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Abstract: For dynamical systems modeled by a Young tower with exponential tails, we
prove an exponential concentration inequality for all separately Lipschitz observables
of n variables. When tails are polynomial, we prove polynomial concentration inequal-
ities. Those inequalities are optimal. We give some applications of such inequalities to
specific systems and specific observables.
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1. Introduction

Let X be a metric space. A function K on Xn is separately Lipschitz if, for all i , there
exists a constant Lipi (K ) with

|K (x0, . . . , xi−1, xi , xi+1, . . . , xn−1)− K (x0, . . . , xi−1, x ′
i , xi+1, . . . , xn−1)|

≤ Lipi (K )d(xi , x ′
i ),

for all points x1, . . . , xn, x ′
i in X .
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Consider a stationary process (Z0, Z1, . . . ) taking values in X . We say that this pro-
cess satisfies an exponential concentration inequality if there exists a constant C such
that, for any separately Lipschitz function K (x0, . . . , xn−1), one has

E(eK (Z0,...,Zn−1)−E(K (Z0,...,Zn−1)))≤eC
∑n−1

j=0 Lip j (K )
2
. (1.1)

One should stress that this inequality is valid for all n (i.e., the constant C does not
depend on the number of variables one is considering). An important consequence of
such an inequality is a control on the deviation probabilities: for all t > 0,

P

(
|K (Z0, . . . , Zn−1)− E(K (Z0, . . . , Zn−1))| > t

)
≤ 2e

− t2

4C
∑n−1

j=0 Lip j (K )
2
.

This inequality follows from the inequality P(Y > t) ≤ e−λt
E(eλY ) (λ > 0) with

Y = K (Z0, . . . , Zn−1)− E(K (Z0, . . . , Zn−1)), then we use inequality (1.1) and opti-
mize over λ by taking λ = t/(2C

∑n−1
j=0 Lip j (K )

2).
In some cases, it is not reasonable to hope for such an exponential inequality. One

says that (Z0, Z1, . . . ) satisfies a polynomial concentration inequality with moment
Q ≥ 2 if there exists a constant C such that, for any separately Lipschitz function
K (x0, . . . , xn−1), one has

E

(
|K (Z0, . . . , Zn−1)−E(K (Z0, . . . , Zn−1))|Q

)
≤C

⎛

⎝
n−1∑

j=0

Lip j (K )
2

⎞

⎠

Q/2

. (1.2)

An important consequence of such an inequality is a control on the deviation proba-
bilities: for all t > 0,

P(|K (Z0, . . . , Zn−1)− E(K (Z0, . . . , Zn−1))| > t) ≤ Ct−Q

⎛

⎝
n−1∑

j=0

Lip j (K )
2

⎞

⎠

Q/2

.

(1.3)

The inequality (1.3) readily follows from (1.2) and the Markov inequality. However, it
is weaker in general. We will say that (Z0, Z1, . . . ) satisfies a weak L Q concentration
inequality if (1.3) holds for any separately Lipschitz function K .

For instance, if Z0, Z1, . . . is an i.i.d. process, then it satisfies an exponential concen-
tration inequality if Zi is bounded [Led01, p. 68], a polynomial concentration inequality
with moment Q ≥ 2 if Zi ∈ L Q [BBLM05], and a weak L Q concentration inequality
if P(|Zi | > t) ≤ Ct−Q (while we could not locate a proper reference in the literature,
this follows easily from classical martingale techniques and a weak L Q Rosenthal-Burk-
holder inequality – see Theorem 6.3 below).

Our main goal in this article is to study processes coming from dynamical sys-
tems: we consider a map T on a metric space X , and an invariant probability mea-
sure μ. Under suitable assumptions, we wish to show that the process (x, T x, . . . )
(where x is distributed following μ) satisfies concentration inequalities. Equivalently,
we are interested in the concentration properties of the measure μn on Xn given by
dμn(x0, . . . , xn−1) = dμ(x0)δx1=T x0 · · · δxn−1=T xn−2 . This is not a product measure
but, if the map T is sufficiently mixing, one may expect that T k(x) is more or less
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independent of x if k is large, making the process (x, T x, . . . ) look like an independent
process to some extent.

Such questions have already been considered in the literature. In particular, [CMS02]
proves that a (non-necessarily Markov) piecewise uniformly expanding map of the inter-
val satisfies an exponential concentration inequality. Polynomial concentration inequali-
ties (with moment 2, also called Devroye inequalities) have been proved in less expanding
situations (exponential Young towers – including Hénon maps – in [CCS05a], intermit-
tent map with parameter close enough to 0 in [CCRV09]). Our goal is to prove optimal
concentration inequalities for the same kind of systems. In particular, we will prove that
Young towers with exponential tails satisfy an exponential concentration inequality, and
that in Young towers with polynomial tails one can get polynomial concentration with
a moment directly related to the tails of the return time on the basis of the tower.

Concentration inequalities are a tool to bound systematically the fluctuations of ‘com-
plicated’ observables of the form K (x, T x, . . . , T n−1x). For instance, the function K
can have a complicated analytic expression or can be implicitly defined (e.g. as an opti-
mization problem). If we are able to get a good estimate of the Lipschitz constants, we
can apply the concentration inequality we have at our disposal. Various examples of
observables have been studied in [CMS02,CCS05b,CCRV09]. Since we establish here
optimal concentration inequalities, this improves automatically the bounds previously
available for these observables. We shall state explicitly some of the new results which
can be obtained.

Outline of the article. The proofs we will use for different classes of systems are all based
on classical martingale arguments. It is enlightening to explain them in the simplest pos-
sible situation, subshifts of finite type endowed with a Gibbs measure. We will do so in
Sect. 2. The following 4 sections are devoted to proofs of concentration inequalities in
various kinds of dynamical systems with a combinatorial nature, namely Young towers
with exponential tails in Sect. 3, with polynomial tails in Sect. 4 (the invertible case is
explained in Sect. 5), and with weak polynomial tails in Sect. 6. Several applications to
concrete dynamical systems and to specific observables are described in Sect. 7. Finally,
an appendix is devoted to the proof of a particularly technical lemma.

In this paper, the letter C denotes a constant that can vary from line to line (or even
on a single line).

2. Subshifts of Finite Type

In this section, we describe a strategy to prove concentration inequalities. It is very
classical, uses martingales, and was for instance implemented for dynamical systems in
[CMS02] and for weakly dependent processes in [Rio00]. Our proofs for more compli-
cated systems will also rely on this strategy. However, it is enlightening to explain it in
the most simple situation, subshifts of finite type.

2.1. Unilateral subshifts of finite type. Let X ⊂ �N be the state space of a topologi-
cally mixing one-sided subshift of finite type, with an invariant Gibbs measure μ, and
the combinatorial distance d(x, y) = βs(x,y), where β < 1 is some fixed number and
s(x, y) is the separation time of x and y, i.e., the minimum number n such that T n x and
T n y do not belong to the same element of the Markov partition. Writing x = (x0x1 . . . )

and y = (y0 y1 . . . ), then s(x, y) = inf{n : xn �= yn}.
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Theorem 2.1. The system (X, T, μ) satisfies an exponential concentration inequality.

Fix a separately Lipschitz function K (x0, . . . , xn−1). We consider it as a function on
XN depending only on the first n coordinates (therefore, we will write Lipi (K ) = 0 for
i ≥ n). We endow XN with the measure μ∞ limit of the μN when N → ∞. On XN,
let Fp be the σ -algebra of events depending only on the coordinates (x j ) j≥p (this is a
decreasing sequence of σ -fields). We want to write the function K as a sum of reverse
martingale differences with respect to this sequence. Therefore, let K p = E(K |Fp) and
Dp = K p − K p+1. The function Dp is Fp-measurable and E(Dp|Fp+1) = 0. Moreover,
K − E(K ) = ∑

p≥0 Dp.
The main point of the proof is to get a good bound on Dp:

Lemma 2.2. There exist C > 0 and ρ < 1 such that, for any p, one has

|Dp| ≤ C
p∑

j=0

ρ p− j Lip j (K ).

We then use the Hoeffding-Azuma inequality (see e.g. [MS86, p. 33] or [Led01, p. 68]),
saying that for such a sum of martingale increments,

E(e
∑P−1

p=0 Dp ) ≤ e
∑P−1

p=0 sup |Dp |2
.

The Cauchy-Schwarz inequality gives
⎛

⎝
p∑

j=0

ρ p− j Lip j (K )

⎞

⎠

2

≤
⎛

⎝
p∑

j=0

ρ p− j Lip j (K )
2

⎞

⎠ ·
⎛

⎝
p∑

j=0

ρ p− j

⎞

⎠

≤ C
p∑

j=0

ρ p− j Lip j (K )
2.

Summing over p, we get
∑P−1

p=0 sup |Dp|2 ≤ C
∑

j Lip j (K )
2. Using the Hoeffding-

Azuma inequality at a fixed index P , and then letting P tend to infinity, we get

E(e
∑

Dp ) ≤ eC
∑

Lip j (K )
2
, which is the desired exponential concentration inequality

since
∑

Dp = K − E(K ).
It remains to prove Lemma 2.2. Let g denote the inverse of the jacobian of T , and

g(k) the inverse of the jacobian of T k . Let L denote the transfer operator associated to
the map T , defined by duality by

∫
u · v ◦ T dμ = ∫ Lu · v dμ. It can be written as

Lu(x) = ∑
T y=x g(y)u(y). In the same way, Lku(x) = ∑

T k y=x g(k)(y)u(y). One can
define a Markov chain by jumping from a point x to one of its preimages y with the
probability g(y), then L is simply the Markov operator corresponding to this Markov
chain. In particular,

K p(x p, x p+1, . . . ) = E(K |Fp)(x p, x p+1, . . . ) = E(K (X0, . . . , X p−1, x p, . . . )|X p = x p)

=
∑

T p(y)=x p

g(p)(y)K (y, . . . , T p−1 y, x p, . . . ).

To prove that Dp is bounded, i.e., K p is close to K p+1, one should show that this quantity
does not depend too much on x p. The preimages of x p under T p equidistribute in the
space, therefore one should be able to show that K p is close to an integral quantity. This
is done in the following lemma.
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Lemma 2.3. We have
∣
∣
∣
∣K p(x p, . . . )−

∫

K (y, . . . , T p−1 y, x p, . . . ) dμ(y)

∣
∣
∣
∣ ≤ C

p−1∑

j=0

Lip j (K )ρ
p−1− j ,

where C > 0 and ρ < 1 only depend on (X, T ).

This lemma implies in particular that K p(x p, x p+1, . . . ) − K p(x ′
p, x p+1, . . . ) is

bounded by C
∑p

j=0 Lip j (K )ρ
p− j . Averaging over the preimages x ′

p of x p+1, we get
the same bound for Dp(x p, x p+1, . . . ), proving Lemma 2.2.

Proof of Lemma 2.3. The equidistribution of the Markov chain starting from x p is for-
mulated most conveniently in terms of the transfer operators, which act on functions of
one variable. Therefore, we will eliminate the variables x0, . . . , x p−1 one after the other.
Let us fix a point x∗ in X , we decompose K p as

K p(x p, . . . ) =
p−1∑

i=0

∑

T p(y)=x p

g(p)(y)(K (y, . . . , T i y, x∗, . . . , x∗, x p, . . . )

− K (y, . . . , T i−1 y, x∗, . . . , x∗, x p, . . . ))

+K (x∗, . . . , x∗, x p, . . . ).

For fixed i , we may group together those points y ∈ T −p(x p) that have the same image
under T i , splitting the sum

∑
T p(y)=x p

as
∑

T p−i (z)=x p

∑
T i (y)=z . Since the jacobian is

multiplicative, one has g(p)(y) = g(i)(y)g(p−i)(z). Let us define a function

fi (z) =
∑

T i y=z

g(i)(y)(K (y, . . . , T i y, x∗, . . . , x∗, x p, . . . )

− K (y, . . . , T i−1 y, x∗, . . . , x∗, x p, . . . ))

=
∑

T i y=z

g(i)(y)H(y, . . . , T i y). (2.1)

Denoting by L the transfer operator (which satisfies Lk f (x) = ∑
T k (z)=x g(k)(z) f (z)),

we obtain

K p(x p, . . . ) =
p−1∑

i=0

Lp−i fi (x p) + K (x∗, . . . , x∗, x p, . . . ).

The function H is bounded by Lipi (K ), hence | fi | ≤ C Lipi (K ) (since
∑

T i y=z g(i)

(y) = 1 by invariance of the measure). To estimate the Lipschitz norm of fi , we write

fi (z)− fi (z
′) =

∑
(g(i)(y)− g(i)(y′))H(y, . . . , T i y)

+
∑

g(i)(y′)(H(y, . . . , T i y)− H(y′, . . . , T i y′)), (2.2)

where z and z′ are two points in the same partition element, and their respective pre-
images y, y′ are paired according to the cylinder of length i they belong to. A distortion
control gives |g(i)(y)− g(i)(y′)| ≤ Cg(i)(y)d(z, z′), hence the first sum is bounded by
C Lipi (K )d(z, z′). For the second sum, substituting successively each T j y with T j y′,
we have
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|H(y, . . . , T i y)− H(y′, . . . , T i y′)| ≤ 2
i∑

j=0

Lip j (K )d(T
j y, T j y′)

≤ 2
i∑

j=0

Lip j (K )β
i− j d(z, z′).

Summing over the different preimages of z, we deduce that the Lipschitz norm of fi is
bounded by C

∑i
j=0 Lip j (K )β

i− j .
Let C be the space of Lipschitz functions on X , with its canonical norm ‖ f ‖C =

sup | f | + Lip( f ). The operator L has a spectral gap on C: there exist C > 0 and
ρ < 1 such that

∥
∥Lk f − ∫ f dμ

∥
∥C ≤ Cρk ‖ f ‖C . We get

∥
∥Lp−i fi − ∫ fi dμ

∥
∥C ≤

Cρ p−i ∑i
j=0 Lip j (K )β

i− j . This bound in C implies in particular a bound for the su-
premum. Increasing ρ if necessary, we can assume ρ ≥ β. Summing those bounds, one
obtains

∣
∣
∣K p(x p, . . . )−

p−1∑

i=0

∫

fi dμ− K (x∗, . . . , x∗, x p, . . . )

∣
∣
∣

≤ C
p−1∑

i=0

ρ p−i
i∑

j=0

Lip j (K )ρ
i− j ≤ C

p−1∑

j=0

Lip j (K )ρ
p− j (p − j)

≤ C ′
p−1∑

j=0

Lip j (K )(ρ
′)p− j ,

for any ρ′ ∈ (ρ, 1).
Finally, when one computes the sum of the integrals of fi , there are again cancela-

tions, leaving only
∫

K (y, . . . , T p−1 y, x p, . . . ) dμ(y). 
�

2.2. Bilateral subshifts of finite type. We consider now XZ ⊂ �Z the state space of a
topologically mixing bilateral subshift of finite type, together with an invariant Gibbs
measure μZ. For two points x = (. . . x−1x0x1 . . . ) and y = (. . . y−1 y0 y1 . . . ) in XZ,
let sZ be their bilateral separation time, i.e., inf{|n| : xn �= yn}, and define a distance
dZ(x, y) = βsZ(x,y) for some β < 1. We denote a function on Xn

Z
by KZ(x0, . . . , xn−1),

to emphasize the dependence both on the past and the future.

Theorem 2.4. The system (XZ, T, μZ) satisfies an exponential concentration inequality.

This is stronger than Theorem 2.1, which proves this statement for functions KZ(x0,

. . . , xn−1) depending only on the future (xi )
∞
0 of each variable. We will deduce Theo-

rem 2.4 from this statement by an approximation argument, by sending everything far
away in the future.

Proof. Let us first assume that XZ is the full shift. We fix a function KZ(x0, . . . , xn−1)

depending both on the past and future of the variables. For N ∈ N, we define
KN (x0, . . . , xn+N−1) = KZ(xN , . . . , xn+N−1). Thanks to the invariance of the mea-
sure, it is equivalent to prove concentration inequalities for KZ or KN .
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Let us now define a function �N : Xn+N
Z

→ Xn+N
Z

depending only on the future of

the variables, and let us write K̃N = KN ◦�N . Since this function only depends on the
future, Theorem 2.1 applies to it.

We set �N (x0, . . . , xn+N−1) = (y0, . . . , yn+N−1), where the yi are defined induc-
tively as follows. First, let us choose an arbitrary past (p)−1−∞, and let y0 =
((p)−1−∞, (x0)

∞
0 ): it only depends on the future of x0. If y0, . . . , yi−1 are already defined,

we let yi = ((yi−1)
0−∞, (xi )

∞
0 ). In other words,

yi = ((p)−1−∞, (x0)0, (x1)0, . . . , (xi−1)0, (xi )
∞
0 ), (2.3)

with an origin laid on (xi )0. This defines the function�N , only depending on the future
of the points.

Let us study the Lipschitz constants of K̃N = KN ◦�N . If we fix x j for j �= i and
vary xi , then we change y j for j ≥ i , at its coordinate with index −( j − i). Therefore,

Lipi (K̃N ) ≤
∑

j≥i

Lip j (KN )β
j−i .

With Cauchy-Schwarz inequality, we get
∑

Lipi (K̃N )
2 ≤ C

∑
Lipi (KN )

2 =
C
∑

Lipi (KZ)
2, for some constant C . Applying Theorem 2.1 to K̃N and changing

variables by x ′ = T N x , we obtain
∫

eK̃N (T −N x ′,...,T −1x ′,x ′,...,T n−1x ′) dμZ(x
′)

≤ e
∫

K̃N (T −N x ′,...,T −1x ′,x ′,...,T n−1x ′) dμZ(x ′)eC
∑n−1

i=0 Lipi (KZ)
2
.

By construction, the function K̃N (T −N x ′, . . . , T −1x ′, x ′, . . . , T n−1x ′) converges to
KZ(x ′, . . . , T n−1x ′) when N tends to infinity. Hence, the previous equation gives the
desired exponential concentration.

When XZ is not the full shift, there is an additional difficulty: one can not define
�N as above, since a point defined in (2.3) might use forbidden transitions. We should
therefore modify the definition of �N as follows. For any symbol a of the alphabet,
we fix a legal past p(a) of a. We define �N (x0, . . . , xN+n−1) = (y0, . . . , yN+n−1)

by y0 = (p((x0)0), (x0)
∞
0 ) (this point is admissible). Then, if the transition from

(xi−1)0 to (xi )0 is permitted, we let yi = ((yi−1)
0−∞, (xi )

∞
0 ), and otherwise we let

yi = (p((xi )0), (xi )
∞
0 ). Therefore, the points yi only use permitted transitions. The rest

of the argument goes through without modification. 
�

3. Uniform Young Towers with Exponential Tails

There are two different definitions of Young towers, given respectively in [You98] and
[You99]. The difference is on the definition of the separation time: in the first definition,
one considers that the dynamics is expanding at every iteration, while in the second
definition one considers that the dynamics is expanding only when one returns to the
basis of the tower. Therefore, there is less expansion with the second definition than with
the first one, making it more difficult to handle. We will say that Young towers in the
first sense are uniform, while Young towers in the second sense are non-uniform. In this
section, we work with the (easier) first definition, which turns out to be the most inter-
esting when dealing with exponential tails. Here is the formal definition of a uniform
Young tower: it is a space 	 satisfying the following properties:
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(1) This space is partitioned into subsets	α,� (for α ∈ N and � ∈ [0, φ(α)−1], where
φ is an integer-valued return time function). The dynamics sends bijectively 	α,�
on 	α,�+1 if � < φ(α)− 1, and 	α,φ(α)−1 on 	0 := ⋃

α 	α,0.
(2) The distance is given by d(x, y) = βs(x,y), where β < 1 and s(x, y) is the separa-

tion time for the whole dynamics, i.e., the first n such that T n x and T n y are not in
the same element of the partition.

(3) There is an invariant probability measure μ such that the inverse g of its jacobian
satisfies |g(x)/g(y) − 1| ≤ Cd(T x, T y) for any x and y in the same element of
the partition.

(4) We have gcd(φ(α) : α ∈ N) = 1 (i.e., the tower is aperiodic).

When the return time function φ has exponential tails, i.e., there exists c0 > 0 with∫
	0

ec0φ dμ < ∞, we say that the tower has exponential tails. We will write h(x) = �

if x ∈ 	α,�: this is the height of the point in the tower. For x ∈ 	, we will also denote
by πx its projection in the basis, i.e., the unique point y ∈ 	0 such that T h(x)(y) = x .

Theorem 3.1. Let (	, T, μ) be a uniform Young tower with exponential tails. It satisfies
an exponential concentration inequality: there exists C > 0 such that, for any n ∈ N,
for any separately Lipschitz function K (x0, . . . , xn−1),

∫

eK (x,T x,...,T n−1x) dμ(x) ≤ e
∫

K (x,...,T n−1x) dμ(x)eC
∑n−1

i=0 Lipi (K )
2
. (3.1)

Let us first remark that, for any ε0 > 0, it is sufficient to prove the theorem for
functions K such that Lipi (K ) ≤ ε0 for all i . Assume indeed that this is the case, and
let us prove the general case. Let K (x0, . . . , xn−1) be a separately Lipschitz function.
Let us fix an arbitrary point x∗ in	. To any (x0, . . . , xn−1), we associate (y0, . . . , yn−1)

by yi = xi if Lipi (K ) ≤ ε0 and yi = x∗ otherwise. The function K̃ (x0, . . . , xn−1) =
K (y0, . . . , yn−1) satisfies Lipi (K̃ ) ≤ ε0 for all i . Moreover,

|K − K̃ | ≤
∑

i

Lipi (K )1(Lipi (K ) > ε0) ≤
∑

i

Lipi (K )
2/ε0.

Therefore, the inequality (3.1) for K̃ readily implies the same inequality for K , with a
different constant C ′ = C + 2/ε0.

Let us now fix a suitable ε0 (the precise conditions will be given in the proof
of Lemma 3.3), and let us consider a function K with Lipi (K ) ≤ ε0 for all i . To
prove the exponential concentration inequality, we follow the strategy of Sect. 2. Let
K p(x p, . . . ) = E(K |Fp)(x p, . . . ); the first step is to prove an analogue of Lemma 2.3.
Since the transfer operator has a spectral gap on a suitable space of functions, as shown
by Young in [You98], we can easily mimic the proof of this lemma.

Lemma 3.2. For all x p ∈ 	0,

∣
∣
∣
∣K p(x p, . . . )−

∫

K (y, . . . , T p−1 y, x p, . . . ) dμ(y)

∣
∣
∣
∣ ≤ C

p−1∑

j=0

Lip j (K )ρ
p−1− j ,

where C > 0 and ρ < 1 only depend on 	.

The main difference with the subshift case is that this bound is only valid for h(x p) =
0. It is of course false if h(x p) is large, since there is no averaging mechanism in this
case.
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Proof. As in the proof of Lemma 2.3, we write

K p(x p, . . . ) =
p−1∑

i=0

Lp−i fi (x p) + K (x∗, . . . , x∗, x p, . . . ),

where the function fi is bounded by Lipi (K ), and the Lipschitz norm of fi on any
partition element is at most C

∑i
j=0 Lip j (K )ρ

i− j for some ρ < 1.

Let C be the space of functions on	 such that | f (x)| ≤ Ceεh(x) and | f (x)− f (y)| ≤
Cd(x, y)eεh(x) for all x, y in the same partition element. Young proves in [You98] that,
if ε is small enough, then L has a spectral gap on C: there exist C > 0 and ρ < 1 such
that

∥
∥Lk f − ∫ f dμ

∥
∥C ≤ Cρk ‖ f ‖C .

We obtain
∥
∥Lp−i fi − ∫ fi dμ

∥
∥C ≤ Cρ p−i ∑i

j=0 Lip j (K )ρ
i− j . This bound in C

gives in particular a bound on the supremum for points at height 0, and in particular at
the point x p. Summing those bounds over i , we get the desired result exactly as in the
proof of Lemma 2.3. 
�

The next step of the proof is the following lemma. It is here that the Lipschitz
constants Lip j (K ) should all be bounded by ε0. As before, let K p = E(K |Fp), and
Dp = K p − K p+1.

Lemma 3.3. There exist ε0 > 0, C1 > 0 and ρ < 1 such that any function
K (x0, . . . , xn−1) with Lip j (K ) ≤ ε0 for all j satisfies, for any p,

E(eDp |Fp+1)(x p+1, . . . ) ≤ eC1
∑p

j=0 Lip j (K )
2ρ p− j

.

Proof. If the height of x p+1 is positive, then this point has a unique preimage y, and
Dp(y, x p+1, . . . ) = 0. Therefore, E(eDp |Fp+1)(x p+1, . . . ) = 1 and the estimate is
trivial.

Assume now that h(x p+1) = 0. Let us denote by {zα} the preimages of
x p+1 under T (with zα ∈ 	α,φ(α)−1). Let A(z) = Dp(z, x p+1, . . . ), we have
E(eDp |Fp+1)(x p+1, . . . ) = ∑

g(zα)eA(zα).
Fix a point z = zα , with height h ≥ 0. If h ≤ p, consider the projec-

tion π z of z in the basis of the tower. Since K p(z, . . . ) = K p−h(π z, . . . , z, . . . ),
Lemma 3.2 shows that K p(z, . . . ) is equal to

∫
K (y, . . . , T p−h y, π z, . . . ) dμ(y) up

to C
∑p−h−1

j=0 Lip j (K )ρ
p−h−1− j . Up to an additional error

∑p
j=p−h Lip j (K ), this is

equal to
∫

K (y, . . . , T p y, x p+1, . . . ) dμ(y). Applying again Lemma 3.2 (but to the point
x p+1), we obtain

|A(z)| = |K p(z, x p+1, . . . )− K p+1(x p+1, . . . )|

≤ C
∑

j<p−h

Lip j (K )ρ
p−h− j +

p∑

j=p−h

Lip j (K ).

This estimate is also trivially true if h > p (by convention, one sets Lip j (K ) = 0 for
j < 0). In particular, since sup Lip j (K ) ≤ ε0, we always get |A(z)| ≤ C0(h + 1)ε0 for
some C0 > 0 (independent of the value of ε0). Using the inequality (x1 + · · · + xk)

2 ≤
k
∑

x2
i , we get



852 J.-R. Chazottes, S. Gouëzel

|A(z)|2 ≤ C

⎛

⎝
∑

j<p−h

Lip j (K )ρ
p−h− j

⎞

⎠

2

+ C(h + 1)
p∑

j=p−h

Lip j (K )
2

≤ C
∑

j<p−h

Lip j (K )
2ρ p−h− j + C(h + 1)

p∑

j=p−h

Lip j (K )
2, (3.2)

where we used Cauchy-Schwarz inequality in the last inequality.
The function A satisfies a neat bound on points zα with small height, but it is

unbounded on points with large height. Therefore, the Hoeffding-Azuma inequality
does not apply (contrary to the subshift of finite type case). While there are certainly
exponential inequalities in the literature that can handle this situation, it is simpler to
reprove everything since we are not interested in good constants.

We have |eA − 1 − A| ≤ A2e|A| for any real number A. Therefore,
∣
∣
∣
∣
∣

∑

α

g(zα)(e
A(zα) − 1 − A(zα))

∣
∣
∣
∣
∣
≤
∑

g(zα)A(zα)
2e|A(zα)|.

In the right-hand side, g(zα) ≤ Cμ(	α,0) by bounded distortion, and |A(zα)| ≤
C0ε0(1 + φ(α)) as we explained above. Together with (3.2), we get
∑

g(zα)A(zα)
2e|A(zα)|

≤ C
∑

h≥0

μ(φ = h)eC0ε0h

⎛

⎝
∑

j<p−h

Lip j (K )
2ρ p−h− j + (h + 1)

p∑

j=p−h

Lip j (K )
2

⎞

⎠ .

Since the tower has exponential tails, we have μ(φ = h) ≤ ρh
0 for some ρ0 < 1. If

ε0 is small enough, we get μ(φ = h)eC0ε0h ≤ ρh
1 for some ρ1 < 1. Therefore, in the

previous bound, the coefficient of Lip j (K )
2 is at most

∑

h<p− j

ρh
1ρ

p−h− j +
∑

h≥p− j

(h + 1)ρh
1 ≤ (p − j)ρ p− j

2 + ρ p− j
2 ,

for some ρ2 < 1. This is bounded by Cρ p− j for some ρ < 1. Hence, we have proved
that

∣
∣
∣
∣
∣

∑

α

g(zα)(e
A(zα) − 1 − A(zα))

∣
∣
∣
∣
∣
≤ C

∑

j≤p

ρ p− j Lip j (K )
2.

Since
∑

g(zα) = 1 and
∑

g(zα)A(zα) = 0, the left hand side is equal to∣
∣∑ g(zα)eA(zα) − 1

∣
∣. Finally,

|E(eDp |Fp+1)(x p+1, . . . )| =
∣
∣
∣
∑

g(zα)e
A(zα)

∣
∣
∣ ≤ 1 + C

∑

j≤p

ρ p− j Lip j (K )
2

≤ eC
∑

j≤p ρ
p− j Lip j (K )

2
.

This concludes the proof. 
�
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Proof of Theorem 3.1. Consider a function K with Lip j (K ) ≤ ε0 for all j . Using induc-
tively Lemma 3.3, we get for any P ,

E

(
e
∑P−1

p=0 Dp |FP

)
≤ eC1

∑P−1
p=0

∑p
j=0 Lip j (K )

2ρ p− j ≤ eC
∑

Lip j (K )
2
.

Since
∑P−1

p=0 Dp converges to K − E(K ) when P tends to infinity, we obtain

E(eK−E(K )) ≤ eC
∑

Lip j (K )
2
. This proves the exponential concentration inequality in

this case. The general case follows, as we explained after the statement of the theorem.

�

The exponential concentration inequalities for uniform Young towers with exponen-
tial tails easily extends to invertible situations, as follows. Consider TZ : 	Z → 	Z the
natural extension of such a Young tower, with bilateral separation time sZ, and distance
dZ(x, y) = βsZ(x,y) for some β < 1.

Theorem 3.4. The transformation TZ satisfies an exponential concentration inequality.

The proof is exactly the same as the proof of Theorem 2.4, exploiting the result for the
non-invertible transformation.

4. Non-uniform Young Towers with Polynomial Tails

In this section, we consider Young towers in the sense of [You99], i.e., non-uniform
Young towers. The combinatorial definition is the same as in Sect. 3, the difference
is on the definition of the separation time (and therefore of the distance) as follows.
Let 	0 be the basis of the tower, let T0 : 	0 → 	0 be the induced map on 	0 (i.e.,
T0(x) = T φ(x)(x), where φ(x) is the return time of x to	0). For x, y ∈ 	0, let s(x, y)
be the smallest integer n such that T n

0 (x) and T n
0 (y) are not in the same partition element.

This separation time is extended to	 as follows. For x, y ∈ 	, let s(x, y) = s(πx, πy)
if x and y are in the same partition element, and s(x, y) = 0 otherwise. In other words,
s(x, y) is the number of returns to the basis before the trajectories of x and y separate.
Finally, the new distance is d(x, y) = βs(x,y) for some β < 1.

Intuitively, we are now considering maps that are expanding only when one returns
to the basis, and can be isometries between successive returns, while the maps of Sect. 3
are always expanding. The setting is not uniformly expanding any more, rather non-uni-
formly expanding. For instance, intermittent maps can be modeled using non-uniform
Young towers.

If the tails are not exponential any more, one can not hope to get exponential con-
centration inequalities. If the tails have a moment of order q ≥ 2, then the moments of
order 2q − 2 of Birkhoff sums are controlled, and this is optimal [MN08, Thm. 3.1].
Our goal in this section is to generalize this result to a concentration inequality (with the
same optimal moment).

Theorem 4.1. Let T : 	 → 	 be a non-uniform Young tower. Assume that, for some
q ≥ 2,

∑
φ(α)qμ(	α,0) < ∞. Then T satisfies a polynomial concentration inequality

with moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N, for
any separately Lipschitz function K (x0, . . . , xn−1),
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∫ ∣
∣
∣
∣K (x, . . . , T n−1x)−

∫

K (y, . . . , T n−1 y) dμ(y)

∣
∣
∣
∣

2q−2

dμ(x)

≤ C

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

The proof is considerably more difficult than the arguments in the previous section
(and also than the arguments of [MN08] since the main inequality these arguments
rely on, due to Rio, is of no help in our situation). The general strategy is the same as
in the previous sections: decompose K − E(K ) as

∑
Dp, where Dp is a martingale

difference sequence, obtain good estimates on Dp, and then apply a martingale inequal-
ity (in our case, the Rosenthal-Burkholder inequality) to obtain a bound on K − E(K ).
The difficulty comes from the non-uniform expansion of the map: instead of a uniformly
decaying geometric series as in the previous sections, our estimates will be non-uniform,
quantified by the number of visits to the basis in a definite amount of time.

The rest of this section is devoted to the proof of Theorem 4.1. In particular, we will
always assume that	 is a non-uniform Young tower satisfying

∑
φ(α)qμ(	α,0) < ∞

for some q ≥ 2.

Remark 4.2. The arguments below also give an exponential concentration inequality in
non-uniform Young towers with exponential tails, thereby strengthening Theorem 3.1.
Since most interesting Young towers with exponential tails are uniform, we will not give
further details in this direction.

4.1. Notations. As usual, the letter C denotes a constant that may change from one occur-
rence to the next. Let us also introduce a similar notation for sequences. For Q ≥ 0, we
will write c(Q)n for a sequence of nonnegative numbers such that

∑
nQc(Q)n < ∞, and we

will allow this sequence to change from one line to the other (or even on the same line).
We will also write d(Q)n for a generic nonincreasing sequence with

∑
nQd(Q)n < ∞.

If un and vn are sequences, their convolution u�v is given by (u�v)n = ∑n
k=0 ukvn−k .

One easily checks that, for Q, Q′ ≥ 0,

(c(Q) � c(Q
′))n ≤ c(min(Q,Q′))

n . (4.1)

Following the above convention, this statement should be understood as follows: if
two sequences u and v satisfy, respectively,

∑
nQun < ∞ and

∑
nQ′

vn < ∞, then
w = u � v satisfies

∑
nmin(Q,Q′)wn < ∞. Indeed, letting Q′′ = min(Q, Q′),

∑
nQ′′

wn =
∑

k,�

(k + �)Q′′
ukv� ≤

∑

k,�

(k + 1)Q′′
(� + 1)Q′′

ukv�

≤
(∑

(k + 1)Quk

)
·
(∑

(� + 1)Q′
v�

)
< ∞.

We also have for Q ≥ 1,

∞∑

k=n

c(Q)k ≤ d(Q−1)
n . (4.2)
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Indeed,

∑
nQ−1

∞∑

k=n

c(Q)k =
∑

k

(
k∑

n=0

nQ−1

)

c(Q)k ≤
∑

k

Ck Qc(Q)k < ∞,

and the sequence
∑∞

k=n c(Q)k is nonincreasing.

4.2. Renewal sequences of operators, estimates on the returns to the basis. An impor-
tant tool for our study will be renewal sequences of operators, as developed by Sarig and
Gouëzel [Sar02,Gou04b,Gou04c], that we will now quickly describe.

Consider a function f ; we wish to understand Ln f (x) = ∑
T n y=x g(n)(y) f (y) for

x ∈ 	0. For a preimage y of x under T n , we can consider its first entrance into	0, and
then its successive returns to 	0. We obtain a decomposition

1	0Ln =
∑

k+b=n

Tk Bb, (4.3)

where Tk takes the successive returns to 	0 (during time k) into account, and Bb
deals with the part of the trajectory outside 	0. Formally, for x ∈ 	0, Tk f (x) =∑

g(k)(y) f (y), where the sum is restricted to those y such that T k y = x and y ∈ 	0.
The operator Bb, in turn, is given on 	0 by Bb f (x) = ∑

g(b)(y) f (y), where the sum
is restricted to those y with T b y = x and y, . . . , T b−1 y �∈ 	0.

The operators Bb are essentially trivial to understand, their behavior being con-
trolled by the tails of the return time function φ. On the other hand, the operators Tk
embody most of the dynamics of the transformation. To understand them, we intro-
duce yet another operator R j considering only the first return to 	0 at time j , i.e.,
R j f (x) = ∑

g( j)(y) f (y), where the sum is restricted to those y such that T j y = x
and y ∈ 	0, T y, . . . , T j−1 y �∈ 	0. Splitting a trajectory into its successive excursions
outside of 	0, one obtains

Tk =
∑

�≥1

∑

j1+···+ j�=k

R j1 · · · R j� .

Formally, this equation can be written as
∑

Tk zk = (I −
∑

R j z
j )−1. (4.4)

In fact, the series defined in this equation are holomorphic for |z| < 1 (as operators
acting on the space C of Lipschitz functions on 	0) and this equality is a true equality
between holomorphic functions. Moreover, the spectral radius of

∑
R j z j is at most 1

for |z| ≤ 1.
A powerful way to use the previous equality is Banach algebra techniques. Simple

examples of Banach algebras are given by Banach spaces B of sequences cn such that,
if (cn)n∈N ∈ B and (c′

n)n∈N ∈ B, then their convolution c � c′ still belongs to B. For
instance, this is the case of sequences with a moment of order Q ≥ 0 (by (4.1)), or of
sequences satisfying cn = O(1/nQ) for some Q > 1. Given such a Banach algebra of
sequences B, one can consider the Banach algebra B̃ of sequences of operators (Mn)n∈N

(acting on some fixed Banach space C) such that the sequence (‖Mn‖)n∈N belongs to B.
One easily checks that B̃ is again a Banach algebra (for the convolution product).
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When the Banach algebra of sequences B satisfies a technical condition (its charac-
ters should all be given by evaluation of the power series

∑
cnzn at a point z of the unit

disk), which is satisfied in all examples we mentioned above, then one can use the Wiener
Lemma to obtain the following property: if a sequence of operators (Mn)n∈N belongs
to B̃ and

∑
Mnzn is invertible as an operator on C for any z in the closed unit disk,

then (Mn)n∈N is invertible in B̃. In particular, the power series
∑

M ′
nzn = (

∑
Mnzn)−1

satisfies (
∥
∥M ′

n

∥
∥)n∈N ∈ B.

Using Banach algebra arguments and the renewal equation (4.4), the following prop-
osition is proved in [Gou04c, Prop. 2.2.19].

Proposition 4.3. Consider a Banach algebra of sequences B satisfying several technical
conditions. If the sequence (

∑
k>n μ(φ = k))n∈N belongs to B, then this is also the case

of the sequence (‖Tn+1 − Tn‖)n∈N. Moreover, Tn converges to � : f �→ (
∫
	0

f )1	0 .

The technical conditions on the Banach algebra (all the characters of B should be
given by the evaluation at a point of the closed unit disk, and the symmetrized version
of B should contain the Fourier coefficients of partitions of unity of the circle) will not
be important for us; let us only mention that they are satisfied for the Banach algebras
of series with moments of order Q ≥ 0.

The contraction properties of the dynamics T are dictated by the number of returns
to the basis. Their asymptotics are estimated in the next lemma.

Lemma 4.4. For x ∈ 	, let ψn(x) = Card{0 ≤ k ≤ n − 1 : T k x ∈ 	0} be the number
of visits to the basis of x before time n, and let �n(x) = ρψn(x), where ρ < 1. If the
return time on 	0 has a moment of order q ≥ 1 (i.e., μ(φ = n) ≤ c(q)n ), we have

∫

T −n	0

�n dμ(x) ≤ c(q−1)
n .

This bound is optimal: on 	α,φ(α)−n (for α with φ(α) > n), we have �n = 1.
Therefore, the integral in the lemma is bounded from below by μ(

⋃
φ(α)>n 	α,0) ∼

∑∞
n+1 c(q)k ∼ c(q−1)

n .

Proof. Let us define an operator Un by the series
∑

Unzn = ∑∞
k=0(ρ

∑
Rnzn)k =

(I − ρ
∑

Rnzn)−1. Then Un f (x) = ∑
g(n)(y)�n(y) f (y), where the sum is restricted

to those y ∈ 	0 with T n y = x . Integrating and changing variables, we obtain
∫

	0

Un1(x) dμ(x) =
∫

	0∩T −n(	0)

�n(y) dμ(y).

Since the spectral radius of
∑

Rnzn is at most 1 for |z| ≤ 1, it follows that I −
ρ
∑

Rnzn is invertible on C (since ρ < 1). Moreover, the sequence ‖Rn‖ satisfies
‖Rn‖ ≤ Cμ(φ = n) ≤ c(q)n . It follows from Wiener’s Lemma that

∑
Unzn = (I −

ρ
∑

Rnzn)−1 belongs to the same Banach algebra of operators, i.e., ‖Un‖ ≤ c(q)n . We
obtain

∫

	0∩T −n	0

�n(y) dμ(y) ≤ c(q)n .

To study the integral of �n on T −n	0, denote by �b the set of points in 	 that enter
	0 exactly at time b. On �b, we have �n(y) = �n−b(T b y). A distortion control gives

∫

�b∩T −n	0

�n ≤ Cμ(�b)

∫

	0∩T −(n−b)	0

�n−b ≤ Cμ(�b)c
(q)
n−b.



Optimal Concentration Inequalities for Dynamical Systems 857

Moreover, for b > 0,�b = ⋃
φ(α)≥b 	α,φ(α)−b, hence μ(�b) ≤ ∑

�≥b c(q)� ≤ c(q−1)
b .

We obtain
∫

T −n	0

�n(y) dμ(y) =
n∑

b=0

∫

�b∩T −n	0

�n(y) dμ(y) ≤ C
n∑

b=0

c(q−1)
b c(q)n−b.

By (4.1), this is bounded by c(q−1)
n . 
�

4.3. Bounding Dp. To follow the same strategy as in the previous sections, we need to
show that K p is close to an integral, as in Lemma 2.3. To do so, as in the proof of this
lemma, we define a function fi as in (2.1), and control its iterates under the transfer
operator. The first step is to control its Lipschitz constant.

Lemma 4.5. For z and z′ with zero height, | fi (z)| ≤ C Lipi (K ) and

| fi (z)− fi (z
′)| ≤ Cd(z, z′)

i∑

j=0

Lip j (K )c
(q−1)
i− j .

Proof. The inequality | fi (z)| ≤ C Lipi (K ) is trivial. To control the Lipschitz constant,
as in (2.2), we decompose

fi (z)− fi (z
′) =

∑
(g(i)(y)− g(i)(y′))H(y, . . . , T i y)

+
∑

g(i)(y′)(H(y, . . . , T i y)− H(y′, . . . , T i y′)).

Using distortion controls, we bound the first sum by C Lipi (K )d(z, z′). For the second
sum, we replace successively each T j y with T j y′, writing it as

∑

T i y′=z′

i∑

j=0

g(i)(y′)(H(y, . . . , T j−1 y, T j y, T j+1 y′, . . . , T i y′)

−H(y, . . . , T j−1 y, T j y′, T j+1 y′, . . . , T i y′)).

Since the distance between T j y and T j y′ is bounded by�i− j (T j y′)d(z, z′), we obtain
a bound

∑

T i y′=z′

i∑

j=0

g(i)(y′)�i− j (T
j y′)Lip j (K )d(z, z′)

≤ d(z, z′)
i∑

j=0

∑

T i− j (y′
j )=z′

g(i− j)(y′
j )�i− j (y

′
j )Lip j (K )

≤ Cd(z, z′)
i∑

j=0

Lip j (K )
∫

T −(i− j)	0

�i− j ,

by bounded distortion. With Lemma 4.4, this gives the result. 
�
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To follow the strategy of proof of Lemma 2.3, we need to understand the iterates of
fi under the transfer operator. This is done in the next lemma.

Lemma 4.6. For any r ≥ 0 and any z ∈ 	0, we have

∣
∣
∣
∣Lr fi (z)−

∫

	

fi

∣
∣
∣
∣ ≤

i∑

j=0

Lip j (K )

(
r∑

k=0

c(q−2)
k c(q−1)

i− j+r−k

)

.

Proof. We will use the decomposition 1	0Lr = ∑
k+b=r Tk Bb given by (4.3) to under-

stand Lr fi .
Let us first describe the asymptotics of Tk . Let C denote the space of Lipschitz func-

tions on the basis	0 of the tower. We define an operator� on C by� f = (
∫
	0

f )1	0 .

The operators Tn converge to �. Since ‖Tn − Tn+1‖ ≤ c(q−1)
n by Proposition 4.3, we

have

‖Tk −�‖ ≤
∞∑

n=k

‖Tn − Tn+1‖ ≤
∞∑

n=k

c(q−1)
n ≤ c(q−2)

k , (4.5)

by (4.2).
We will now estimate ‖Bb fi‖C using Lemma 4.5. For z ∈ 	0, we have

Bb fi (z) =
∑

φ(α)≥b

g(b)(zα) fi (zα),

where zα is the unique preimage of z under T b in 	α,φ(α)−b. We have

|Bb fi |∞ ≤ | fi |∞ · C
∑

φ(α)≥b

μ(	α,0) ≤ C | fi |∞c(q−1)
b ≤ C Lipi (K )c

(q−1)
b . (4.6)

Let us now estimate Bb fi (z) − Bb fi (z′) for z and z′ in the same partition ele-
ment. If we form the difference g(b)(zα) − g(b)(z′

α), the resulting term is bounded by

Cd(z, z′)Lipi (K )c
(q−1)
b (using distortion controls and the same computation as in (4.6)).

On the other hand, denoting by hα = φ(α)− b the height of zα , we have

| fi (zα)− fi (z
′
α)| ≤ C

⎛

⎝
i−hα∑

j=0

Lip j (K )c
(q−1)
i− j−hα

+
i∑

j=i−hα+1

Lip j (K )

⎞

⎠ d(z, z′).

This follows from Lemma 4.5 applied to the function fi−hα and the points π zα and π z′
α .

Summing over α, we obtain a bound for the Lipschitz constant of Bb fi of the form

∑

φ(α)≥b

g(b)(zα)

⎡

⎣
i−hα∑

j=0

Lip j (K )c
(q−1)
i− j−hα

+
i∑

j=i−hα+1

Lip j (K )

⎤

⎦ .

By bounded distortion, g(b)(zα) ≤ Cμ(	α,0). Taking the union over α and writing
� = φ(α), we get that the coefficient of Lip j (K ) in this sum is bounded by

C
b+i− j∑

�=b

μ(φ = �)c(q−1)
i− j−(�−b) + C

∞∑

�=b+i− j+1

μ(φ = �).
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The second term is bounded by c(q−1)
i− j+b by (4.2), while the first term is bounded by

i− j+b∑

�=0

c(q)� c(q−1)
i− j+b−� ≤ c(q−1)

i− j+b

by (4.1). We have shown that

‖Bb fi‖C ≤
i∑

j=0

Lip j (K )c
(q−1)
i− j+b.

(The contribution of (4.6) is compatible with this bound.)
Let us now study Lr fi on 	0. We write Tk = � + Ek with ‖Ek‖ ≤ c(q−2)

k , by (4.5).
Hence,

Lr fi =
∑

k+b=r

Tk Bb fi =
∑

k+b=r

�Bb fi +
∑

k+b=r

Ek Bb fi . (4.7)

The first term is a constant function equal to
∑r

b=0

∫
	0

Bb fi . Denoting by�b the set of
points that enter 	0 exactly at time b, we have

∫
	0

Bb fi = ∫
�b

fi . As a consequence

∣
∣
∣
∣
∣

r∑

b=0

∫

	0

Bb fi −
∫

fi

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
−
∫

⋃
b>r �b

fi

∣
∣
∣
∣
∣
≤ | fi |∞

∑

b>r

μ(�b)

≤ Lipi (K )
∑

b>r

c(q−1)
b ≤ Lipi (K )c

(q−2)
r ,

by (4.2). This bound is compatible with the statement of the lemma. The second term
of (4.7) is bounded (in C norm, thus in sup norm) by

∑

k+b=r

c(q−2)
k ‖Bb fi‖C ≤

i∑

j=0

Lip j (K ) ·
∑

k+b=r

c(q−2)
k c(q−1)

i− j+b.

This proves the lemma. 
�
We can now obtain the following lemma, which is the analogue in our setting of

Lemma 2.3.

Lemma 4.7. For all x p ∈ 	0,

∣
∣
∣
∣K p(x p, . . . )−

∫

K (y, . . . , T p−1 y, x p, . . . ) dμ(y)

∣
∣
∣
∣ ≤

p−1∑

j=0

Lip j (K )c
(q−2)
p− j .

Proof. Just like in the proof of Lemma 2.3,

∣
∣
∣
∣K p(x p, . . . )−

∫

K (y, . . . , T p−1 y, x p, . . . )

∣
∣
∣
∣ ≤

p−1∑

i=0

∣
∣
∣
∣Lp−i fi (x p)−

∫

fi

∣
∣
∣
∣ .
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By Lemma 4.6, this quantity is bounded by

C
p−1∑

i=0

i∑

j=0

Lip j (K )

⎛

⎝
p−i∑

k=0

c(q−2)
k c(q−1)

i− j+p−i−k

⎞

⎠ .

The coefficient of Lip j (K ) in this sum is

p− j∑

k=0

c(q−2)
k (p − k − j)c(q−1)

p−k− j ≤
p− j∑

k=0

c(q−2)
k c(q−2)

p−k− j ≤ c(q−2)
p− j

by (4.1). This proves the lemma. 
�
The previous lemma makes it possible to control the moments of Dp = K p − K p+1:

Lemma 4.8. For all κ ≤ 2q,

E(|Dp|κ |Fp+1)(x p+1, . . . ) ≤ C
p∑

j=0

Lip j (K )
κc(q−2)

p− j

+C
∑

h≥0

c(q−κ/2)
h

⎛

⎝
p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

κ/2

.

Proof. We follow closely the strategy of the proof of Lemma 3.3. If the height of x p+1
is positive, the estimate is trivial. Otherwise, let {zα} denote the preimages of x p+1
under T , with respective height hα = φ(α)− 1. Let A(z) = Dp(z, x p+1, . . . ); we have
E(|Dp|κ |Fp+1)(x p+1, . . . ) = ∑

g(zα)|A(zα)|κ .
Fix a point z = zα with height h ≥ 0. If h ≤ p, consider the projection π z of z in the

basis of the tower. Using Lemma 4.7 (at time p − h for the point π z, and at time p + 1
for the point x p+1), we get

|A(z)| ≤
∑

j≤p−h

Lip j (K )c
(q−2)
p−h− j +

p∑

j=p−h+1

Lip j (K ). (4.8)

This estimate also holds (trivially) if h > p.
To estimate |A(z)|κ , we first use the inequality (x + y)κ ≤ Cxκ + Cyκ to separate

the two sums. Then, in the first sum, since c(q−2)
p−h− j is summable, we may use the Hölder

inequality to get
(∑

j≤p−h Lip j (K )c
(q−2)
p−h− j

)κ ≤ C
∑

j≤p−h Lip j (K )
κc(q−2)

p−h− j . For the

second sum, we write
(∑p

j=p−h+1 Lip j (K )
)2 ≤ h

∑p
j=p−h+1 Lip j (K )

2, and we obtain

|A(z)|κ ≤
∑

j≤p−h

Lip j (K )
κc(q−2)

p−h− j + Chκ/2

⎛

⎝
p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

κ/2

.
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Summing over α, we get that
∑

g(zα)|A(zα)|κ is at most

C
∞∑

h=0

μ(φ = h)

⎛

⎜
⎝
∑

j≤p−h

Lip j (K )
κc(q−2)

p−h− j + hκ/2

⎛

⎝
p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

κ/2
⎞

⎟
⎠ .

In the first sum, the coefficient of Lip j (K )
κ is at most

p− j∑

h=0

c(q)h c(q−2)
p−h− j ≤ c(q−2)

p− j

by (4.1). In the second sum, μ(φ = h)hκ/2 ≤ c(q−κ/2)
h , yielding the statement of the

lemma. 
�

4.4. Proof of Theorem 4.1. We will use the following Rosenthal-Burkholder martingale
inequality [Bur73, Thm. 21.1 and Ineq. (21.5)]. Let Fp be a decreasing sequence of
σ -algebras, and let Dp be a sequence of reverse martingale difference with respect to
Fp (i.e., Dp is Fp-measurable and E(Dp|Fp+1) = 0). For all Q ≥ 2,

∥
∥
∥
∑

Dp

∥
∥
∥

Q

L Q
≤ CE

⎛

⎝

[
∑

p

E(D2
p|Fp+1)

]Q/2
⎞

⎠ + C
∑

p

E(|Dp|Q).

We apply this inequality to Fp the σ -algebra of sets depending only on x p, x p+1, . . .,
to Dp = K p − K p+1 and to Q = 2q − 2. By Lemma 4.8 with κ = 2, we have

E(D2
p|Fp+1)(x p+1, . . . ) ≤ C

p∑

j=0

Lip j (K )
2c(q−2)

p− j + C
∑

h≥0

c(q−1)
h

p∑

j=p−h+1

Lip j (K )
2.

(4.9)

The coefficient of Lip j (K )
2 in this estimate is bounded by c(q−2)

p− j +
∑

h≥p− j+1 c(q−1)
h ≤

c(q−2)
p− j . Hence, the first term in the Rosenthal-Burkholder inequality is bounded by

C

⎛

⎝
∑

p

p∑

j=0

Lip j (K )
2c(q−2)

p− j

⎞

⎠

q−1

≤ C

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

For the second term, we should bound
∑

p E(|Dp|2q−2). We sum the estimates of Lemma
4.8 (with κ = 2q − 2), to get

∑

p

E(|Dp|2q−2) ≤ C
∑

j

∑

p≥ j

Lip j (K )
2q−2c(q−2)

p− j

+C
∑

h≥0

c(1)h

∑

p

⎛

⎝
p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

q−1

. (4.10)
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In the first sum, the coefficient of Lip j (K )
2q−2 is

∑
k c(q−2)

k ≤ C , therefore this sum is

bounded by C
∑

j Lip j (K )
2q−2 ≤ C

(∑
Lip j (K )

2
)q−1

.
The second sum is more delicate. Let us fix h and p0 ∈ [0, h), and let us consider

the contribution of those p in p0 + Zh. The intervals [p − h + 1, p] are disjoint. The
inequality

∑
xq−1

i ≤ (
∑

xi )
q−1 yields

∑

p≡p0 [h]

⎛

⎝
p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

q−1

≤
⎛

⎝
∑

p≡p0 [h]

p∑

j=p−h+1

Lip j (K )
2

⎞

⎠

q−1

≤
⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

Summing over the h possible values of p0, we get that the second sum of (4.10) is
bounded by

C
∑

h≥0

c(1)h h

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

≤ C

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

,

since
∑

hc(1)h < ∞ by definition.

We have proved that
∥
∥∑ Dp

∥
∥2q−2

L2q−2 ≤ C
(∑

j Lip j (K )
2
)q−1

. Since
∑

Dp =
K − E(K ), this proves Theorem 4.1. 
�

5. Invertible Non-uniform Young Towers

Let T : X → X be a non-uniform Young tower, with invariant measure μ. Its natural
extension TZ : XZ → XZ preserves a probability measure μZ. There is a natural dis-
tance on XZ, defined as follows. First, the positive separation time s(x, y) is defined
as for T . One can also define a negative separation time s−(x, y) in the same way, but
towards the past: one iterates towards the past until the points are in different elements
of the Markov partition, and one counts the number of visits to	0 in between. The dis-
tance dZ is then defined by dZ(x, y) = βmin(s(x,y),s−(x,y)). Geometrically, this distance
is interpreted as follows: when one returns to the basis, there is uniform contraction
along stable manifolds (corresponding to the past), and uniform expansion along unsta-
ble manifolds. Two points are close in the unstable direction if they remain close in the
future for a long time (distance βs(x,y)), while they are close in the stable direction if
they have a long common past (distance βs−(x,y)).

Theorem 5.1. Let (TZ, XZ, μZ) be the natural extension of a Young tower in which
the return time function φ has a moment of order q. This system satisfies a concentra-
tion inequality with moment 2q − 2, i.e., there exists a constant C > 0 such that, for
any n ∈ N, for any function KZ(x0, . . . , xn−1) which is separately Lipschitz for the
distance dZ,
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∫ ∣
∣
∣
∣KZ(x, . . . , T n−1x)−

∫

KZ(y, . . . , T n−1 y) dμZ(y)

∣
∣
∣
∣

2q−2

dμZ(x)

≤ C

⎛

⎝
∑

j

Lip j (KZ)
2

⎞

⎠

q−1

.

This implies Theorem 4.1 (if one considers a function KZ depending only on the
future of the points), but the converse is not true: since the contraction is not uniform,
we are not able to reduce this theorem to Theorem 4.1, contrary to what we have done
for subshifts of finite type or uniform Young towers.

For the proof, we will work with the non-invertible system X , or rather with an aug-
mented space X∗ = X ∪ {x∗}, where x∗ is a new point (at distance 1 of any point of X ,
with zero measure).

Let us start with a function KZ on XZ, depending on the past and the future of
points. We define a new function K on Xn∗ as follows. We let K (x0, . . . , xn−1) =
KZ(y0, . . . , yn−1) where the yi are defined inductively. For each element a of the par-
tition, let us fix an admissible past p(a). Let us also fix a point y∗ ∈ XZ. Let y0 =
(p((x0)0), x0) (unless x0 = x∗, in which case let y0 = y∗). If yi−1 is defined, let us
define yi . If xi = x∗, we take yi = y∗. If the transition from (xi−1)0 to (xi )0 is not
permitted, let yi = (p((xi )0), xi ). Otherwise, let yi = ((yi−1)

0−∞, xi ).
We claim that this function K satisfies an inequality

∫

X∗

∣
∣
∣
∣K (x, . . . , T n−1x)−

∫

K (y, . . . , T n−1 y) dμ(y)

∣
∣
∣
∣

2q−2

dμ(x)

≤ C

⎛

⎝
n−1∑

j=0

Lip j (KZ)
2

⎞

⎠

q−1

. (5.1)

This implies Theorem 5.1 by using the same argument as in Subsect. 2.2: let KN (y0,

. . . , yn+N−1) = KZ(yN , . . . , yN+n−1), and let K̃N be the function obtained from KN
by applying the above procedure. After a change of variables, we get from (5.1),

∫

XZ

∣
∣
∣K̃N (T

−N x, . . . , x, T x, . . . , T n−1x)− E(K̃N )

∣
∣
∣
2q−2

dμZ(x)

≤ C

⎛

⎝
n−1∑

j=0

Lip j (KZ)
2

⎞

⎠

q−1

.

When N tends to ∞, K̃N (T −N x, . . . , x, T x, . . . , T n−1x) converges to KZ(x, . . . ,
T N−1x). Hence, we obtain the desired concentration inequality by letting N tend to
infinity in the previous equation.

To prove (5.1), we follow the same strategy as in the previous section. Note that we
can not directly apply Theorem 4.1 since the Lipschitz constants of K are not easily
bounded in terms of those of KZ, due to the non-uniform expansion. Therefore, we have
to reimplement the strategy from scratch.

Let us first start with a crucial remark. When one controls the Lipschitz constants of
K in terms of those of KZ, a point x∗ blocks the propagation of modifications, in the fol-
lowing sense: consider a difference K (x0, . . . , xn−1)− K (x ′

0, . . . , x ′
n−1) where xi and
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x ′
i coincide at all indices but j . By construction of K , this is equal to KZ(y0, . . . , yn−1)−

KZ(y
′
0, . . . , y′

n−1) for some points yi , y′
i ∈ XZ. The definition shows that yi = y′

i for
i < j . On the other hand, yi and y′

i might be different for all i ≥ j , not only for i = j .
However, if there is an index k > j such that xk = x ′

k = x∗, then yi = y′
i for i ≥ k: this

follows directly from the construction. Therefore, K (x0, . . . , xn−1)− K (x ′
0, . . . , x ′

n−1)

will be estimated only in terms of Lipi (KZ) for j ≤ i < k.
To follow the same strategy as in the previous sections, we need to show that K p

is close to an integral, as in Lemma 2.3. To do so, as in the proof of this lemma, we
define a function fi as in (2.1), and control its iterates under the transfer operator. We
decompose K p(x p, . . . ) = ∑p−1

i=0 Lp−i fi (x p) + K (x∗, . . . , x∗, x p, . . . ), where

fi (z) =
∑

T i y=z

g(i)(y)(K (y, . . . , T i y, x∗, . . . , x∗, x p, . . . )

− K (y, . . . , T i−1 y, x∗, . . . , x∗, x p, . . . )).

When i < p − 1, there is a point x∗ in the definition of fi , blocking the propaga-
tion of modifications as we explained above. Therefore, we may follow the proofs of
Lemmas 4.5 and 4.6 in this setting, to obtain the following:

Lemma 5.2. If i < p − 1, we have for any r ≥ 0 and any z ∈ 	0,

∣
∣
∣
∣Lr fi (z)−

∫

	

fi

∣
∣
∣
∣ ≤

i∑

j=0

Lip j (KZ)

(
r∑

k=0

c(q−2)
k c(q−1)

i− j+r−k

)

.

On the other hand, there is no such blocking effect for f p−1, yielding a worse estimate.
Indeed, in f p−1, one considers averages of terms of the form K (y, . . . , T p−1 y, x p, . . . )−
K (y, . . . , T p−2 y, x∗, x p, . . . ). Considering the definition of K in terms of KZ, this dif-
ference reads KZ(y

′
0, . . . , y′

n−1)− KZ(y
′′
0 , . . . , y′′

n−1) where the points y′
j , y′′

j belong to
XZ, coincide for j < p − 1 and may differ for j ≥ p − 1. For j > p − 1, the points
y′

j and y′′
j have the same future, and the same past up to the index j − p. Therefore,

dZ(y
′
j , y′′

j ) ≤ βCard{k∈[p, j] : xk∈	0}. Averaging over the points y with T p−1(y) = z, we
get

| f p−1(z)| ≤
n−1∑

j=p−1

Lip j (KZ)β
Card{k∈[p, j] : xk∈	0}.

The functions L f p−1 and L f p−1 − ∫ f p−1 also satisfy the same bound.
Still following the strategy of proof of Sect. 4, we deduce from those estimates an

analogue of Lemma 4.7, with an additional error term coming from f p−1: for all x p ∈ 	0,

∣
∣
∣
∣K p(x p, . . . )−

∫

K (y, . . . , T p−1 y, x p, . . . ) dμ(y)

∣
∣
∣
∣

≤ C
p−1∑

j=0

Lip j (KZ)c
(q−2)
p− j + C

n−1∑

j=p

Lip j (KZ)β
Card{k∈[p, j] : xk∈	0}.
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In turn, this yields an analogue of Lemma 4.8, still with an additional error term: for
all κ ≤ 2q, and for all x p+1 ∈ 	0,

E(|Dp|κ |Fp+1)(x p+1, . . . ) ≤ C

⎛

⎝
∑

j≥p+1

Lip j (KZ)β
Card{k∈[p+1, j] : xk∈	0}

⎞

⎠

κ

+C
p∑

j=0

Lip j (KZ)
κc(q−2)

p− j + C
∑

h≥0

c(q−κ/2)
h

⎛

⎝
p∑

j=p−h+1

Lip j (KZ)
2

⎞

⎠

κ/2

. (5.2)

On the other hand, E(|Dp|κ |Fp+1)(x p+1, . . . ) = 0 if h(x p+1) > 0.
We can now conclude the proof of (5.1), following the strategy we used to prove

Theorem 4.1 in Subsect. 4.4. By the Rosenthal-Burkholder inequality, we have

E|K − EK |2q−2 = E

∣
∣
∣
∑

Dp

∣
∣
∣
2q−2

≤ CE

⎛

⎝

[
∑

p

E(D2
p|Fp+1)

]q−1
⎞

⎠ + C
∑

E(|Dp|2q−2).

The conditional expectations are estimated thanks to (5.2). The terms that were already
present in the proof of Theorem 4.1 are handled exactly in the same way. Therefore,
we only need to deal with the additional term. Let us define a function � j (x) =
βCard{k∈[1, j] : T k (x)∈	0} for x ∈ 	0, and � j (x) = 0 elsewhere (it is closely related
to the function � j of Lemma 4.4, with the difference that it is supported in 	0). The
additional term in the Rosenthal-Burkholder inequality is bounded by

C
∫
⎡

⎢
⎣
∑

p≥0

⎛

⎝
∑

j≥p+1

Lip j (KZ)� j−p−1(T
p+1x)

⎞

⎠

2
⎤

⎥
⎦

q−1

dμ(x)

+C
∑

p≥0

∫
⎛

⎝
∑

j≥p+1

Lip j (KZ)� j−p−1(T
p+1x)

⎞

⎠

2q−2

dμ(x).

The inequality
∑

xq−1
i ≤ (

∑
xi )

q−1 shows that the second term is bounded by the first
one. Therefore, to conclude the proof, it is sufficient to prove the following inequality:

∫
⎡

⎢
⎣
∑

p≥0

⎛

⎝
∑

j≥p+1

Lip j (KZ)� j−p−1(T
p+1x)

⎞

⎠

2
⎤

⎥
⎦

q−1

dμ(x) ≤ C
(∑

Lip j (KZ)
2
)q−1

.

(5.3)

This estimate is formulated solely in terms of the non-invertible system. Its proof
is technical and complicated. Therefore, we defer it to Theorem A.1 in Appendix A.
Modulo this result, this concludes the proof of (5.1), and of Theorem 5.1.
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6. Weak Polynomial Concentration Inequalities

The results of Sect. 4 are not completely satisfactory for the significant example of
intermittent maps. Indeed, for Pomeau-Manneville maps of index α ∈ (0, 1) (with
T (x) = x + cx1+α(1 + o(1)) for small x , see (7.4) below), the return time function
to the rightmost interval satisfies a bound μ{φ = n} ∼ C/n1/α+1. Therefore, the cor-
responding Young tower has a moment of order q for any q < 1/α (which yields a
concentration inequality of order Q for any Q < 2/α − 2 when α < 1/2), but it does
not have a moment of order 1/α. Indeed, it only has a weak moment of order 1/α, mean-
ing that μ{φ > t} ≤ Ct−1/α . An optimal concentration statement for such a map would
therefore be formulated in terms of weak moments. This is our goal in this section.

Theorem 6.1. Let T : 	 → 	 be a non-uniform Young tower. Assume that, for some
q > 2, the return time φ to the basis of the tower has a weak moment of order q, i.e.,
there exists a constant C > 0 such that μ{x ∈ 	0 : φ(x) > t} ≤ Ct−q for all t > 0.
Then T satisfies a weak polynomial concentration inequality with moment 2q − 2, i.e.,
there exists a constant C > 0 such that, for any n ∈ N, for any separately Lipschitz
function K (x0, . . . , xn−1), and any t > 0,

μ

{

x :
∣
∣
∣
∣K (x, . . . , T n−1x)−

∫

K (y, . . . , T n−1 y) dμ(y)

∣
∣
∣
∣ > t

}

≤ Ct−(2q−2)

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

Let us introduce a convenient notation. When Z is a real-valued random variable and
Q ≥ 1, we write ‖Z‖L Q,w = sup t P(|Z | > t)1/Q , so that P(|Z | > t) ≤ t−Q ‖Z‖Q

L Q,w .

This is the weak L Q (semi)norm of Z . With this notation, the statement of the theorem

becomes ‖K − E(K )‖2q−2
L2q−2,w ≤ C

(∑
j Lip j (K )

2
)q−1

, in close analogy with the state-

ment of Theorem 4.1. Note that ‖Z‖L Q,w is not a true norm: the triangle inequality fails,
and is replaced by

∥
∥Z + Z ′∥∥

L Q,w ≤ C(‖Z‖L Q,w +
∥
∥Z ′∥∥

L Q,w ). On the other hand,

∥
∥max(|Z |, |Z ′|)∥∥Q

L Q,w ≤ ‖Z‖Q
L Q,w +

∥
∥Z ′∥∥Q

L Q,w .

Since a sequence with a weak moment of order q > 2 has a strong moment of order 2,
we may use intermediate results of the proof of Theorem 4.1 (and especially Lemma 4.7)
to prove Theorem 6.1. The proofs diverge at the level of Lemma 4.8: the version we will
need in the weak moments case is the following.

Lemma 6.2. Assume that φ has a weak moment of order q > 2. For all t > 0,

P(|Dp| > t |Fp+1)(x p+1, . . . ) ≤ Ct−(2q−2)
p∑

j=0

Lip j (K )
2q−2c(0)p− j

+Ct−(2q−2)
(∑

Lip j (K )
2
)q−2

sup
h>0

⎛

⎝h−1
p∑

j=p−h+1

Lip j (K )

⎞

⎠

2

.

Proof. If h(x p+1) > 0, then x p+1 has a unique preimage x p, and Dp(x p, x p+1, . . . ) = 0.
Therefore, there is nothing to prove. Assume now that h(x p+1) = 0, and let {zα} denote
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the preimages of x p+1 under T . Writing A(z) = Dp(z, x p+1, . . . ), we have

P(|Dp| > t |Fp+1)(x p+1, . . . ) =
∑

|A(zα)|>t

g(zα).

Since φ has a weak moment of order q > 2, it has a strong moment of order 2.
Therefore, (4.8) gives

|A(z)| ≤
∑

j≤p−h

Lip j (K )c
(0)
p−h− j +

p∑

j=p−h+1

Lip j (K ) =: A1(z) + A2(z).

If |A(z)| > t , then A1(z) > t/2 or A2(z) > t/2. Therefore, P(|Dp| > t |Fp+1) is
bounded by

∑

A1(zα)>t/2

g(zα) +
∑

A2(zα)>t/2

g(zα). (6.1)

For the first sum,
∑

A1(zα)>t/2

g(zα) ≤ C
∑

g(zα)(A1(zα)/t)2q−2

≤ C
∑

h≥0

μ(φ = h)t−(2q−2)

⎛

⎝
∑

j≤p−h

Lip j (K )c
(0)
p−h− j

⎞

⎠

2q−2

≤ Ct−(2q−2)
∑

h≥0

μ(φ = h)
∑

j≤p−h

Lip j (K )
2q−2c(0)p−h− j .

The coefficient of Lip j (K )
2q−2 in this expression is

∑p− j
h=0 c(2)h c(0)p−h− j ≤ c(0)p− j . There-

fore, this is bounded by Ct−(2q−2)∑
j≤p Lip j (K )

2q−2c(0)p− j .
The second sum of (6.1) is bounded by C

∑
μ(φ = �), where the sum is restricted to

those �with
∑p

p−�+1 Lip j (K ) > t/2. Let h be the smallest such �, the sum is bounded by

μ(φ ≥ h) ≤ Ch−q ≤ Ch−q

⎛

⎝
p∑

p−h+1

Lip j (K )/t

⎞

⎠

2q−2

.

To bound the last sum, we use the inequality (
∑p

p−h+1 x j )
2 ≤ h

∑
x2

j , to obtain

h−q

⎛

⎝
p∑

p−h+1

Lip j (K )

⎞

⎠

2q−2

= h−q

⎛

⎝
p∑

p−h+1

Lip j (K )

⎞

⎠

2

·
⎛

⎝
p∑

p−h+1

Lip j (K )

⎞

⎠

2q−4

≤ h−q

⎛

⎝
p∑

p−h+1

Lip j (K )

⎞

⎠

2

·
⎛

⎝h
p∑

p−h+1

Lip j (K )
2

⎞

⎠

q−2

≤ h−2

⎛

⎝
p∑

p−h+1

Lip j (K )

⎞

⎠

2

·
⎛

⎝
∑

j∈Z

Lip j (K )
2

⎞

⎠

q−2

.

This concludes the proof. 
�
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To proceed, we need an analogue of the Rosenthal-Burkholder inequality for weak
moments. Although it is not written explicitly in Burkholder’s article [Bur73], it follows
easily from the techniques developed there, giving the following statement.

Theorem 6.3. Let (Dp) be a sequence of reverse martingale differences with respect to
a decreasing filtration Fp (i.e., Dp is Fp-measurable and E(Dp|Fp+1) = 0). For all
Q ≥ 2,

∥
∥
∥
∑

Dp

∥
∥
∥

Q

L Q,w
≤ C

∥
∥
∥
∑

E(D2
p|Fp+1)

∥
∥
∥

Q/2

L Q/2,w
+ C

∥
∥sup |Dp|

∥
∥Q

L Q,w .

In particular,

∥
∥
∥
∑

Dp

∥
∥
∥

Q

L Q,w
≤ C

∥
∥
∥
∑

E(D2
p|Fp+1)

∥
∥
∥

Q/2

L Q/2,w
+ C

∑∥
∥Dp

∥
∥Q

L Q,w .

Proof. By a truncation argument, it suffices to prove the result for bounded random
variables, and p ∈ [0, P]. Define three random variables

X = sup
0≤p≤P

∣
∣
∣
∣
∣
∣

P∑

k=p

Dk

∣
∣
∣
∣
∣
∣
, Y =

(∑
E(D2

p|Fp+1)
)1/2

, Z = max
0≤p≤P

|Dp|.

The inequality (21.2) in [Bur73] gives, for any 0 < δ < β − 1,

P(X > βt,max(Y, Z) ≤ δt) ≤ εP(X > t),

where ε = δ2/(β − δ − 1)2. In particular,

(βt)Q
P(X > βt) ≤ (βt)Q

P(max(Y, Z) > δt) + (βt)QεP(X > t)

≤ βQδ−Q ‖max(Y, Z)‖Q
L Q,w + βQε ‖X‖Q

L Q,w .

Taking the supremum over t , we obtain

‖X‖Q
L Q,w ≤ βQδ−Q ‖max(Y, Z)‖Q

L Q,w + βQε ‖X‖Q
L Q,w .

If β > 1 is fixed, and δ is chosen small enough so that βQε < 1, this yields ‖X‖Q
L Q,w ≤

C ‖max(Y, Z)‖Q
L Q,w . Since

∣
∣
∣
∑P

0 Dp

∣
∣
∣ ≤ X and ‖Y‖Q

L Q,w = ∥
∥Y 2

∥
∥Q/2

L Q/2,w , this proves the

theorem. 
�
Proof of Theorem 6.1. We have K − E(K ) = ∑

Dp, hence

‖K − E(K )‖2q−2
L2q−2,w ≤ C

∥
∥
∥
∑

E(D2
p|Fp+1)

∥
∥
∥

q−1

Lq−1,w
+ C

∑∥
∥Dp

∥
∥2q−2

L2q−2,w .

For the first term, we use the inequality ‖·‖L Q,w ≤ ‖·‖L Q . Therefore, this term is bounded
by

CE

⎛

⎝

[
∑

p

E(D2
p|Fp+1)

]q−1
⎞

⎠ .
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Since φ has a weak moment of order q, it has a strong moment of order 2. There-
fore, (4.9) gives E(D2

p|Fp+1) ≤ ∑
j≤p c(0)p− j Lip j (K )

2. Hence, the first term in the
Rosenthal-Burkholder inequality is bounded by

C

⎛

⎝
∑

p

p∑

j=0

Lip j (K )
2c(0)p− j

⎞

⎠

q−1

≤ C

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

Let us now turn to
∥
∥Dp

∥
∥

L2q−2,w . Integrating the estimates of Lemma 6.2, we get

∥
∥Dp

∥
∥2q−2

L2q−2,w ≤ C
∑

j≤p

Lip j (K )
2q−2c(0)p− j

+C
(∑

Lip j (K )
2
)q−2

sup
h>0

⎛

⎝h−1
p∑

j=p−h+1

Lip j (K )

⎞

⎠

2

. (6.2)

We should sum those estimates over p. For the first sum, we obtain

∑

j

Lip j (K )
2q−2

∑

p≥ j

c(0)p− j ≤ C
∑

j

Lip j (K )
2q−2 ≤ C

⎛

⎝
∑

j

Lip j (K )
2

⎞

⎠

q−1

.

For the second sum, let us define a function f on Z by f ( j) = Lip j (K ).
This function belongs to �2(Z). The corresponding maximal function M f (p) =
suph>0

1
2h+1

∑p+h
j=p−h f ( j) also belongs to �2(Z) and satisfies ‖M f ‖�2 ≤ C ‖ f ‖�2 ,

by Hardy-Littlewood maximal inequality. In particular,

∑

p

sup
h>0

⎛

⎝h−1
p∑

p−h+1

Lip j (K )

⎞

⎠

2

≤ C
∑

j

Lip j (K )
2.

Therefore, the contribution of the second term in (6.2) is bounded by C
(∑

Lip j (K )
2
)q−1

.
This concludes the proof of Theorem 6.1. 
�
Remark 6.4. In view of Theorems 5.1 and 6.1, it would seem natural to try to prove
a weak polynomial concentration inequality in invertible systems with weak moment
controls on the return time. We have not been able to prove such a statement.

7. Applications

In this section, we first give examples of dynamical systems satisfying an exponential
concentration inequality or only a polynomial concentration inequality. We also give
examples of systems satisfying a weak polynomial concentration inequality. Second, we
present several applications of these inequalities to specific observables. We shall not
attempt to be exhaustive. Previous results are found in [CMS02,CCS05b,CCRV09]. For
instance, we strengthen the bounds obtained in [CCS05b] since for dynamical systems
modeled by a uniform Young tower with exponential tails, we can now use an expo-
nential concentration inequality instead of a polynomial concentration inequality with
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moment 2 as in [CCS05b]. For systems modeled by a non-uniform Young tower, only
a polynomial concentration inequality with moment 2 was known for intermittent maps
of the interval (under some restrictions on the parameter). We now have at our disposal
an optimal polynomial concentration inequality for these maps, and more generally, for
dynamical systems modeled by non-uniform Young towers with polynomial tails.

7.1. Examples of dynamical systems. There are well-known dynamical systems (X, T )
which can be modeled by a uniform Young tower with exponential tails [You98]. Exam-
ples of invertible dynamical systems fitting this framework are for instance Axiom
A attractors, Hénon attractors for Benedicks-Carleson parameters [BY00], piecewise
hyperbolic maps like the Lozi attractor, some billiards with convex scatterers, etc. Such
systems admit an SRB measure μ and there is an invertible uniform Young tower
(	Z, T̂Z, μ̂Z) and a projection map π : 	Z → X such that T ◦ π = π ◦ T̂Z and
μ = μ̂Z◦π−1. In the non-invertible case, there is a non-invertible Young tower (	, T̂ , μ̂)
and a corresponding projection map. A non-invertible example is the quadratic family
for Benedicks-Carleson parameters. In both cases, it can also be ensured that the projec-
tion map is contracting, i.e., d(πx, πy) ≤ d̂β(x, y) for every x, y in the same partition
element. Here, d̂β denotes the (unilateral or bilateral) symbolic distance in the tower
given by d̂β(x, y) = βs(x,y) for some β < 1. In particular, if f is a bounded Lipschitz
function on X , it lifts to a function f ◦π which is Lipschitz in the tower. More generally,
if f is Hölder continuous, then its lift is Lipschitz for d̂β if β is close enough to 1.
Therefore, all the results we proved in the previous sections for Lipschitz observables
K have a counterpart about Hölder ones; we will not give further details in this direction
and restrict to the Lipschitz situation for ease of exposition. We will also assume for
simplicity that X is bounded.

Theorem 7.1. Let (X, T ) be a dynamical system modeled by a uniform Young tower
with exponential tails and let μ be its SRB measure. There exists C > 0 such that, for
any n ∈ N, for any separately Lipschitz function K (x0, . . . , xn−1),

∫

eK (x,T x,...,T n−1x) dμ(x) ≤ e
∫

K (x,...,T n−1x) dμ(x)eC
∑n−1

j=0 Lip j (K )
2
. (7.1)

This theorem is an obvious consequence of Theorem 3.4 in the invertible case and of
Theorem 3.1 in the non-invertible case. Inequality (7.1) was previously known only for
uniformly piecewise expanding maps of the interval and subshifts of finite type equipped
with a Gibbs measure [CMS02]. Under the assumptions of the previous theorem, only
a polynomial concentration with moment 2 had been proven [CCS05a].

An immediate consequence of (7.1) is the following inequality for upper deviations:
for all t > 0 and for all n ∈ N,

μ

{

x ∈ X : K (x, T x, . . . , T n−1x)−
∫

K (y, . . . , T n−1 y) dμ(y) > t

}

≤ e
− t2

4C
∑n−1

j=0 Lip j (K )
2
. (7.2)

The same bound holds for lower deviations by applying (7.2) to −K .
Let us now consider dynamical systems modeled by a non-uniform Young tower

with polynomial tails. In the invertible case, there is an invertible non-uniform Young
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tower (	Z, T̂Z, μ̂Z) and a projection map π : 	Z → X , and the SRB measure is
μ = μ̂Z ◦ π−1, provided that

∑
φ(α)μ̂Z(	α,0) < ∞. If

∑
φ(α)q μ̂Z(	α,0) < ∞, we

shall simply say that the tower has Lq tails. Similarly, if
∑
φ(α)>n μ̂Z(	α,0) ≤ Cn−q ,

we shall say that the tower has weak Lq tails. We can of course rephrase what we have
just said in the non-invertible case.

Theorem 7.2. Let (X, T ) be a dynamical system modeled by a non-uniform Young tower
with Lq tails, for some q ≥ 2. Then T satisfies a polynomial concentration inequality
with moment 2q − 2, i.e., there exists a constant C > 0 such that, for any n ∈ N, for
any separately Lipschitz function K (x0, . . . , xn−1),

∫ ∣
∣
∣
∣K (x, . . . , T n−1x)−

∫

K (y, . . . , T n−1 y) dμ(y)

∣
∣
∣
∣

2q−2

dμ(x)

≤ C

⎛

⎝
n−1∑

j=0

Lip j (K )
2

⎞

⎠

q−1

.

Using Markov’s inequality we get at once that, for any t > 0 and for any n ∈ N,

μ

{

x ∈ X : ∣∣K (x, T x, . . . , T n−1x)−
∫

K (y, . . . , T n−1 y) dμ(y)
∣
∣ > t

}

≤ C

(∑n−1
j=0 Lip j (K )

2
)q−1

t2q−2 . (7.3)

If the tails are only in weak Lq , Theorem 6.1 shows that (7.3) still holds.
The fundamental example is an expanding map of the interval with an indifferent

fixed point [You99]. For the sake of definiteness, we consider for α ∈ (0, 1) the so-
called “intermittent” map T : [0, 1] → [0, 1] defined by

T (x) =
{

x(1 + 2αxα) if 0 ≤ x ≤ 1/2,
2x − 1 if 1/2 < x ≤ 1.

(7.4)

There is a unique absolutely continuous invariant probability measure dμ(x) = h(x) dx
such that h(x) ∼ x−α as x → 0. This map is modeled by a non-uniform Young tower

(	, μ̂) such that μ̂{φ = n} ∼ C/n
1
α

+1. The return time has a weak moment of order
1/α. Thus, for α ∈ (0, 1/2), the previous results yield:

Corollary 7.3. Let T be the map (7.4) and μ be its absolutely continuous invariant
probability measure. There exists a constant C > 0 such that, for any n ∈ N, for any
separately Lipschitz function K (x0, . . . , xn−1),

μ

{

x ∈ X : ∣∣K (x, T x, . . . , T n−1x)−
∫

K (y, . . . , T n−1 y) dμ(y)
∣
∣ > t

}

≤ C

(∑n−1
j=0 Lip j (K )

2
)1/α−1

t
2
α
−2

.
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This estimate readily gives bounds for the moments of order q �= 2/α − 2. Indeed,
if Z is a random variable satisfying P(|Z | > t) ≤ (A/t)Q , then using the formula
E(|Z |q) = ∫

qtq−1
P(|Z | > t) dt and the tail estimates, one gets

E(|Z |q) ≤ Q

Q − q
Aq for q < Q,

and if Z is bounded

E(|Z |q) ≤ q

q − Q
AQ ‖Z‖q−Q

L∞ for q > Q.

For q < 2/α−2, this generalizes to arbitrary separately Lipschitz functions of n vari-
ables the moment bounds obtained for ergodic sums of Lipschitz functions in [MN08]
(while the moment bounds for q > 2/α− 2 are apparently new, even for ergodic sums).
On the other hand, we improve the result in [CCRV09] in two respects: first, we obtain
a polynomial concentration inequality with moment 2 for any α ∈ (0, 1/2) instead
of (0, 4 − √

15); second, we also obtain a polynomial concentration inequality with a
moment whose order is larger than 2 and depends on α ∈ (0, 1/2).

Remark 7.4. There is a difference between Theorems 4.1 (about strong moments) and 6.1
(about weak moments): in the former, the range of parameters is q ≥ 2, while we require
q > 2 in the latter. It turns out that Theorem 6.1 is false for q = 2, as testified by the
map (7.4) with α = 1/2. For such a map, if f is a Hölder function with

∫
f dμ = 0 and

f (0) �= 0, then Sn f/
√

n log n converges in distribution to a gaussian [Gou04a, p. 88].
If Theorem 6.1 were true for q = 2, we would have μ{|Sn f | > t} ≤ Ct−2n, hence
μ{|Sn f/

√
n log n| > t} ≤ Ct−2(n log n)−1n → 0, implying that Sn f/

√
n log n tends

in probability to 0 and giving a contradiction.

There are also invertible examples exhibiting an intermittent behavior, notably com-
ing from billiards. Indeed, apart from the stadium billiard (with a weak moment of order
2 and therefore not covered by our results), Chernov and Zhang studied in [CZ05a,
CZ05b] several classes of billiards for which the decay of correlations behaves like
O((log n)C/n1/α−1), for some parameterα that can be chosen freely in (0, 1/2] and some
C > 0. This decay rate is obtained by modeling those billiards by nonuniform invertible
Young towers with well controlled tails. Therefore, we can apply Theorem 7.2 to those
maps, yielding polynomial concentration inequalities for any exponent p < 2/α − 2,
just like in the above one-dimensional non-invertible situation.

7.2. Empirical covariance. For a Lipschitz observable f such that
∫

f dμ = 0, the
auto-covariance of the process { f ◦ T k} is defined as usual by

C f (�) =
∫

f · f ◦ T � dμ. (7.5)

An obvious estimator for C f (�) is

Ĉ f (n, �, x) = 1

n

n−1∑

j=0

f (T j x) f (T j+�x).
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We could as well consider the covariance between { f ◦ T k} and {g ◦ T k}, for a
pair of Lipschitz observables f, g. For each � ≥ 0, the ergodic theorem tells us that
Ĉ f (n, �, x) → C f (�) μ-almost surely, as n → ∞. Considering the function of n + �
variables K (x0, . . . , xn+�−1) = 1

n

∑n−1
j=0 f (x j ) f (x j+�), we obtain immediately (noting

that
∫

Ĉ f (n, �, x) dμ(x) = C f (�)) the following theorems.

Theorem 7.5. Let (X, T ) be a dynamical system modeled by a uniform Young tower
with exponential tails and μ its SRB measure. Let f : X → R be a Lipschitz function
with

∫
f dμ = 0. There exists a constant c > 0 such that, for any n, � ∈ N and for any

t > 0,

μ
{

x ∈ X : ∣∣Ĉ f (n, �, x)− C f (�)
∣
∣ > t

} ≤ 2e−c n2 t2
n+� .

Theorem 7.6. Let (X, T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, andμ its SRB measure. Let f : X → R be a Lipschitz
function with

∫
f dμ = 0. There exists a constant c > 0 such that, for any n, � ∈ N and

for any t > 0,

μ
{

x ∈ X : ∣∣Ĉ f (n, �, x)− C f (�)
∣
∣ > t

} ≤ c
(n + �

n2

)q−1 1

t2q−2 .

7.3. Empirical measure. Given x ∈ X in an ergodic compact dynamical system
(X, T, μ), let

En(x) = 1

n

n−1∑

j=0

δT j x

be the associated empirical measure. By Birkhoff’s ergodic theorem, En(x) vaguely
converges to μ, for μ-almost every x . Our aim is to quantify the ‘speed’ at which this
convergence takes place. We use the Kantorovich distance (compatible with vague con-
vergence): for two probability measures μ1, μ2 on X , let

distK (μ1, μ2) = sup

{∫

g dμ1 −
∫

g dμ2 : g : X → R is 1-Lipschitz

}

.

Set

Dn(x) = distK (En(x), μ).

We have the following general bounds.

Theorem 7.7. Let (X, T ) be a dynamical system modeled by a uniform Young tower
with exponential tails and μ its SRB measure. Let f : X → R be a Lipschitz function.
There exists a constant C > 0 such that, for any n ∈ N and for any t > 0,

μ

{

x ∈ X :
∣
∣
∣Dn(x)−

∫

Dn(y) dμ(y)
∣
∣
∣ >

t√
n

}

≤ 2e−Ct2
.

Theorem 7.8. Let (X, T ) be a dynamical system modeled by a non-uniform Young tower
with weak Lq tails, for some q ≥ 2, andμ its SRB measure. Let f : X → R be a Lipschitz
function. There exists a constant C > 0 such that, for all n ∈ N and all t > 0,
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μ

{

x ∈ X :
∣
∣
∣Dn(x)−

∫

Dn(y) dμ(y)
∣
∣
∣ >

t√
n

}

≤ C

t2q−2 .

These bounds follow at once by applying either (7.2) or (7.3) to the function

K (x0, . . . , xn−1) = sup

⎧
⎨

⎩

1

n

n−1∑

j=0

g(x j )−
∫

g dμ : g : X → R is 1 − Lipschitz

⎫
⎬

⎭

whose Lipschitz constants are uniformly bounded by 1/n. The natural next step is to seek
for an upper bound for

∫ Dn(y) dμ(y). We are not able to obtain an a priori sufficiently
good estimate unless we restrict to one-dimensional systems.

Corollary 7.9. Let (X, T ) be a one-dimensional dynamical system satisfying the
assumptions of Theorem 7.7. There exist some constants B,C > 0 such that, for any
n ∈ N and for any t > 0,

μ

{

x ∈ X : Dn(x) >
t

n1/2 +
B

n1/4

}

≤ e−Ct2
.

Corollary 7.10. Let (X, T ) be a one-dimensional dynamical system satisfying the
assumptions of Theorem 7.8. There exist some constants B,C > 0 such that, for any
n ∈ N and for any t > 0,

μ

{

x ∈ X : Dn(x) >
t

n1/2 +
B

n1/4

}

≤ C

t2q−2 .

These two corollaries follow immediately if we can prove that there exists B > 0
such that, for any n ∈ N,

∫

Dn dμ ≤ B

n1/4 .

The proof is found in [CCS05b, Thm. 5.2]. The point is that in dimension one, there is
a special representation of Kantorovich distance in terms of the distribution functions.
The estimate then follows easily using the fact that the auto-covariance of Lipschitz
observables is summable under the above assumptions.

For the map (7.4), we can use Corollary 7.3 to get the bound

μ

{

x ∈ X : Dn(x) >
t

n1/2 +
B

n1/4

}

≤ C

t
2
α
−2
,

for any n ∈ N and for any t > 0.

Remark 7.11. What explains the power 1/4 of n is the fact that at some stage, one has to
approximate a characteristic function of a set by a Lipschitz function. If one can control
the auto-covariance of functions with bounded variation, one gets

∫

Dn dμ ≤ B√
n
.

This is the case for uniformly piecewise expanding maps of the interval [CMS02]. This
is also the case for the quadratic map with Benedicks-Carleson parameters [You92].
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Since we proved that this system satisfies an exponential concentration inequality,
we get

μ

{

x ∈ X : Dn(x) >
t√
n

}

≤ e−Ct2
,

for any n ∈ N and for any t greater than some t0 > 0.

7.4. Kernel density estimation. The estimation from an orbit of the density h of the
invariant measure of a one-dimensional dynamical system (X, T ) is based on the esti-
mator

hn(s; x) = 1

nan

n−1∑

j=0

ψ
( s − T j x

an

)
,

where an is a sequence of positive numbers going to 0 but such that nan goes to ∞,
and ψ is a ‘kernel’, that is, a non-negative Lipschitz function with compact support. We
suppose that it is fixed in the sequel.

As proved in [CCS05a, App. C], the density of the invariant measure for a one-
dimensional system modeled by a uniform Young tower with exponential tails has the
following property: there exist some constants B > 0 and τ > 0 such that

∫
∣
∣h(s)− h(s − t)

∣
∣ ds ≤ B|t |τ , ∀t ∈ R. (7.6)

We have the following result about the L1 convergence of empirical densities.

Theorem 7.12. Let (X, T ) be a one-dimensional dynamical system modeled by a uni-
form Young tower with exponential tails and μ its SRB measure. There exist c1, c2 > 0
such that, for any t > c1(aτn + 1/(

√
na2

n)) and for any n ∈ N,

μ

{

x ∈ X :
∫
∣
∣hn(s; x)− h(s)

∣
∣ ds > t

}

≤ e−c2na2
n t2
.

The proof is similar to the proof of Theorem 5.2 in [CCS05a] except that we use an
exponential concentration inequality instead of a polynomial concentration inequality
with moment 2; hence we obtain a much stronger bound. (See also [CMS02, Thm. III.2]
for uniformly piecewise expanding maps of the interval.) The property (7.6) is used to
obtain an upper bound for

∫ ∣
∣hn(s; x)− h(s)

∣
∣ ds dμ.

We do not know if the property (7.6) holds for the density of the invariant measure of
all one-dimensional systems modeled by a non-uniform Young tower with polynomial
tails. But for the special case of the intermittent map (7.4), it is easy to check that (7.6)
is true with τ = 1 − α. Therefore, applying Corollary 7.3 we get the following result.

Theorem 7.13. Let T be the map (7.4) and μ its absolutely continuous invariant prob-
ability measure. There exist c1, c2 > 0 such that for any t > c1(a1−α

n + 1/(
√

na2
n)) and

for any n ∈ N,

μ

{

x ∈ X :
∫
∣
∣hn(s; x)− h(s)

∣
∣ ds > t

}

≤ c2

n
1
α
−1a

2
α
−2

n t
2
α
−2
.
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7.5. Tracing orbit properties. Let A be a measurable subset of X such that μ(A) > 0
and define for all n ∈ N,

SA(x, n) = 1

n
inf
y∈A

n−1∑

j=0

d(T j x, T j y),

where d is the distance on X . This quantity, between 0 and 1, measures how well we
can trace the orbit of some initial condition not in A by an orbit from an element of A.

Theorem 7.14. Let (X, T ) be a dynamical system modeled by a uniform Young tower
with exponential tails andμ its SRB measure. There exist constants c1, c2 > 0 such that,
for any measurable subset A ⊂ X with μ(A) > 0, for any n ∈ N and for any t > 0,

μ

{

x ∈ X : SA(x, n) > c1

√
log n

μ(A)
√

n
+

t√
n

}

≤ e−c2t2
.

Again, the proof is the same as [CMS02, Thm. IV.1] because it relies only on the
exponential concentration inequality.

Theorem 7.15. Let (X, T ) be a dynamical system modeled by a non-uniform Young
tower with weak Lq tails, for some q ≥ 2, and μ its SRB measure. There exist constants
c1, c2 > 0 such that, for any measurable subset A ⊂ X with μ(A) > 0, for any n ∈ N

and for any t > 0,

μ

{

x ∈ X : SA(x, n) >
1

n(q−1)/(2q−1)

(

t +
c1

μ(A)

)}

≤ c2

n(q−1)/(2q−1)t2q−2
.

The proof follows the lines of that of [CMS02, Thm. IV.1] except that one uses
the weak polynomial concentration inequality instead of the exponential concentration
inequality as in the previous theorem.

For the intermittent maps (7.4), we can use Corollary 7.3. We get that there exist
constants c1, c2 > 0 such that for any subset A ⊂ [0, 1] with μ(A) > 0, for any n ∈ N

and for any t > 0,

μ

{

x ∈ [0, 1] : SA(x, n) >
1

n(1/α−1)/(2/α−1)

(

t +
c1

μ(A)

)}

≤ c2

n(
1
α
−1)/( 2

α
−1)t

2
α
−2
.

We now formulate similar results for the number of mismatches at a given precision.
Let A be a measurable subset of X such that μ(A) > 0 and ε > 0. For all n ∈ N define

MA(x, n, ε) = 1

n
inf
y∈A

Card{0 ≤ j ≤ n − 1 : d(T j x, T j y) > ε}.

We have the following result.

Theorem 7.16. Let (X, T ) be a dynamical system modeled by a Young tower with expo-
nential tails andμ its SRB measure. There exist constants c1, c2 > 0 such that, if A ⊂ X
is such that μ(A) > 0, then for any 0 < ε < 1/2, for any n ∈ N and for any t > 0,

μ

{

x ∈ X : MA(x, n, ε) > c1ε
−1

√
log n

μ(A)
√

n
+

tε−1

√
n

}

≤ e−c2t2
.
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Theorem 7.17. Let (X, T ) be a dynamical system modeled by a non-uniform Young
tower with weak Lq tails, for some q ≥ 2, and μ its SRB measure. There exist constants
c1, c2 > 0 such that, if A ⊂ X is such that μ(A) > 0, then for any 0 < ε < 1/2, for
any n ∈ N and for any t > 0,

μ

{

x ∈ X : MA(x, n, ε) >
1

ε(q−1)/(q−1/2)n(q−1)/(2q−1)

(

t +
c1

μ(A)

)}

≤ c2

ε(q−1)/(q−1/2)n(q−1)/(2q−1)t2q−2
.

Once more, the proofs are almost the same as [CMS02, Thm. IV.2].

7.6. Integrated periodogram. Let (X, T, μ) be a dynamical system and f : X → R be
a Lipschitz function such that

∫
f dμ = 0. Define the empirical integrated periodogram

function of the process { f ◦ T k}k≥0 by

Jn(x, ω) =
∫ ω

0

1

n

∣
∣
∣

n−1∑

j=0

e−i js f (T j x)
∣
∣
∣
2

ds, ω ∈ [0, 2π ].

Let

J (ω) = C f (0)ω + 2
∞∑

�=1

sin(ω�)

�
C f (�),

where C f (�) is defined in (7.5).

Theorem 7.18. Let (X, T ) be a dynamical system modeled by a uniform Young tower
with exponential tails and μ its SRB measure. Let f : X → R be a Lipschitz function
such that

∫
f dμ = 0. There exist some positive constants c1, c2 such that for any n ∈ N

and for any t > 0,

μ

{

x ∈ X : sup
ω∈[0,2π ]

∣
∣Jn(x, ω)− J (ω)

∣
∣ > t +

c1(1 + log n)3/2√
n

}

≤ e−c2nt2/(1+log n)2 .

The observable supω∈[0,2π ]
∣
∣Jn(x, ω)− J (ω)

∣
∣ was studied in [CCS05b] in the same

setting but using the polynomial concentration inequality with moment 2. We get here
a stronger result since we now have the exponential concentration inequality at hand.

Proof. Let

K (x0, . . . , xn−1) = sup
ω∈[0,2π ]

∣
∣
∣
∣
∣
∣

∫ ω

0

1

n

∣
∣
∣

n−1∑

j=0

e−i js f (x j )

∣
∣
∣
2

ds − J (ω)

∣
∣
∣
∣
∣
∣
. (7.7)

The reader can verify that

sup
0≤�≤n−1

Lip�(K ) ≤ c(1 + log n)

n
(7.8)
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for some constant c > 0. Let

Qn(x) = sup
ω∈[0,2π ]

∣
∣Jn(x, ω)− J (ω)

∣
∣. (7.9)

The major task is to estimate from above
∫

Qn dμ. We partly proceed as in
[CCS05b, p. 2345]: We discretize ω, that is, given any integer N ∈ N, we define the
finite sequence of numbers (ωp) by ωp = 2πp/N , p = 0, . . . , N . We then define

Qn(x) := sup
0≤p≤N

∣
∣Jn(x, ωp)− J (ωp)

∣
∣.

One can then show that there exists some C > 0 such that

Qn(x) ≤ Qn(x) +
C

N
(7.10)

for all x ∈ X and for all integers n, N ∈ N.
We shall also use the fact (see [CCS05b] for more details) that there exists some

C > 0 such that, for all ω and for any n ∈ N,

∣
∣J (ω)−

∫

Jn(x, ω) dμ(x)
∣
∣ ≤ C

n
. (7.11)

We now depart from [CCS05b] and use that for any real β > 0,

∫

eβQn dμ ≤
N∑

p=0

∫

eβ[Jn(x,ωp)−J (ωp)] dμ(x)+
N∑

p=0

∫

eβ[J (ωp)−Jn(x,ωp)] dμ(x).

(7.12)

We estimate each term in the first sum of the right-hand side of this inequality by using
the exponential concentration inequality (7.1), (7.8) and (7.11):

∫

eβ[Jn(x,ωp)−J (ωp)] dμ(x)

=
∫

eβ[Jn(x,ωp)−
∫

Jn(y,ωp) dμ(y)] dμ(x) · eβ[∫ Jn(y,ωp) dμ(y)−J (ωp)]

≤ eCβ2(1+log n)2/n · eCβ/n .

We get the same bound for each term in the second sum of the right-hand side of (7.12),
hence

∫

eβQn dμ ≤ 2(N + 1)eCβ2(1+log n)2/n · eCβ/n .

We now use Jensen’s inequality, (7.10) and (7.9) to get
∫

sup
ω∈[0,2π ]

∣
∣Jn(x, ω)− J (ω)

∣
∣ dμ(x)

≤ inf
N∈N

{
1

β
log[2(N + 1)] + Cβ

(1 + log n)2

n
+

C

n
+

C

N

}

.
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It remains to optimize over N ∈ N and β > 0 to obtain
∫

sup
ω∈[0,2π ]

∣
∣Jn(x, ω)− J (ω)

∣
∣ dμ(x) ≤ c1(1 + log n)3/2√

n
.

We conclude the proof by applying (7.2) to the function (7.7), taking into account (7.8)
and the previous estimate. 
�

Appendix A. A Technical Lemma

Our goal in this section is to prove a technical result that was required to obtain polyno-
mial concentration estimates in non-uniform invertible Young towers. Let us consider
a non-invertible non-uniform Young tower in which the return time has a moment of
order q ≥ 2 (i.e.,

∑
hqμ{x ∈ 	0 : φ(x) = h} < ∞). We define a function �n by

�n(x) = βCard{ j∈[1,n] : T j x∈	0} for x ∈ 	0, and �n = 0 otherwise, where β < 1 is
fixed.

The estimate we need in (5.3) is given in the following theorem.

Theorem A.1. For all nonnegative real numbers Lk,

∫
⎛

⎜
⎝
∑

r

⎛

⎝
∑

k≥r

Lk�k−r ◦ T r

⎞

⎠

2
⎞

⎟
⎠

q−1

≤ C
(∑

L2
k

)q−1
.

For the proof, let us expand the square on the left, the resulting function is bounded
by
∑

r
∑

k≥�≥r Lk L��k−r ◦ T r , since ��−r ◦ T r ≤ 1. Bounding Lk L� by L2
k + L2

� ,
we get two terms that will be studied separately (but with very similar techniques). The
theorem follows from the following lemmas.

Lemma A.2. We have

∫
⎛

⎝
∑

r

∑

k≥r

L2
k(k − r + 1)�k−r ◦ T r

⎞

⎠

q−1

≤ C
(∑

L2
k

)q−1
.

Lemma A.3. We have

∫
⎛

⎝
∑

r

∑

k≥r

k−1∑

�=r

L2
��k−r ◦ T r

⎞

⎠

q−1

≤ C
(∑

L2
k

)q−1
.

We will prove a more general result, encompassing those two lemmas and better
suited to induction. We will need the following notion.

Definition A.4. A weight system is a set of numbers u(r, k) for r < k such that

1. either u(r, k) = Mk for all r < k,
2. or u(r, k) = (

∑k−1
j=r M j )/(k − r) for all r < k,

where Mk is a summable sequence of nonnegative real numbers. In both cases, let
� = ∑

Mk be the sum of the weight system.

Weight systems satisfy the following property.
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Lemma A.5. Let u(r, k) be a weight system. For all m > 0, we have
∑

r u(r, r +m) ≤ �.

Proof. If u(r, k) = Mk , then
∑

u(r, r + m) = ∑
Mr+m ≤ ∑

Mr = �. If u(r, k) =
(
∑k−1

j=r M j )/(k − r), then

∑
u(r, r + m) = m−1

∑

r

m−1∑

j=0

Mr+ j ≤ m−1
m−1∑

j=0

� = �.
�

We will also need the following fact.

Lemma A.6. Let u(r, k) be a weight system with sum�, and let c(1)n be a sequence with
a moment of order 1. There exists a weight system v(r, k) with sum at most C� such
that, for all s < k, we have

∑
r<s u(r, k)c(1)s−r ≤ v(s, k).

Proof. Letw(s, k) = ∑
r<s u(r, k)c(1)s−r . If u(r, k) is of the first type (i.e., u(r, k) = Mk),

then w(s, k) = ∑
r<s Mkc(1)s−r ≤ C Mk , and one can take v(s, k) = C Mk . If u(r, k) is of

the second type (i.e., u(r, k) = (
∑k−1

j=r M j )/(k − r)), then

w(s, k) =
∑

r<s

u(r, k)c(1)s−r =
∑

r<s

1

k − r

⎛

⎝
k−1∑

j=r

M j

⎞

⎠ c(1)s−r

≤ 1

k − s

⎛

⎝
∑

j<s

M j

∑

r≤ j

c(1)s−r +
k−1∑

j=s

M j

∑

r<s

c(1)s−r

⎞

⎠

≤ 1

k − s

⎛

⎝
∑

j<s

M j c
(0)
s− j + C

k−1∑

j=s

M j

⎞

⎠ .

Let M ′
s = C Ms +

∑
j<s M j c

(0)
s− j , we get w(s, k) ≤ 1

k−s (M
′
s + C

∑k−1
j=s+1 M j ), which

is bounded by 1
k−s

∑k−1
j=s M ′

j . Moreover,
∑

M ′
j ≤ C

∑
M j since the sequence c(0)n is

summable. This shows that w is bounded by a weight system v with sum at most C�.

�

The main lemma is the following:

Lemma A.7. Consider a weight system u(r, k), and real numbers γ ≥ 1 and Q ≥ 1
with γ Q ≤ q − 1. We have

∫ (
∑

k>r

u(r, k)(k − r)γ�k−r ◦ T r

)Q

≤ C�Q .

This result implies Lemmas A.2 and A.3, using it with γ = 1, Q = q − 1 and the
weights L2

k for the former, (
∑k−1
�=r L2

�)/(k − r) for the latter.
We will prove the lemma directly for Q ∈ [1, 2], while an induction will be required

for Q > 2. When u is a weight system, let us write S(γ, u) = ∑
k>r u(r, k)(k −
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r)γ�k−r ◦ T r . We will construct another weight system v(r, k) (with sum at most C�)
such that

∫

|S(γ, u)|Q ≤ C�Q + C�Q/2
∫

|S(2γ, v)|Q/2.

By induction, the last integral is bounded by C�Q/2, and we obtain the desired result.
Let us explain the strategy of the proof. First, since

∫
�n ≤ c(q−1)

n by Lemma A.8
below, we have

E(S(γ, u)) ≤
∑

k>r

(k − r)γ u(r, k)c(q−1)
k−r =

∑

m

mγ c(q−1)
m

(
∑

r

u(r, r + m)

)

≤
∑

m

mγ c(q−1)
m �,

by Lemma A.5. Asγ ≤ γ Q ≤ q−1, the sum in m is finite, and we get E(S(γ, u)) ≤ C�.
Consequently, to prove the lemma, it suffices to bound

∫ |S(γ, u)− E(S(γ, u))|Q .
We decompose S = S(γ, u) as E(S) +

∑
s≥0 Ss ◦ T s , where Ss ◦ T s is a sequence

of reverse martingale differences: writing F0 for the Borel σ -algebra and Fs = T −sF0,
the function Ss ◦ T s is Fs-measurable and E(Ss ◦ T s |Fs+1) = 0, i.e., E(Ss |F1) = 0.
For any function f , one has E( f |Fs) = (Ls f ) ◦ T s , where L is the transfer operator.
Therefore, Ss is given by Ss(z) = Ls S(z)− Ls+1S(T z).

For Q ∈ [1, 2], the von Bahr-Esseen inequality [vBE65] yields
∫

|S − E(S)|Q ≤
∑

s

E(|Ss |Q |),

while for Q > 2 the Rosenthal-Burkholder inequality gives an additional term as fol-
lows:

∫

|S − E(S)|Q ≤ E

(
∑

s

E(S2
s |F1) ◦ T s

)Q/2

+
∑

s

E(|Ss |Q).

We will split each function Ss into several parts that will be estimated separately. Plugging
those bounds into the inequalities of von Bahr-Esseen (for Q ∈ [1, 2]) and Rosenthal-
Burkholder (for Q > 2) will give the desired result.

More precisely, if h(x) �= 0, we have E(|Ss ||F1) = 0 at the (unique) preimage of x
and there is nothing to estimate. On the other hand, if h(x) = 0 and if z is a preimage
of x under T , we have

Ss(z) = Ls S(z)− Ls+1S(x) =
∑

k>r

(k − r)γ u(r, k)(Ls(�k−r ◦ T r )(z)

−Ls+1(�k−r ◦ T r )(x)).

When estimating E(S2
s |F1) or E(|Ss |Q |F1), there is a contribution coming from

Ls+1S(x) (involving a sum over k > r ), and a contribution coming from the sum over
the preimages z of x of Ls S(z) (involving a sum over z and over k > r ). We will treat
separately those contributions depending on the positions of k and r with respect to s
and to s − h (where h is the height of the preimage z of x one is considering). Let π z
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be the projection of z in the basis of the tower. If h ≤ s, we have Ls S(z) = Ls−h S(π z).
(This is the interesting case: if h > s, then all the following estimates become easier,
we will not indicate the trivial modifications to be done in this case.)

We will study separately the following cases:

(1) k > r ≥ s + 1, contribution of Ls−h S(π z)− Ls+1S(x);
(2) k > s + 1 > r , contribution solely of Ls+1S(x);
(3) k > s − h, min(s + 1, k) > r , contribution solely of Ls−h S(π z);
(4) s + 1 ≥ k > s − h, r < k, contribution solely of Ls+1S(x);
(5) s − h ≥ k > r , contribution of Ls−h S(π z)− Ls+1S(x).

We will treat separately those five contributions, and see that all of them satisfy the
desired bounds. We will need very precise estimates on the transfer operator, given in
the following lemma. We recall that the notation d(Q)n indicates a nonincreasing sequence
with a moment of order Q.

Lemma A.8. We have
∫
�m ≤ c(q−1)

m . For h(z) = 0, we have Ln�m(z) ≤ c(q)n �m−n(z)
if n ≤ m, and

∣
∣
∣
∣
∣
∣
Ln(Lm�m)(z)−

∑

b≤n

e(b,m)

∣
∣
∣
∣
∣
∣
≤

n∑

b=0

d(q−2)
n−b

m∑

i=0

c(q)b+m−i c
(q)
i ,

where the scalar e(b,m) only depends on b and m and is bounded by
∑m

i=0 c(q)b+m−i c
(q)
i .

The function �m involves m iterates of the transformation. While the transfer operator
is eliminating some number n ≤ m of those iterates, the improvement in the estimates
depends on n, and m − n iterates remain ready to be used (under the form of �m−n).
Once all the variables are eliminated, Ln(Lm�m) converges to the integral of�m (which
is equal to

∑
b≥0 e(b,m)), with a more complicated error term whose precise form will

play an important role later on.

Proof. Let us first assume n ≤ m. In this case, Ln�m(z) = �m−n(z) ·Un1(z), where the
operator Un was introduced in the proof of Lemma 4.4. We proved there that‖Un‖ ≤ c(q)n ,
the desired estimate follows.

For any point x with height i ∈ [0,m], we obtain Lm�m(x) = Lm−i�m(πx) ≤
c(q)m−i . On the other hand, if h(x) = i > m, we have Lm�m(x) = �m(T −m x) = 0, since
�m vanishes on points with positive height by definition. Let � = Lm�m .

We obtain
∫

�m =
∫

� ≤
m∑

i=0

μ{h = i}c(q)m−i ≤
m∑

i=0

c(q−1)
i c(q)m−i ≤ c(q−1)

m .

Let us now study Ln(Lm�m) = Ln�, using the previous information regarding
�. We will use the operators Tk and Bb that were introduced in Subsect. 4.2, so that
Ln�(z) = ∑

k+b=n Tk Bb�(z) for h(z) = 0. We explained there that Tk = � + Ek ,

where � f = (
∫

f )1	0 , and ‖Ek‖ ≤ d(q−2)
k . Hence,

Ln�(z) = � ·
∑

b≤n

Bb� +
∑

k+b=n

Ek Bb�(z).

We estimate first ‖Bb�‖. We have Bb�(x) = ∑
g(b)(y)�(y), where we sum over the

points y ∈ T −b(x) not returning to 	0 before time b. If h(y) = i , the point πy has



Optimal Concentration Inequalities for Dynamical Systems 883

a return time to the basis equal to b + i . Therefore, |Bb�(x)| ≤ ∑m
i=0 c(q)b+i c

(q)
m−i =

∑m
i=0 c(q)b+m−i c

(q)
i (in view of the bound on � at height i). The Lipschitz norm of Bb� is

estimated in the same way. Thus,

∑

k+b=n

‖Ek Bb�‖ ≤
∑

k+b=n

d(q−2)
k

m∑

i=0

c(q)b+m−i c
(q)
i .

Finally, the statement of the lemma is satisfied letting e(b,m) = ∫
Bb� = �(Bb�).

This scalar is independent of n and bounded by
∑m

i=0 c(q)b+m−i c
(q)
i . 
�

We will use the following simple remark. For κ ≥ 2 and x, y ≥ 0, we have (x + y)κ ≤
xκ + Cy(x + y)κ−1 (by Taylor’s formula). By induction, this implies

(
n∑

i=1

xi

)κ

≤ C
n∑

i=1

xi ·
⎛

⎝
i∑

j=1

x j

⎞

⎠

κ−1

. (A.1)

A.1. The case k > r ≥ s+1. When k > r ≥ s+1, we have Ls+1(�k−r ◦T r )(x) = �k−r ◦
T r−s−1(x), while Ls−h(�k−r ◦ T r )(π z) = �k−r ◦ T r−s+h(π z). Since T h+1(π z) = x ,
those terms coincide, and their contribution to Ss(z) vanishes.

A.2. The case k > s+1 > r , contribution of Ls+1S(x). The contribution from�k−r ◦T r

satisfies

Ls+1(�k−r ◦ T r ) = Ls+1−r�k−r ≤ c(q)s+1−r�k−s−1(x),

by Lemma A.8. Summing those contributions to Ss(z) (for varying k and r ) gives a term
which is bounded by

S(2)s =
∑

k>s+1>r

(k − r)γ u(r, k)c(q)s+1−r�k−s−1(x).

Let us note that this term does not depend on z. Since k −r = (k − s −1)+ (s + 1−r) ≤
2(k − s − 1)(s + 1 − r) and since (s + 1 − r)γ c(q)s+1−r ≤ c(q−γ )

s+1−r , we have

S(2)s ≤
∑

k>s+1

∑

r≤s

u(r, k)c(q−γ )
s+1−r (k − s − 1)γ�k−s−1(x).

By Lemma A.6, there exists a new weight system v such that
∑

r≤s u(r, k)c(q−γ )
s+1−r ≤

v(s + 1, k), yielding S(2)s ≤ ∑
k>s+1 v(s + 1, k)(k − s − 1)γ�k−s−1(x). Moreover, the

sum of the weight v is at most C�.
Let κ ≥ 1, we estimate |S(2)s (z)|κ . We apply the inequality (A.1) to xk = v(s + 1, k)

(k − s − 1)γ�k−s−1, yielding

|S(2)s |κ ≤
∑

k>s+1

v(s + 1, k)(k − s − 1)γ�k−s−1

·
⎛

⎝
∑

s+1<�≤k

v(s + 1, �)(�− s − 1)γ

⎞

⎠

κ−1

.
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We claim that the last sum is bounded by C(k − s − 1)γ �. Indeed, if the weight v is of
the first type (i.e., v(r, �) = M�), then we bound (�− s − 1)γ by (k − s − 1)γ , to obtain
(k − s − 1)γ

∑k
�=s+2 M� ≤ C(k − s − 1)γ �. On the other hand, if v is of the second

type (i.e., v(r, �) = (
∑�−1

j=r M j )/(�− r)), then the sum is bounded by

k∑

�=s+2

�−1∑

j=s+1

M j (�− s − 1)γ−1 ≤ (k − s − 1)γ−1
k−1∑

j=s+1

M j (k − j)

≤ (k − s − 1)γ
k−1∑

j=s+1

M j ≤ (k − s − 1)γ �.

We have proved that, for all κ ≥ 1,

|S(2)s |κ ≤ C
∑

k>s+1

v(s + 1, k)(k − s − 1)κγ�k−s−1�
κ−1. (A.2)

Let us now assume that Q ∈ [1, 2], and let us consider the contribution of S(2)s to the
von Bahr-Esseen inequality. It is given by

∑

s

E(|S(2)s |Q) =
∑

s

E(E(|S(2)s |Q |F1))

≤
∑

s

C
∑

k>s+1

v(s + 1, k)(k − s − 1)Qγ
E(�k−s−1)�

Q−1,

by (A.2). Since E(�k−s−1) ≤ c(q−1)
k−s−1, this can be written (letting k = s + 1 + m) as

�Q−1∑
m m Qγ c(q−1)

m
∑

s v(s +1, s +1+m). For fixed m, the sum
∑

s v(s +1, s +1+m)

is bounded by C� by Lemma A.5. As Qγ ≤ q − 1, m Qγ c(q−1)
m is summable, and we

obtain a bound C�Q as desired.
Assume now Q > 2. In this case, the second term in the Rosenthal-Burkholder

inequality is bounded by C�Q as above. Using (A.2) (with κ = 2), the first term is at
most

C
∫ (

∑

s

∑

k>s+1

v(s + 1, k)(k − s − 1)2γ�k−s−1 ◦ T s+1 ·�
)Q/2

= C�Q/2
∫

|S(2γ, v)|Q/2.

Since γ ′ = 2γ and Q′ = Q/2 satisfy γ ′Q′ ≤ q − 1, we can argue by induction to show
that this term is again bounded by �Q .

A.3. The case k > s − h, min(s + 1, k) > r , contribution of Ls−h S(π z). We should
study S(3)s (z) = Ls−h(

∑
k>s−h

∑
r≤min(s,k−1) u(r, k)(k − r)γ�k−r ◦ T r )(π z).

If k > s − h and r ∈ (s − h, s] with r < k, we have Ls−h(�k−r ◦ T r )(π z) = �k−r ◦
T r−(s−h)(π z). Since the point T r−(s−h)(π z) has positive height, the function �k−r
vanishes here. Therefore, we only have to consider the contribution of k > s − h ≥ r .
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This is exactly the same thing as in the previous subsection, but for the point π z instead
of x . The inequality (A.2) gives, for all κ ≥ 1,

|S(3)s (z)|κ ≤ C
∑

k>s−h

v(s − h, k)(k − s + h)κγ�k−s+h(π z)�κ−1,

where v is a weight system with sum at most C�. For k ∈ (s−h, s +1], we simply bound
�k−s+h(π z) by 1, while for k > s + 1 we bound it by �k−s−1(x), since T h+1(π z) = x .
Summing over the preimages z of x , we get

E(|S(3)s |κ |F1) ≤ C�κ−1
∑

h≥0

c(q)h

( s+1∑

k=s−h+1

v(s − h, k)(k − s + h)κγ

+
∑

k>s+1

v(s − h, k)(k − s + h)κγ�k−s−1(x)

)

.

In the first sum, we bound k − s + h by h + 1 and we use the inequality (h + 1)κγ c(q)h ≤
c(q−κγ )

h . In the second sum, we have c(q)h (k − s + h)κγ ≤ c(q−κγ )
h (k − s − 1)κγ by the

same argument. If κγ ≤ q − 1, the quantity
∑

h≥0 c(q−κγ )
h v(s − h, k) is bounded by

w(s + 1, k), where w is a weight system with sum at most C�, by Lemma A.6. We
obtain

E(|S(3)s |κ |F1) ≤ C�κ−1
(∑

h≥0

s+1∑

k=s−h+1

c(q−κγ )
h v(s − h, k)

+
∑

k>s+1

w(s + 1, k)(k − s − 1)κγ�k−s−1(x)

)

. (A.3)

The second term is identical to the term appearing in the previous subsection, in (A.2).
It follows in the same way that its contribution to the inequalities of von Bahr-Esseen
(case Q ∈ [1, 2]) and Rosenthal-Burkholder (case Q > 2) is bounded by C�Q .

Let us consider the first term, first in von Bahr-Esseen inequality (case Q ∈ [1, 2]).
Thanks to (A.3) (with κ = Q), its contribution is given by

∑

s

C�Q−1
∑

h≥0

s+1∑

k=s−h+1

c(q−Qγ )
h v(s − h, k)

= C�Q−1
∑

h≥0

c(q−Qγ )
h

h+1∑

m=1

∑

s

v(s − h, s − h + m)

≤ C�Q−1
∑

h≥0

c(q−Qγ )
h

h+1∑

m=1

� = C�Q
∑

h≥0

c(q−Qγ−1)
h ,

where we used Lemma A.5 for the inequality. Since Qγ ≤ q − 1, this is bounded
by C�Q .



886 J.-R. Chazottes, S. Gouëzel

When Q > 2, we use the Rosenthal-Burkholder inequality. As above, the last term in
this inequality is bounded by C�Q . Using (A.3) (with κ = 2), the first term is bounded
by

⎛

⎝
∑

s

C�
∑

h≥0

s+1∑

k=s−h+1

c(q−2γ )
h v(s − h, k)

⎞

⎠

Q/2

.

The same computation as above shows that this is bounded by (C�2)Q/2.

A.4. The case s + 1 ≥ k > s − h, r < k, contribution of Ls+1S(x). The contribution
coming from �k−r ◦ T r satisfies

Ls+1(�k−r ◦ T r ) = Ls+1−kLk−r�k−r ,

which is controlled by Lemma A.8. Summing over k ∈ [s − h + 1, s + 1] and r < k, we
obtain that the resulting contribution S(4)s is bounded by

s+1∑

k=s−h+1

∑

r<k

u(r, k)(k − r)γ
( ∑

b≤s+1−k

k−r∑

i=0

c(q)b+k−r−i c
(q)
i

+
∑

b≤s+1−k

d(q−2)
s+1−k−b

k−r∑

i=0

c(q)b+k−r−i c
(q)
i

)

.

Since d(q−2)
s+1−k−b is bounded, the second term is bounded by the first one. Since k − r ≤

(b+k−r −i)+i , we have k−r ≤ (b+k−r −i +1)(i +1), yielding (k−r)γ c(q)b+k−r−i c
(q)
i ≤

c(q−γ )
b+k−r−i c

(q−γ )
i . For κ ≥ 1, we obtain (letting m = k − r )

E(|S(4)s |κ |F1) ≤
∑

h≥0

c(q)h

⎛

⎝
s+1∑

k=s−h+1

∑

b≤s+1−k

∑

i≥0

c(q−γ )
i

∑

m≥i

u(k − m, k)c(q−γ )
b+m−i

⎞

⎠

κ

.

Summing over s and using the inequality
∑

xκi ≤ (
∑

xi )
κ , we get

∑

s

E(|S(4)s |κ |F1) ◦ T s

≤
∑

h≥0

c(q)h

⎛

⎝
∑

s

s+1∑

k=s−h+1

∑

b≤s+1−k

∑

i≥0

c(q−γ )
i

∑

m≥i

u(k − m, k)c(q−γ )
b+m−i

⎞

⎠

κ

.

We reorganize the sums as follows. First, we write s + 1 = k + a for some a ∈ [0, h], so
that the first three sums are replaced by

∑h
a=0

∑
k
∑

b≤a . Then, we move the sum over
k to the end: since

∑
k u(k − m, k) ≤ � for all m by Lemma A.5, we get a bound

�κ
∑

h≥0

c(q)h

⎛

⎝
h∑

a=0

∑

b≤a

∑

i≥0

c(q−γ )
i

∑

m≥i

c(q−γ )
b+m−i

⎞

⎠

κ

.
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The sum over m ≥ i is bounded by d(q−γ−1)
b . The (finite) quantity

∑
i≥0 c(q−γ )

i can

be factorized out, giving a multiplicative constant. Since the sum
∑

b≤a d(q−γ−1)
b is

uniformly bounded, we get an upper bound�κ
∑

h≥0(h + 1)κc(q)h ≤ C�κ , when κ ≤ q.

This readily implies that the contributions of S(4)s to the inequalities of von
Bahr-Esseen (case 1 ≤ Q ≤ 2) and Rosenthal-Burkholder (case Q > 2) are bounded
by �Q , as desired.

A.5. The case s − h ≥ k > r . The contribution coming from �k−r ◦ T r reads

Ls−h(�k−r ◦ T r )(π z)− Ls+1(�k−r ◦ T r )(x)

= Ls−h−kLk−r�k−r (π z)− Ls+1−kLk−r�k−r (x).

To estimate those contributions, we use Lemma A.8. The main terms e(b, k − r) sim-
plify partially: only those corresponding to s − h − k < b ≤ s + 1 − k remain. As a
consequence, the global contribution S(5)s (z) is bounded by

∑

s−h≥k>r

(k − r)γ u(r, k)

(
s+1−k∑

b=s−h−k+1

k−r∑

i=0

c(q)b+k−r−i c
(q)
i +

s−h−k∑

b=0

d(q−2)
s−h−k−b

k−r∑

i=0

c(q)b+k−r−i c
(q)
i

)

.

Let us first note that (k − r)γ c(q)b+k−r−i c
(q)
i ≤ c(q−γ )

b+k−r−i c
(q−γ )
i as in the previous sub-

section. We will then handle separately the two pieces S(5.1)s (z) and S(5.2)s (z) of this
expression.

Summing over h and then over s, and using the inequality
∑

xκi ≤ (
∑

xi )
κ as in the

previous subsection, we get
∑

s

E(|S(5.1)s |κ |F1) ◦ T s

≤
∑

h≥0

c(q)h

⎛

⎝
∑

s

∑

k≤s−h

s+1−k∑

b=s−h−k+1

∑

i≥0

c(q−γ )
i

∑

m≥i

u(k − m, k)c(q−γ )
b+m−i

⎞

⎠

κ

.

Let us reorganize the sums essentially as in the previous subsection. First, let s +1−h =
k + a for some a ≥ 1, so that the first sums become

∑
a≥1

∑
k
∑a+h

b=a . Then, we move
the sum over k to the end, and we use the inequality

∑
k u(k − m, k) ≤ � for all m.

This yields a bound

�κ
∑

h≥0

c(q)h

⎛

⎝
∑

a≥1

a+h∑

b=a

∑

i≥0

c(q−γ )
i

∑

m≥i

c(q−γ )
b+m−i

⎞

⎠

κ

.

The last sum over m is bounded by d(q−γ−1)
b , which is independent of i . Therefore, we

may factorize out the sum over i , since
∑

i c(q−γ )
i < ∞. Since d(q−γ−1)

b is nonincreas-

ing, we have
∑a+h

b=a d(q−γ−1)
b ≤ (h + 1)d(q−γ−1)

a . As q − γ − 1 ≥ 0, the sequence

d(q−γ−1)
a is summable, giving yet another multiplicative constant. We obtain a bound

C�κ
∑

h≥0(h + 1)κc(q)h ≤ C�κ when κ ≤ q.
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Let us now study S(5.2)s (z). We have
∑

s

E(|S(5.2)s |κ |F1) ◦ T s

≤
∑

h≥0

c(q)h

⎛

⎝
∑

s

∑

k≤s−h

s−h−k∑

b=0

d(q−2)
s−h−k−b

∑

i≥0

c(q−γ )
i

∑

m≥i

u(k − m, k)c(q−γ )
b+m−i

⎞

⎠

κ

.

We proceed exactly as above, with the difference that the sum over b goes from 0 to
a − 1. We get a bound

C�κ
∑

h≥0

c(q)h

⎛

⎝
∑

a≥1

a−1∑

b=0

d(q−2)
a−1−b · d(q−γ−1)

b

⎞

⎠

κ

.

Since q − γ − 1 ≤ q − 2, the convolution between d(q−2)
a−1−b and d(q−γ−1)

b is bounded by

c(q−γ−1)
a−1 . As γ + 1 ≤ q, the sum over a is finite, and we obtain a bound �κ .

Gluing the two pieces together, we have shown that
∑

s E(|S(5)s |κ |F1) ◦ T s ≤ C�κ

for all κ ≤ q. This readily implies that the contributions of S(5)s to the inequalities of von
Bahr-Esseen (case 1 ≤ Q ≤ 2) and Rosenthal-Burkholder (case Q > 2) are bounded
by �Q , as desired.
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