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We prove a local limit theorem for Lipschitz continuous observables on a weakly coupled
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studied.

Keywords: Coupled map lattice; piecewise expanding map; spectral gap; local limit
theorem.

AMS Subject Classification: 37L60, 60F05

1. Results

This paper deals with the issue of probabilistic limit theorems in dynamical systems,
i.e. limit theorems for the Birkhoff sums Snf =

∑n−1
k=0 f◦T k, where T is a probability

preserving transformation of a space X and f : X → R is an appropriate measurable
function. There are currently many techniques available to prove the central limit
theorem Snf/

√
n → N (0, σ2), let us mention for example elementary techniques,

martingales, spectral arguments. On the other hand, if one is interested in the
local limit theorem µ{Snf ∈ [a, b]} ∼ |b−a|

σ
√

2πn
, the scope of possible techniques is

much more narrow: all known proofs rely on spectral analysis of transfer operators.
Therefore, the class of systems for which a local limit theorem is proved is much
smaller.

We are interested in limit theorems for coupled map lattices. The only previ-
ous result in this context is [1], where central limit theorem, moderate deviations
principle and a partial large deviations principle were established under strong
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analyticity assumptions on the local map and the coupling. In this paper, we estab-
lish central and local limit theorems for coupled mixing interval maps under much
weaker assumptions. More precisely, we study the same class of systems as in [9].
We emphasize on local limit theorem, since it is the most demanding result. But
our method, relying on spectral analysis of transfer operators, gives other limit
theorems, see Remark 1.4 below.

Let us recall the setup from [9]. Given a compact interval I ⊂ R we will con-
sider the phase space Ω := IZ

d

. In the following we always assume without loss of
generality that I = [0, 1].

The single site dynamics is given by a map τ : I → I. We assume τ to be a con-
tinuous, piecewise C2 map from I to I with singularities at ζ1, . . . , ζN−1 ∈ (0, 1) in
the sense that τ is monotone and C2 on each component of I\{ζ0 = 0, ζ1, . . . , ζN−1,

ζN = 1}. We assume further that τ ′, τ ′′ are bounded, that inf |τ ′| > 2 and that τ is
mixing, which means that the Perron-Frobenius operator of τ acting on L1

dx has no
other unimodular eigenvalue than the simple eigenvalue 1. Next, we define the unper-
turbed dynamics T0 : Ω → Ω by [T0(x)]p := τ(xp).

To define the perturbed dynamics we introduce couplings Φε : Ω → Ω of the
form Φε(x) := x + Aε(x). We say that such a coupling has range r and strength ε

if for all k,p,q ∈ Zd

|(Aε)p|∞ ≤ 2ε, |(DAε)qp|∞ ≤ 2ε, |∂k(DAε)qp|∞ ≤ 2ε, (1.1)

and ∂pΦε,q = 0 whenever |p−q| > r. The diffusive nearest neighbor coupling used
in [10], and in much of the numerical literature, is defined by

[Φε(x)]p = xp +
ε

2d

∑
|p−q|=1

(xq − xp), p ∈ Z
d, (1.2)

and it is a trivial example of such a coupling with range r = 1 and strength ε. The
dynamics Tε : Ω → Ω that we wish to investigate is then defined as

Tε := Φε ◦ T0. (1.3)

Let m denote Lebesgue measure on the interval I. The following result is proved
in [9]:

Theorem 1.1. For each r ∈ N, there exists ε0(r) > 0 such that, for any coupling
Φε of range r and strength 0 ≤ ε ≤ ε0(r), there exists a unique measure µε such
that, for m⊗Z

d

-almost every point x,

1
n

n−1∑
k=0

δT k
ε x → µε. (1.4)

This measure µε in fact has many additional properties: it is the unique invariant
measure in the class B of measures of bounded variation (that we will define later),
it is exponentially mixing both in time and space, and the convergence (1.4) holds
for µ-almost every point whenever µ is a measure of bounded variation.
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In this paper, we prove the following theorem.

Theorem 1.2. For each r ∈ N, there exists 0 < ε1(r) ≤ ε0(r) satisfying the
following property. Let Φε be a coupling of range r and strength 0 ≤ ε ≤ ε1(r),
and let µε denote the corresponding invariant measure given by Theorem 1.1. Let
f : Ω → R be a Lipschitz function depending on a finite number of coordinates, with∫

f dµε = 0.

Central limit theorem. There exists σ2 ≥ 0 such that 1√
n

∑n−1
k=0 f ◦ T k

ε converges in
distribution to N (0, σ2), with respect to the measure µε. Moreover, σ2 = 0 if and
only if there exists a measurable function u : Ω → R such that f = u − u ◦ Tε

µε-almost everywhere.

Local limit theorem. Assume in addition that, whenever u : Ω → R is measurable
and λ ∈ R

∗, the function f −u+u◦Tε mod λ is not µε-almost everywhere constant
— we say that f is aperiodic. In particular, the variance σ2 in the central limit
theorem is nonzero. Then, for any compact interval J ⊂ R,

σ
√

2πn · µε{x : Snf(x) ∈ J} → |J |. (1.5)

Here, |J | denotes the length of the interval J .

It is probably possible to weaken the assumptions, by replacing the finite range
interaction by a short range interaction, and by allowing the function f to depend
on all coordinates but with an exponentially small influence of far away coordinates
(by mimicking the techniques of [9, Sec. 5]). On the other hand, it is unclear whether
it is possible to remove the continuity assumption on τ (notice that, for finite range
interactions, this condition is not required in [9]).

On the technical level, Theorem 1.2 is a consequence of a spectral description
of perturbed transfer operators acting on a suitable Banach space, that we now
describe. Denote by M the set of complex Borel measures on Ω where Ω is equipped
with the product topology.

Let C be a set of objects “acting on functions depending on finitely many coor-
dinates”, defined as follows. An element of C is a family (µΛ), where Λ goes through
the finite subsets of Zd, such that µΛ is a complex measure on IΛ, and such that if
Λ′ ⊂ Λ then the projection of µΛ on IΛ′

is µΛ′ . Formally, C is the projective limit
of the spaces of complex measures on IΛ, Λ finite subsets of Zd. This is a complex
vector space, and we will not use any topology on it. Note that there is a canonical
inclusion of M in C. If u is a bounded measurable function depending on a finite
number of coordinates, and µ ∈ C, then it is possible to define canonically uµ ∈ C.

If µ ∈ C and ϕ is a bounded measurable function depending on a finite number
of coordinates, it is possible to define µ(ϕ) as µΛ(ϕ) whenever Λ is large enough. If
ϕ depends on finitely many coordinates, then ϕ ◦ Tε also depends on finitely many
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coordinates. This implies that, for any µ ∈ C, there exists a unique ν ∈ C such that,
for any ϕ,

ν(ϕ) = µ(ϕ ◦ Tε). (1.6)

We write ν = Pεµ. Thus, Pε is a linear operator from C to C. It is the so-called
transfer operator of the map Tε. The image under Pε of a measure is still a measure.

Theorem 1.3. There exists a subspace D of C endowed with a complete norm ‖·‖
with the following properties. First, D contains the set of measures with bounded
variation, and for any µ ∈ D, |µ(1)| ≤ ‖µ‖. Moreover, for any finite subset Λ of
Zd, there exists a constant C(Λ) such that, for any u : Ω → C depending only on
coordinates in Λ and Lipschitz, for any µ ∈ D, uµ also belongs to D and

‖uµ‖ ≤ C(Λ)(Lip(u) + |u|∞) ‖µ‖ , (1.7)

where Lip(u) denotes the best Lipschitz constant of u. (The norm ‖ . ‖ is defined in
Eq. (2.20).)

For any r ∈ N, there exists ε1(r) > 0 such that, if Φε is a coupling with range r

and strength 0 ≤ ε ≤ ε1(r), then the following holds:

• If µ ∈ D, then Pεµ ∈ D and ‖Pεµ‖ ≤ C ‖µ‖ for some constant C. In fact, the
operator Pε has a simple eigenvalue at 1 and the rest of its spectrum is contained
in a disk of radius < 1.

• Let f be a Lipschitz function depending on a finite number of coordinates. Then
the map t 
→ Pt,ε = Pε(eitf ·) is an analytic map from R to L(D), the set of
continuous linear operators on D. If f is aperiodic, then the spectral radius of
Pt,ε is < 1 for any t �= 0.

The derivation of Theorem 1.2 from Theorem 1.3 is classical. Note, however,
that some objects from D occurring in the proof are not known to be measures, so
that one cannot directly cite [11], for example. So we will sketch the details of the
proof in Appendix A, because this seems clearer than applying an abstract result
like e.g. [7, Theorem VII.1.8] or [4, Corollary III.11].

Remark 1.4. Theorem 1.3 implies even more precise results: the limit theorems
of Theorem 1.2 hold not only for µε, but also for any probability measure µ which
belongs to D (and in particular for any probability measure of bounded variation).
In addition, further refinements of the central limit theorem hold. For example, the
speed of convergence in the central limit theorem is O(1/

√
n), a renewal theorem

holds, as well as a large deviation inequality (see again [4] for further details). One
can also derive in the same way as in [1] the moderate deviations principle.

The rest of the paper will be devoted to the proof of Theorem 1.3. The main
problem will be to get a Lasota–Yorke inequality with compactness, since the space
of measures of bounded variation is not compact in the space of finite measures.
We will therefore use artificial extensions as in [9], but we will lose control in the
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“central box” due to the factor eitf . This loss will be compensated by the fact that,
in large but finite boxes, the measures of bounded variation form a compact subset
of the set of finite measures. Technically, we will have to take larger and larger
boxes as t increases, but this causes no harm.

2. Functional Analytic Constructions

2.1. Abstract tools

We will need the following lemma.

Lemma 2.1. Let T be a transformation preserving a probability measure µ. Let
n > 0. Then a function f is aperiodic for T if and only if Snf is aperiodic for T n.

Proof. If f is periodic, then there exist c, d > 0 and u measurable such that
f = u − u ◦ T + d mod c. Therefore, Snf = u − u ◦ T n + nd mod c, hence Snf is
periodic.

Conversely, assume that Snf is periodic for T n, i.e. Snf = u−u◦T n +d mod c.
Then Sn(f − u + u ◦ T ) = d mod c. For any function v, Snv is cohomologous to nv

(since v ◦ T k is cohomologous to v). Therefore, there exists a function w such that

n(f − u + u ◦ T ) = Sn(f − u + u ◦ T ) + w − w ◦ T = d + w − w ◦ T mod c. (2.1)

Therefore, f is cohomologous to a constant modulo c/n, and f is periodic.

We will also need the following formula on the essential spectral radius.

Lemma 2.2. Let Q be a continuous linear operator on a complex Banach space
(B, ‖·‖). Assume that there exists a semi-norm ‖·‖w on B such that any sequence
xn in B with ‖xn‖ ≤ 1 contains a Cauchy subsequence for ‖·‖w. Assume moreover
that there exist σ > 0 and C > 0 such that, for any x ∈ B,

‖Qx‖ ≤ σ ‖x‖ + C ‖x‖w . (2.2)

Then the essential spectral radius of Q is at most σ.

This is a version of a theorem by Hennion [3], where one does not need to be
able to iterate the operator for the weak norm (in the forthcoming application, the
operator Q will indeed not be continuous for the weak norm).

Proof. Let M > 0 be such that ‖Qx‖ ≤ M ‖x‖. Notice also that there exists by
assumption a constant C > 0 such that ‖x‖w ≤ C ‖x‖ for all x ∈ B. It allows to
define a new seminorm on B by ‖x‖′w =

∑
n≥0(2M)−n ‖Qnx‖w. It satisfies the same

compactness assumptions as ‖·‖w. Moreover, Q is continuous for this seminorm. We
can therefore iterate the equation ‖Qx‖ ≤ σ ‖x‖ + C ‖x‖′w , and get an estimate

‖Qnx‖ ≤ σn ‖x‖ + Cn ‖x‖′w . (2.3)

The aforementioned theorem of Hennion [3, Corollaire 1] gives the conclusion.
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2.2. Measures of bounded variation

The concept of measures of bounded variation will play a central role. For µ ∈ M
and p ∈ Zd, we define

Varpµ := sup
|ϕ|C0(Ω)≤1

µ(∂pϕ). (2.4)

Here, the sup is restricted to functions which are C1 in xp, depending only on a
finite number of coordinates. Let also

Varµ = sup
p∈Zd

Varp µ. (2.5)

The set B := {µ ∈ M : Var µ < ∞} consists of measures whose finite dimensional
marginals are absolutely continuous with respect to Lebesgue and the density is a
function of bounded variation. In fact, “Var” is a norm and, with this norm, B is a
Banach space.

We define also in the same way, for any subset Λ of Z
d and any measure µΛ

on IΛ,

VarΛµΛ = sup
p∈Λ

Varp µΛ. (2.6)

We also need the usual total variation norm on complex measures:

|µ| := sup
|ϕ|C0(Ω)≤1

µ(ϕ). (2.7)

Just like in [8, Sec. 3.3] one checks easily that

|µ| ≤ 1
2
Varp µ, p ∈ Z

d. (2.8)

For µ ∈ M, let A(µ) denote its absolute value, it is a positive measure.

Lemma 2.3. If µ ∈ B, then A(µ) ∈ B and Var A(µ) ≤ Var(µ).

Proof. When µ is a measure with bounded variation on an interval, then the
formula VarA(µ) ≤ Var(µ) is a direct consequence of the formula

Var(µ) = inf
f dm=dµ

sup
x1<···<xk

∑
|f(xi+1) − f(xi)|. (2.9)

Indeed, if dµ = fdm then dA(µ) = |f |dm, and the formula ||f |(xi+1) − |f |(xi)| ≤
|f(xi+1) − f(xi)| implies the conclusion.

In dimension n, the variation of a measure can be written as the integral of
one-dimensional variations (see e.g. (43) in [8]). Hence, the result is implied by the
one-dimensional result.

Consider now a measure µ ∈ B. If A(µ) = 0, there is nothing to do. Otherwise,
we can assume without loss of generality that A(µ) is a probability measure. There
exists a measurable function ϕ, of absolute value almost everywhere equal to one,
such that µ = ϕA(µ). Let ψ be a C1 test function depending on a finite number of
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coordinates and bounded by 1, and let q ∈ Zd. For any finite box Λ (containing all
the coordinates on which ψ depends), the finite dimensional result implies

A(πΛµ)(∂qψ) ≤ Var(A(πΛµ)) ≤ Var(πΛµ) ≤ Var(µ), (2.10)

where πΛµ is the projection of µ on IΛ. Let ϕΛ denote the conditional expecta-
tion (for the measure A(µ)) of the function ϕ with respect to the σ-algebra of
sets depending only on coordinates in Λ. Then πΛ(µ) = πΛ(ϕAµ) = ϕΛπΛ(Aµ).
Therefore, A(πΛµ) = |ϕΛ|πΛ(Aµ). Hence, (2.10) reads∫

|ϕΛ|∂qψ d(Aµ) ≤ Var(µ). (2.11)

When the box Λ increases, the sequence of functions ϕΛ converges in L1(Aµ) to
ϕ, by the martingale convergence theorem. Therefore, |ϕΛ| converges to |ϕ| = 1.
Taking the limit in (2.11), we get∫

∂qψ d(Aµ) ≤ Var(µ). (2.12)

An element µ of B gives rise to an element (µΛ)Λ of C canonically by taking the
induced measure on every finite subset of Zd. It satisfies

sup
Λ

VarΛ(µΛ) < ∞. (2.13)

Lemma 2.4. Conversely, consider an element (µΛ)Λ of C satisfying (2.13). Then
it comes from an element of B.

Proof. Let Λn be an increasing sequence of boxes. Define a measure µn on IZ
d

by µn = µΛn ⊗ m⊗Z
d\Λn . The sequence µn has uniformly bounded variation. Let

µ be one of its weak limits. Its marginal on each box Λ coincides with µΛ by
construction.

For u : Ω → R and p ∈ Zd, let

Lipp(u) = sup
x∈IZd\{p}

sup
xp 	=x′

p∈I

u(xp,x) − u(x′
p,x)

|xp − x′
p|

. (2.14)

Lemma 2.5. For any u : Ω → R depending on a finite number of coordinates, any
µ ∈ B and any p ∈ Zd,

Varp(uµ) ≤ sup |u|Varp(µ) + Lipp(u)|µ|. (2.15)

Proof. In one dimension, this is a consequence of [8, Lemma 2.2(b)] and the fact
that a Lipschitz function is differentiable almost everywhere and is equal to the
integral of its derivative. This extends to finite boxes by (43) in [8]. Taking the
supremum over finite boxes yields the conclusion of the lemma.
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2.3. A family of extensions

For p ∈ Zd, denote by Bp the set of measures µ in B such that, whenever a test
function ϕ does not depend on the coordinate p, then µ(ϕ) = 0.

We can now define a family of extensions. We adapt the construction of
[9, Sec. 3], the main difference being that we keep a central part of the measure on
a finite subset of Zd.

Let Λ be a finite subset of Zd, we define a space E(Λ) as follows. An element
of E(Λ) is a family µ = (µc, (µp)p∈Zd\Λ) such that µc is a measure of the form
ν ⊗ mZ

d\Λ where ν is a measure on IΛ, and µp ∈ Bp. Here, m denotes Lebesgue
measure on I. We assume moreover

‖µ‖ := max
(
Var(µc), sup

p∈Zd\Λ
Var(µp)

)
< ∞. (2.16)

On E(Λ), we also define a “weak norm” by

‖µ‖w = |µc|. (2.17)

The unit ball of (E(Λ), ‖·‖) is relatively compact for the seminorm ‖·‖w.
There is a canonical projection from E(Λ) to C, given by the sum of the measures

µc and (µp)p∈Zd\Λ. We will denote it by ΠE(Λ) or simply by Π. We describe now a
(non-canonical) redistribution process introduced in [9]. Let B be a subset of Zd,
of cardinality J ∈ [0,∞]. Let σ : [0, J) → B be an enumeration of the points in B.
For j ≤ J , let Bj = σ[0, j). In particular, B0 = ∅ and BJ = B. If µ ∈ B, define
measures µp, for p ∈ B, by

µp = πZd\Bj
µ ⊗ m⊗Bj − πZd\Bj+1µ ⊗ m⊗Bj+1 , where j = σ−1(p). (2.18)

By construction, µ = πZd\Bµ⊗m⊗B +
∑

p∈B µp, and µp ∈ Bp satisfies Var(µp) ≤
2Var µ. We say that πZd\Bµ ⊗ m⊗B is the part of µ remaining at the end of the
redistribution process.

Using this process for B = Zd\Λ, we obtain a map HΛ which associates to any
µ ∈ B an element HΛ(µ) ∈ E(Λ). It satisfies ‖HΛ(µ)‖ ≤ 2Var(µ), and Π ◦HΛ = Id.

Finally, let f be a Lipschitz function depending on a finite number of coordi-
nates, and let t ∈ R. Assume that the function tf depends only on coordinates
in Λ. For each n ∈ N, we define on E(Λ) an operator Qt,ε,n,Λ, which is a (non-
canonical) lift of Pn

t,ε on C. Starting from µ = (µc, (µp)) ∈ E(Λ), apply first Pn
t,ε to

each measure µc and µp. Then, redistribute the mass as follows:

• For dist(p, Λ) > nr, distribute Pn
t,εµp to B = {q : |q−p| ≤ nr}. The points of B

are all outside of Λ. Moreover, since µp ∈ Bp and tf depends only on coordinates
in Λ, we have πZd\B(Pn

t,εµp) = 0, i.e. there is no mass remaining at the end of
this redistribution process.

• For the other measures, use HΛ.
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We get as in [9, Lemma 3.1]

‖Qt,ε,n,Λµ‖ ≤ 2B(Λ, n, r) sup
(
Var(Pn

t,εµc), sup
p∈Zd\Λ

Var(Pn
t,εµp)

)
(2.19)

with B(Λ, n, r) = #{q ∈ Zd : dist(q, Λ) ≤ nr} + #{q ∈ Zd : |q| ≤ nr}, since every
new measure receives a contribution from a number of sites bounded by B(Λ, n, r).
Note that we have written n as an index and not an exponent, in Qt,ε,n,Λ, since
these operators are not the powers of a single operator due to the (non-canonical)
redistribution process.

Note that the extension E(∅) is at the heart of the proof of [9].

2.4. Construction of a canonical extension

Let Λ be a finite subset of Zd. Let E(Λ)0 ⊂ E(Λ) be the kernel of ΠE(Λ), i.e.
the elements of E(Λ) which induce the zero measure on the basis. This is a closed
subspace of E(Λ), we can therefore consider the quotient space D(Λ) := E(Λ)/E(Λ)0
with its canonical norm. The map ΠE(Λ) induces a map ΠD(Λ) : D(Λ) → C, which
is injective. In this way, we can therefore consider D(Λ) as a subspace of C.

Since ΠE(Λ)◦Qt,ε,n,Λ = Pn
t,ε◦ΠE(Λ), the operator Qt,ε,n,Λ leaves E(Λ)0 invariant,

and induces therefore a map Q̄t,ε,n,Λ on D(Λ). An interesting consequence of this
construction is that Q̄t,ε,n,Λ = Q̄n

t,ε,1,Λ, i.e. we are really dealing with the powers of a
single operator. This is due to the fact that the non-canonicity in the redistribution
process is killed by the quotient, any redistribution would induce the same map
on D(Λ).

Proposition 2.6. If Λ, Λ′ are two finite subsets of Zd, then the subsets
ΠD(Λ)(D(Λ)) and ΠD(Λ′)(D(Λ′)) of C are equal, and the induced norms are
equivalent.

Proof. It is sufficient to prove this for Λ′ ⊂ Λ. Consider Λ′ ⊂ Λ, and construct a
continuous linear map from E(Λ) to E(Λ′) by redistributing the mass of µc in any
convenient way. This induces a map from D(Λ) to D(Λ′). Conversely, starting from
an element of E(Λ′), we can consider µc+

∑
p∈Λ\Λ′ µp and redistribute it in any way,

to get an element of E(Λ). Going to the quotient gives a canonical map from D(Λ′) to
D(Λ), which is inverse to the previous one. Hence, we have constructed a canonical
isomorphism between D(Λ) and D(Λ′), which commutes with the projections ΠE(Λ)

and ΠE(Λ′). We get the proposition by projecting everything in C.

Let D ⊂ C be obtained by projecting any D(Λ). It is independent of the choice
of Λ. We consider on it the norm given by the projection of the norm on D(∅) —
any other choice would give an equivalent norm. This is the space described in
Theorem 1.3.
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In another way, the norm of an element µ ∈ C is the infimum of the quantity

max
(
|µ(1)|, sup

p∈Zd

Var(µp)
)

(2.20)

over all decompositions µ = µ(1)m⊗Z
d

+
∑

p∈Zd µp where µp ∈ Bp. The elements of
D are exactly those elements of C for which such a decomposition exists with finite
(2.20).

3. Proof of the Main Theorem

From this point on, we fix a range r. The next lemma gives a contraction estimate
for the action of Pn

ε on the measures µ ∈ Bp. This is essentially contained in [9],
one simply has to check that the only variations involved in the computation are
those of points close to p.

Lemma 3.1. There exist α, ρ ∈ (0, 1), ε1 = ε1(r) > 0 and C = C(r) > 0 such
that, for any coupling Φε of range r and strength 0 ≤ ε ≤ ε1, for all p ∈ Zd, for all
n ∈ N, and for all µ ∈ Bp,

|Pn
ε µ| ≤ Cα2n sup

j∈Zd

ρ|j−p|Varj(µ). (3.1)

The precise choice of the constants and the details of the proof are provided in
Sec. 4.

Lemma 3.2. There exist α ∈ (0, 1) and ε1 = ε1(r) > 0 such that, for any coupling
Φε of range r and strength 0 ≤ ε ≤ ε1, and for any Lipschitz function f depending
only on a finite number of coordinates, there exists C > 0 such that, for all µ ∈ B,

for all n ∈ N, and for all t ∈ R,

Var(Pn
t,εµ) ≤ α2nVar(µ) + C(1 + |t|)|µ|. (3.2)

Proof. By Lemma 2.5, we have

Var(eitfµ) ≤ Var(µ) + C|t||µ|. (3.3)

Moreover, [8, Proposition 4.1 for θ = 1] implies that

Var(Pεµ) ≤ α2Var(µ) + C|µ|. (3.4)

Using these two equations and a geometric series, we get the conclusion.a

We fix from now on the value of ε1(r) as the minimum of those given in the two
previous lemmas, it will satisfy the conclusion of Theorem 1.3. We denote also by
α the maximum of the values given in the previous lemmas. Fix now a coupling Φε

aReferring to [8, Proposition 4.1] in this proof we make use of the assumption that inf |τ ′| > 2.
However, Var(P �

t,εµ) could be estimated, for each fixed �, just as for � = 1 in (3.3) and (3.4), and

with α ∈ (0, 1) chosen such that α−2� < inf |(τ�)′| one would recover (3.2).
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of range r and strength 0 ≤ ε ≤ ε1(r), as well as a Lipschitz function f depending
only on a finite number of coordinates, say coordinates in a box [−A, A]d. All the
constants that we will construct from this point on are allowed to depend on f as
well as r, τ .

Lemma 3.3. There exist C0 > 1, � > 0 such that, for all p ∈ Zd, for all n ∈ N

with |p| > �n, for all µ ∈ Bp,

Var(Pn
t,εµ) ≤ C0(1 + |t|)2αnVar(µ). (3.5)

Proof. Write n = a + b where a = n/2 or (n − 1)/2 depending on whether n is
even or odd. By (3.2),

Var(Pn
t,εµ) ≤ α2aVar(P b

t,εµ) + C(1 + |t|)|P b
t,εµ|. (3.6)

For the first term, (3.2) again gives Var(P b
t,εµ) ≤ C(1 + |t|)Var(µ). For the second

one, by (3.1) and Lemma 2.5,

|P b
t,εµ| = |P b

ε (eitSbfµ)| ≤ Cα2b sup
j∈Zd

ρ|j−p|Varj(eitSbfµ)

≤ Cα2b sup
j∈Zd

ρ|j−p|(Var µ + Lipj(e
itSbf )|µ|).

Define a distance on Ω by d(x,y) = supq∈Zd |xq − yq|. It does not define
the product topology but, nevertheless, there exists a constant C such that
|f(x) − f(y)| ≤ Cd(x,y) (since f is Lipschitz and depends on a finite number
of coordinates). Moreover, we have d(T0x, T0y) ≤ Cd(x,y), since τ is Lipschitz, as
well as d(Φεx, Φεy) ≤ Cd(x,y). Hence,

Lipj(e
itSbf ) ≤ |t|

b−1∑
k=0

Lipj(f ◦ T k
ε ) ≤ |t|

b−1∑
k=0

Ck ≤ |t|Cb. (3.7)

Moreover, if |j| > rb + A, the function eitSbf does not depend on the coordinate j,
hence Lipj(eitSbf ) = 0. Finally,

|P b
t,εµ| ≤ Cα2bVar µ + Cα2b sup

|j|≤rb+A

|t|ρ|j−p|Cb|µ|. (3.8)

If |p| > �n for some large enough �, we have ρ|p|−rb−ACb ≤ 1, and we get |P b
t,εµ| ≤

C(1 + |t|)α2bVar µ. Together with (3.6), this proves the lemma.

Fix t ∈ R. Let ΛN be the box [−�N, �N ]d, with � from the previous lemma. Let
N be large enough so that C0(1 + |t|)2αN ≤ 1

4B(ΛN ,N,r) . We will now work in the
extension E = E(ΛN ), and study the operator Q = Qt,ε,N,ΛN .

Lemma 3.4. There exists a constant C > 0 such that, for all µ ∈ E ,

‖Qµ‖ ≤ 1
2
‖µ‖ + C ‖µ‖w . (3.9)
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Proof. By (2.19), we have

‖Qµ‖ ≤ 2B(ΛN , N, r) sup
(
Var(PN

t,εµc), sup
p∈Zd\ΛN

Var(PN
t,εµp)

)
. (3.10)

Moreover, (3.5) shows that Var(PN
t,εµp) ≤ C0(1 + |t|)2αN ‖µ‖, while (3.2) gives

Var(PN
t,εµc) ≤ α2N ‖µ‖ + C(1 + |t|) ‖µ‖w. We get

‖Qµ‖ ≤ 2B(ΛN , N, r)max(C0(1 + |t|)2αN ‖µ‖ , α2N ‖µ‖ + C(1 + |t|) ‖µ‖w),

(3.11)

which yields the desired conclusion by the choice of N .

This is a Lasota–Yorke inequality for the operator Q. The main advantage of
this construction is that, since the unit ball of (E(Λ), ‖·‖) is relatively compact for
the seminorm ‖·‖w, we get from Lemma 2.2 that the essential spectral radius of Q

is at most 1/2. To show that the spectral radius of Q is less than 1, it is therefore
sufficient to check that there is no eigenvalue of modulus ≥ 1.

Lemma 3.5. Let λ ∈ C with |λ| ≥ 1. Let µ ∈ E satisfy Qµ = λµ. Then µ = 0, or
|λ| = 1 and tf is periodic.

Proof. Let ν = Π(µ) ∈ C. We will first check that it belongs to B. By Lemma 2.4, it
is sufficient to check that the variations of the measures νΛ are uniformly bounded.

Let ϕ be a smooth function depending on a finite number of coordinates,
bounded by 1, and fix q. Fix K ≥ A such that |q| ≤ K and that ϕ depends
only on the coordinates p with |p| ≤ K. For n ∈ N which is a multiple of N we
have, since µ is an eigenfunction of Q,

|ν(∂qϕ)| ≤ |Pn
t,εµc(∂qϕ)| +

∑
|p|≤K+rn

|Pn
t,εµp(∂qϕ)|.

Indeed, if |p| > K + rn, then

Pn
t,εµp(∂qϕ) = µp(eitSnf (∂qϕ) ◦ T n

ε ) = 0 (3.12)

since eitSnf (∂qϕ) ◦ T n
ε does not depend on xp. We get

|ν(∂qϕ)| ≤ Var(Pn
t,εµc) +

∑
|p|≤K+rn

Var(Pn
t,εµp). (3.13)

Let �′ = max(�, r) + 1 with � as in Lemma 3.3, and let k(p) be the integer part of
|p|/�′. If n ≥ K, then k(p) ≤ n whenever |p| ≤ K + rn. Then, by (3.2),

Var(Pn
t,εµp) ≤ C(1 + |t|)Var(P k(p)

t,ε µp). (3.14)

We can then use (3.5) since |p| > �k(p). We get

Var(Pn
t,εµp) ≤ C(1 + |t|)3αk(p)Var(µp). (3.15)
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Finally,

|ν(∂qϕ)| ≤ C(1 + |t|)Var(µc) + C(1 + |t|)3
∑

|p|≤K+rn

αk(p)Var(µp). (3.16)

This last sum is bounded uniformly in K and n. This proves that the variations of
the measures νΛ are uniformly bounded, i.e. ν ∈ B.

If ν = 0, the marginal of ν on ΛN vanishes, i.e. µc = 0. Therefore, ‖µ‖w = 0.
The Lasota–Yorke inequality (3.9) then gives µ = 0.

Assume now that ν �= 0. We will prove that |λ| = 1 and that tf is periodic. The
measure ν satisfies PN

t,εν = λν. The absolute value A(ν) of the measure ν belongs
to B, by Lemma 2.3. It satisfies

A(ν) = |λ|−1A(PN
t,εν) ≤ PN

ε A(ν), (3.17)

where the last inequality is obtained by the following direct computation:

A(PN
t,εν)(ϕ) = sup

|g|≤1

|(PN
t,εν)(g · ϕ)| = sup

|g|≤1

∣∣ν(eitSN f · g ◦ T N
ε · ϕ ◦ T N

ε

)∣∣
≤ sup

|g|≤1

|ν(g · ϕ ◦ T N
ε )| = PN

ε A(ν)(ϕ). (3.18)

Since A(ν) and PN
ε A(ν) have the same mass, this yields A(ν) = PN

ε A(ν) and
|λ| = 1. Since A(ν) belongs to B, it has to be a scalar multiple of the SRB measure
µε, see Theorem 1.1. In particular, ν is absolutely continuous with respect to µε, and
the Radon–Nikodym derivative g = dν

dµε
is a function of almost everywhere constant

modulus. Since we assume ν to be nonzero, we have |g| �= 0 almost everywhere. Then

PN
ε

(
eitSN f g

g ◦ T N
ε

µε

)
=

1
g
PN

ε (eitSN fgµε) =
1
g
PN

t,ε(ν) = λ
1
g
ν = λµε. (3.19)

In particular,

1 =
∣∣∣∣
∫

eitSN f g

g ◦ T N
ε

dµε

∣∣∣∣ ≤
∫ ∣∣∣∣eitSN f g

g ◦ T N
ε

∣∣∣∣ dµε = 1. (3.20)

Therefore, we have equality in the inequality, and eitSN f g
g◦T N

ε
is almost everywhere

equal to a constant of modulus 1. This shows that tSNf is periodic for T N
ε . By

Lemma 2.1, tf is periodic for Tε.

Proof of Theorem 1.3. The extension D is as described in Sec. 2.4. The formula
(2.20) for the norm clearly gives |µ(1)| ≤ ‖µ‖.

Let Λ be a fixed box, we want to check Eq. (1.7), i.e.

‖uµ‖ ≤ C(Λ)(Lip(u) + |u|∞) ‖µ‖ (3.21)

whenever u is Lipschitz continuous and depends only on coordinates in Λ. Let
us first work in the extension E(Λ). If µ = (µc, (µp)p∈Zd\Λ) ∈ E(Λ), then all the
measures uµp still belong to Bp, and they satisfy Var(uµp) ≤ (Lipu + |u|∞)Varµp

by Lemma 2.5. Moreover, uµc is still of the form ν ⊗ mZ
d\Λ, and its variation is
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at most (Lip u + |u|∞)Varµc, again by Lemma 2.5. Hence, the multiplication by u

is well defined on E(Λ) and its norm is at most (Lipu + |u|∞). This multiplication
leaves E(Λ)0 invariant, hence induces an operator on the quotient space D(Λ) with
the same bound on its norm (see Sec. 2.4). Since D(Λ) is isomorphic to D by
Proposition 2.6, this proves (3.21).

In order to get analyticity of t 
→ Pt,ε, it is enough to prove that the map
Mt(µ) = eitfµ depends analytically on t. For this, we only have to check that the
series expansion

∑
n≥0

(itf)n

n!
µ (3.22)

is well defined for any µ ∈ D. But this is a direct consequence of (3.21), since∥∥∥∥ (itf)n

n!
µ

∥∥∥∥ ≤ C(Lip(fn) + |fn|∞) ‖µ‖ |t|n
n!

≤ C(nLip(f) + |f |∞)|f |n−1
∞ ‖µ‖ |t|n

n!
. (3.23)

This gives analyticity of Mt, and its series expansion.
In [9], it is proved that, in the extension E(∅), the operator Q0,ε,N,∅ (which is a

lift of PN
0,ε on C) has a simple eigenvalue at 1 for sufficiently large N , the rest of its

spectrum being contained in a disk of radius < 1: this is indeed an easy consequence
of Lemma 3.1. After a quotient by E(∅)0 (which is left invariant by Q0,ε,N,∅), this
implies that PN

ε acts continuously on D, has a simple eigenvalue at 1 and the rest
of its spectrum is contained in a disk of radius < 1. The same is then true for the
operator Pε itself.

Consider now t �= 0 and assume that f is aperiodic. For a suitable N and a
suitable box ΛN , Lemma 3.5 shows that the spectral radius of Qt,ε,N,ΛN is < 1 on
E(ΛN ). On the quotient D ∼= E(ΛN )/E(ΛN )0, this implies that the spectral radius
of PN

t,ε is < 1. Therefore, Pt,ε also has a spectral radius < 1.

4. Proof of Lemma 3.1

We introduce a family of additional “local” norms: for ρ ∈ (0, 1) (to be chosen
later), for any p ∈ Zd, Λ ⊂ Zd and µ ∈ B let

Varp(µ) = sup
j∈Zd

ρ|j−p|Varj(µ), (4.1)

VarΛ(µ) = sup
p∈Λ

Varp(µ). (4.2)

Observe that Var(µ) = supp Varp(µ) = VarZ
d

(µ). In this section we denote
Λ(p, n) = {q : |q−p| ≤ rn}, so the range r will often be suppressed in the notation.

For the proof of Lemma 3.1 we need two further lemmas that will be proved
later. Let λ1 = 1

2 inf |τ ′| > 1 and denote by α0 ∈ (0, 1) the mixing rate of τ .
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Lemma 4.1. (Localized Lasota–Yorke type estimate) For any λ ∈ (1, λ1), for any
range r and any ρ ∈ (0, 1), there are ε2 > 0 and C > 0 such that, for any coupling
Φε of range r and strength 0 ≤ ε ≤ ε2, for all m ∈ N, for all p ∈ Zd, and for all
ν ∈ B,

Varp(Pm
ε ν) ≤ C

(
λ−mVarp(ν) + |ν|) ≤ 2CVarp(ν). (4.3)

Lemma 4.2. For any range r and any ρ ∈ (0, 1), there are ε3 > 0 and C > 0 such
that, for any coupling Φε of range r and strength 0 ≤ ε ≤ ε3, for all m ∈ N, for all
p ∈ Zd, and for all ν ∈ Bp,

|Pm
ε ν| ≤ C(αm

0 Varp(ν) + mεVarp(ν)) . (4.4)

Proof of Lemma 3.1. We can precise the choice of the constants appearing in the
lemma: let λ ∈ (1, λ1) be fixed, then choose α, α1, ρ ∈ (0, 1) such that√

max{λ−1, α0} < α1 < ρ2rα2. (4.5)

The maximal coupling strength ε1 will have to be taken smaller than ε2 and ε3

from the previous lemmas, and even smaller in the calculation below.
Before getting into the proof of Lemma 3.1, let us establish a preliminary

inequality in the extension E(∅), using Lemmas 4.1 and 4.2. Let Q := Qt,ε,2m,∅
be the lift of P 2m

t,ε described in Sec. 2.2. It redistributes mass from a site q to sites
in Λ(q, 2m) only. We claim that there exist m ∈ N and ε1 > 0 such that, whenever
the coupling strength is at most ε1, for each Γ ⊆ Zd and each ν̃ ∈ E(∅) with ν̃c = 0,

sup
j∈q+Γ

Varq+Γ
(
(Qν̃)j

) ≤ α2m
1 sup

j∈Λ(q,2m)+Γ

VarΛ(q,2m)+Γ(ν̃j). (4.6)

In view of the redistribution mechanism described in (2.19), we have

sup
j∈q+Γ

Varq+Γ((Qν̃)j) ≤ Cmd sup
j∈Λ(q,2m)+Γ

Varq+Γ(P 2m
ε ν̃j)

≤ Cmd sup
i,j∈Λ(q,2m)+Γ

(
λ−mVari(Pm

ε ν̃j) + |Pm
ε ν̃j|

)
≤ Cmd sup

i,j∈Λ(q,2m)+Γ

(λ−mVari(ν̃j)+αm
0 Varj(ν̃j)+mε Var j(ν̃j)),

(4.7)

where we used the Lasota–Yorke type inequality (4.3) and the estimate (4.4). Hence,

sup
j∈q+Γ

Varq+Γ((Qν̃)j) ≤ Cmd sup
i,j∈Λ(q,2m)+Γ

(λ−mVari(ν̃j) + (αm
0 + mε)Var j(ν̃j))

≤ Cmd (λ−m + αm
0 + mε) sup

j∈Λ(q,2m)+Γ

VarΛ(q,2m)+Γ(ν̃j).

(4.8)

Choosing m sufficiently large and then ε1 sufficiently small, (4.6) follows.
Let us now prove Lemma 3.1. As Pε contracts the total variation norm, it suffices

to prove the lemma for multiples n = k2m of the fixed integer 2m which satisfies
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(4.6). So let µ ∈ Bp, define an element µ̃ which has only zero components except
for µ̃p = µ and observe first that

|P k2m
ε µ| ≤

∑
q∈Zd

∣∣∣(Qkµ̃)q
∣∣∣ ≤ 1

2

∑
q∈Λ(p,k2m)

Varq((Qkµ̃)q)

≤ C · (k2m)d · sup
q∈Λ(p,k2m)

Varq((Qkµ̃)q), (4.9)

where we used the fact that each application of Q := Qt,ε,2m,∅ redistributes mass
from a site q to sites in Λ(q, 2m) only.

Applying (4.6) repeatedly and observing that µ̃j = 0 if j �= p and µ̃p = µ, we
obtain

sup
q∈Λ(p,k2m)

Varq
(
(Qkµ̃)q

) ≤ sup
q∈Λ(p,k2m)

αk2m
1 sup

j∈Λ(q,k2m)

VarΛ(q,k2m)(µ̃j)

= αk2m
1 sup

q∈Λ(p,k2m)

VarΛ(q,k2m)(µ̃p)

≤ αk2m
1 ρ−2rk2mVarp(µ). (4.10)

Together with (4.9) this yields |Pn
ε µ| ≤ C nd(α1ρ

−2r)nVarp(µ), which finishes the
proof of Lemma 3.1 in view of the choice of the constants in (4.5).

Proof of Lemma 4.1. We will prove

Varp(Pεν) ≤ λ−1Varp(ν) + C|ν|. (4.11)

From this, (4.3) follows by induction.b

Observe first that

Varp(P0ν) ≤ λ−1
1 Varp(ν) + C|ν|, (4.12)

where λ1 = 1
2 inf |τ ′|. This is a simple consequence of the Lasota–Yorke inequality

for the single site map, compare e.g. the proof of Lemma 3.2 in [8]. We will show
thatc

Varp((Φε)∗ν) ≤ (1 + Cε)Varp(ν). (4.13)

We first notice that under a mild bound on the coupling strength ε, the coupling
assumption (1.1) ensures that the infinite matrix DΦε(x) is invertible. Moreover,

bIt is only here where we use the assumption inf |τ ′| > 2. For 1 < inf |τ ′| ≤ 2 this reduction to
the case m = 1 is not possible, see also the remarks in [9, Footnote 12].
cWe write F∗ν for the push-forward of the measure ν under the map F , i.e. the measure given by
(F∗ν)(A) = ν(F−1A). Note that this object is sometimes denoted by F ∗ν in [8, 9].
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taking C large enough to get 1|i−j|≤r ≤ C
2 ρ4|i−j| for all i, j ∈ Z

d, the second and
third parts of this assumption can be rewritten as

|(DAε)ij|∞ ≤ Cερ4|i−j|, |∂k(DAε)ij|∞ ≤ Cερ4|i−j|. (4.14)

A direct computation using these estimates (see for example p. 300 in [5]) gives
that B(x) := (DΦε(x))−1 satisfies

|bii|∞ ≤ 1 + Cε, |bij|∞ ≤ Cερ2|j−i|, |∂ibij|∞ ≤ Cερ2|j−i|. (4.15)

We can then follow the proof of Lemma 3.3 in [8] with some modifications. For all
j,p ∈ Zd,

ρ|j−p|((Φε)∗ν)(∂jϕ)

= ρ|j−p| ∑
i∈Zd

ν
(
∂i(ϕ ◦ Φε) bij

)
= ρ|j−p| ∑

i∈Zd

ν
(
∂i(ϕ ◦ Φε · bij)

)− ρ|j−p| ∑
i∈Zd

ν
(
ϕ ◦ Φε · ∂ibij

)
≤ ρ|j−p| ∑

i∈Zd

Vari(ν) · |bij|∞ + |ν|ρ|j−p| ·
∑
i∈Zd

|∂ibij|∞

≤ ρ|j−p|Varj(ν) + C ε

(
Varp(ν)

∑
i∈Zd

ρ|j−p|−|i−p|+2|j−i| + |ν|
∑
i∈Zd

ρ|j−p|+2|j−i|
)

≤ (1 + Cε)Varp(ν).

This yields (4.13) and finishes the proof of Lemma 4.1.

Proof of Lemma 4.2. The proof follows closely the corresponding one in [9]. For
each p ∈ Zd define a coupling map Φε,p : Ω → Ω where site p is decoupled from all
other sites,

(Φε,p(x))q =

{
xp if q = p,

(Φε(xZd\{p}, a))q if q �= p,
(4.16)

where a is an arbitrary point in I. Denote by Pε,p the Perron–Frobenius operator
of Φε,p ◦ T0. We will show that, for each ν ∈ B,

|(Φε)∗ν − (Φε,p)∗ν| ≤ CεVarp(ν). (4.17)

Then, making use of the fact that |Pε| = |Pε,p| = 1 and of estimate (4.3), a simple
telescoping argument yields

|Pm
ε ν − Pm

ε,pν| ≤ C mεVarp(ν), (4.18)

and (4.4) follows once we have shown that |Pm
ε,pν| ≤ Cαm

0 Varp(ν) for any ν ∈ Bp.
But this is proved precisely as in [9, pp. 40–41], where α0 is the mixing rate for the
single site map.
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It remains to prove (4.17). Here we can follow closely the proof of Lemma 3.2a)
in [9]. Indeed, let Ft := tΦε,p +(1− t)Φε and ∆q := (Φε,p −Φε)q. Just as in [9] one
shows that, for each test function ϕ,

(
(Φε,p)∗ν − (Φε)∗ν

)
(ϕ) =

∫ 1

0

∑
q∈Zd

(Ft)∗
(
∆q · ν)(∂qϕ)dt. (4.19)

As, in our case, ∆q = 0 if |q − p| > r, we conclude

|(Φε,p)∗ν − (Φε)∗ν| ≤
∑

|q−p|≤r

sup
0≤t≤1

Varq
(
(Ft)∗(∆q · ν)

)

≤ C
∑

|q−p|≤r

Varq(∆q · ν), (4.20)

where we used (4.13) (which applies as well to (Ft)∗) for the second inequality.
Hence, by Lemma 2.5,

|(Φε,p)∗ν − (Φε)∗ν| ≤ C
∑

|q−p|≤r

(
|∆q|∞Varq(ν) + sup

j∈Zd

ρ|j−q|Lipj(∆q)|ν|
)

≤ CεVarq(ν)

in view of assumption (1.1). This is (4.17) and finishes the proof of the lemma.

Appendix A. Proof of Theorem 1.2 Assuming Theorem 1.3

The operator Pε has a simple eigenvalue at 1, and the corresponding eigenfunction
is the invariant measure µε obtained in [9]. By classical analytic perturbation theory,
the operator Pt,ε has for small t a unique eigenvalue λ(t) close to 1, which is still
simple. Let Πt denote the corresponding spectral projection, and µt,ε = Πt(µε).
There exist δ < 1 and C > 0 such that, for all small enough t, for all n ∈ N,∣∣∣∣

∫
eitSnfdµε − λ(t)nµt,ε(1)

∣∣∣∣ ≤ Cδn. (A.1)

Hence, a precise description of the eigenvalue λ(t) will imply a central limit theorem
for the Birkhoff sums Snf .

Let νt = µt,ε/µt,ε(1). Differentiating the equality Pt,ενt = λ(t)νt and using
dPt,ε

dt

∣∣∣
t=0

= Pε(if ·), we get

Pε(ifµε) + Pε(ν′
0) = λ′(0)µε + ν′

0. (A.2)

Integrating the function 1 with respect to this equality, we obtain

i

∫
fdµε +

∫
dν′

0 = λ′(0) +
∫

dν′
0. (A.3)

Since
∫

f dµε = 0, we therefore have λ′(0) = 0.
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Differentiating twice Pt,ενt = λ(t)νt yields

Pε(−f2µε) + 2Pε(ifν′
0) + Pε(ν′′

0 ) = ν′′
0 + λ′′(0)µε. (A.4)

Integrating the function 1 yields

λ′′(0) = −
∫

f2dµε + 2i

∫
f dν′

0. (A.5)

From (A.2), we have ν′
0 = Pεν

′
0 + Pε(ifµε). Iterating this equation gives

ν′
0 = Pn

ε ν′
0 + i

n∑
k=1

P k
ε (fµε). (A.6)

Since νt(1) = 1, we have ν′
0(1) = 0. The space {µ ∈ D : µ(1) = 0} is closed and Pε

leaves this space invariant, therefore its spectral radius on this space is < 1. This
implies that Pn

ε ν′
0 converges exponentially fast to 0. In the same way, (fµε)(1) = 0,

hence P k
ε (fµε) converges exponentially fast to 0 in D. Letting n tend to infinity in

(A.6), we get ν′
0 = i

∑∞
k=1 P k

ε (fµε). In particular, ν′
0(f) = i

∑∞
k=1

∫
f · f ◦ T k

ε dµε,
and this series converges exponentially fast. From (A.5), we obtain

λ′′(0) = −
∫

f2 dµε − 2
∞∑

k=1

∫
f · f ◦ T k

ε dµε. (A.7)

Moreover,

∫ (n−1∑
k=0

f ◦ T k
ε

)2

dµε = n

∫
f2 dµε + 2

n∑
k=1

(n − k)
∫

f · f ◦ T k
ε dµε

= −nλ′′(0) − 2
∞∑

k=1

k

∫
f · f ◦ T k

ε dµε + O(δn)

= −nλ′′(0) + O(1).

Since this integral is non-negative, this shows that λ′′(0) ≤ 0. Hence, we can write
λ′′(0) = −σ2 for some σ ≥ 0. Furthermore, if λ′′(0) = 0, then Snf is bounded in
L2, which implies that f can be written as u−u◦Tε in L2 (see e.g. [6]). This proves
the nondegeneracy criterion in Theorem 1.2.

Since λ(t) = −σ2t2/2 + o(t2), λ(t/
√

n)n → e−σ2t2/2. Together with (A.1), this
shows that Snf/

√
n converges in distribution to N (0, σ2) and proves the central

limit theorem.
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The method to derive the local limit theorem from the description of λ(t) for
small t and the control of the spectral radius of Pt,ε for all t �= 0 is also classical.
We know indeed (see for example [2]) that it is sufficient to prove that

σ
√

2πn

∫
Ω

h ◦ Snf dµε →
∫

R

h dm (A.8)

for any L1 function h whose Fourier transform is continuous and null outside a
compact interval. One has in this case

σ
√

2πn

∫
Ω

h ◦ Snf dµε = σ

√
n

2π

∫ K

−K

∫
Ω

eitSnf dµε ĥ(t) dt. (A.9)

The limit term is obtained from application of (A.1) in a neighborhood of t = 0,
while the rest of the integral goes uniformly to 0 since the spectral radius of Pt,ε is
< 1 for any t �= 0. The reader is referred to [4] for further details.
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