinite. Such a

group surjects onto Z or Z � Z/2 (the infinite dihedral group), with finite
kernel. From the point of view of the random walk, most things happen in the
quotient. Hence, it would suffice to understand these two groups (separating in
the case of Z the centered and non-centered cases). We will rather give direct
arguments which do not use this reduction and which avoid separating cases.
Let t � s be the smallest index such that {a1, . . . , at } generates an infinite
group. Let η = η(ε) = με(at ), this parameter governs the equidistribution
speed on �s (or, at least, on �t , which has finite index in �s since these two
groups are virtually cyclic infinite).Wewill find the asymptotics of the entropy
and the drift in terms of η/ε (which tends to infinity by definition of s).We start
with the entropy (for which an upper bound suffices). Note that the random
walk directed by αε does not live on �s , but on a possibly bigger group since
we have put in αε all the points that fix the set {g−

0 , g+
0 } (this will be important

in the control of the drift below). Let �̃s be the group they generate, it is still
virtually cyclic (see, for instance, [17, Théorème 37 page 157]), and it contains
�s as a finite index subgroup.

Lemma 5.5 There exists a constant C such that h(λε) � C log(η/ε).

Proof Let K be the group generated by {a1, . . . , at−1}. It is finite by definition
of t . Let�′ be the set of points among at , . . . , ap which stabilize {g−

0 , g+
0 }. The

group �̃s is generated by K and�′. Let us consider the associatedword pseudo-
distance d ′, where we decide that elements in K have 0 length. This pseudo-
distance is quasi-isometric to the usual distance, and it satisfies d ′(e, xk) =
d ′(e, x) for all x ∈ �̃s and all k ∈ K .

Let us first estimate the average distance to the origin for an element
given by α̃ε. We decompose αε as the average of a measure supported on
{a1, . . . , at−1} ⊆ K , and of a measure supported on �′ (the contribution of
the latter has a mass m(ε) bounded by (p − t + 1)η � Cη). The measure α∗n

ε

can be obtained by picking at each step one of these two measures (according
to their respective weight), and then jumping according to a random element
for this measure. When we use the first measure, the d ′-distance to the origin
does not change by definition. Hence, the distance to the origin is bounded by
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the number of choices of the second measure. We obtain

Eα̃ε
(d ′(e, g)) �

∞∑

n=0

(1 − ε)nε

n∑

i=0

(
n

i

)
m(ε)i (1 − m(ε))n−i · Ci

= Cm(ε)

∞∑

n=0

(1 − ε)nε

n∑

i=1

n

(
n − 1

i − 1

)
m(ε)i−1(1 − m(ε))n−i

= Cm(ε)

∞∑

n=0

(1 − ε)nεn = Cm(ε)(1 − ε)/ε � Cη/ε.

A measure supported on the integers with first moment A has entropy
bounded by C log A + C (see, for instance, [14, Lemma 2]). The proof also
applies to virtually cyclic situations (the finite thickening does not change
anything). Therefore, we get H(α̃ε) � C log(η/ε) + C .

Finally,

H(λε) = H(α̃ε ∗ βε) � H(α̃ε) + H(βε) � C log(η/ε) + C,

since the support of βε is uniformly bounded. As η/ε → ∞, this gives
H(λε) � C log(η/ε). Finally, we estimate h(λε) = infn>0 H(λ∗n

ε )/n �
H(λε) to get the conclusion of the lemma. ��
For the drift, we need to be more precise since we need a lower bound to

conclude. We will use a lemma giving lower bounds on the equidistribution
speed in virtually cyclic infinite groups, using comparison techniques.

Lemma 5.6 Let 
 be a virtually cyclic infinite group. Let �
 ⊂ 
 be a finite
subset generating an infinite subgroup of 
. There exists a constant C with
the following property. Let η > 0. Let μ be a probability measure on 
 with
μ(e) � 1/2 and μ(σ) � η for any σ ∈ �
. Then, for all n � 1,

sup
g∈


μ∗n(g) � C(ηn)−1/2.

The interest of the lemma is that C does not depend on the measure μ, and
that we obtain an explicit control on μ∗n just in terms of a lower bound on the
transition probabilities of μ.

Proof We use the comparison method. Let ρ be the uniformmeasure on e,�


and �−1

 . The random walk it generates does not have to be transitive (since

�
 does not necessarily generate the whole group 
), but 
 is partitioned
into finitely many classes where it is transitive (and isomorphic to the random
walk on the group generated by �
). Moreover, it is symmetric, and therefore
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reversible for the counting measure m on 
. The Dirichlet form associated to
ρ is by definition

Eρ( f, f ) = 1

2

∑

x,y

| f (x) − f (y)|2ρ(x−1y),

for any f : 
 → C. As 
 has linear growth, the following Nash inequality
holds (see, for instance, [39, Proposition 14.1]):

‖ f ‖6L2 � C‖ f ‖4L1Eρ( f, f ),

where all norms are defined with respect to the measure m on 
.
Let Pμ be the Markov operator associated to μ. It satisfies

‖ f ‖2L2 − ‖Pμ f ‖2L2 = 〈 f, f 〉 − 〈Pμ f, Pμ f 〉 = 〈(I − P∗
μPμ) f, f 〉.

The operator P∗
μPμ is the Markov operator associated to the symmetric prob-

ability measure ν = μ̌ ∗ μ, which satisfies ν(σ ) � η/2 for σ ∈ �
 ∪ �−1



and ν(e) � 1/4 (since μ(e) � 1/2). Therefore, ρ(g) � Cη−1ν(g) for all g.
We deduce

‖ f ‖2L2 − ‖Pμ f ‖2L2 = 〈 f, f 〉 − 〈Pν f, f 〉 =
∑

x,y

( f (x) − f (y)) f (x)ν(x−1y)

= 1

2

∑

x,y

| f (x) − f (y)|2ν(x−1y)

� η

2C

∑

x,y

| f (x) − f (y)|2ρ(x−1y) = η

C
Eρ( f, f ).

Combining this inequality with Nash inequality, we obtain

‖ f ‖6L2 � Cη−1‖ f ‖4L1(‖ f ‖2L2 − ‖Pμ f ‖2L2).

The operator P∗
μ satisfies the same inequality, for the same reason. Composing

these inequalities, we obtain an estimate for the norm of Pn
μ from L1 to L∞

(this is [38, Lemma VII.2.6]), of the form

‖Pn
μ‖

L1→L∞ � (C ′η−1/n)1/2.

Applying this inequality to the function δe, we get the desired result. ��
The previous lemma implies that, if C ′ is large enough, a neighborhood of

size (ηn)1/2/C ′ of the identity has probability for μ∗n at most 1/2. Hence, the
average distance to the origin is at least of the order of (ηn)1/2.
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Now, we study the stationary measure for βε ∗ α̃ε on ∂�. We recall that g0
is a hyperbolic element in �s , chosen once and for all.

Lemma 5.7 There exists a neighborhood U of {g−
0 , g+

0 } in ∂� such that the
stationary measure νε of βε ∗ α̃ε satisfies νε(U ) → 0.

Proof Let us first show that, for any neighborhood U of {g−
0 , g+

0 }, then
(α̃ε ∗ δz)(Uc) tends to 0, uniformly in z ∈ ∂�. This is not surprising since a
typical element for α̃ε is large in the virtually cyclic group �̃s , and sends most
points into U . To make this argument rigorous, we will use Lemma 5.6. The
definition (5.1) shows that it suffices to prove that (α∗n

ε ∗ δz)(Uc) is small for
n � u/ε, where u > 0 is fixed.

The subgroup generated by g0 has finite index in �̃s . Hence, any element in
�̃s can be written as gk0γi , for γi in a finite set. Thus, the measure α∗n

ε can be
written as

∑
cn(k, i)δgk0γi

, for some coefficients cn(k, i). Lemma 5.6 (applied

to 
 = �̃s with �
 = {a1, . . . , at }) ensures that supk,i cn(k, i) � C/(ηn)1/2.
When n � u/ε, this quantity tends to 0 since ε = o(η). We have

(α∗n
ε ∗ δz)(U

c) =
∑

k,i

cn(k, i)1(g
k
0γi z /∈ U ).

As the element g0 is hyperbolic, there exists C such that, for any w ∈ ∂�,

|{k ∈ Z : gk0w /∈ U }| � C.

The uniformity in w follows from the compactness of (∂� \ {g−
0 , g+

0 })/〈g0〉.
We obtain

(α∗n
ε ∗ δz)(U

c) �
(
sup
k,i

cn(k, i)
) ∑

i

|{k ∈ Z : gk0γi z /∈ U }|

� C sup
k,i

cn(k, i) � C/(ηn)1/2.

This shows that (α∗n
ε ∗ δz)(Uc) is small, as desired.

As α̃ε ∗ δz(Uc) tends to 0 uniformly in z, we deduce that (α̃ε ∗ νε)(Uc) also
tends to 0, and therefore that (α̃ε ∗ νε)(U ) tends to 1.

Let A = {g−
0 , g+

0 }. We claim that, for all g such that gA ∩ A 
= ∅, then
gA = A. Indeed, if g(g−

0 ) ∈ A for instance, then g−1g0g is a hyperbolic
element stabilizing g−

0 . It also stabilizes g
+
0 , by [17, Théorème 30 page 154],

i.e., g0g(g
+
0 ) = g(g+

0 ). Hence, g(g+
0 ) is a fixed point of g0, i.e., g(g

+
0 ) ∈ A.

By definition of βε, the finitely many elements of its support do not fix
A. They even satisfy gA ∩ A = ∅ for all g in this support, by the previous
argument. If U is small enough, we get gU ∩U = ∅, i.e., g(U ) ⊆ Uc.
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Finally,
νε(U

c) = (βε ∗ α̃ε ∗ νε)(U
c) � (α̃ε ∗ νε)(U ),

which tends to 1 when ε tends to 0. ��
Lemma 5.8 The drift �(λε) satisfies �(λε) � c · (η/ε)1/2.

Proof Let ρε be a stationary measure for λε, on the Busemann boundary ∂B�.
By Proposition 2.2,

�(λε) =
∫

cB(g, ξ) dρε(ξ) dλε(g),

where cB(g, ξ) = hξ (g−1) is the Busemann cocycle. As λε = α̃ε ∗ βε, this
gives

�(λε) =
∫

cB(Lb, ξ) dρε(ξ) dα̃ε(L) dβε(b).

With the cocycle relation (2.2), this becomes

�(λε) =
∫

cB(L , bξ) dρε(ξ) dα̃ε(L) dβε(b)

+
∫

cB(b, ξ) dρε(ξ) dα̃ε(L) dβε(b).

The second integral is bounded independently of ε since the support of βε is
finite. In the first integral, ξ ′ = bξ is distributed according to the measure
ρ̃ε := βε ∗ ρε, which is stationary for βε ∗ α̃ε. Lemma 5.7 implies that its
projection (πB)∗ρ̃ε on the geometric boundary, which is again stationary for
βε ∗ α̃ε, gives a small measure to a neighborhood U of {g−

0 , g+
0 }.

As the limit set of �̃s is {g−
0 , g+

0 }, there exists a constant C such that, for
all ξ /∈ π−1

B U and g ∈ �̃s , we have |hξ (g−1) − d(e, g)| � C . For ξ ∈ π−1
B U ,

we only use the trivial bound hξ (g−1) � −d(e, g), since horofunctions are
1-Lipschitz and vanish at the origin. We get

�(λε) �
∫

(L ,ξ)∈�×π−1
B Uc

d(e, L) dα̃ε(L) dρ̃ε(ξ)

−
∫

(L ,ξ)∈�×π−1
B U

d(e, L) dα̃ε(L) dρ̃ε(ξ) − C

=
(∫

d(e, L) dα̃ε(L)

)
(ρ̃ε(π

−1
B Uc) − ρ̃ε(π

−1
B U )) − C.

For small enough ε, we have ρ̃ε(π
−1
B U ) � 1/4 (and therefore ρ̃ε(π

−1
B Uc) �

3/4). Moreover, Lemma 5.6 ensures that the average distance to the origin for
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the measure α̃ε is at least c · (η/ε)1/2. Hence, the previous formula completes
the proof. ��

Combining Lemmas 5.5 and 5.8, we get

h(λε)/�(λε) � C log(η/ε)/(η/ε)1/2.

This tends to 0 since η/ε tends to infinity. We deduce from Lemma 5.1 that
h(με)/�(με) tends to 0. This is a contradiction since we were assuming that
it converges to the maximum M , which is positive.

This concludes the proof of Theorem 1.7. ��
The study of the case where �s is virtually cyclic infinite gives in particular

the following result.

Theorem 5.9 Let (�, d) be a metric hyperbolic group. Let� be a finite subset
of � which generates a non-elementary group. Let μi be a sequence of mea-
sures on �, with h(μi ) > 0, converging to a probability measure μ such that
�μ is infinite virtually cyclic. Then h(μi )/�(μi ) → 0.

Note that the precise value of �(μi ) depends on the choice of the distance, but
if two distances are equivalent then the associated drifts vary within the same
constants. Hence, the convergence h(μi )/�(μi ) → 0 does not depend on the
distance.

We recover results of Le Prince [29]: In any metric hyperbolic group, there
exist admissible probability measures with h/� < v. The construction of Le
Prince is similar to the examples given by Theorem 5.9.

Example 5.10 We can use the above proof to also find an example where
h(με)/�(με) → 0 although με tends to a measure μ for which �μ is finite
and nontrivial. Consider � = Z/2 × F2 = {0, 1} × 〈a, b〉, endowed with the
probability measure με given by

με(0, e) = με(1, e) = 1/2 − ε − ε2, με(0, a) = με(0, a
−1) = ε,

με(0, b) = με(0, b
−1) = ε2.

Themeasureμε converges toμ = (δ(0,e)+δ(1,e))/2.With the above notations,
�μ = Z/2 × {e} but �s = Z/2 × 〈a〉 is virtually cyclic infinite (so that
h(με)/�(με) → 0) and �r = �.

6 Examples for non-symmetric measures

In this section, we describe the additional difficulties that arise if one tries to
prove Theorem 1.3 for non-symmetric measures. The main problem is that
the random walk lives on the subsemigroup �+

μ , which is not a subgroup any
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more. While many cases can be handled with the tools we have described in
this article, one case can not be treated in this way: when the subsemigroup�+

μ

has no nice geometric properties (it is not quasi-convex, it is not a subgroup),
but �μ = �.

Let us first show that the growth properties of such a subsemigroup can be
more complicated than what happens for subgroups. If 
 is a subgroup of �,
either |Bn ∩ 
| � env , or |Bn ∩ 
| = o(env) (the first case happens if and
only if
 has finite index in�, see the discussion at the beginning of Sect. 4.3).
Unfortunately, the behavior of semigroups can be more complicated.

Proposition 6.1 In F2, there exists a subsemigroup 
+ such that lim inf
|Bn ∩ 
+|/|Bn| = 0 and lim sup |Bn ∩ 
+|/|Bn| > 0.

Proof Let S
n
a,a denote the geodesic words in F2 = 〈a, b〉 of length n which

start and end with a. Let n j be a sequence tending very quickly to infinity. Let

+ be the subsemigroup generated by

⋃
S
n j
a,a . Then |Bn j ∩ 
+| � c|Bn j |.

We claim that
|Bn j−1 ∩ 
+|/|Bn j−1| → 0.

Indeed, denoting by v the growth rate ofF2, the subsemigroup
+
j−1 generated

by
⋃

k< j S
nk
a,a has a growth rate which is < env , since some subwords such as

bn j−1 are forbidden in this subsemigroup. Hence, if n j is large enough with
respect to n j−1, we have |Sn j−1 ∩ 
+| = |Sn j−1 ∩ 
+

j−1| = o(e(n j−1)v). ��
In this example, most points in S

n j ∩ 
+ are introduced by S
n j
a,a . This shows

that 
+ is far from being quasi-convex. In particular, techniques based only
on non-quasi-convexity and sub- or super-multiplicativity will never show that
|Bn ∩ 
+| = o(|Bn|) for subsemigroups.

Now, we give an example of a well-behaved measure (apart from the fact
that it is not symmetric, not admissible and not finitely supported) for which
h = �v. The construction is done in free products. The idea is to forbid
simplifications, so that we have an explicit control on the random walk at
time n. To enforce this behavior, we will work in a free product �1 ∗ �2, and
consider a probability measure supported on elements of the form g1g2 with
gi ∈ �i \ {e}. The next statement applies to some non virtually free hyperbolic
groups, for instance the free product of two surface groups. It also applies to
some non-hyperbolic groups, more precisely to all finitely generated groups
without torsion and with infinitely many ends, by Stallings’ theorem. It would
be of interest to extend it to all groups with infinitely many ends. For this, we
would need to also handle amalgamated free products and HNN extensions.

Proposition 6.2 Let �1 and �2 be two nontrivial groups, generated respec-
tively by finite symmetric sets S1 and S2. Let � = �1 ∗ �2 with the generating
set S = S1 ∪ S2 and the corresponding word distance. There exists on � a
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(nonsymmetric, nonadmissible) probability measure μ, with an exponential
moment and nonzero entropy, satisfying h(μ) = �(μ)v.

Proof For i = 1, 2, let �∗
i = �i \ {e}. We claim that

∑

g1∈�∗
1 ,g2∈�∗

2

e−v|g1g2| = 1, (6.1)

where v is the growth rate of �.
Let Fi (z) be the growth series of �i , i.e., Fi (z) = ∑

g∈�i
z|g|. The spheres

S
n
i ∈ �i satisfy S

n+m
i ⊆ S

n
i · S

m
i . Hence, the sequence log |Sn

i | is subadditive.
This implies that log |Sn

i |/n converges to its infimum vi , and moreover that
|Sn

i | � envi . We deduce that the radius of convergence of Fi is e−vi , and
moreover Fi (e−vi ) = +∞.

Let F(z) be the growth series of �. As in the proof of Proposition 4.8, it is
given by

F(z) = F1(z)F2(z)

1 − (F1(z) − 1)(F2(z) − 1)
.

Assume for instance v1 � v2. As F1(e−v1) = +∞, the function (F1(z) −
1)(F2(z) − 1) takes the value 1 when z increases to e−v1 , at a point which is
precisely the radius of convergence e−v of F . This shows that (F1(e−v) − 1)
(F2(e−v) − 1) = 1 . This is precisely the equality (6.1).

We define a probability measure μ on � as follows: for (g1, g2) ∈ �∗
1 ×�∗

2 ,
let

μ(g1g2) = e−v|g1g2|.
Since there is only one way to generate the word g11g

1
2 · · · gn1gn2 using μ, we

have
μ∗n(g11g12 · · · gn1gn2 ) = e−v

∑
i |gi1gi2|.

Denoting by Xn the position of the random walk at time n, it follows that
− logμ∗n(Xn) = v|Xn|. Dividing by n and letting n tend to infinity, this gives
h(μ) = �(μ)v. ��

If one is interested in measures with finite support, one can only get the
following approximation result. It has the same flavor as Theorem 1.4, but it is
both stronger since it also applies to some non-hyperbolic groups, and weaker
since the measures it produces are not admissible nor symmetric.

Proposition 6.3 Let �1 and �2 be two nontrivial groups, generated respec-
tively by finite symmetric sets S1 and S2. Let � = �1 ∗ �2 with the generating
set S = S1 ∪ S2 and the corresponding word distance. Then

sup
{
h(μ)/�(μ) : μ finitely supported probability measure in �, �(μ) > 0

} = v.

123



Entropy and drift in word hyperbolic groups 1253

Proof Any element in� can be canonically decomposed as a word in elements
of �1 and �2. Let S

p
i, j be the set of elements of length p that start with an

element in �i and end with an element in � j . We have the decomposition

S
p = S

p
1,1 ∪ S

p
1,2 ∪ S

p
2,1 ∪ S

p
2,2.

One term in this decomposition has cardinality at least |Sp|/4. Hence, there
exist i, j such that lim sup log |Sp

i, j |/p = v. Multiplying by fixed elements at
the beginning and at the end to go from �1 to �i , and from � j to �2, we get

lim sup log |Sp
1,2|/p = v. (6.2)

Let μp be the uniform probability measure on S
p
1,2. By construction,

there are no simplifications when one iterates μp. Hence, μ∗n
p is the uni-

form probability measure on (S
p
1,2)

∗n , whose cardinality is |Sp
1,2|n . We get

H(μ∗n
p ) = n log |Sp

1,2| and L(μ∗n
p ) = np. Therefore, h(μp) = log |Sp

1,2| and
�(μp) = p, giving

h(μp)/�(μp) = log |Sp
1,2|/p.

Together with (6.2), this proves the proposition. ��
Acknowledgements Frédéric Mathéus would like to thank Pr. De-Jun Feng for suggesting
Propositions 6.2 and 6.3.
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