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Pressure at infinity and strong positive recurrence
in negative curvature

Sébastien Gouëzel, Barbara Schapira, and Samuel Tapie
(with an appendix by Felipe Riquelme)

Abstract. In the context of geodesic flows of noncompact negatively curved manifolds, we
propose three different definitions of entropy and pressure at infinity, through growth of periodic
orbits, critical exponents of Poincaré series, and entropy (pressure) of invariant measures. We
show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate
thoroughly the notion of strong positive recurrence in this geometric context. A potential is said
to be strongly positively recurrent when its pressure at infinity is strictly smaller than the full
topological pressure. We show, in particular, that if a potential is strongly positively recurrent,
then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong
positively recurrent potentials and many examples.

1. Introduction

The geodesic flow of a compact connected negatively curved Riemannian manifoldM
is the typical geometrical example of an Anosov flow. Its chaotic behavior reveals
itself, in particular, through the existence of infinitely many possible different behav-
iors of orbits.

A Gibbs measure is an ergodic invariant probability measure associated with a
given continuous map F W T 1M ! R, with respect to which almost all orbits will
spend most of their time in the subsets of T 1M where the potential F is large (see
Section 3.3 for the precise definition). In particular, the fact that there exists a Gibbs
measure for all Hölder-continuous maps is a quantified way to express that numerous
behaviors of orbits are indeed realized as typical trajectories with respect to the Gibbs
measures of some Hölder-continuous potentials.

When the manifoldM is no longer assumed to be compact, a geometric construc-
tion developed in [33] allows to build good candidates for Gibbs measures. However,
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due to noncompactness ofM and T 1M , these measures are not necessarily finite, and
therefore not always extremely useful.

In [34], Pit and Schapira characterized the finiteness of these measures in terms
of the convergence of some geometric series. In [44], in the case of the zero poten-
tial F D 0, building on [34], Schapira and Tapie proposed a criterion, called strong
positive recurrence, which implies the finiteness of the associated measure, known as
the Bowen–Margulis–Sullivan measure. This criterion is as follows: If � D �1.M/,
recall that the critical exponent of � is the exponential growth rate of any orbit of �
acting on the universal cover zM ofM . By a result of Otal and Peigné [31], it also coin-
cides with the topological entropy of the geodesic flow on T 1M . In [44], a critical
exponent at infinity ı1� is defined, and the authors prove that a critical gap ı1� < ı�

implies that the Bowen–Margulis–Sullivan measure is finite. This had been previ-
ously shown by Dal’bo, Otal and Peigné in [17] for geometrically finite manifolds, for
which the critical exponent at infinity is the maximum of the critical exponents among
parabolic subgroups. In general, this critical exponent at infinity should be seen as a
kind of entropy at infinity. Other striking applications of this critical gap have been
proved in [16].

The main goal of this paper is to produce a complete study of strong positive
recurrence in negative curvature. First, in Sections 4, 5 and 6, we compare this critical
exponent at infinity with other, new and old, possible definitions of entropy at infinity
and show that they all coincide. At the same time, considering pressures and pres-
sures at infinity instead of entropies, we generalize this study to all Gibbs measures
studied in [33,34]. In a second part (Section 7), we give a detailed study of strong pos-
itive recurrence in negative curvature. The appendix by F. Riquelme proves important
properties of entropy, that are classical in the compact case, but need a careful proof
in the noncompact case.

Analogous results have been known for years in the context of symbolic dynamics
over a countable alphabet, see [8, 9, 22–24, 39–41].

Let us present our results with more details.
The topological pressure of a Hölder-continuous potential F W T 1M ! R is a

weighted version of entropy. For a dynamical system on a compact space, there are a
lot of different definitions, which all coincide, see for example [49, Chapter 9] or [6].
In the noncompact setting, some of these definitions are meaningless. In [33], follow-
ing the works of [31, 38] on entropy, three definitions were compared. The Gurevič
pressure PGur.F / is the weighted exponential growth rate of the periodic orbits of the
geodesic flow which cross a fixed compact set. The variational pressure Pvar.F / is
the supremum over all invariant probability measures of their measure-theoretic pres-
sures, that is a weighted version of their Kolmogorov–Sinai entropies. The geometric
pressure ı�.F /, a geometric notion specific to geodesic flows also known as criti-
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cal exponent of .�; F /, is the weighted exponential growth rate of the orbits of the
fundamental group � of M acting on its universal cover zM .

All the previous discussion applies to the larger setting when zM is still a complete
simply connected Riemannian manifold with pinched negative curvature and bounded
derivatives of the curvature, and � is a discrete group of isometry acting properly
on zM possibly with fixed points. In this case, the stabilizer of any point has finite
order and M D zM=� is a good orbifold. As considered in [33], the unit tangent
bundle T 1M is then the set of parametrized bi-infinite geodesics onM with its natural
projection from T 1 zM and geodesic flow. A Hölder/smooth map on M (respectively,
on T 1M ) is a map onM (respectively, T 1M ) whose lift to zM (respectively, T 1 zM ) is
Hölder/smooth. In the sequel, all the results which we present for smooth manifolds
can be adapted verbatim to this good orbifold setting. When slight adaptations are
required for this generalization, we will specify it in the proof. In the appendix (only),
we will restrict to the case where � has a subgroup of finite index without torsion.
Note that since � may not be finitely generated, this is not automatic in our setting.

Standing assumptions in the paper. We fix once and for all a nonelementary com-
plete connected Riemannian manifold (or good orbifold) M with pinched negative
sectional curvature, and bounded first derivative of the sectional curvature. For all the
statements of this section, let us also fix F WT 1M !R a Hölder-continuous potential.

It has been shown in [31, 38] when F � 0 and [33, Theorem 1.1] for general
potentials that all these pressures coincide.

Theorem 1.1 (Roblin, Otal–Peigné, Paulin–Pollicott–Schapira). All notions of pres-
sure coincide:

ı�.F / D Pvar.F / D PGur.F /:

We denote this common value by Ptop.F /, and we call it the topological pressure of F .

The terminology differs slightly from [33], wherePvar was called topological pres-
sure. In retrospect, we consider now that the above terminology is better.

We propose here three notions of pressure at infinity, whose precise definitions
will be given in Section 4. The Gurevič pressure at infinity P1Gur.F / measures the
weighted exponential growth rate of periodic orbits staying most of the time outside
any given compact set. The variational pressure at infinity P1var .F / is the least upper
bound of measure-theoretic pressures of invariant probability measures supported
mostly outside any given compact set. The geometric pressure at infinity ı1� .F /mea-
sures the weighted exponential growth rate of those orbits of the fundamental group �
corresponding to excursions outside any given compact set.

The first main result of this article is the following one.
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Theorem 1.2. All notions of pressures at infinity coincide:

ı1� .F / D P
1
var .F / D P

1
Gur.F /:

We denote this common value by P1top.F /, and we call it the topological pressure at
infinity of F .

In the special case where F tends to a constant at infinity, the equality ı1� .F / D
P1var .F / has also been announced in [48] using different methods.

As already implicitly or explicitly noticed for example in [20, 21, 27, 37], this
pressure at infinity is deeply related to the phenomenon of loss of mass at infinity.
In the vague topology, on a noncompact space, a sequence of probability measures
may converge to a finite measure with smaller total mass. As proven by the above
authors, if these probability measures have a larger Kolmogorov–Sinai entropy than
the entropy at infinity, then they cannot lose the whole mass and converge to the zero
measure. In this spirit, as a corollary of Theorem 6.10, we obtain in Corollary 6.11
the following result.

Theorem 1.3. Let .�n/ be a sequence of invariant probability measures on T 1M
converging in the vague topology to a finite measure �, with mass 0 � k�k � 1.
Assume that Z

inf.F; 0/ d�n > �1

for all n. Then their Kolmogorov–Sinai entropies hKS .�n/ satisfy the following in-
equality:

lim sup
n!1

�
hKS .�n/C

Z
F d�n

�
� .1 � k�k/P1top.F /C k�kPtop.F /:

In the geometrically finite case, [27, 37] obtain an improvement of the conclusion
of the theorem, with P�.F / instead of Ptop.F / on the right, but only for the particular
class of potentials F which converge to 0 at infinity, for which P1top.F / D P1top.0/.
An extension of the results of [37] to general manifolds has been announced in [47],
cf. also [48, Theorem 1.1]. The strategy used in these papers is different from ours, and
does not work yet in general. It would be interesting to obtain their sharper inequality
under our weaker assumptions, see [48, Conjecture 5.5].

Once Theorem 1.2 is proven, we can say that a potential F is strongly positively
recurrent (SPR) when the following pressure gap holds:

P1top.F / < Ptop.F /:

We refer the reader to Section 7 for the notions of recurrence, positive recurrence,
strong positive recurrence.
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An analogous notion of pressure gap for potentials on nonpositively curved mani-
folds, with respect to the set of singular vectors instead of infinity, has been introduced
in [12].

As in [44, Theorem 7.1] when F D 0, we prove the following extremely useful
property of SPR potentials.

Theorem 1.4. If the potential F is strongly positively recurrent, then it admits a finite
Gibbs measure.

For potentials which vanish at infinity, this has also been announced in [48, The-
orem 1.3] using a different strategy. We will show that, on any negatively curved
manifold, there exist strongly positively recurrent potentials, see Corollary 4.12. This
implies the following new result.

Corollary 1.5. There exists a Hölder-continuous potential on T 1M which admits a
finite Gibbs measure.

It may be worth pointing out that with their current proofs, all results of [48]
quoted above actually rely on the existence of such a potential with finite Gibbs mea-
sure (see [48, Lemma 3.9]). Nevertheless, to the best of our knowledge, this fact had
not been established beyond geometrically finite manifolds.

We also establish other useful properties. Let m be a finite or infinite Radon mea-
sure, invariant under the geodesic flow .gt /. For a given compact subsetK in M , and
T � T0, consider the set VT0;T .K/ of vectors v 2 T 1K, such that for any t 2 ŒT0; T �,
the vector gtv does not belong to T 1K. These sets .VT0;T .K//T>T0 decrease when
T ! C1. We say that the flow .gt / is exponentially recurrent with respect to the
measure m if there exist a compact set K � M whose interior intersects a closed
geodesic, and constants C; ˛; T0 > 0 such that for all T > T0,

m.VT0;T .K// � Ce
�˛T :

In Section 7.4, we establish the following theorem.

Theorem 1.6. Assume that F has finite topological pressure and finite Gibbs mea-
sure mF . Then F is strongly positively recurrent if and only if the geodesic flow .gt /
is exponentially recurrent with respect to the Gibbs measure mF .

Strong positive recurrence says that there exists a compact subset K of M such
that the weighted exponential growth rate of the excursions outside K is strictly
smaller than the topological pressure. We finish this work with Theorem 7.9, showing
that strong positive recurrence does not really depend on the chosen compact set K,
in the following sense: We show in Theorem 7.9 that if the potential F is strongly
positively recurrent, then for any compact subsetK ofM , as soon as the interior ofK
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intersects a closed geodesic, this exponential growth rate of excursions outside K is
strictly smaller than the topological pressure.

The first two Sections 2 and 3 contain preliminaries, first on negatively curved
geometry and dynamics, and second on thermodynamic formalism, in particular, all
different notions of pressures, and the construction of the Gibbs measure mF .

Sections 4, 5 and 6 on the one hand, and Section 7 on the other hand can be read
independently.

Section 4 contains three different definitions of pressures at infinity. In Section 5,
we give upper bounds on the growth of certain sets of periodic orbits in terms of
entropy and entropy at infinity. We deduce equality of the geometric and Gurevič
pressures at infinity ı1� .F / and P1Gur.F /. In Section 6, we show that geometric and
variational pressures at infinity ı1� .F / and P1var .F / coincide. These sections are the
technical heart of the paper.

Section 7 is more conceptual. We investigate the notion of strongly positively
recurrent potentials in our geometric context, and prove Theorems 1.4 and 1.6.

The appendix by Felipe Riquelme (Theorem A.1) shows that different possible
definitions of measure-theoretic entropy, the Kolmogorov–Sinai entropy, the Brin–
Katok entropy, and the Katok entropy coincide in our geodesic flow context. This
result is well known in the compact case, but not obvious at all without compactness.

2. Negative curvature, geodesic flow

2.1. Geometric preliminaries

Our assumptions and notations are close to those of [33, 34, 44].
Let .M; g/ be a smooth complete connected noncompact Riemannian manifold

with pinched negative sectional curvature �b2 � Kg � �a2, for some a; b > 0,
and bounded first derivative of the sectional curvature. Let zM be its universal cover,
� D �1.M/ its fundamental group, and p� W zM !M D zM=� the quotient map. We
assume that the group � is nonelementary, i.e., that the geodesic flow admits at least
three different periodic orbits on T 1M . In particular, � contains a free group (see for
instance [4]). We denote by T 1M and T 1 zM the unit tangent bundles of M and zM ,
and by � W T 1M ! M or � W T 1 zM ! zM the canonical bundle projection. By abuse
of notation, we also write p� WT 1 zM ! T 1M for the differential of p� .

Given any two points x; y 2 zM , the set Œx; y� � zM will denote the (unique)
geodesic segment between x and y.

We fix arbitrarily a point o 2 zM that we call origin. The boundary at infinity @ zM
is the set of equivalence classes of geodesic rays staying at bounded distance one from
another. The limit set ƒ� � @ zM is the set of accumulation points ƒ� D �o n �o of
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the orbit of o. As shown by Eberlein [18], the nonwandering set � � T 1M of the
geodesic flow is the union of geodesic orbits which admit a lift whose negative and
positive endpoints belong toƒ� . The radial limit setƒrad

� �ƒ� is the set of endpoints
of geodesics whose images through p� return infinitely often in some compact set:

ƒrad
� WD ¹� 2 ƒ� ; 9C > 0; 9.n/ 2 �

N ; no! �; d.no; Œo�// � C º:

We denote by .gt /t2R the geodesic flow acting on T 1M or T 1 zM . The metric g
induces a distance onM and zM that we will simply denote by d . We will also denote
by d the distance on T 1M (respectively, on T 1 zM ) defined as follows: for all v; w 2
T 1M (respectively, in T 1 zM/, let

d.v;w/ WD sup
t2Œ�1;1�

d.�.gtv/; �.gtw//:

This distance is not Riemannian but it is equivalent to the standard Sasaki metric on
T 1M (respectively, on T 1 zM ), see [33, Chapter 2] for a discussion on the subject.

The Busemann cocycle is defined for all � 2 @ zM and x; y 2 zM , by

ˇ�.x; y/ D lim
z2Œx;�/; z!�

d.x; z/ � d.y; z/: (1)

We will sometimes also write, for all x; y; z 2 zM ,

ˇz.x; y/ D d.x; z/ � d.y; z/:

The set of oriented geodesics of zM can be identified with

@2 zM D .@ zM � @ zM/ n Diag :

For all v 2 T 1 zM , denote by v˙ the negative and positive endpoints in @ zM of the
geodesic tangent to v. The unit tangent bundle T 1 zM is homeomorphic to @2 zM � R

via the Hopf parametrization

H W

´
T 1 zM ! @2 zM �R;

v 7! .v�; vC; ˇvC.o; �.v///:
(2)

The geodesic flow acts by translation in these coordinates: for all v D .v�; vC; s/ and
t 2 R,

gt .v�; vC; s/ D .v�; vC; t C s/:

The group � acts in these coordinates by

.v�; vC; s/ D
�
v�; vC; s C ˇvC.

�1o; o/
�
:
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In terms of these Hopf coordinates, the nonwandering set � is identified with�
.ƒ2� n Diag/ �R

�
=�:

We denote its lift p�1� � by z�.
Recall that an isometry  2� is hyperbolic when it admits exactly two fixed points

in @ zM . In this case, it acts by translation on the geodesic joining them. The set P of
periodic orbits of the geodesic flow on T 1M is in 1-1 correspondence with the set of
conjugacy classes of hyperbolic elements of � . Indeed, a periodic orbit p with period
`.p/ can be lifted to a collection p�1� .p/ of geodesic orbits of T 1 zM , and each of
them, once projected on zM , is the oriented translation axis of a unique hyperbolic
element p , which acts by translation in the positive direction on the axis, with trans-
lation length equal to `.p/. By construction, all these elements are conjugated one to
another.

Not all elements of � are hyperbolic. However, the following lemma from [34,
Lemma 2.6], variant of the well-known point of view, due to Margulis, of counting
elements of � inside cones, will allow us to consider only hyperbolic elements.

Lemma 2.1. Let zK be a compact subset of zM whose interior intersects z�. There exist
finitely many elements g1; : : : ; gk in � such that for every  2 � , there exist gi ; gj
among them such that g�1j gi is hyperbolic, and its translation axis intersects zK.

Proof. By [34, Lemma 2.6] applied with zW the interior of zK, there exist finite sets
F D ¹g1; : : : ; gkº and S D ¹s1; : : : ; sj º in � such that every  2 � n S satisfies the
conclusion of the lemma with respect to F . Consider a hyperbolic element h whose
axis intersects zK. Then the set F 0 D ¹g1; : : : ; gk; s1; : : : ; sj ; hºworks for every  2 � .
Indeed, it works for  … S by assumption, and for  D si 2 S then s�1i h D h has a
translation axis intersecting zK, with si ; h 2 F 0.

The following elementary lemma will be used several times.

Lemma 2.2. Consider x; y; z three points in a geodesic metric space zM , and denote
by Œy; z� a geodesic between y and z. Then

d.y; x/C d.x; z/ � 2d.x; Œy; z�/ � d.y; z/ � d.y; x/C d.x; z/:

We will often need more precise distance estimates, which rely on a negative upper
bound of the curvature. The next lemma follows from [33, Lemma 2.5].

Lemma 2.3. For all D > 0 and all " > 0, there exists T0 D T0.D; "/ > D such that
if x; x0; y; y0 2 zM satisfy d.x; x0/ � D, d.y; y0/ � D and d.x; y/ � 2T0, then there
exists s0 2 Œ�T0; T0� such that, if vxy (respectively, vx0y0) denotes the unit tangent
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vector based at x (respectively, x0) tangent to the segment Œx;y� (respectively, Œx0;y0�),
then for all t 2 ŒT0; d.x; y/ � T0�,

d.gtvxy ; g
tCs0vx0y0/ � ":

We will also need the following lemma which allows to approximate broken
geodesics by axes of hyperbolic elements. If x ¤ y 2 zM , let vxy denote the (ori-
ented and unitary) tangent vector of the geodesic segment Œx; y� at x. If v;w 2 T 1x zM ,
set ].v; w/ 2 Œ0; �� for their geometric angle. If v 2 T 1x zM and w 2 T 1y zM , denote
by ].v; w/ 2 Œ0; �� the geometric angle between v and the image of w through the
parallel transport from y to x along Œy; x�. See Figure 1 for the next lemma.

x
y z b

"

vxy

vyx vyz vzy

vzb

vbz
vxy

Axis./

Figure 1. Broken geodesic close to a hyperbolic axis.

Lemma 2.4. For all � 2 .0; �/, and all " > 0, there exists C D C.�; "/ > 0 such
that the following holds. Let x; y; z; b 2 zM and  2 � be such that d.x; y/; d.y; z/
and d.z; b/ are at least 2C , and d.b; x/ � 1=C . Assume, moreover, that the angles
].vyx; vyz/, ].vzy ; vzb/, and ].vxy ; vbz/ are at least � . Then  is hyperbolic, the
piecewise geodesics Œx; y� [ Œy; z� [ Œz; b� is in the "-neighborhood of its axis except
in the C -neighborhood of the points x; y; z and b. Moreover, the period T of 
satisfies

T � .6C C 1/ � d.x; y/C d.y; z/C d.z; b/ � T C 6C C 1:

Sketch of proof. By the arguments presented in [33, p. 98], the geodesics from x to b
and from x to x are uniformly close to the union of segments Œx; y�[ Œy; z�[ Œz; b�,
so that vxy and vx;x on the one hand, and vbz and vx;x on the other hand, are uni-
formly close. In particular, adjusting the constants, it implies that the angle between
vx;x and vx;x is uniformly bounded from below by, say, �=2.

WhenC is large enough, this prevents  to be parabolic. Indeed, in this case, vx;x
and vx;x would be close to the vector from x to the parabolic fixed point of  , and
therefore very close one from another.

The rest of the proof is an immediate adaptation of arguments of [33, p. 98].
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2.2. Dynamical properties of the geodesic flow

In restriction to its nonwandering set �, the geodesic flow satisfies nice dynamical
properties. It is transitive in the sense that for all nonempty open sets U; V � �,
there exists T > 0 such that gTU \ V ¤ ;. And it satisfies a closing lemma (see for
instance Eberlein in [19, Proposition 4.5.15]): for every compact subset K � � and
all " > 0, there exist � > 0 and T D T .K; "/ > 0, such that for all v 2 K, and t > T
such that d.gtv; v/ � �, there exists a periodic vector p whose period `.p/ satisfies
j`.p/ � t j � ", and for all 0 � s � t , we have d.gtp; gtv/ � ".

However, we will need similar properties for vectors close to � but that may be
wandering, and we will also need to make sure that the glued orbit enters an a priori
fixed ball. In this direction, we will use several times the following proposition.

Proposition 2.5 (Connecting lemma). LetK andK 0 be compact subsets ofM whose
interiors intersect �.�/, and zK a compact subset of zM such that p�. zK/ D K. For
all " > 0, there exist T0 D T0. zK;K 0; "/ > 0 and C0 D C0. zK;K 0; "/ > 0 such that the
following holds. There exists a construction that associates to any T � 2T0 and any
v 2 T 1K such that gT v 2 T 1K a periodic orbit }.v; T / that satisfies the following
assertions.

(1) (Shadowing). The periodic orbit}.v;T / has a period belonging to ŒT;TCT0�,
it intersects the interior of T 1K 0, and there exists a periodic vector u on this
periodic orbit, such that for all t 2 ŒT0; T � T0�, we have d.gtv; gtu/ � ".

(2) (Bounded multiplicity). For each periodic orbit p with period T D`.p/�2T0
going through T 1K, choose arbitrarily a periodic vector vp 2 T 1K \ p
on p, and denote by }.vp; `.p// the corresponding new periodic orbit asso-
ciated with vp by our specific construction in (1). Then, given any periodic
orbit }0, the number of periodic orbits p such that }.vp; `.p// D }0 is
bounded by C0`.}0/.

Remark 2.6. The first assertion of the above proposition is a standard consequence
of transitivity, local product structure, and closing lemma when v 2 �, but needs a
proof otherwise.

The second assertion is more subtle than other similar statements that hold in a
compact setting. WhenM is compact, one usually simply bounds the number of peri-
odic orbits that "-shadow a fixed orbit }0 during most of their period. However, when
the manifold (or orbifold) M is not compact, its injectivity radius is not necessar-
ily bounded from below. Therefore, uniformly bounded multiplicity for the number
of closed geodesics that stay in a fixed "-neighborhood of }0 is not true in general,
notably when }0 crosses parts of the manifold where the injectivity radius is much
smaller than ". That is the reason why we consider only those periodic orbits that are
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constructed through a given procedure, detailed in the proof below, for which we are
able to bound the multiplicity.

In the proof and later on, we will need the following notation. As in [34], if zK � zM
is a compact subset, let us denote by n zK.}/ the number of lifts z} of a given periodic
orbit } to T 1 zM such that �. z}/ intersects zK.

Proof. The construction of the orbit }.v; T / will be explained inside the proof of the
first assertion, and the specificities of the construction will be used in the proof of the
second assertion.

Proof of Assertion (1). The reader may follow the proof on Figure 2. We can assume
that 2" is smaller than 1. We fix once for all a vector w in the intersection of � and
the interior of T 1K 0. Up to reducing ", we can assume that B.�.w/; 2"/ � K 0.

By compactness of zK, as ƒ� is not reduced to a single point, there exists

� D �. zK/ > 0

such that for all y 2 zK and zv 2 T 1y zK, there exists � 2 ƒ� such that ].vy� ; zv/ > � .
As the geodesic flow is topologically transitive on �, and the action of � on ƒ� is
minimal, we can assume moreover that the positive geodesic orbit on T 1M associated
with .gtvy�/t�0 contains � in its closure. Let C D C.�; "/ be the constant provided
by Lemma 2.4. Let "0Dmin."; 1=.2C //� ". By compactness of T 1K \�, a uniform
property of transitivity holds, in the following sense. There exist

T1 > 2C and T2 > T1 C 6C;

that depend only onK;K 0 and "0, such that the vector vy� can be chosen in such a way
that the projection on T 1M of gŒ2C;T1�.vy�/ intersects B.w; "0/ and the projection on
T 1M of gŒT1C6CC1;T2�.vy�/ intersects once again B.w; "0/.

Let v 2 T 1K. Set y0 D �.v/ 2 M and take y 2 zK such that p�.y/ D y0. Let
zv 2 T 1y

zM be such that p�.zv/ D v. By the above claim, there exists

zv0 D �vy� 2 T
1
y
zM with ].zv; zv0/ � � � �

such that, with v0 D p�.zv0/, the half orbit .¹g�tv0; t � 0º/ is dense in �, and at two
distinct times t1 2 Œ2C; T1� and t2 2 ŒT1 C 6C C 1; T2�, we have

g�t1v0 2 B.w; "0/ and g�t2v0 2 B.w; "0/:

We will see below how it will be important. Set x D �.g�t2zv0/.
By assumption, gT v 2 T 1K for some T � 0 large enough (to be made precise

later on). Set z D �.gT zv/. By the same arguments now applied to �gT zv, there exists

zv00 2 T 1z
zM with ].gT zv; zv00/ � � � �
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g�t2 zv0

p�

K0

v0 v

x

zv0

y
zv

"

gT zv

z b

zv00

gszv00

Axis./ D p�. z}/

K
v00

gT v

B.w; "/

g�t2 zv0
g�t1 zv0

Figure 2. Connecting lemma.

such that, if v00 D p�.zv00/, the half orbit .gtv00/t�0 is dense in �, and for some s 2
Œ2C; T1�, we have gsv00 2 B.w; "0/. Let b D �.gszv00/ be the base point of gszv00.

Consider now the broken geodesic path

.gtg�t2zv0/0�t�t2 [ .g
t
zv/0�t�T [ .g

t
zv00/0�t�s:

It starts from x D �.g�t2zv0/, has an angle at least � at y D �.zv/, a second angle at
least � at z D �.gT zv/, and ends at b D �.gszv00/. Since p�.x/ and p�.b/ are both in
�.B.w; "0//, there exists  2 � such that

d.x; b/ � 2"0 � 1=C:

Moreover, if " is small enough, since g�t2v0 2 B.w; "0/ and gsv00 2 B.w; "0/ with
"0 � ", up to changing  2 � , the angle ].g�t2zv0; gszv00/ is at most � � � .

Assume that T � 2C . Then Lemma 2.4 applies to the sequence of points x;y;z;b.
Therefore,  is hyperbolic. Its translation axis can be written as �. z}/, where we
choose its lift z} to T 1 zM oriented so that  acts by positive translation on it. By
Lemma 2.4 again, the broken geodesic path

Œx; y� [ Œy; z� [ Œz; b�

is in the "-neighborhood of �. z}/, except maybe in the C -neighborhood of x; y; z; b.
As we chose v0 so that g�t1v0 2 B.w; "0/ � B.w; "/, with t1 2 Œ2C; d.y; x/ � 2C �,
the periodic orbit } D p�. z}/ intersects B.w; 2"/ � T 1K 0 near g�t1v0. Moreover,
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since T1 C 6C C 1 � d.x; y/ � T2 and d.y; z/ D T and d.z; b/ � T1, it follows
from Lemma 2.4 that the translation length `./ of  satisfies

.T1 C 6C C 1/C T � .6C C 1/ � `./ � T2 C T C T1 C 6C C 1:

To conclude, let q0 be the first point on the geodesic path Œy; z� which lies in the
"-neighborhood of the axis of  , and define a point q as the closest point to q0 on
the translation axis of  . Let � D d.y; q0/ � 0 so that q0 D �.g� zv/. Let zu0 be the
tangent vector to the axis of  at the point q pointing in the same direction as g� zv. By
construction, the vector u WD p�.g�� zu0/ satisfies, for all � � t � T � C , that

d.�.gtu/; �.gtv// � ":

With � D C C 1, the same kind of estimate holds on T 1M : for all � � t � T � � , we
have

d.gtu; gtv/ � ":

This shows that u satisfies the conclusion of assertion (1), with

T0 D max.�; T1 C T2 C 6C C 1/:

The above procedure of construction of the periodic orbit .gtu/ depends on sev-
eral arbitrary choices. We define }.v; T / as one arbitrary periodic orbit obtained by
the above construction.

Proof of Assertion (2). For each periodic orbit p and vp 2 T 1K \ p as in the state-
ment, let zvp 2 T 1 zK be the lift of vp to the universal cover used in the first step in
order to define }.vp; `.p//. Let p 2 � be the hyperbolic element whose axis is the
lift of p through yp D �.zvp/, oriented in the direction of zvp , and whose translation
length is `.p/.

Assume that }.vp; `.p// is equal to a given periodic orbit }0. Then, by the con-
struction in the first step, there exist a constant C1 (depending only on zK, K 0 and "),
a vector zup 2 T 1 zM and a lift . z}0/.p/ of }0, that may depend on p, admitting a fun-
damental domain ..gt zup//0�t�`.}0/ whose projection on zM is within Hausdorff dis-
tance at most C1 of Œyp; pyp�. In particular, this lift intersects the C1-neighborhood
zKC1 of zK as �.zup/ 2 zKC1 . Conversely, given a lift z}0 of }0 intersecting T 1 zKC1 , let

us show that the number of p with . z}0/.p/ D z}0 is uniformly bounded. The point
�.zup/ can only belong to a compact part of z}0 (of length at most diam zK C 2C1),
hence �.g`.}0/zup/ is also restricted to a subset of diameter diam zK C 2C1, and there-
fore pyp is also restricted to a subset of diameter diam zK C 3C1. Moreover yp
belongs to the compact set zK. For any R > 0, there exists a constant A.R/ such
that, for any x 2 zM , the number of elements  of � with  zK \ B.x; R/ ¤ ; is
bounded by A.R/: if this number is nonzero, one can pull back by one of these
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elements to bring B.x;R/ to a fixed size neighborhood of zK, where the result is obvi-
ous by compactness. It follows that the number of possible p is uniformly bounded
by A.diam zK C 3C1/, as claimed.

We have proved that there exists a uniform constant A depending only on zK, K 0

and " such that the number of periodic orbits p with }.vp; `.p// D }0 is bounded
from above by A times the number n zKC1

.}0/ of lifts z}0 of }0 that intersect T 1 zKC1 .
It remains to bound the number n zKC1

.}0/ of such lifts z}0 of }0. Assertion (2)
follows from the fact that there exists a constant B D B. zK; C1/ > 0 such that for
every periodic orbit }0 � T 1M ,

n zKC1
.}0/ � B � `.}0/: (3)

Let us prove this bound. As zKC1C1 is compact, there exists a constant B such that
any point in M has at most B preimages under p� in zKC1C1. Each lift z}0 of }0
intersecting T 1 zKC1 spends a time at least 1 in zKC1C1. Therefore,

n zKC1
.}0/ � Leb.p�1� .}0/ \ zKC1C1/:

By the choice of B , this is bounded by B Leb.}0/ D B`.}0/, proving (3).

3. Thermodynamical formalism

Entropy is a well-known measure of the exponential rate of complexity of a dynamical
system, and the measure of maximal entropy is an important tool in the ergodic study
of hyperbolic dynamical systems.

Pressure is a weighted version of entropy, which is particularly useful for the
study of perturbations of hyperbolic systems. The notion of equilibrium state is the
weighted analogue of the measure of maximal entropy.

In this section, for the geodesic flow of noncompact negatively curved manifolds,
we recall some well-known notions and facts from [33] and [34] on the pressure and
the construction of the equilibrium state or Gibbs measure associated with a Hölder-
continuous map F W T 1M ! R. This construction has a long story, initiated by the
works of Patterson [32] and Sullivan [45] when F D 0, by Hamenstädt [25] and
Ledrappier [29]. We refer to [33] for detailed historical background and proofs of
the assertions in this paragraph. We follow here mainly [33, Chapter 3] and [43],
and [34].
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3.1. Pressures of Hölder-continuous potentials

Let F W T 1M ! R be a Hölder-continuous map in the following sense: there exist
0 < ˇ � 1 and C > 0 such that for all v;w 2 T 1M with d.v;w/ � 1, we have

jF.v/ � F.w/j � Cd.v;w/ˇ :

Such a map F will be said .ˇ; C /-Hölder-continuous. Let zF D F ı p� be the �-
invariant lift of F to T 1 zM .

For x ¤ y 2 zM , recall the notationZ y

x

zF WD

Z d.x;y/

0

zF .gtvx;y/ dt:

The following statement is easily implied by [33, Lemma 3.2 and Remark (ii)
on p. 34].

Lemma 3.1. Let F W T 1M ! R be a .ˇ; CF /-Hölder-continuous map on T 1M ,
and zF its �-invariant lift. There exists a constant c1 > 0 depending only on the upper
bound of the curvature and the Hölder constants ˇ; CF , with the following property.
LetD � 1, and consider points x;y; x0; y0 2 zM with d.x;y/�D and d.x0; y0/�D.
Then ˇ̌̌̌Z x0

x

zF �

Z y0

y

zF

ˇ̌̌̌
� c1e

D
CD

�
j zF .vxx0/j C j zF .g

d.x;x0/vxx0/j
�
;

where vxx0 is the tangent vector at x to the geodesic segment from x to x0.
This bound applies, in particular, when x and y are picked in a compact subset zK

of T 1M with diameter at most D, and x0 and y0 are picked in  zK for some  2 � .
In this situation, one gets an upper bound c1eD C 2Dmaxv2T 1 zK jF.v/j which only
depends on zK.

Proof. By [33, Lemma 3.2 and Remark (ii) on p. 34], we haveˇ̌̌̌Z x0

x

zF �

Z y0

y

zF

ˇ̌̌̌
� c1e

D
CD max

��1.B.x;D//
j zF j CD max

��1.B.x0;D//
j zF j (4)

for some constant c1. Moreover, on the ball ��1.B.x;D// one has the inequality

j zF .v/ � zF .vxx0/j � C. zF /D

as zF is Hölder-continuous and therefore Lipschitz on large scales. One can there-
fore bound Dmax��1.B.x;D//j zF j with Dj zF .vxx0/j C C. zF /D2, and then bound the
second term with C 0eD . The last term in (4) is handled similarly.

There are several natural definitions of pressure, that all coincide, as proven in [33,
Theorems 4.7 and 6.1], see Theorem 1.1. We recall here these three definitions.
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3.1.1. Geometric pressure as a critical exponent. Recall that some point o2 zM has
been chosen once and for all. The Poincaré series associated with .�;F / is defined by

P�;o;F .s/ D
X
2�

e�sd.o;o/C
R o
o
zF :

The following lemma is elementary, see for instance [33, pp. 34-35].

Lemma 3.2 (Geometric pressure). The above series admits a critical exponent ı�.F /
2 R[ ¹C1º defined by the fact that for all s > ı�.F / (respectively, s < ı�.F /), the
series P�;o;F .s/ converges (respectively, diverges). Moreover, ı�.F / does not depend
on the choice of o and, for any c > 0, satisfies

ı�.F / D lim sup
T!C1

1

T
log

X
2�;T�c�d.o;o/�T

e
R o
o
zF :

We call ı�.F / the critical exponent of .�; F / or the geometric pressure of F .

As � is nonelementary, one can show (see [33, Lemma 3.3]) that ı�.F / > �1.
Moreover, observe that ı�.F / is finite as soon as F is bounded from above. In [33,
Theorem 4.3], it has been shown that the above limsup is in fact a true limit if c is
large enough. In what follows, we will never require F to be bounded from above,
but we will sometimes assume that ı�.F / is finite.

3.1.2. Variational pressure. Let M1 be the set of Borel probability measures on
T 1M invariant under the geodesic flow, and M1;erg the subset of ergodic proba-
bility measures. For a given Hölder-continuous potential F W T 1M ! R, consider
their subsets MF

1 and MF
1;erg of probability measures with

R
F � d� < 1, where

F � D � inf.F; 0/ is the negative part of F . Given � 2M1, we denote by hKS .�/ D
hKS .g

1; �/ its Kolmogorov–Sinai entropy, or measure-theoretic entropy with respect
to g1 (see the appendix for the definition).

Definition 3.3. The variational pressure of F is defined by

Pvar.F / D sup
�2MF

1

�
hKS .�/C

Z
F d�

�
D sup
�2MF

1;erg

�
hKS .�/C

Z
F d�

�
:

3.1.3. Growth of periodic geodesics and Gurevič pressure. We denote by P (respec-
tively, P 0) the set of periodic (respectively, primitive periodic) orbits of the geodesic
flow. Let now K be a compact subset of M whose interior intersects at least a closed
geodesic, and c > 0 be fixed. Let us denote by PK (respectively, PK.t/, PK.t � c; t/)
the set of periodic orbits p 2 P of the geodesic flow whose projection �.p/ on M
intersects K (respectively, such that `.p/ � t , `.p/ 2 .t � c; t �). The subsets P 0K ,
P 0K.t/, P 0K.t � c; t/ of P 0 are defined similarly.



Pressure at infinity and strong positive recurrence in negative curvature 447

Denote by
R
p
F the integral of F over .gtvp/0�t�`.p/ for any vp on p. By [33,

Theorem 4.7], the definition below makes sense.

Definition 3.4 (Gurevič pressure). For any compact subset K of M whose interior
intersects a closed geodesic and any c > 0, the Gurevič pressure of F is defined by

PGur.F / D lim sup
T!C1

1

T
log

X
p2PK.T�c;T /

e
R
p F :

It does not depend on K nor c. Moreover, when PGur.F / > 0, then

PGur.F / D lim sup
T!C1

1

T
log

X
p2PK.T /

e
R
p F :

Gurevič was the first to introduce this definition (for the potential F D 0) in
the context of symbolic dynamics, see [22]. The equality PGur.F / D Pvar.F / has
been proven in [5] for compact manifolds and F D 0, in [7] for compact manifolds
and Hölder-continuous potentials. The equality ı�.F / D PGur.F / is due to Ledrap-
pier [29] in the compact case.

In the noncompact case, when F � 0, Sullivan [46] and Otal–Peigné [31] proved
that ı� D Pvar, and Roblin [38] proved that PGur D ı� . The equality between the
three notions of pressures for general Hölder-continuous potentials on noncompact
manifolds is done in [33, Theorems 4.7 and 6.1].

3.2. Patterson–Sullivan–Gibbs construction

Let F W T 1M ! R be a Hölder-continuous potential with finite topological pressure.
As will be seen in Paragraph 3.3, the construction of a good invariant measure associ-
ated with F will use the product structure�' ..ƒ2� nDiag/ �R/=� . The main step
is the definition of a good measure �F on ƒ� , that we will call a Patterson–Sullivan–
Gibbs measure. We recall it below with more care than usually done, because we will
need in Section 7.3 to deal with technical points of the construction.

As stated in Lemma 3.2, the Poincaré series P�;o;F .s/ converges when s > ı�.F /
and diverges when s < ı�.F /. We say that .�; F / is divergent if this series diverges
at s D ı�.F /, and convergent if the series converges.

Following the famous Patterson trick, see [32], when .�; F / is convergent, we
choose a positive nondecreasing map hWRC ! RC with subexponential growth such
that for all � > 0, there exists C� � 1 such that

8r � 0; 8t � 0; h.t C r/ � C�e
�th.r/; (5)

and the series
zP�;F .o; s/ D

X
2�

h.d.o; o// e�sd.o;o/C
R o
o
zF
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has the same critical exponent ı�.F /, but diverges at the critical exponent ı�.F /.
The article [32] provides the construction of such a nondecreasing function h, except
that (5) is replaced by the following property: for all � > 0, there exists r� > 0 such
that

8r � r�; 8t � 0; h.t C r/ � e�th.r/:

We claim that this property implies (5). Indeed, the result is obvious for r � r� , while
for r � r� one may write

h.t C r/ � h.t C r�/ � e
�th.r�/ D

h.r�/

h.0/
e�th.0/ �

h.r�/

h.0/
e�th.r/:

Hence, (5) follows with C� D h.r�/=h.0/.
Define now for all s > ı�.F / a probability measure on zM [ @ zM by

�F;s D
1

zP�;F .o; s/

X
2�

h.d.o; o//e�sd.o;o/C
R o
o
zFDo;

where Dx stands for the Dirac mass at x.
By compactness of zM [ @ zM , we can choose a decreasing sequence sk ! ı�.F /

such that �F;sk converges to a probability measure �F . As zP�;o;F diverges at s D
ı�;F , we deduce that �F is supported on ƒ� � @ zM .

For all x;y 2 zM and � 2 @ zM , recall the following notation from [43, Section 2.2.1]
(with an opposite sign convention compared to [33])

�F� .x; y/ D lim
z2Œx;�/; z!�

Z z

x

zF �

Z z

y

zF :

Observe that �0
�
D 0 and more generally, when F � c is constant, �c D c �ˇ, where ˇ

is the usual Busemann cocycle defined in equation (1).
The measure �F satisfies the following crucial property. For all  2 � , and �F -

almost all � 2 @ zM ,

d��
F

d�F
.�/ D e

ı� .F /ˇ� .o;o/��
F
�
.o;o/

: (6)

As a consequence of (6), one gets the following key property, proved in [30].
Recall that for a given setA� zM , the shadow Ox.A/ ofA viewed from a point x 2 zM
is by definition the set of points y 2 zM [ @ zM such that the geodesic interval Œx; y�
intersects the set A.

Proposition 3.5 (Shadow lemma). There existsR0 > 0 such that for every givenR �
R0, there exists a constant C > 0 such that for all  2 � ,

1

C
e�ı� .F /d.o;o/C

R o
o
zF
� �F .Oo.B.o;R// � Ce

�ı� .F /d.o;o/C
R o
o
zF :
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Observe that the probability measure �F constructed above is not unique a priori,
but it will be unique in all interesting cases, see Section 7.1 for details.

In fact, we will need a shadow lemma for the family of measures �F;s , for s >
ı�.F /. As the uniformity of the constants in the statements with respect to s > ı�.F /
will be crucial, we provide a detailed proof.

ForA;B � zM two sets, we will use the enlarged shadow OB.A/D
S
x2B Ox.A/,

i.e., the set of points y 2 zM [ @ zM such that there exists some x 2 B such that the
geodesic interval Œx; y� intersects A.

Lemma 3.6 (Orbital Shadow lemma). For every compact subset zK of zM , there exist
r > 0 and � > 0 with the following property:

(1) Upper bound: For every � > 0, there exists c� > 0 such that for all ı�.F / <
s � ı�.F /C � and  2 � with d.o; o/ � r , we have

�F;s.O zK.
zK// � c�e

�.s��/d.o;o/C
R o
o
zF :

(2) Lower bound: Assume additionally that zK contains B.o; R1/, where R1 D
R1.F / is a fixed large constant. Then there exists C such that for all ı�.F / <
s � ı�.F /C � and  2 � with d.o; o/ � r , we have

1

C
e�sd.o;o/C

R o
o
zF
� �F;s.Oo. zK//:

Proof. By convexity of the distance in nonpositive curvature, if D D diam. zK/ C
d.o; zK/ and zL is the D-neighborhood of zK, then for all  2 � , we have

O zK.
zK/ � Oo. zL/:

Therefore, upon replacing zK with zL in the upper bound, it suffices to prove it for the
shadow Oo. zK/. This also shows that without loss of generality, we can assume that
o 2 zK.

We follow the classical proof of the Shadow lemma, with �F;s on zM instead of �F

on @ zM . By definition, for all y 2 �o and ˛ 2 � , we have

d.˛��
F;s/

d�F;s
.y/ D

h.d.˛o; y//

h.d.o; y//
e�s.d.˛o;y/�d.o;y//C

R y
˛o
zF�

R y
o
zF :

We deduce that

�F;s.Oo. zK// D 
�1
� �F;s.O�1o. zK//

D

Z
O
�1o

. zK/

h.d.�1o; y//

h.d.o; y//
e
�s.d.�1o;y/�d.o;y//C

R y
�1o

zF�
R y
o
zF d�F;s:
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The triangular inequality gives

d.�1o; y/ � d.�1o; o/C d.o; y/:

Moreover, since o 2 zK and y 2 O�1o. zK/, by Lemma 2.2, we have

d.�1o; y/ � d.�1o; o/C d.o; y/ � 2D:

In particular, with r D 2D, if d.�1o; o/ � r , we get d.�1o; y/ � d.o; y/.
By construction, the map h is nondecreasing and for all � > 0, there exists C� > 0

such that for � � 0, t � 0, we have h.t C �/ � C�e�th.�/. Thus, independently of
s > ı�.F /, we have

1 �
h.d.�1o; y//

h.d.o; y//
�
h.d.�1o; o/C d.o; y//

h.d.o; y//
� C�e

�d.�1o;o/:

By Lemma 3.1, there exists a positive constant C.F; zK/, such that uniformly in
y 2 O�1o. zK/, we haveˇ̌̌̌Z y

�1o

zF �

Z y

o

zF �

Z o

�1o

zF

ˇ̌̌̌
� C.F; zK/:

We deduce that, when s < ı�.F /C 1,

�F;s.Oo. zK// � C�e
2DsCC.F; zK/e

�.s��/d.�1o;o/C
R o
�1o

zF
� �F;s.O�1o. zK//

� C�e
2D.ı� .F /C1/CC.F; zK/e

�.s��/d.�1o;o/C
R o
�1o

zF
:

This concludes the proof of the upper bound.
For the lower bound, we have

�F;s.Oo. zK// � e
�C.F; zK/e

�sd.�1o;o/C
R o
�1o

zF
� �F;s.O�1o. zK//:

The crucial point is to get a lower bound of the measure on the right hand side. More
precisely, as we assume that zK contains a ball centered at o with large radius, we
wish to find such a radiusR > 0 and � > 0 such that uniformly in  2 � and ı�.F / <
s < ı�.F / C � , the measure �F;s.O�1o.B.o; R/// has a positive lower bound. It
would follow immediately if we knew that for some R > 0, uniformly in y 2 zM and
ı�.F / < s < ı�.F /C � , the measure �F;s.Oy.B.o;R/// has a positive lower bound.
We follow the usual argument which concludes the proof of the classical Shadow
lemma. Imagine by contradiction that there exist

sn ! ı�.F /; Rn !1; and yn ! y1 2 zM [ @ zM

such that �F;sn.Oyn. zB.o;Rn///! 0.
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There exists a subsequence snk such that �F;snk converges to some probability
measure �0 on the boundary which is supported on the full limit setƒ� . This measure
is not a single Dirac mass at y1, by nonelementarity. By regularity, we can find an
open neighborhood U of y1 with �0.U /D 1� ˛ < 1. Since �F;snk converges weakly
to �0 and U is open, this entails

�F;snk .U / � 1 � ˛=2

for large enough k. For large enough n, the complement of U is then contained in
Oyn.

zB.o;Rn// as yn ! y1 and Rn !1. This gives

�F;snk .Oynk .
zB.o;Rnk /// � ˛=2;

a contradiction.

3.3. Gibbs measures

Let F W T 1M ! R be a Hölder-continuous potential with finite topological pressure,
and let �F be a Patterson–Sullivan measure associated with F , as constructed in the
previous paragraph.

Denote by �WT 1M ! T 1M the involution v 7! �v, and let �F ı� be a Patterson–
Sullivan measure associated with F ı �. Hopf coordinates allow us to define a Radon
measure on T 1 zM by the formula

d zmF .v/ D exp
�
ı�.F /ˇv�.o; �.v// � �

F ı�
v� .o; �.v//

C ı�.F /ˇvC.o; �.v// � �
F
vC
.o; �.v//

�
d�F ı�.v�/ d�F .vC/ dt: (7)

By construction, zmF is invariant under the geodesic flow and it follows from (6) that
it is invariant under the action of � on T 1 zM , so that it induces a Radon measure mF

on T 1M .
The following crucial result was shown in [31] for F D 0 and in [33, Chapter 6]

in general.

Theorem 3.7 ([31]–[33]). Let F W T 1M ! R be a Hölder-continuous potential with
finite topological pressure. Then the following alternative holds. If a measure mF

on T 1M given by the Patterson–Sullivan–Gibbs construction is finite and if, once
normalized into a probability measure, it belongs to MF

1 , then it is the unique proba-
bility measure realizing the supremum in the variational principle:

P.F / D sup
m2MF

1

�
hKS .m/C

Z
T 1M

F dm
�
D hKS

�
mF

kmF k

�
C

Z
T 1M

F
dmF

kmF k
:

Otherwise, there is no probability measure realizing this supremum.
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We will also need the following result, called the Hopf–Tsuji–Sullivan–Roblin
theorem, see [33, Theorem 5.3] for a more complete statement and a proof.

Theorem 3.8 (Hopf–Tsuji–Sullivan–Roblin theorem, [33]). Let F W T 1M ! R be a
Hölder-continuous potential with finite topological pressure, and let �F and mF be
associated with F as above. The following assertions are equivalent.

(1) The pair .�;F / is divergent, i.e., the Poincaré series P�;o;F .s/ diverges at the
critical exponent ı�.F /;

(2) the measure �F gives positive measure to the radial limit set: �F .ƒrad
� / > 0;

(3) the measure �F gives full measure to the radial limit set: �F .ƒrad
� / D 1;

(4) the measure mF is conservative for the action of the geodesic flow on T 1M ;

(5) the measure mF is ergodic and conservative for the action of the geodesic
flow on T 1M .

Together with the above Hopf–Tsuji–Sullivan–Roblin theorem, the Poincaré re-
currence theorem implies the following crucial observation:

When the measure mF is finite, it is ergodic and conservative.

4. Pressures at infinity

In this section, we recall first the notion of fundamental group outside a compact
set introduced in [34]. Then, to each of the three notions of pressures recalled in
Section 3.1, we associate a natural notion of pressure at infinity.

4.1. Fundamental group outside a given compact set

For any compact set zK � zM , as in [16, 34, 44] we define the fundamental group
outside zK, denoted by � zK , as

� zK D
®
 2 �; 9x; y 2 zK; Œx; y� \ � zK � zK [  zK

¯
:

Considering the last point on such a geodesic segment in zK, and the first point in  zK,
it follows that this set can equivalently be written as

� zK D
®
 2 �; 9x; y 2 zK; Œx; y� \ � zK D ¹x; yº

¯
:

This subset of � corresponds to long excursions of geodesics outside ofK WD p�. zK/.
We stress that this is not a subgroup in general, see examples in [44, Section 7].
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Recall from [44, Proposition 7.9] and [44, Proposition 7.7] the following results.

Proposition 4.1. The following statements hold.

(1) Let zK � zM be a compact subset, and ˛ 2 � . Then �˛ zK D ˛� zK˛
�1.

(2) If zK1 and zK2 are compact subsets of zM such that zK1 is included in the inte-
rior of zK2, then there exist finitely many ˛1; : : : ; ˛k 2 � such that

� zK2 �

k[
i;jD1

˛i� zK1˛
�1
j :

In some circumstances, it may be useful to consider different Riemannian struc-
tures .M;g0/ and .M;g/ on the same orbifold, and compare their fundamental groups
outside a given compact set, denoted by �g0

zK
and �g

zK
in order to avoid confusions. The

following proposition follows from the definition.

Proposition 4.2. Let zK � zM be a compact subset. Let g0 and g be two complete
Riemannian metrics with pinched negative curvature and bounded derivatives of the
curvature that coincide outside p�. zK/. Then

�
g

zK
D �

g0
zK
:

4.2. Critical exponent at infinity

Consider the associated restricted Poincaré series

P� zK .s; F / D
X
2� zK

e�sd.o;o/C
R o
o
zF :

Its critical exponent ı� zK .F / 2 Œ�1;C1�, satisfies for all c > 0

ı� zK .F / D lim sup
t!C1

1

t
log

X
2� zK ;

t�c�d.o;o/�t

e
R o
o
zF :

We call it the critical exponent or geometric pressure of F outside zK. By construction,

ı� zK .F / � ı�.F /:

Definition 4.3. The critical exponent at infinity or geometric pressure at infinity of F
is defined as

ı1� .F / D inf
zK

ı� zK .F /;

where the infimum is taken over all compact sets zK � zM .
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An immediate corollary of Proposition 4.1 is the following result.

Corollary 4.4. Let F WT 1M ! R be a Hölder-continuous potential.

(1) Let zK � zM be a compact subset, and ˛ 2 � . Then ı�
˛ zK
.F / D ı� zK .F /.

(2) If zK1 and zK2 are compact subsets of zM such that zK1 is included in the inte-
rior of zK2, then

ı� zK2
.F / � ı� zK1

.F /:

Corollary 4.4 implies for any Hölder-continuous potential F the very convenient
following fact:

ı1� .F / D lim
R!C1

ı�B.o;R/.F /:

It is worth noting that this critical exponent at infinity can be equal to �1, in par-
ticular, in the trivial situations described in the following lemma, where all potentials
have critical exponent at infinity equal to �1.

Lemma 4.5. Let M be a compact or convex-cocompact Riemannian manifold with
pinched negative curvature. For every Hölder-continuous potential F WT 1M ! R,
we have

ı1� .F / D �1:

Proof. By [44, Proposition 7.17], for zK � zM large enough, the set � zK is finite. This
immediately implies

ı1� .F / � ı� zK .F / D �1:

We refer to Corollary 7.7 for more interesting situations where ı1� .0/ � 0 and
there exists a Hölder-continuous map F WT 1M ! R with ı1� .F / D �1.

4.3. Variational pressure at infinity

Recall that the vague topology on the space of Radon measures on T 1M is the weak-*
topology on the space of Radon measures viewed as the dual of the space Cc.T 1M/

of continuous maps with compact support on T 1M . A sequence of probability mea-
sures .�n/n2N converges to 0 for the vague topology if and only if for every map
' 2 Cc.T

1M/, it satisfies

lim
n!C1

Z
' d�n D 0:

We write this �n
�
* 0. This provides the following other natural notion of pressure at

infinity.
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Definition 4.6. Let F be a Hölder-continuous potential on T 1M . The variational
pressure at infinity of F is

P1var .F / D sup
²

lim sup
n!C1

�
hKS .�n/C

Z
T 1M

F d�n

�
I

.�n/n2N 2 .M
F
1 /

N
s.t. �n

�
* 0

³
D lim
"!0

inf
K�M;
K compact

sup
²
hKS .�/C

Z
T 1M

F d� I � 2MF
1 s.t. �.T 1K/ � "

³
D inf

K�M;
K compact

lim
"!0

sup
²
hKS .�/C

Z
T 1M

F d� I � 2MF
1 s.t. �.T 1K/ � "

³
:

Let us check that these three definitions coincide.

Proof. The limit in " in the last two lines is a decreasing limit, i.e., an infimum, so
it commutes with the infimum over compact subsets K. Hence, it suffices to show
that the quantity on the first line, say A, coincides with the quantity on the second
line, say B . If a sequence �n realizes the supremum in A, then for any " > 0 and
for any compact subset K, one has eventually �n.T 1K/ � " by definition of the
vague convergence to 0. Therefore,A�B . Conversely, consider sequences "n andKn
realizing the infimum in B . Since decreasing "n and increasingKn can only make the
infimum smaller, it follows that "0n D min."n; 1=n/ and K 0n D Kn [ B.o; n/ also
realize the infimum in B . We get a sequence of measures �n 2MF

1 with

�n.T
1K 0n/ � "

0
n and hKS .�n/C

Z
T 1M

F d�n ! B:

Since T 1K 0n increases to cover the whole space and "0n tends to 0, we have �n
�
* 0.

Therefore, B � A.

From a dynamical point of view, it would be more natural and apparently more
general to consider all compact subsets K of T 1M , instead of restricting to unit
tangent bundles K D T 1K of compact subsets of M . However, the equality between
the three above quantities shows that it would not bring anything to the definition.

In the case F � 0, in the context of symbolic dynamics, this definition already
appeared in different works, see for example [8, 9, 24, 39].

One can consider a variation around the above definition, requiring additionally
that all the measures �n are ergodic. We will denote this pressure by P1var;erg.F /. We
will see in Corollary 6.12 that it coincides with P1var .F /, as a byproduct of the proof
of Theorem 1.2.
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4.4. Gurevič pressure at infinity

To the Gurevič pressure is naturally associated a notion of Gurevič pressure at infin-
ity, when considering only periodic orbits that spend an arbitrarily small proportion
of their period in a given compact subset. This only makes sense for compact subsets
on T 1M whose interior intersects the nonwandering set �. As in the preceding sec-
tions, we consider only compact subsets K of M , so that we require that the interior
of K, denoted by

ı

K, intersects the projection �.�/ of the nonwandering set on M .
We recall that PK.T � c; T /, defined in Section 3.1.3, is the set of periodic orbits
intersecting K with length in the interval ŒT � c; T �.

Definition 4.7. Let F be a Hölder-continuous potential on T 1M . For any c > 0, the
Gurevič pressure at infinity of F is

P1Gur.F / D inf
K�M;K compact
ı

K\�.�/¤;

lim
˛!0

lim sup
T!C1

1

T
log

X
p2PK.T�c;T /I

`.p\T 1K/<˛`.p/

e
R
p F

D lim
˛!0

inf
K�M;K compact
ı

K\�.�/¤;

lim sup
T!C1

1

T
log

X
p2PK.T�c;T /I

`.p\T 1K/<˛`.p/

e
R
p F :

It does not depend on c.

It is not completely obvious from the definition what happens when one increases
a compact subsetK 0 to a larger compact subsetK. Since one may consider orbits that
intersect K but not K 0, one is allowed more orbits. However, the condition

`.p \ T 1K/ < ˛`.p/

becomes more restrictive for K than for K 0, allowing less orbits. These two effects
pull in different directions. It turns out that the latter effect, allowing less orbits, is
stronger. We formulate this statement with a third compact subsetK 00 as we will need
it later on in this form, but for the previous discussion you may take K 0 D K 00.

Proposition 4.8. Consider three compact subsetsK 00,K 0,K ofM such that the inte-
rior ofK 00 intersects a closed geodesic, andK 0 is contained in the interior ofK. Then,
for ˛ > 0,

lim sup
T!C1

1

T
log

X
p2PK.T�c;T /I

`.p\T 1K/<˛`.p/

e
R
p F � lim sup

T!C1

1

T
log

X
p2PK00 .T�c;T /I

`.p\T 1K0/<2˛`.p/

e
R
p F :
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Therefore, the infimum in the definition of the Gurevič pressure may be realized
by taking an increasing sequence of balls, just like in Corollary 4.4:

P1Gur.F / D lim
R!1

lim
˛!0

lim sup
T!C1

1

T
log

X
p2PB.o;R/.T�c;T /I

`.p\T 1B.o;R//<˛`.p/

e
R
p F :

Proof. Consider a periodic orbit p of length `.p/ 2 ŒT � c;T � starting from v 2 T 1K,
parametrized by Œ0; `.p/�. Fix also " > 0. By the first assertion of Proposition 2.5
there is another periodic orbit p0, of length `.p0/ 2 Œ`.p/; `.p/C T0� for a constant T0
depending onK andK 00 and ", parametrized by Œ0; `.p0/�, following p within " during
the interval of time ŒT0; `.p/ � T0�, and intersecting T 1K 00. Lemma 3.1 shows that
there exists a constant C 0 such that

j

Z
p

F �

Z
p0
F j � C 0:

Moreover, by assertion (2) of Proposition 2.5, there exists C 00 such that the multiplic-
ity of the map p 7! p0 is bounded by C 00T if T is large enough.

If " is such that the "-neighborhood of K 0 is included in K, then the times at
which p0 belongs to T 1K 0 are of two kind: either they are in ŒT0; `.p0/ � 2T0�, and
then the corresponding point on p belongs to T 1K, or they are not. Hence,

`.p0 \ T 1K 0/ � 3T0 C `.p \ T
1K/:

Taking into account the multiplicity, we obtainX
p2PK.T�c;T /I

`.p\T 1K/<˛`.p/

e
R
p F � C 00T

X
p02PK00 .T�c;TCT0/I

`.p0\T 1K0/<3T0C˛`.p
0/

eC
0C
R
p0 F :

When T is large enough, we have

3T0 C ˛`.p
0/ < 2˛`.p0/:

As the interval ŒT � c; T C T0� is the union of at most T0
c
C 2 intervals of length at

most c, taking a limsup, we obtain

lim sup
T!C1

1

T
log

X
p2PK.T�c;T /I

`.p\T 1K/<˛`.p/

e
R
p F � lim sup

T!C1

1

T
log

X
p02PK00 .T�c;T /I

`.p0\T 1K0/<2˛`.p0/

e
R
p0 F :
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4.5. Pressure at infinity is invariant under compact perturbations

In this paragraph, we will show that the critical exponent at infinity is invariant under
any compact perturbation of the potential or of the underlying metric.

Proposition 4.9. LetF WT 1M !R be a Hölder-continuous map, letAWT 1M!R be
a Hölder-continuous map, and let zK � zM be a compact subset such that A vanishes
outside p�.T 1 zK/. Then

ı� zK .F C A/ D ı� zK .F /:

In particular,
ı1� .F C A/ D ı

1
� .F /:

Proof. By definition, for all  2 � zK , there exist x; y 2 zK such that the geodesic
segment Œx; y� satisfies Œx; y� \ � zK D ¹x; yº. We deduce thatZ y

x

. zF C A/ D

Z y

x

zF :

By Lemma 3.1, we deduce thatˇ̌̌̌Z o

o

. zF C A/ �

Z o

o

zF

ˇ̌̌̌
� 2C.F; zK;A/:

By definition of ı� zK .F / and ı� zK .F C A/, the result follows immediately.

In the next proposition, we consider two negatively curved Riemannian metrics
g0 and g on M such that there exists C > 0 satisfying at every point of M ,

1

C
g0 � g � Cg0 (8)

and still denote by g0 and g their lifts to zM . For a given potential F W TM ! R,
denote by ı� zK ;g0.F /, ı� zK ;g.F /, ı

1
�;g0

.F /; ı1�;g.F / the associated critical exponents
for the restriction of F to the unit tangent bundles for g and g0 respectively. It follows
from (8) that being Hölder-continuous does not depend on the metric one considers.

Proposition 4.10. Let .M; g0/ be a Riemannian manifold with pinched negative cur-
vature, and g be another negatively curved metric on M . Let F W TM ! R be a
Hölder-continuous potential. Let zK � zM be a compact set such that g and g0 coin-
cide outside of p�. zK/. Then

ı� zK ;g0.F / D ı� zK ;g.F /:

In particular, ı1�;g0.F / D ı
1
�;g.F /.
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Proof. When necessary, denote by Œa; b�g or Œa; b�g0 the geodesic segment of the
metric g (respectively, g0) between a and b. By Proposition 4.2, we have

�
g0
zK
D �

g

zK
:

Let  2 � zK . There exist x; y 2 zK such that

Œx; y�g0 \ � zK D ¹x; yº:

Outside � zK, the metrics g0 and g coincide, so that (8) is satisfied, the segments
Œx; y�g and Œx; y�g0 are the same, and the integrals of F coincide:Z

Œx;y�g

zF D

Z
Œx;y�g0

zF :

Moreover, by compactness, there exists D > 0 depending on zK, g0 and g, such
that for both metrics,

dg0.x; o/ � D; dg.x; o/ � D; dg0.y; o/ � D; dg.y; o/ � D:

Therefore, using Lemma 3.1, there exists a constant C depending onD and sup zK. zF /
such that for both metrics, we haveˇ̌̌̌Z

Œo;o�g

zF �

Z
Œx;y�g

zF

ˇ̌̌̌
� C and

ˇ̌̌̌Z
Œo;o�g0

zF �

Z
Œx;y�g0

zF

ˇ̌̌̌
� C:

The result follows by definition of the geometric pressure outside zK.

Compact perturbations of a given potential do not change the critical exponent at
infinity, but modify the pressure, as shown in the next proposition. This kind of state-
ment is very useful and relatively classical. Similar statements in symbolic dynamics
or on geometrically finite manifolds, or for potentials converging to 0 at infinity can
be found for example in [27, 37].

Proposition 4.11. Let F WT 1M !R be a Hölder-continuous potential, and AWT 1M
! Œ0;C1/ a nonnegative Hölder-continuous map with compact support. The map

� 2 R! ı�.F C �A/

is Lipschitz-continuous, convex, nondecreasing, and as soon as the interior of the
support of A intersects the nonwandering set �, we have

lim
�!1

ı�.F C �A/ D C1:
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Proof. The fact that it is Lipschitz-continuous is an immediate consequence of the
definition, and that it is nondecreasing is obvious as A � 0. Convexity follows from
the variational principle (Theorem 1.1) because it is a supremum of affine maps.

Now, if the interior of the support of A intersects �, there will be at least an
invariant probability measure � with compact support (supported by a periodic orbit
intersecting the interior of the support of A for example) such that

R
Ad� > 0. By the

variational principle,

ı�.F C �A/ � hKS .�/C

Z
F d�C �

Z
A d�;

and the latter quantity goes toC1 when �!C1. The result follows.

The combination of Propositions 4.9 and 4.11 provides the following corollary,
which will become relevant in Section 7.

Corollary 4.12. Let F andAWT 1M !R be two Hölder-continuous potentials. Assu-
me that F has finite geometric pressure at infinity, and that A is nonnegative, com-
pactly supported, and not everywhere zero on the nonwandering set. Then for � > 0
large enough, we have

ı�.F C �A/ > ı
1
� .F C �A/:

4.6. Infinite pressure

In this paragraph, we prove that if the geometric pressure of a potential is infinite, then
its pressure at infinity is also infinite. This is not surprising: everything coming from
a compact set is finite, so if the pressure is infinite the major contribution has to come
from the complement of compact sets, and therefore the pressure outside any compact
set should also be infinite. However, the proof is not completely trivial. It will involve
careful splittings of orbits and subadditivity, two themes that will also show up in later
proofs. One may think of this proof as a warm-up for the next sections.

Proposition 4.13. Let F WT 1M !R be a Hölder-continuous potential with ı�.F /D
C1. Then ı1� .F / D C1.

Proof. We will prove the contrapositive, namely, if there exists a compact set zK of zM
with ı� zK .F / <1 then ı�.F / < 1. Adding o to zK if necessary, we can assume
o 2 zK. Fix some s > ı� zK .F /. Let D be the diameter of zK.

Let
un D

X
2� W d.o;o/2.n�1;n�

e
R o
o
zF :
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We claim that there exists C > 0 such that, for all n 2 N,

un � C
X
a;b2N

1�a;b�n�1; jaCb�nj�C

uaub C Ce
sn: (9)

The proof of this inequality is purely geometrical. On the other hand, the proof that
this inequality implies the proposition is purely analytical. We postpone the geomet-
rical proof of (9) and explain how to deduce the result assuming this inequality, by a
subadditivity argument. Extend un by 0 for n 2 .�1;�1�, and define a new sequence

vn D

nCCX
n�C

ui :

It satisfies the inequality

vn � C1
X

1�a0;b0�n�1
a0Cb0Dn

va0vb0 C C1e
sn; (10)

for some C1. To get this inequality, bound each ui appearing in vn using (9), and
notice that the a; b in the upper bound satisfy n � 2C � a C b � nC 2C and will
therefore appear in one of the products va0vb0 for a0 C b0 D n. We will prove that this
sequence vn grows at most exponentially fast, from which the same result follows
for un, as desired. For small z > 0, define

B.z/ D
X
n�1

C1e
snzn and VN .z/ D

NX
nD1

vnz
n:

The inequality (10) gives

VN .z/ � B.z/C C1VN�1.z/
2: (11)

The function B is smooth at 0. Let t be strictly larger than its derivative at 0. Fix z
positive and small enough so that B.z/C C1.tz/2 < tz, which is possible since the
function on the left has derivative < t . We claim that VN .z/ � tz for all N . This is
obvious forN D 0 as V0 D 0, and the choice of z and the inequality (11) imply that, if
it holds at N � 1, then it holds at N , concluding the proof by induction. In particular,

vnz
n
� Vn.z/ � tz:

This proves that vn grows at most exponentially.
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It remains to show (9), using geometry. Let A > 0 be large enough (A > D C 1
will suffice). Take  with d.o;o/ 2 .n� 1;n�. We consider two different cases: either
Œo; o� n .B.o; A/ [ B.o; A// does intersect � zK (we say that  is recurrent – this
terminology is local to this proof), or it does not. The former will give rise to the first
term in (9), the latter to the second term.

We start with the nonrecurrent  ’s. If Œo; o�� B.o;A/[B.o;A/, then d.o; o/
is uniformly bounded, so is n, and the formula (9) is obvious for these finitely many
n’s by taking C large enough. Assume now that n is large. Consider the last point x
on Œo; o� \ B.o; A/ \ � zK, and the first point y on Œo; o� \ B.o; A/ \ � zK. Take
x 2 � such that x 2 x zK, and y 2 � such that y 2 y zK. Note that x and y
belong to a finite set FA (depending on A), made of these elements of � that move o
by at mostACD. Moreover,  0D �1x y belongs to � zK since Œx;y�\� zK D ¹x;yº
by construction.

Applying Lemma 3.1 to the compact set
S
g2FA

g zK, we obtain a constant C such
that Z o

o

zF �

Z yo

xo

zF C C D

Z  0o

o

zF C C:

Finally, the contribution of the nonrecurrent  ’s to un is bounded from above byX
x ;y2FA

X
 02� zK

d.o; 0o/2.n�1�2A�2D;nC2AC2D�

e
R 0o
o
zFCC :

The sum over x and y gives a finite multiplicity, and the sum over  0 is bounded by
C.A/ens for some constant C.A/ > 0 since s > ı� zK .F /. This is compatible with the
second term in the upper bound of (9).

We turn to the contribution to un of the recurrent  ’s. For such a  , there is a
point x in Œo;o�\� zK n .B.o;A/[B.o;A//. Write xD  0x0 with x0 2 zK. Consider
the integer a such that d.o;  0o/ 2 .a � 1; a�. It satisfies

A �D � a < n � ACD C 1;

so if A is large enough one has 1 � a � n � 1. Let  00 D  0�1 , so that  D  0 00.
The integer b such that d.o;  00o/ 2 .b � 1; b� satisfies also

0 < A �D � b < n � ACD C 1 < n:

Moreover,

aC b D d.o;  0o/C d.o;  00o/˙ 2 D d.o;  0o/C d. 0o; o/˙ 2

D d.o; x/C d.x; o/˙ .2C 2D/ D d.o; o/˙ .2C 2D/

D n˙ .3C 2D/:



Pressure at infinity and strong positive recurrence in negative curvature 463

This shows that 1 � a; b � n� 1 and jaC b � nj � 3C 2D. Finally, applying twice
Lemma 3.1, we obtain the existence of a constant C 0 such thatˇ̌̌̌Z o

o

zF �

Z  0o

o

zF �

Z  00o

o

zF

ˇ̌̌̌
� C 0:

Altogether, this shows that the contribution of recurrent  ’s to un is bounded by the
first term of the right hand side of (9).

5. Gurevič and geometric pressure at infinity coincide

In this section, we will study and count the possible excursions of periodic orbits
outside large compact sets, and first deduce the inequality

P1Gur.F / � ı
1
� .F /:

The arguments we develop here will also be instrumental in the proof of the inequality
P1var .F / � ı

1
� .F / in Section 6.

These inequalities are the heart of Theorem 1.2. The reverse inequalities

P1Gur.F / � ı
1
� .F / and P1var .F / � ı

1
� .F /

are simpler, and will be proven respectively in Sections 5.2 and 6.1.
Let us explain why the above inequalities are the most surprising and difficult. A

major difference between the definition of ı1� .F / and the two others is that P1Gur.F /

and P1var .F / take into account trajectories (respectively periodic / typical) that spend
most of the time outside a given large compact set, but can however come back inside
this compact set several times, whereas ı1� .F / considers trajectories that start and
finish in a given compact set, but never come back in the meantime. Thus, there are
apparently much more trajectories considered in the first two definitions. However,
in the next two sections, culminating in Corollaries 5.3 and 6.11, we prove that the
above inequalities hold.

The strategy developed below is to cut a given trajectory, which comes back sev-
eral times inside a given compact set, but spends a small proportion of time inside,
into several excursions, and to prove precise upper bounds presented below.

5.1. Excursions of closed geodesics outside compact sets

In this section, we study periodic orbits that intersect (the unit tangent bundle of) a
fixed compact subset K � M , but which spend most of their time away from the
R-neighborhood KR of K.
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For all compact subsets K1 � K2 �M and 0 < ˛ � 1, we define

P .K1; K2; ˛/ D
®
p periodic orbit I p \ T 1K1 ¤ ;; `.p \ T 1K2/ � ˛`.p/

¯
and

P .K1; K2; ˛IT; T
0/ D

®
p 2 P .K1; K2; ˛/; T � `.p/ � T

0
¯
: (12)

Given a Hölder-continuous potential F , we define for all T; T 0 > 0,

NF .K1; K2; ˛IT; T
0/ D

X
p2P .K1;K2;˛IT;T 0/

e
R
p F :

Theorem 5.1. LetK �M be a compact subset, and zK � zM be a compact subset such
that p�. zK/ D K. Let T0 > 0. Let F W T 1M ! R be a Hölder-continuous potential
with ı� zK .F / > �1. Let � > 0. For all 0 < ˛ � 1 and R � 2, there exists a positive
number  D  . zK;F; �; ˛=R/ such that

lim sup
T!C1

1

T
log NF .K;KR; ˛IT; T C T0/ � .1 � ˛/ı� zK .F /C ˛ı�.F /C �C  :

Moreover, when zK; F and � are fixed,  . zK; F; �; ˛=R/ tends monotonically to 0
when ˛=R tends to 0.

Remark 5.2. When ı� zK .F / D �1, the statement should be modified, replacing on
the right hand side ı� zK .F /with an arbitrary real number d , and allowing to depend
on d . The same proof applies.

Letting R ! C1, �! 0 and at last K exhaust M and ˛ ! 0, we deduce the
following corollary.

Corollary 5.3. Under the same assumptions onM and F as in Theorem 5.1, we have

P1Gur.F / � ı
1
� .F /:

Proof. If ı�.F / is infinite, then ı1� .F / is also infinite by Proposition 4.13, and the
result is obvious. We can therefore assume ı�.F /<1. We will also assume ı1� .F />
�1, as the case ı1� .F / D �1 can be proved similarly using Remark 5.2.

Let � > 0. We have to find a compact subset zL of zM whose interior intersects
�. z�/, and ˛ > 0, such that, with L D p�.zL/, the exponential growth rate ofX

p2PL.T;TC1/ I

`.p\T 1L/<˛`.p/

e
R
p F

is at most ı1� .F /C 3�. Fix a large compact set zK with ı� zK .F / � ı
1
� .F /C �. We

denote respectively by zK2 and zK3 the neighborhoods of size 2 and 3 of zK. We wish
to apply Theorem 5.1 with R D 3, and set zL D zK3, and L D p�. zK3/.
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There is a difficulty coming from the fact that the definition of the Gurevič pres-
sure involves all periodic orbits going through zLD zK3, while Theorem 5.1 only takes
into account those that, additionally, enter zK. This difficulty is solved using Proposi-
tion 4.8 applied with K instead of K 00, K2 instead of K 0 and K3 D p�. zK3/ instead
of K. This proposition yields that the exponential growth rate ofX

p2PL.T;TC1/ I

`.p\T 1L/<˛`.p/

e
R
p F

is bounded by that of X
p2PK.T;TC1/ I

`.p\T 1K2/<2˛`.p/

e
R
p F :

The latter can be estimated thanks to Theorem 5.1 applied to R D 2, T0 D 1 and 2˛:
this growth rate is bounded by

.1 � 2˛/ı� zK .F /C 2˛ı�.F /C �C  .˛/;

where  .˛/ tends to 0with ˛. This quantity converges to ı� zK .F /C �� ı
1
� .F /C 2�

when ˛ tends to 0, so that for some ˛ > 0 it is strictly smaller than ı1� .F /C 3�.

The strategy of the proof of Theorem 5.1 is as follows. A periodic orbit will be
cut into two kinds of segments, those which stay in the given compact set K, and the
excursions outside this compact set. The weighted growth of the excursions should
be controlled by the exponent ı�K .F / multiplied by the proportion of time spent
outside K, and the weighted growth of the segments inside K should be controlled
by ı�.F /multiplied by the proportion of time spent inK. However, to succeed to get
such a control, we need to avoid the situation with several very short excursions in
a very close neighborhood of K. For this reason, we need to play with two compact
sets, K and its R-neighborhood KR.

Proof of Theorem 5.1. As in the above proof, we can assume that ı�.F / and ı1� .F /
are finite. Let zK � zM be a compact set and zKR � zM be its R-neighborhood, and
setK D p�. zK/,KR D p�. zKR/. LetD be the diameter ofK. Any geodesic segment
joining the boundary of zK and the boundary of zKR has length at least R and at most
D C 2R. Let also D0 D D0.K; T0/ be larger than the diameter of K [ ¹oº, 1 and T0.

Consider a periodic orbit p 2 P .K;KR; ˛/ with `.p/ 2 ŒT; T C T0�. By assump-
tion, �.p/ \ K ¤ ;. We will divide it into long excursions, i.e., those excursions
outside both K and KR, of total length at least .1 � ˛/`.p/, and periods of time of
total length at most ˛`.p/ where it stays inside KR.



S. Gouëzel, B. Schapira, and S. Tapie 466

a0 b0 a1 b1 a2 b2 a3 b3 bN D g:a0

zKR

Figure 3. Long excursions outside zK and zKR.

Since p intersects T 1K, we can choose a lift c of p that intersect T 1 zK. Let g be a
hyperbolic isometry whose translation axis is c, and whose translation length is `.p/,
and which translates in the direction given by the orientation of p.

Define inductively points ai ; bi on c as follows, see Figure 3. Choose first a point
a0 on c inside zK. Consider on the geodesic segment Œa0; g:a0� of c the first points
b0; a1 2 �@ zK such that the open interval .b0; a1/ does not intersect � zK and

.b0; a1/ \ zM n � zKR ¤ ;:

The interval .b0; a1/ projects through p� into a long excursion, i.e., an excursion out-
side K which also goes outside KR. Inductively, we define .b1; a2/; : : : ; .bN�1; aN /
by the properties that bi ; aiC1 are the first points of Œai ; g:a0� which lie in �@ zK and
satisfy

.bi ; aiC1/ \ � zK D ; and .bi ; aiC1/ \ zM n � zKR ¤ ;:

In other terms, the intervals .bi ; aiC1/, 0 � i � N � 1, are the connected components
of Œa0; g:a0� n� zK that intersect zM n� zKR, whereas the segments Œai ; bi � are included
in � zKR. Finally, set bN D g:a0.

For all 0 � i � N , choose elements ˙i 2 � such that ai 2 �i zK and bi 2 Ci zK.
As zK is compact and the action of � is proper, for each i , there are only finitely many
choices of such elements ˙i . Without loss of generality, set �0 D Id and CN D g.

Choose some " > 0. The following elementary observations are crucial for the
sequel:

(1) As
S
0�i�N Œai ; bi � � �

zKR, by definition of P .K; KR; ˛/ and since T �
`.p/ � T C T0, we have

`.p \ T 1K/ �

NX
iD0

d.ai ; bi / � ˛.T C T0/ � ˛T CD
0:

(2) For all i 2 ¹0; : : : ; N � 1º, we have .bi ; aiC1/ � zM n � zK. Moreover, the
length of .bi ; aiC1/ \ � zKR is at least 2R and

S
i Œbi ; aiC1� does not intersect the

interior of � zK, so that by definition of P .K;KR; ˛/,

.1 � ˛/T C 2RN �

N�1X
iD0

d.bi ; aiC1/ � T C T0 � T CD
0; (13)
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and therefore, for � WD 1
2R
.˛T CD0/, we have

N � �: (14)

For large enough T , we have
� �

˛

R
T: (15)

(3) Write  i D .�i /
�1Ci 2 � for all i D 0; : : : ; N . We have

jd.o;  io/ � d.ai ; bi /j � 2D
0;

so that
NX
iD0

d.o;  io/ � ˛.T C T0/C 2.N C 1/D
0
� ˛T C 5ND0:

Let si be the unique integer such that d.o;  io/ � si < d.o;  io/C 1. Then

s0 C � � � C sN � ˛T C 5ND
0
CN C 1 � ˛T C 7ND0:

(4) By definition of � zK , for all iD0; : : : ;N�1, since ..Ci /
�1bi ;'i .

�
iC1/

�1aiC1/

does not intersect � zK, we have 'i D .Ci /
�1�iC1 2 � zK . Moreover,

jd.o; 'io/ � d.bi ; aiC1/j � 2D
0:

Let ti be the unique integer such that d.o; 'io/ � ti < d.o; 'io/C 1.

(5) As
PN
iD0 d.ai ; bi /C

PN�1
iD0 d.bi ; aiC1/D d.a0; bN /D `.p/ 2 ŒT; T C T0�,

we get ˇ̌̌̌ NX
iD0

d.o;  io/C

N�1X
iD0

d.o; 'io/ � T

ˇ̌̌̌
� T0 C .4N C 2/D

0;

and thereforeˇ̌̌̌ NX
iD0

si C

N�1X
iD0

ti � T

ˇ̌̌̌
� T0 C .4N C 2/D

0
C .2N C 1/ � 10ND0:

(6) By (13), as d.bi ; aiC1/ � 2D0 � ti � d.bi ; aiC1/C 2D0 C 1, we get

.1 � ˛/T � 2ND0 �

N�1X
iD0

ti � T C 4ND
0:

(7) Since M has pinched negative sectional curvature and F is .ˇ; CF /-Hölder-
continuous, Lemma 3.1 applied to the compact set zK [ ¹oº ensures that there exists a
constant C.F; zK/ depending only on the upper bound of the curvature, on zK and the
Hölder-continuous constants of F such that for all i D 0; : : : ; N ,ˇ̌̌̌Z bi

ai

zF �

Z  io

o

zF

ˇ̌̌̌
� C.F; zK/:
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(8) Similarly, for all i D 0; : : : ; N � 1,ˇ̌̌̌Z aiC1

bi

zF �

Z 'io

o

zF

ˇ̌̌̌
� C.F; zK/:

(9) As
R
p
F D

R ga0
a0
zF , and bounding 2N C 1 from above with 3�, we deduce

NX
iD0

Z  io

o

zF C

N�1X
iD0

Z 'io

o

zF � 3C.F; zK/�

�

Z
p

F �

NX
iD0

Z  io

o

zF C

N�1X
iD0

Z 'io

o

zF C 3C.F; zK/�: (16)

For all t 2 N, set

�.t � 1; t/D ¹ 2 � I d.o; o/ 2 .t � 1; t �º and � zK.t � 1; t/D �.t � 1; t/\ � zK :

We also write

QF;�.t/ D
X

2�.t�1;t/

e
R o
o
zF and QF;� zK .t/ D

X
2� zK.t�1;t/

e
R o
o
zF :

To each periodic orbit p 2 P .K;KR; ˛/ with `.p/ 2 ŒT; T C T0�, we have asso-
ciated a hyperbolic isometry g 2 � whose axis intersects zK and projects through p�
onto �.p/ and with translation length equal to `.p/. Then, to each such element g
we have associated by the previous construction finite sequences '0; : : : ; 'N�1 in � zK
and  0; : : : ; N 2 � . As one can recover g (and then p, which is the projection of the
translation axis of g) from these sequences by the formula g D  0'0 1 � � �'N�1 N ,
this association is injective.

Let us now bound NF .K; KR; ˛I T; T C T0/. Summing the exponentials of the
bounds (16) over all the periodic orbits in P .K;KR;˛IT;T CT0/, we get the inequal-
ity

NF .K;KR; ˛IT; T C T0/ � e
3C.F; zK/�

�.˛;T;T0;R/X
ND0

X
t0;:::;tN�1;s0;:::;sN2N
j
P
siC

P
ti�T j�10ND

0P
ti�.1�˛/T�2ND

0

QF;�.s0/

�QF;� zK .t0/ �QF;�.s1/ �QF;� zK .t1/ � � �QF;� zK .tN�1/ �QF;�.sN /: (17)

The following lemma is a straightforward consequence of the definition of the
critical exponents ı�.F / and ı� zK .F /.
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Lemma 5.4. For all � > 0, there exists C� D C�. zK;F; �/ � 1 such that for all t > 0,
we have

QF;�.t/ � C�e
ı� .F /tC�t and QF;� zK .t/ � C�e

ı� zK
.F /tC�t

:

We can write the second bound as QF;� zK .t/ � C�e
.ı� zK

.F /�ı� .F //tCı� .F /tC�t .
Multiplying these bounds, we get

QF;�.s0/ �QF;� zK .t0/ �QF;�.s1/ �QF;� zK .t1/ � � �QF;� zK .tN�1/ �QF;�.sN /

� C 2NC1� exp
�
.ı�.F /C �/

�X
si C

X
ti

�
C .ı� zK .F / � ı�.F //

�X
ti

��
� C 3N� exp

�
.ı�.F /C �/T C .jı�.F /j C �/10ND

0

C .ı� zK .F / � ı�.F //..1 � ˛/T � 2ND
0/
�

D C 3N� exp
�
.˛ı�.F /C .1 � ˛/ı� zK .F /C �/T

C .jı�.F /j C �C ı�.F / � ı� zK .F //10ND
0
�
:

Note that this bound does not depend anymore on the choice of the si and ti . In order
to bound (17), one should take into account a multiplicity given by the number of
possible choices for these integers.

The following combinatorial standard estimate will control the number of possible
choices.

Lemma 5.5. Let �; � 2 N be integers with � < � . The number of ordered integer
decompositions of � of length �, i.e., the number of .u1; : : : ; u�/ 2 N� such that
ui � 0 and u1 C � � � C u� � � , is equal to�

� C �

�

�
D
.� C �/Š

�Š�Š
:

Then .s0; t0; s1; : : : ; sN / forms an ordered integer decomposition of some integer
� � T C 10ND0, with � D 2N C 1. Their number is thus bounded by�

T C 10ND0 C 2N C 1

2N C 1

�
:

Recall that by (14), we have N � �, which is bounded by T=2 for large T , so that

T C 10ND0 C 2N C 1 � 8D0T and 2N C 1 � 3� � 8D0�:

We get �
T C 10ND0 C 2N C 1

2N C 1

�
�

�
8D0T

2N C 1

�
�

�
8D0T

8D0�

�
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thanks to monotonicity properties of binomial coefficients. Summing over all the val-
ues of N , we obtain the estimate

NF .K;KR; ˛IT; T C T0/ � .� C 1/ �

�
8D0T

8D0�

�
e3C.F;

zK/�
� C 3��

� exp
�
.˛ı�.F /C .1 � ˛/ı� zK .F /C �/T

C .jı�.F /j C �C ı�.F / � ı� zK .F //10�D
0
�
:

To conclude the proof, we should estimate the exponential growth rate of the var-
ious terms in this expression when T tends to infinity. Recall that � � ˛T=R by (15).
Stirling’s formula, nŠ �

p
2�n.n=e/n, implies that the exponential growth rate of�
8D0T

8D0�

�
�

�
8D0T

8D0T � ˛=R

�
is bounded by �� log � � .1 � �/ log.1 � �/ for � D ˛=R. Finally, the exponential
growth rate of NF .K;KR; ˛IT; T C T0/ is bounded by

˛ı�.F /C .1 � ˛/ı� zK .F /C � � � log � � .1 � �/ log.1 � �/

C
�
3C.F; zK/C 3 logC� C 10D0.jı�.F /j C �C ı�.F / � ı� zK .F //

� ˛
R
:

This concludes the proof of the theorem.

5.2. Gurevič and geometric pressures at infinity coincide

This paragraph is devoted to the proof of the following part of Theorem 1.2.

Theorem 5.6. For all Hölder-continuous potentials F W T 1M ! R with finite pres-
sure, we have

P1Gur.F / D ı
1
� .F /:

By Corollary 5.3, it is enough to prove the inequality P1Gur.F / � ı
1
� .F /.

Proof. The set of periodic orbits of the geodesic flow (counted with locally bounded
multiplicities in the orbifold case) is in 1-1 correspondence with the set of conju-
gacy classes of hyperbolic elements of � . Let us recall how. Given a periodic orbit
p � T 1M , its preimage p�1� .p/� T 1 zM is a countable union of orbits of the geodesic
flow on T 1 zM . Each of these orbits projects on zM to the translation axis of a hyper-
bolic element of � , which is unique (modulo the pointwise stabilizer of their axis)
when requiring that this element translates along the axis with translation length equal
to `.p/, and in the direction given by the direction of .gt /t>0 on this orbit. The num-
ber of conjugacy classes of hyperbolic elements (modulo the pointwise stabilizer of
their axis) associated with p in this way is equal to the multiplicity of p.
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Let K �M be a compact subset whose interior intersects a closed geodesic, and
containing the projection p�.o/. Let zK be a compact subset of zM which contains o,
such that p�. zK/ D K, and whose interior intersects z�. Let N be the maximal multi-
plicity of p� on zK. Let D be the diameter of zK.

With the notation of (12), set

P .K; ˛/ WD P .K;K; ˛/ and P .K; ˛IT; T 0/ WD P .K;K; ˛IT; T 0/:

First, by Lemma 2.1, there exists a finite set G D ¹g1; : : : ; gkº � � , such that, for
all  2 � zK , there exist gi ; gj (not necessarily unique) such that g�1i gj is hyperbolic
with a translation axis which intersects zK. Let p be the associated periodic orbit (it
depends on the choice of gi ; gj but this is not a problem). As the axis of g�1i gj

intersects zK, we deduce that

j`.p / � d.o; g
�1
i gjo/j � 2D:

By the triangular inequality, we deduce that

jd.o; o/ � `.p /j � 2D C 2 max
1�i�k

.d.o; gio//:

Similarly, thanks to Lemma 3.1, and using the fact that zF is bounded on the ı-
neighborhood of � zK, with ı D max1�i�k.d.o; gio//, we deduce that there exists
a constant C D C.F; zK; g1; : : : ; gk/ such thatˇ̌̌̌Z o

o

zF �

Z
p

F

ˇ̌̌̌
� C:

Choose now some R > 1, and let zKR be the R-neighborhood of zK. For  2 � zKR ,
there exist a 2 zKR and b 2  zKR such that the geodesic segment Œa; b� only meets
� zKR at its endpoints. Using the above notations, we assume that g�1i gj is hyper-
bolic with associated periodic orbit p . The point gio is at distance at most ı from o,
which is at distance at most D from a, and the point gjo is at distance at most ı from
gjo which is at distance at most D from b. Therefore, by Lemma 2.3, there exists
a constant T0 > 0 depending on ı, D and the bounds on the curvature, such that,
when removing segments of length T0 at the beginning and the end of Œgio; gjo�,
the middle segment is in a neighborhood of radius less than 1=2 from the geodesic
segment Œa; b�.

On the other hand, the periodic orbit p associated with g�1i gj admits a trans-
lation axis which intersects zK. Let x 2 zK be a point on this axis and g�1i gjx 2

g�1i gj zK its image by g�1i gj . By Lemma 2.3, when removing segments of length T0
at the beginning and the end of the segment Œx; g�1i gjx�, the middle segment is in a
neighborhood of size less than 1=2 of the geodesic segment Œo; g�1i gjo�.
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The triangular inequality implies that, after removing segments of length 2T0 at
the beginning and at the end of the geodesic segment Œgix; gjx�, this segment is at
distance at most 1=2 of Œgio; gjo�, and therefore, at distance at most 1 from Œa; b�.
In particular, as  2 � zKR , and R � 1, after removing segments of length 2T0 C R
at the beginning and the end of Œgix; gjx�, this segment spends the rest of the time
outside � zK.

We deduce that the time spent by p inside K is at most 4T0 C 2R. In particular,
when `.p / � .4T0 C 2R/=˛, the periodic orbit p spends a proportion of time at
most ˛ inside K. As jd.o; o/ � `.p /j � 2D C 2ı, it implies that as soon as

d.o; o/ � 2D C 2ı C
4T0 C 2R

˛
;

then p belongs to P .K; ˛/. In particular, when

T > 1C 2D C 2ı C
4T0 C 2R

˛
;

the above considerations show that for  2 � zKR.T � 1; T /, the associated periodic
orbit p belongs to P .K; ˛; T � 1 � 2D � 2ı; T C 2D C 2ı/.

The translation axis of g�1i gj is a lift of p that intersects zK. The number of
such lifts is at most linear in `.p /, by (3). Therefore, the multiplicity of the above
map  7! p is at most linear in `.p /.

The above considerations imply that there exist constants C and � depending only
on K; zK;D; ˛; F such that for T > 0 large enough, and all R > 1,X

2� zKR
; T�1�d.o;o/�T

e
R o
o
zF
� C � T �

X
p2P .K;˛;T�1��;TC�/

e
R
p F :

Taking 1
T

log of the above inequality, and letting T !C1, and then lettingR!C1
and ˛ ! 0 gives P1Gur.F / � ı

1
� .F /.

6. Variational and geometric pressures at infinity coincide

This section is devoted to the proof of the equality between geometric and variational
pressures at infinity.

Theorem 6.1. Let F WT 1M ! R be a Hölder-continuous potential. Then

ı1� .F / D P
1
var .F /:

The first paragraph contains the proof of the easier inequality ı1� .F / � P
1
var .F /.

The harder inequality P1var .F /� ı
1
� .F /will follow from Section 5, after some reduc-

tions. First, in Section 6.2, we introduce a notion of pressure, that we call Katok
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pressure in reference to the Katok entropy introduced in [28]. We show that the varia-
tional pressure is bounded from above by this new pressure, involving spanning sets.
Using the closing lemma, in Section 6.3, we study escape of mass of sequences of
probability measures, and relate this new pressure to the Gurevič pressure (which
involves weighted growth of periodic orbits), and conclude the proof of the inequality
P1var .F / � ı

1
� .F / thanks to Theorem 5.1.

6.1. The first inequality

This paragraph is devoted to the proof of the easier inequality ı1� .F / � P
1
var .F /. We

deal first with the exceptional situation where ı�.F / D1.

Lemma 6.2. Under the assumptions of Theorem 6.1, if we assume ı�.F / D1, then
for any compact subset K in M and any C; " > 0, there exists � 2MF

1;erg such that

�.T 1K/ < " and hKS .�/C

Z
F d� > C:

Proof. The entropy hKS .�/ of any invariant measure � 2 MF
1;erg is nonnegative.

Therefore, it suffices to find a measure � 2MF
1;erg with �.T 1K/< " and

R
F d�>C .

By Theorem 1.1, Pvar.F / D1.
Let R D R.C; K/ and C 0 D C 0.C; K; R/ be two large enough constants, to be

determined later on in the proof. The equality Pvar.F / D 1 ensures the existence of
a measure � 2MF

1 with
R
F d� > C 0, for arbitrarily large C 0 > 0. Taking an ergodic

component of � if necessary, we can assume that � is ergodic. If �.T 1K/ < ", we are
done choosing � D � and C 0 D C .

Otherwise, consider a �-typical vector v in T 1K. By the Birkhoff ergodic theorem
and Poincaré recurrence theorem, one can find an arbitrarily large T > 0 such that

1

T

Z T

0

F.gtv/ dt > C 0 and gT v 2 K:

Let K1 (respectively, KR) be the neighborhood of size 1 (respectively, R) of K.
Consider the open set ¹t 2 Œ0;T �; gtv …K1º. Inside this set, consider those connected
components that contain some t such that gtv does not belong to KR. These compo-
nents have length at least 2.R � 1/. If C 0 is large enough so that jF j < C 0 onKR, we
claim that there exists such a component .a; b/ such thatZ b

a

F.gtv/ > C 0.b � a/:

Indeed, otherwise, one would getZ T

0

F.gtv/ � C 0T
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by summing the contributions of these big connected components, and integrating the
bound jF j � C 0 on the remaining points.

Set w D gav, and � D b � a. The piece of orbit .gtw/0�t�� has length larger
than 2.R � 1/, its projection to M starts and ends in @K1 and remains outside K1 in
between, and it satisfies Z �

0

F.gtw/ dt � �C 0:

Using the connecting lemma 2.5 in the compact subset K1, we get a closed orbit
.gtw0/0�t��Cs , with s � T0, for some T0 depending only on K1, which stays at dis-
tance at most 1=2 of the orbit ofw for T0 � t � � � T0. In particular, gtw0 can belong
toK only for t � T0 or � � T0 � t � � C s. Define the measure� as the uniform prob-
ability measure along this periodic orbit. IfR has been chosen large enough compared
to T0, we deduce

�.T 1K/ �
3T0

2.R � 1/
� ":

Let us now check that
R
F d� is large. First,ˇ̌̌̌Z �

0

F.gtw0/ dt �
Z �

0

F.gtw/

ˇ̌̌̌
is bounded by a constant C0 depending only on K, by Lemma 3.1. Second,Z �Cs

�

F.gtw0/

is bounded from below by a constant �C1 depending only on K, as s is bounded
by T0 and F is bounded on the .T0 C 2/-neighborhood of K. We getZ �Cs

0

F.gtw0/ dt �
Z �

0

F.gtw/ dt � C0 � C1 � C 0� � C0 � C1:

If C 0 D C 0.K;C;R/ is large enough, this is at least C.� C s/, as desired.

Proposition 6.3. Under the assumptions of Theorem 6.1, let F be a Hölder-continu-
ous map. Then ı1� .F / � P

1
var .F /.

Proof. If ı�.F / D 1, Lemma 6.2 shows that one can find a sequence of measures
�n 2MF

1 tending weakly to 0 such that hKS .�n/C
R
T 1M

F d�n tends to infinity.
Therefore, P1var .F /D1, and the result is obvious. If ı1� .F /D�1, the result is also
obvious.

Assume now that ı�.F / <1 and ı1� .F / > �1. Choose for every R 2 N n ¹0º

a Hölder-continuous map 0 � �R � 1 which approximates 1T 1p�B.o;R/ on T 1M :
�R � 1 on T 1.p�B.o; R � 1// and �R � 0 outside T 1.p�B.o; R//. Next define
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Fn;R D F � n�R, for all n 2 N, and note that Fn;R D F outside T 1p�B.o; R/ so
that ı�B.o;R/.F / D ı�B.o;R/.Fn;R/ by Proposition 4.9. As a consequence,

ı�.Fn;R/ � ı�B.o;R/.Fn;R/ D ı�B.o;R/.F / � ı
1
� .F /:

By the variational principle [33, Theorem 1.1], we can find for all " > 0 a measure
�n;R;" 2M

Fn;R
1 , such that

hKS .�n;R;"/C

Z
T 1M

Fn;Rd�n;R;" > ı�.Fn;R/ � " � ı
1
� .F / � ":

Since Fn;R D F outside of a compact subset, �n;R;" also belongs to MF
1 . There-

fore, we have

ı�.F / � hKS .�n;R;"/C

Z
T 1M

F d�n;R;"

� n�n;R;".T
1p�B.o;R � 1//C hKS .�n;R;"/C

Z
T 1M

Fn;R d�n;R;"

� n�n;R;".T
1p�B.o;R � 1//C ı

1
� .F / � ":

Choose any sequence "k ! 0, Rk ! 1, nk ! 1, and �k D �nk ;Rk ;"k . As
ı�.F / <1, we get from the above on the one hand that for all R > 0,

lim sup
k!1

�k.T
1p�.o; R// D 0;

and on the other hand that

lim inf
k!1

.hKS .�k/C

Z
F d�k/ � ı1� .F /:

This proves that
P1var .F / � ı

1
� .F /:

Remark 6.4. Since the proof only needs ergodic measures, it even proves the slightly
stronger result

ı1� .F / � P
1
var;erg.F / � P

1
var .F /:

6.2. Katok pressure

The proof of Theorem 6.1 will rely on the following notion of pressure, extending
to general potentials a notion of entropy introduced by A. Katok in [28] in the case
F D 0.

For all v 2 T 1 zM and "; T > 0, the dynamical ball B.v; "I �T; T / is defined by

B.v; "I �T; T / D ¹w 2 T 1 zM I 8t 2 Œ�T; T �; d.gtv; gtw/ � "º:
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As in [33], it is more convenient to deal with symmetric dynamical balls. Recall
from [33, Lemma 3.14] that for all 0 < " � "0, there exists T";"0 � 0, such that for
all v 2 T 1 zM and T > 0, we have

B.v; "0I �T � T";"0 ; T C T";"0/ � B.v; "I �T; T / � B.v; "
0
I �T; T /:

As in [44, Remark 3.1], on T 1M , we define two kinds of dynamical balls for v 2
T 1M; "; T > 0: the small dynamical ball

B�.v; "I �T; T / D p�.B.zv; "I �T; T //;

where zv 2 T 1 zM is a lift of v 2 T 1M and the big dynamical ball

Bdyn.v; "I �T; T / D ¹w 2 T
1M I 8t 2 Œ�T; T �; d.gtv; gtw/ � "º

� B�.v; "I �T; T /: (18)

Both balls coincide as soon as the injectivity radius ofM is bounded from below and "
is small enough. More generally, if along the geodesic .gtv/�T�t�T , the injectivity
radius at all points �.gtv/ is larger than ", then

Bdyn.v; "I �T; T / D B�.v; "I �T; T /: (19)

We will mainly use the small dynamical balls, that are more convenient in our
geometric context, but less natural from the dynamical point of view.

Given a probability measure � on T 1M , ı 2 .0; 1/ and ";T > 0, we will say that a
set V � T 1M is .�; ı; "I�T;T /-spanning, respectively dynamically-.�; ı; "I�T;T /-
spanning, if

�

� [
v2V

B�.v; "I �T; T /

�
� ı; respectively �

� [
v2V

Bdyn.v; "I �T; T /

�
� ı:

Of course, a .�; ı; "I �T; T /-spanning set is also dynamically-.�; ı; "I �T; T /-spann-
ing.

Let F WT 1M !R be a Hölder-continuous potential. Let � 2MF
1;erg be an ergodic

probability measure on T 1M , invariant under the geodesic flow, such thatZ
F � d� <1:

Definition 6.5. Set

SF .�; ı; "I �T; T / D inf
X
v2V

e
R T
�T F.g

tv/ dt ;
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where the infimum is taken over all V � T 1M that are .�; ı; "I �T; T /-spanning.
Similarly define Sdyn

F .�; ı; "I �T; T / as the infimum of the same quantity over all
dynamically- .�; ı; "I �T; T /-spanning sets.

The Katok pressure of F with respect to � at level ı is defined by

P �
Katok.�; F; ı/ D sup

">0

lim sup
T!C1

1

2T
logSF .�; ı; "I �T; T /:

Similarly, define

P
dyn
Katok.�; F; ı/ D sup

">0

lim sup
T!C1

1

2T
logSdyn

F .�; ı; "I �T; T /:

The Katok pressure ofF with respect to�, respectively the dynamical Katok pressure,
is

P �
Katok.�; F / D inf

ı2.0;1/
P �

Katok.�; F; ı/;

respectively,
P

dyn
Katok.�; F / D inf

ı2.0;1/
P

dyn
Katok.�; F; ı/:

Comparison between the two kinds of dynamical balls in (18) implies the follow-
ing inequality:

P
dyn
Katok.�; F / � P

�
Katok.�; F /:

The first and main inequality of Proposition 6.6 below was shown in [28]. Compact-
ness was assumed, but his proof [28, (1.4), p. 144] does not use the compactness of the
underlying manifold. The second inequality below follows obviously from the above
considerations.

Proposition 6.6 (Katok [28]). Let � be a gt -invariant ergodic probability measure.
Then for all ı > 0,

hKS .�/ � hKatok.�/ D P
dyn
Katok.�; 0/ � P

�
Katok.�; 0/:

The appendix by F. Riquelme shows that, in the case of geodesic flows on mani-
folds in negative curvature, these entropies coincide, even in our noncompact setting,
cf. Theorem A.1.

In the sequel, we will always work with small dynamical balls and the associated
Katok pressure P �

Katok.�; F /. Assume that � is ergodic.
For all A � T 1M , all ı 2 .0; 1/ and all "; T > 0, we define

SF;A.�; ı; "I �T; T / D inf
V�A .�;ı;"I�T;T /-spanning

X
v2V

e
R T
�T F.g

tv/ dt

and
PAKatok.�; F; ı/ D sup

">0

lim sup
T!C1

1

2T
logSF;A.�; ı; "I �T; T /:
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The following lemma is elementary but crucial in the sequel.

Lemma 6.7. Under the assumptions of Theorem 6.1, let � 2 MF
1;erg be an ergodic

invariant measure. As soon as �.A/ > ı, we have

P �
Katok.�; F; ı/ � P

A
Katok.�; F; ı/:

Moreover, if �.A/ � 1 � ı=6, and F is bounded on A, then

P �
Katok.�; F; ı/ � P

A
Katok

�
�;F;

ı

2

�
: (20)

Proof. The first inequality is immediate from the definition.
For the second one, let A0 D A \ g�TA \ gTA. It satisfies �.A0/ � 1 � ı=2.

Consider V a .�; ı; "I�T;T /-spanning set. As �.
S
v2V B�.v; "I�T;T //� ı, we get

�

�
A0 \

[
v2V

B�.v; "I �T; T /

�
� ı=2:

For every v 2 V such that �.A0 \ B�.v; "I �T; T // > 0, choose an element v0 in the
intersectionA0 \B�.v; "I�T;T /, and let V 0 be the set of all such v0. By construction,
V 0 � A is a .�; ı=2; 2"I �T; T /-spanning set.

As F is Hölder-continuous, for v 2 V such that �.A0 \B�.v; "I�T;T // > 0 and
v0 2 A0 \ B�.v; "I �T; T /, the integralsZ T

�T

F ı gtv dt and
Z T

�T

F ı gtv0 dt

differ at most by an additive constant depending on the Hölder constants of F , and its
L1-norm on the "-neighborhood of A, but not on T . Indeed, as F is bounded on A,
and Hölder-continuous, it is also bounded on the "-neighborhood of A. Moreover,
by definition of A0, g˙T v0 2 A, so that g˙T v belong to the "-neighborhood of A.
Moreover,

d.gT v; gT v0/ � " and d.g�T v; g�T v0/ � ":

Thus, Lemma 3.1 applies and gives the desired bound.
Therefore, up to a multiplicative constant,X

v2V

e
R T
�T F.g

tv/ dt

is greater than X
v02V 0

e
R T
�T F.g

tv0/ dt :

Up to this multiplicative constant, SF .�; ı; "I�T;T / is greater than SF;A.�; ı=2; 2"I
�T; T /. Taking the limsup of 1=.2T / log of these quantities leads to the second
inequality.
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Since the Katok pressure is defined by taking an infimum over all .�; ı; "I�T;T /-
spanning sets, we deduce the following useful statement.

Lemma 6.8. Under the assumptions of Theorem 6.1, let � 2 MF
1;erg be an ergodic

probability measure. Let ı > 0 and " > 0 be fixed, and for all T > 0, let AT � T 1M
be a set such that �.AT / > ı. Then

P �
Katok.�; F / � lim sup

T!C1

1

2T
logSF;AT .�; ı; "I �T; T /:

We will use the following analogue of Proposition 6.6 for general potentials.

Proposition 6.9. Under the assumptions of Theorem 6.1, let F W T 1M ! R be a
Hölder-continuous map, and � 2MF

1;erg be an ergodic probability measure on T 1M
such that

R
F � d� <1. Then

hKS .�/C

Z
T 1M

F d� � P �
Katok.�; F /:

Proof. Let � 2MF
1;erg be an ergodic probability measure and F a Hölder-continuous

potential. Let ı 2 .0; 1/ be fixed.
For all � > 0 and T > 0, set

GT;�.F / D

²
v 2 T 1M I 8t � T;

ˇ̌̌̌
1

2t

Z t

�t

F.gsv/ ds �
Z
F d�

ˇ̌̌̌
� �

³
:

Birkhoff ergodic theorem implies that for all � > 0, we have

lim
T!C1

�.GT;�.F // D 1:

Therefore, there exist T0 > 0 and a compact subset Aı;� � GT0;�.F / such that

�.Aı;�/ > 1 �
ı

6
:

Therefore, by (20),

P �
Katok.�; F; ı/ � P

Aı;�
Katok

�
�;F;

ı

2

�
D lim sup

T!C1

1

2T
log inf

V�Aı;� .�;ı=2;"I�T;T /-spanning

X
v2V

e
R T
�T F.g

tv/ dt : (21)

Let �T � Aı;� be a finite .�; ı=2; "I �T; T /-spanning set. As Aı;� � GT0;�.F / and
thanks to the definition of GT0;�.F /, for T � T0, we haveX

v2�T

e
R T
�T F.g

tv/ dt
� e2T.

R
F d���/#�T � e

2T.
R
F d���/ inf #V;

the infimum being taken over all .�; ı=2; "; T /-spanning sets V .
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Minimizing over �T , equation (21) leads to

P �
Katok.�; F; ı/ �

Z
F d� � �C P �

Katok.�; 0; ı=2/:

Together with Proposition 6.6, this concludes the proof of Proposition 6.9 since ı 2
.0; 1/ and � > 0 can be arbitrarily small.

6.3. Escape of mass and pressure at infinity

This paragraph is devoted to the proof of the following result, of independent interest,
which implies Corollary 6.11, a key step in the proof of Theorem 6.1.

Theorem 6.10. LetK �M be a compact set whose interior intersects �.�/, and let
zK � zM be a compact subset such that p�. zK/ D K. Let F W T 1 ! R be a Hölder-

continuous potential with ı� zK .F / > �1. Let � > 0. For all 0 < ˛ � 1 and R � 4,
there exists a positive number  D  . zK;F; �; ˛=R/ with the following property. For
every � 2MF

1;erg with �.T 1KR/ � ˛, we have

hKS .�/C

Z
T 1M

F d� � .1 � ˛/ı� zK .F /C ˛ı�.F /C �C  :

Moreover, when zK; F and � are fixed,  . zK; F; �; ˛=R/ tends monotonically to 0
when ˛=R tends to 0.

LettingK grow to exhaustM , we deduce the following corollary, which provides
the second half of Theorem 6.1 (the first inequality ı1� .F /�P

1
var .F / has been proved

in Proposition 6.3).

Corollary 6.11. Let F be a Hölder-continuous potential on T 1M . Let .�n/n�0 2
.MF

1 /
N be a sequence of probability measures which converges in the vague topology

to a measure �. Then

lim sup
n!C1

�
hKS .�n/C

Z
F d�n

�
� .1 � k�k/ı1� .F /C k�kı�.F /:

In particular, when �n
�
* 0, then

lim sup
n!C1

�
hKS .�n/C

Z
F d�n

�
� ı1� .F /;

so that P1var .F / � ı
1
� .F /.

Proof. When ı�.F / D 1, then ı1� .F / D 1 by Proposition 4.13, and the result
is obvious. We can therefore assume that ı1� .F / < 1. We will deal with the case
ı1� .F / > �1, as the case ı1� .F / D �1 can be treated similarly.
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Let " > 0. Let K be a large compact subset of M , and zK a compact subset of zM
satisfying p�. zK/ D K and

ı� zK .F / � ı
1
� .F /C " and k�k � �.T 1K/C ":

There are only countably many values of r for which �.@T 1Kr/ has positive mea-
sure as these sets are disjoint. Therefore, we can pick r such that �.@T 1Kr/ D 0.
Replacing K with Kr , we can assume �.@T 1K/ D 0.

We apply Theorem 6.10 to � D ", obtaining a function  . Let R be large enough
so that  .1=R/ � ". We can also ensure that �.@T 1KR/D 0. For large enough n, we
have

�n.T
1K/ � �.T 1K/ � " and �n.T

1KR/ � �.T
1KR/C " � k�k C ":

In particular,
�n.T

1KR/ � �n.T
1K/ � k�k � 2":

Let us estimate hKS .�n/C
R
F d�n for such an n, fixed from now on.

We can write �n as an average of ergodic measures:

�n D

Z
�

�! dP .!/;

where all the �! are invariant probability measures for gt . Since

1 >

Z
F � d�n D

Z �Z
F � d�!

�
dP .!/;

almost all the measures �! belong to MF
1;erg. The entropy of a convex combination of

probability measures is given by [26, Proposition 4.3.16 (2)]. We can therefore apply
Theorem 6.10 to each of the �! (with ˛ D �!.T 1KR/) and then average with respect
to P , yielding

hKS .�n/C

Z
F d�n D

Z �
hKS .�!/C

Z
F d�!

�
dP .!/

�

Z �
.1 � �!.T

1KR//ı� zK .F /C �!.T
1KR/ı�.F /C "C  .1=R/

�
dP .!/

D .1 � �n.T
1KR//ı� zK .F /C �n.T

1KR/ı�.F /C "C  .1=R/

� .1 � k�k C 2"/.ı1� .F /C "/C .k�k C "/ı�.F /C 2":

As " is arbitrary, this gives the conclusion.
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Let us point out that when F D 0 and M is geometrically finite, under the same
hypotheses, a stronger version of Corollary 6.11 appears in [37, Theorem 1.1]:

lim sup
n!C1

hKS .�n/ � .1 � k�k/ı
1
� .0/C k�khKS

� �

k�k

�
:

In [47, 48], Velozo announces an analogous inequality for pressure on general nega-
tively curved manifolds, in the case of potentials going to 0 at infinity. Our approach
is valid for all Hölder-continuous potentials, but gives a weaker inequality. However,
it provides enough information for our purposes.

Corollary 6.12. The pressures P1var .F / and P1var;erg.F / are equal.

Proof. We have obviously the inequality

P1var;erg.F / � P
1
var .F /:

Moreover,
P1var .F / � ı

1
� .F /

by Corollary 6.11. Finally, Remark 6.4 gives the inequality

ı1� .F / � P
1
var;erg.F /:

Together, these inequalities show that all these quantities coincide.

Proof of Theorem 6.10. As the result is obvious if ı�.F / D 1, we may assume that
ı�.F / <1. Let K � M be a compact subset, R > 0, and KR the R-neighborhood
of K. Let � > 0.

Let � 2MF
1;erg be an ergodic probability measure on T 1M , and 0 < ˛ � 1 such

that �.T 1KR/ � ˛. Let " > 0 be small enough (how small exactly will be prescribed
at the end of the proof).

Let A be a large compact subset containing KR, with �.T 1A/ > 1 � ". Let T0
be the constant given by assertion (1) of Proposition 2.5 (Connecting lemma) applied
with A and K in the role of K and K 0. Define

AT D

²
w 2 T 1A;

ˇ̌̌̌
1

2T

Z T

�T

F ı gtw dt �
Z
F d�

ˇ̌̌̌
� "

and
1

2T

Z T

�T

1T 1KR.g
tw/ dt � ˛ C "

³
:

By the Birkhoff ergodic theorem, there exists T1 > 0 such that for T � T1, we have
�.AT / � 1 � ". Then

�.AT \ g
TCT0T 1A \ g�T�T0T 1A/ � 1 � 3":
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The strategy is to bound

hKS .�/C

Z
F d�

from above, in terms of periodic orbits, and use Theorem 5.1 to prove Theorem 6.10.
Consider a maximal ."I �T; T /-separated subset V of

AT D AT \ g
TCT0T 1A \ g�T�T0T 1A

in the sense that the small dynamical balls B�.vI ";�T; T /, for v 2 V , are pairwise
disjoint. By maximality,

AT �

[
v2V

B�.v; 2"I �T; T /:

Therefore, V is also a .�; ı; 2"I �T; T / spanning set for any ı � 1 � 3". Proposi-
tion 6.9 and Lemma 6.8 ensure that hKS .�/C

R
T 1M

F d� is bounded from above by
the exponential growth rate of the sumsX

v2V

e
R T
�T F.g

tv/ dt ;

over such sets V (that depend implicitly on T ).
Now, to each v 2 V , we will associate a periodic orbit and bound the above sum

in terms of NF .K;KR; ˛IT � �; T C �/ for some constant � > 0.
Take v 2 V . As it belongs to AT , both points gTCT0v and g�T�T0v belong

to T 1A. By the connecting lemma (Proposition 2.5) applied to the sets A and K,
we deduce the existence of a periodic vector vp , and associated periodic orbit p.v/,
with j`.p.v//� 2T j � 3T0, and d.gtvp; gtv/� "=3 for all�T � t � T . Note that we
have used a longer orbit to start with since Proposition 2.5 only gives a good distance
control T0-away from the endpoints of the original geodesic. Since the interior of K
intersects �.�/, it also follows from Proposition 2.5 that we can also require that the
orbit p.v/ intersects K.

By Lemma 3.1,
R `.p.v//
0

F.gtvp/ dt is close to
R T
�T
F.gtv/ dt up to a constant

depending only on A and F . Since v 2 AT , the latter integral is close to 2T
R
F d�,

up to 2T". Altogether, we getˇ̌̌̌Z `.p.v//

0

F.gtvp/ dt � `.p.v//
Z
F d�

ˇ̌̌̌
� C0 C `.p.v//"

for some C0 depending only on A, "; F . In particular, there exists T3 such that for
T � T3, `.p.v// is also large, so that this inequality becomesˇ̌̌̌

1

`.p.v//

Z `.p.v//

0

F.gtvp/ dt �
Z
F d�

ˇ̌̌̌
� 2":
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Similarly, we obtain, for T large enough,

`.p.v/ \ T 1KR=2/

`.p.v//
� ˛ C 2";

starting from the same properties for the orbit of v due to the definition of AT , and
using the fact that the orbits of v and vp remain close to each other up to ", so the
orbit of vp can be inKR=2 only at times when the orbit of v is inKR, except for times
in a bounded interval.

Moreover, as the set V is ."I �T; T / separated, and the periodic orbit p.v/ asso-
ciated with each v 2 V is "=3-close to it, two parametrized orbits p.v/ and p.v0/ are
separated by at least "=3 when v ¤ v0. Therefore, the multiplicity of v 7! p.v/ can
only come from different choices of base points on the resulting orbit, separated by at
least "=3, plus orbifold multiplicities bounded by the compactness of A. Hence, this
multiplicity is bounded by some multiplicative constant times T .

Therefore, up to a multiplicative constant,
P
v2V e

R T
�T F ıg

tv dt is bounded by

TNF .K;KR=2; ˛ C 2"; 2T � �; 2T C �/;

for some � > 0 depending on A; F; "; T0 but independent of T . Let zK be a compact
set such that p�. zK/ D K. Applying Theorem 5.1 with �=2 and R=2, we get that its
exponential growth rate is bounded by

.1 � ˛ � 2"/ı� zK .F /C .˛ C 2"/ı�.F /C �=2C  
�˛ C 2"
R=2

�
;

where  is a function tending to 0 at 0. If " is small enough, say " � "0, then the error
term 2".ı�.F / � ı� zK .F // is bounded by �=2, and we get a bound

.1 � ˛/ı� zK .F /C ˛ı�.F /C �C  
�˛ C 2"
R=2

�
:

Finally, we choose " D ˛"0, so that .˛ C 2"/=.R=2/ is a function of ˛=R that tends
to 0 when ˛=R tends to 0. This is the desired bound.

7. Strong positive recurrence

In symbolic dynamics, the notion of strong positive recurrence appeared in several
works, as mentioned in the introduction, see for example [8, 9, 13, 22–24, 39, 40, 42].
In our geometric context, when F D 0, the notion appeared in [16, 44] under the ter-
minology of “strongly positively recurrent manifold” or “strongly positively recurrent
action”. Independently, it appeared (still in the case F D 0) among people interested



Pressure at infinity and strong positive recurrence in negative curvature 485

by geometric group theory, see for example [2, 50, 51], under the name of “actions
with a growth gap” or later “statistically convex-cocompact manifolds”. We follow
the ergodic terminology of strong positive recurrence below, extending the point of
view developed in [44], in the spirit of the works of symbolic dynamics.

7.1. Different notions of recurrence

Recall some definitions which are classical in symbolic dynamics, and were intro-
duced for the geodesic flow in negative curvature in [34, 44]. Recall that P and P 0K
have been defined in Paragraph 3.1.3, and n zK after Remark 2.6.

Definition 7.1. A Hölder-continuous potential F WT 1M ! R with finite topological
pressure is said to be:

(1) recurrent if there exists a compact subsetK �M whose interior intersects the
projection �.�/ of the nonwandering set, with a compact lift zK to zM such
that X

p2P

n zK.p/e
R
p.F�ı� .F // D C1I

(2) positively recurrent if it is recurrent with respect to some compact subset
K �M whose interior intersects �.�/, with a lift zK to zM , and for some
N � 1, X

p2P 0
K
; n zK.p/�N

`.p/e
R
p.F�ı� .F // < C1I

(3) strongly positively recurrent if its pressure at infinity satisfies

P1top.F / < Ptop.F /:

Let us introduce another quantitative notion of recurrence, which involves an
invariant measure.

LetK �M be a compact subset, zK � zM a compact subset such that p�. zK/DK.
For all T > 0 large enough, as in [44], we define1 UT . zK/ � zM as the open set

UT . zK/ D ¹y 2 zM [ @ zM; 9x 2 zK; d.x; y/ > T and Œx; y/T \ � zK � zKº;

where Œx; y/T denotes the geodesic segment of length T starting from x on Œx; y/.
When we write this, we implicitly require d.x; y/ > T . In other words, y 2 UT . zK/ if

1In [16], the definition has been slightly modified to guarantee that it remains open when zM
is a Gromov-hyperbolic metric space.
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there exists some geodesic Œx; y/ starting in zK and ending at y, which does not meet
� zK n zK until time T .

For technical reasons, we will need to work with the following slightly larger sets:

UT0;T .
zK/ D ¹y 2 zM [ @ zM; 9x 2 zK; d.x; y/ > T and Œx; y/ŒT0;T � \ � zK � zKº;

where Œx; y/ŒT0;T � denotes the geodesic segment of length T � T0 starting at dis-
tance T0 from x on Œx; y/ (assuming again d.x; y/ > T � T0). In other words,
y 2 UT0;T .

zK/ if there exists some geodesic Œx; y/ starting in zK and ending at y,
which does not meet � zK n zK between times T0 and T .

Let us define zVT . zK/ � T 1 zK (respectively, zVT0;T . zK/ � T
1 zK) as the set of unit

vectors tangent at x to a geodesic segment Œx; y/, for some y 2 UT . zK/ (respectively,
UT0;T .

zK/) and x associated with y as above. Finally, let

VT . zK/ D p�. zVT . zK// and VT0;T .
zK/ D p�.VT0;T /.

zK//:

All these sequences

.UT . zK//T>0; .UT0;T .
zK//T>T0 ; . zVT . zK//T>0;

. zVT0;T .
zK//T>T0 ; .VT . zK//T>0; .VT0;T .

zK//T>T0

are nonincreasing when T !1.

Definition 7.2. The geodesic flow .gt / is said to be exponentially recurrent with
respect to an invariant (not necessarily finite) measure m if there exist a compact
subset K � M whose interior intersects �.�/ and some compact subset zK � zM
with p�. zK/ D K such that, for all T0 � 0, there exist C > 0 and ˛ > 0 such that for
T � T0,

m.VT0;T .
zK// � C exp.�˛T /:

In [34, Theorems 1.2, 1.4 and 1.6], the following result, reformulated here thanks
to Theorem 3.8, is proven.

Theorem 7.3 (Pit–Schapira). Let F W T 1M ! R be a Hölder-continuous map with
finite topological pressure.

(1) The potential F is recurrent if and only if .�; F / is divergent, if and only
if mF is ergodic and conservative

(2) The potential F is positively recurrent if and only if mF is finite.

(3) The potential F is positively recurrent if and only if it is recurrent and there
exists a compact subset K � M whose interior intersects at least a closed
geodesic, and a compact subset zK � zM with p�. zK/ D K, such thatX

2� zK

d.o; o/e�ı� .F /d.o;o/C
R o
o
zF < C1:
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In Section 7.3, we will prove the following result.

Theorem 7.4. Let F W T 1M ! R be a Hölder-continuous map with finite topolog-
ical pressure. If F W T 1M ! R is strongly positively recurrent, then it is positively
recurrent.

This theorem has been proved in [44] for the case F � 0, and the proof is almost
the same. We provide it here for the sake of completion and the comfort of the reader.

The contrapositive reformulation is extremely useful:

If the measure mF is infinite, then ı1� .F / D ı�.F /.

It has the following corollary.

Corollary 7.5. Let F WT 1M !R be a Hölder-continuous map with finite topological
pressure. Let pW xM ! M be an infinite Riemannian connected Galois cover of M ,
andH D �1. xM/ G� D �1.M/. Let xF D F ı dpWT 1 xM !R be the lift of F to T 1 xM .
Then

ı1H .
xF / D ıH . xF / � ı�.F /:

Proof. The inequality ıH . xF / � ı�.F / is immediate since H � � . By contradic-
tion, assume that ı1H . xF / < ıH . xF /. Then the potential xF would be strongly positively
recurrent. By Theorems 7.4 and 3.7, once renormalized into a probability measure,
the associated equilibrium measure mF is finite and unique. By uniqueness, the mea-
sure mF is invariant under the action of the deck group G D �=H . As G is infinite
by hypothesis, it is a contradiction with the finiteness of mF .

Remark 7.6. This corollary does not apply to nonregular cover, even for the zero
potential. For example, consider the following construction. Given †� D H2=� a
compact genus 2 hyperbolic surface, there exists H < � a nonnormal subgroup such
that †H D H2=H is a punctured torus with infinite volume. The (nonregular) cov-
ering pW†H D H2=H ! †� does not satisfy the conclusion of the above corollary.
Indeed, †H is convex cocompact, nonelementary, with infinite volume. In particular,
there exists a large compact subset zK � H2 such that H zK is finite, so that

ıH .0/ > 0 and ı1H .0/ D �1:

Corollary 7.7. There exists a complete hyperbolic surface M , with ı1� .0/ > 0, and
a Hölder-continuous potential F WT 1M ! R such that ı1� .F / D �1.

Observe that if ı1� .0/ > �1, then it is nonnegative and every Hölder-continuous
potential F which is bounded from below by some constant �K satisfies ı1� .F / �
�K. Therefore, examples satisfying Corollary 7.7 must be unbounded from below.
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Proof. Let M D H2=� be a Z-cover of a compact hyperbolic surface. By Corol-
lary 7.5,

ı1� .0/ D ı�.0/ > 0:

It is well known that ı�.0/D 1 (it follows for instance from [11], see for instance [16]
for details on critical exponents of covers). Choose some compact fundamental dom-
ain D � M with piecewise smooth boundary for the action of the deck group G D
hgn I n 2 Zi. For all n 2 Z, set Dn D gnD. Then build a Hölder-continuous map
F WT 1M ! R such that for all n 2 Z n ¹0º and v 2 T 1Dn, we have

�jnj � F.v/ � �.jnj � 1/:

Considering compact subsets zKN with p�. zKN / D
S
jnj�N Dn, we have

ı� zKN
.F / � ı� zKN

.0/ �N;

so that ı1� .F / D �1.

In fact, this construction applies whenever the nonwandering set� is noncompact,
for the potential F.v/ D �d.�.v/; p�.o//, for instance.

The next two theorems are proved respectively in Sections 7.4 and 7.5.

Theorem 7.8. Let F WT 1M ! R be a Hölder-continuous map with finite topological
pressure. The potential F is strongly positively recurrent if and only if the geodesic
flow is exponentially recurrent with respect to the measuremF given by the Patterson–
Sullivan–Gibbs construction.

The last result that we shall prove provides very satisfying information on strongly
positively recurrent potentials. We will not use it in this paper.

Theorem 7.9. Let F WT 1M ! R be a Hölder-continuous map with finite topological
pressure. If F WT 1M ! R is strongly positively recurrent, then for every compact set
zK � zM , whose interior intersects �.�/, we have ı� zK .F / < ı�.F / .

In fact, the proof of Theorem 7.8 shows that, for any compact subset K with
ı� zK .F / < ı�.F /, the sets VT0;T . zK/ have exponentially small mF -measure for all
T � T0. Together with Theorem 7.9, this implies the following corollary.

Corollary 7.10. Let F WT 1M ! R be a Hölder-continuous map with finite topolog-
ical pressure and with finite Gibbs measure mF . Assume that the geodesic flow is
exponentially recurrent with respect to mF . Then, for any compact subset K � M
whose interior intersects �.�/ and any compact subset zK of zM with p�. zK/ D K,
for any T0 � 0, there exist C > 0 and ˛ > 0 such that for all T � T0,

mF .VT0;T .
zK// � C exp.�˛T /:
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Before proving these results about strong positive recurrence, we provide in the
next paragraph ways of constructing strongly positively recurrent potentials.

7.2. Strong positive recurrence through bumps and wells

Adding a bump �A to a potential F , with A a nonnegative compactly supported
Hölder-continuous map and �!C1, we already proved in Corollary 4.12 the exis-
tence of strongly positively recurrent potentials. We restate it below with this termi-
nology.

Corollary 7.11. On any nonelementary complete connected Riemannian manifold
with pinched negative curvature and bounded first derivative of the curvature, there
exist Hölder-continuous maps that are strongly positively recurrent.

It will be convenient to add to a given potential F large bumps of arbitrarily small
height. It is what we do in the next proposition.

Proposition 7.12. Let F WT 1M !R be a Hölder-continuous map with finite topolog-
ical pressure. For all "> 0, there exists a Hölder-continuous map 0�A� 1 compactly
supported on T 1M , such that

ı1� .F C "A/ D ı
1
� .F / � ı�.F / < ı�.F C "A/:

Proof. For a given " > 0, by the variational principle for Ptop.F /, there exists a mea-
sure m" 2MF

1 , such that

Ptop.F / D ı�.F / D sup
m2MF

1

�
hKS .m/C

Z
F dm

�
� hKS .m"/C

Z
F dm" C

"

2
:

Choose some compact subsetK" such thatm".T 1K"/� 1� ". Now, choose some
Hölder-continuous map 0 � A � 1 with compact support such that A � 1 on T 1K".
Observe that as soon as 0 < " < 1=2, we have

ı�.F C "A/ � hKS .m"/C

Z
F dm" C "m.K"/ � ı�.F /�

"

2
C ".1� "/ > ı�.F /:

The result follows.

Adding a bump does not modify the topological pressure at infinity, and increases
the topological pressure to produce strongly positively recurrent potentials. On the
other hand, subtracting a bump, i.e., adding a well, does not modify the topological
pressure at infinity and decreases the topological pressure towards the topological
pressure at infinity, as shown in the next statement.
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Proposition 7.13. Let F WT 1M !R be a Hölder-continuous map. Then for all ˇ � 0
satisfying ı1� .F / � ı�.F / � ˇ and all � > 0, there exists a compactly supported
Hölder-continuous function A on T 1M taking values in Œ0; ˇ� such that

ı�.F � A/ � ı�.F / � ˇ C �:

When ı1� .F / is finite, one may take ˇ D ı�.F / � ı
1
� .F /. Then the proposi-

tion says that, by perturbing F with a compactly supported potential taking values
in Œ0; ı�.F / � ı1� .F /�, one may get a pressure which is arbitrarily close to ı1� .F /.
The formulation we have given also makes sense when ı1� .F / D �1, and says in
this case that with a compact perturbation one can make the topological pressure arbi-
trarily negative.

Proof. When ı�.F / D C1, the conclusion is true for A D 0. Therefore, we may
assume that F has finite topological pressure. For every n 2N, let An be a compactly
supported Hölder-continuous map taking values in Œ0;ˇ�, equal to ˇ on p�T 1B.o;n/.
We claim that lim sup ı�.F � An/ � ı�.F / � ˇ. The proposition follows from this
claim by taking A D An for large n. Let us prove it.

For every n � 1, choose an invariant measure �n with

hKS .�n/C

Z
.F � An/ d�n � ı�.F � An/ �

1

n
:

Extracting a subsequence if necessary, we can assume that �n converges weakly to
an invariant measure �, with mass k�k 2 Œ0; 1�. Let " > 0. Choose a large compact
subset K �M with �.T 1K/ > k�k � " and �.@T 1K/ D 0. For large enough n, we
also have �n.T 1K/ > k�k � ", and thereforeZ

An d�n � ˇ.k�k � "/

as An is equal to ˇ on T 1K. We get

lim sup ı�.F � An/ D lim sup
�
hKS .�n/C

Z
.F � An/ d�n

�
� lim sup

�
hKS .�n/C

Z
F d�n

�
� ˇ.k�k � "/:

Apply now Corollary 6.11, to get an upper bound

lim sup ı�.F � An/ � .1 � k�k/ı1� .F /C k�kı�.F / � ˇ.k�k � "/:

With the inequality ı1� .F / � ı�.F / � ˇ, this gives

lim sup ı�.F � An/ � ı�.F / � ˇ C ˇ":

As " is arbitrary, this concludes the proof.
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7.3. Strong positive recurrence implies positive recurrence

In this section, we shall prove Theorem 7.4. We follow the proof of [44] in the
case F D 0.

Assume that F is strongly positively recurrent. By definition, there exists a com-
pact subsetK �M whose interior intersects at least a closed geodesic, and a compact
subset zK � zM with p�. zK/ D K, such that

ı� zK .F / < ı�.F /:

Without loss of generality, we assume that o 2 zK.
An elementary computation shows that this strict inequality implies the conver-

gence of the series X
2� zK

d.o; o/e�ı� .F /d.o;o/C
R o
o
zF :

Therefore, in order to prove that strong positive recurrence implies positive recur-
rence, by Theorem 7.3 (3), it is enough to show that F is recurrent.

The following inclusion is a variant of an observation of [44]:

ƒ� nƒ
rad
� �

[
T0>0

\
T>T0

UT0;T .
zK/:

Indeed, the set on the right represents points y 2 @ zM such that for some x 2 zK, the
geodesic Œx; y/ stays a bounded amount of time in �: zK, whereas the set on the left is
the set of y 2 ƒ� such that the geodesic Œxy/ eventually leaves every orbit �:zL, for
every compact subset zL � zM .

To prove Theorem 7.4, it suffices to show that for all T0 > 0, we have

�F
� \
T>T0

UT0;T .
zK/

�
D 0:

It then follows by the above inclusion that �F gives zero measure to ƒ� nƒrad
� , and

therefore full measure to ƒrad
� . Then Theorem 3.8 implies that F is recurrent.

The following lemma, a variation around [44, equation (29)], is a key step of the
proof, and will be useful also in Section 7.4. For " > 0, let zK" be the "-neighborhood
of zK. Let D be the diameter of zK. We recall that zK contains o.

Lemma 7.14. For all " > 0, there exists T0 > 0 such that for all T > T0 C 2D C ",
we have [

2� zK"
;

d.o;o/�TCDCT0

Oo. zK/ � UT0;T .
zK/:
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Moreover, for all T1 � 0, there exists a finite set ¹g1; : : : ; gN º of elements of � such
that for all T > T1 C 2D, we have

UT1;T .
zK/ \ � zK �

N[
iD1

[
2� zK ;

d.o;o/�T�2D�T1

gi �O zK.
zK/:

Proof. The first inclusion uses the same kind of arguments as for [44, equation (29)].
If  2 � zK" , there exist x;y 2 zK" such that the geodesic segment Œx;y� does not inter-
sect � zK" outside ¹x; yº. Consider z 2 Oo. zK/. The geodesic Œo; z� intersects  zK
at a point z0. By Lemma 2.3, there exists T0 > 0 such that the geodesics Œx; y� and
Œo; z0� follow each other up to ", except in the T0 neighborhood of the beginning and
of the end of these segments. Moreover,

d.o; o/ � T CD C T0;

so that d.o; z0/ � T C T0. Therefore, Œo; z0� avoids � zK along ŒT0; T �, and so
does Œo; z�.

For the second inclusion, let T1 � 0. Introduce a finite family .gi /1�i�N of isome-
tries of � such that the T1-neighborhood zKT1 of zK satisfies

zKT1 \ �
zK �

[
i

gi zK:

Consider a point y 2 UT1;T . zK/\ � zK. Consider the last copy gi zK intersected by the
segment Œo; y�T1 , and the first copy h zK intersected by the segment Œo; y�T1CD;T . By
definition,  D g�1i h 2 � zK . Moreover, it satisfies

d.o; o/ � T � 2D � T1;

and y 2 gi �O zK. zK/ by construction. The desired inclusion follows.

Lemmas 7.14 and 3.6 have the following corollary, from which Theorem 7.4 fol-
lows.

Corollary 7.15. For all T0 � 0 and for all 0 < � < ı�.F / � ı� zK .F /, there exist
T1; C > 0 such that for T � T1, we have

�F .UT0;T .
zK// � Ce

�.ı� .F /�ı� zK
.F /��/T

: (22)

In particular,

�F
� \
T>T0

UT0;T .
zK/

�
D 0:
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Similar statements appeared in [44] and [16], but it appears that some details are
welcome on the limit process. We include therefore a detailed (short) argument.

Proof. Let � be as above. By Lemmas 7.14 and 3.6 and conformality of �F;sn , for all
sn > ı�.F / close enough to ı�.F /, and T > T0 large enough, we have

�F;sn.UT0;T .
zK// D �F;sn.�o \ UT0;T .

zK//

�

NX
iD1

X
2� zK ;

d.o;o/�T�2D�T0

�F;sn.gi �O zK.
zK//

� N � C �
X
2� zK ;

d.o;o/�T�2D�T0

e�.sn��=2/d.o;o/C
R o
o
zF :

As the exponential growth rate of X
2� zK ;

i�d.o;o/�iC1

e
R o
o
zF

is ı� zK by definition, for large enough i , we getX
2� zK ;

i�d.o;o/�iC1

e
R o
o
zF
� e

.ı� zK
C�=2/i

:

Together with the previous equation, this gives for large enough T , for some constant
C > 0, the inequality

�F;sn.UT0;T .
zK// � C � e

.ı� zK
.F /C��sn/T :

Now, �F is the weak-� limit �F D limn!1 �
F;sn . Therefore, for any open set U ,

one has �F .U / � lim inf �F;sn.U /. We obtain

�F .UT0;T .
zK// � C � e

.ı� zK
.F /C��ı� .F //T :

The result follows.

7.4. Strong positive recurrence and exponential recurrence

Let us prove Theorem 7.8.

Proof. The implication “strong positive recurrence of F implies exponential recur-
rence of .gt / with respect to mF ” was essentially shown in the above proof of Theo-
rem 7.4, and in particular equation (22). Indeed, letK and zK be as in the proof of this
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theorem. On T 1 zM , the product structure zmF � �F � �F � dt (see equation (7)), in
the Hopf coordinates (see equation (2)) shows that up to some constant c,

mF .VT0;T .
zK// � zmF . zVT0;T .

zK// � c�F .@ zM/ � �F .UT0;T .
zK//:

Equation (22) concludes. Note that this proof, combined with Theorem 7.9, implies
Corollary 7.10.

Conversely, suppose that .gt / is exponentially recurrent with respect to mF , so
that for some compact subset zK � zM whose interior intersects �. z�/, for every T0>0,
there exist ˛ D ˛.T0/ > 0 and C D C.T0/ > 0 such that, for all T > T0,

mF .VT0;T .
zK// � C exp.�˛T /: (23)

The first step consists in showing that there exists a constant C 0 such that, for
all T � T0, we have

�F .UT0;T .
zK// � C 0e�˛T : (24)

Since the projection p� is finite-to-one on the compact set T 1 zK, one deduces
from (23) that zmF . zVT0;T . zK/ � C0 exp.�˛T / for some constant C0. By definition, if
v 2 zVT0;T .

zK/, then vC 2 UT0;T . zK/, and v� 2 OvC. zK/. Recall thatmF is supported
in �. As above, Equations (7) and (2) show that up to some constant c,

C0 exp.�˛T / � zmF . zVT0;T . zK// �
1

c
inf

v2z�\T 1 zK

�F .OvC. zK// � �
F .UT0;T .

zK//:

In the above infimum, the vector v varies in the compact set z� \ T 1 zK, and �F has
full support in the limit set, so that this infimum is positive. Therefore, (24) is proven.

In what follows, we will need to consider a compact set zL large enough to satisfy
the lower bound in Lemma 3.6. By a standard use of Lemma 2.3, for all " > 0 there
exists � > 0, such that if zL � zK" � zK contains an "-neighborhood of zK, uniformly
in T � T0 C 2� , we have

UT0;T .
zL/ � UT0C�;T�� .

zK/:

In particular, it follows from (24) that �F .UT0;T .zL// � C
0e�˛T for some C 0 > 0

and ˛ > 0. Until now, T0 was arbitrary. We choose now T0 given by the first item in
Lemma 7.14.

As �F D limsn!ı� .F / �
F;sn , we have

lim sup �F;sn.UT0;T .zL// � �
F .UT0;T .

zL// � C 0e�˛T :

Therefore, for all sn close enough to ı�.F /, we have �F;sn.UT0;T .zL// � C
0e�ˇT

for any ˇ < ˛, for instance ˇ D ˛=2. Fix some " > 0. Then Lemma 7.14 gives for
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some D D D.zL/, [
2�zL"

;

d.o;o/�TCDCT0

Oo. zL/ � UT0;T .
zL/;

so that, as �F;sn is supported on �o,

�F;sn
�
�o \

[
2�zL"

;

d.o;o/�TCDCT0

Oo. zL/

�
� C 0e�ˇT :

In particular, there exists C 00 such that, for any large enough k, we have

�F;sn
�
�o \

[
2�zL"

;

d.o;o/2Œk;kC1�

Oo. zL/

�
� C 00e�ˇk :

As the group � acts properly discontinuously on zM and zL is compact, the inter-
sections of shadows in the above union have a bounded multiplicity. Therefore, we
deduce that there exists some constant c > 0 such thatX

2�zL"
;

d.o;o/2Œk;kC1�

�F;sn.Oo. zL// � ce
�ˇk :

Together with the Orbital Shadow Lemma 3.6, this implies that up to some multiplica-
tive constant, uniformly in sn, for some c0 > 0, for all k large enough, we haveX

2�zL"
;

d.o;o/2Œk;kC1�

e�snd.o;o/C
R o
o
zF
� c0e�ˇk :

Let sn converge to ı�.F /. As d.o; o/ 2 Œk; k C 1�, the previous inequality gives,
for some c00 > 0, for large enough k,X

2�zL"
;

d.o;o/2Œk;kC1�

e
R o
o
zF
� c00eı� .F /k�ˇk :

Since ı�zL" .F / is the exponential growth rate of the left hand term, we get

ı�zL"
.F / � ı�.F / � ˇ < ı�.F /:

In particular, ı1� .F / < ı�.F /, proving the strong positive recurrence of F .
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7.5. SPR is independent of the compact set

This paragraph is devoted to the proof of Theorem 7.9. Let F W T 1M ! R be a
strongly positively recurrent Hölder-continuous potential. Let K � M be a compact
subset whose interior

ı

K intersects �.�/, and zK � zM a compact subset such that
p�. zK/ D K. Our proof relies on the following proposition, which provides a conve-
nient upper bound for the growth of � zK .

Proposition 7.16. LetAWT 1M ! Œ0;C1/ be a nonnegative Hölder-continuous map
whose support is contained in the interior of T 1K. Then

ı� zK .F / � ı�.F � A/:

Proof. Thanks to Proposition 4.9, we have ı� zK .F /D ı� zK .F �A/. Together with the
trivial inequality ı� zK .F � A/ � ı�.F � A/, this gives the conclusion.

We will also need the following proposition.

Proposition 7.17. Let F1; F2W T 1M ! R be two Hölder-continuous potentials with
finite topological pressure that satisfy F2 � F1 and F2.w/ < F1.w/ for some w 2�.
Assume that F2 admits a finite Gibbs measure mF2 . Then their topological pressures
satisfy

Ptop.F2/ < Ptop.F1/:

Proof. For i D 1; 2, Ptop.Fi / coincides with Pvar.Fi /, i.e.,

sup
²Z

Fi dmC hKS .m/ I m invariant probability measure with
Z
F �i d�i <C1

³
:

As F2 � F1, we have Z
F �1 dm �

Z
F �2 dm

for any invariant probability measure m. Therefore, when m D mF2 ,

Pvar.F2/ D

Z
F2 dmF2 C hKS .mF2/ �

Z
F1 dmF2 C hKS .mF2/ � Pvar.F1/:

Assume by contradiction that Pvar.F1/D Pvar.F2/. Then by the previous inequal-
ities, Z

F1 dmF2 D
Z
F2 dmF2 :

It implies that F1 D F2 mF2-almost surely. As F2 � F1 and F2 < F1 on a neigh-
borhood of w, this contradicts the fact that mF2 has full support in �. Therefore,
Pvar.F2/ < Pvar.F1/.
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Let us conclude the proof of Theorem 7.9.

Proof of Theorem 7.9. Choose some w 2 � \ T 1K and " > 0 such that B.w; 2"/ �
T 1K. Let AW T 1M ! Œ0;C1/ be a nonnegative Hölder-continuous map supported
in B.w; "/ with A.w/ > 0. By Proposition 4.9, for all � > 0, we have

ı1� .F � �A/ D ı
1
� .F /:

Moreover, the map � 7! ı�.F � �A/ is Lipschitz-continuous by Proposition 4.11.
As F is strongly positively recurrent, for � > 0 small enough, the map F � �A is still
strongly positively recurrent. In particular, by Theorem 1.4, it admits a finite Gibbs
measure. Therefore, Propositions 7.16 and 7.17 give the inequalities

ı� zK .F / � ı�.F � �A/ < ı�.F /:

Theorem 7.9 follows.

A. Entropies for geodesic flows

In this appendix, we prove that three important notions of entropies of an invari-
ant probability measure for the dynamics of the geodesic flow on negatively curved
manifolds coincide, namely the Kolmogorov–Sinai, the Katok and the Brin–Katok
entropies. These equalities were first proved for dynamical systems defined on com-
pact metric spaces in [28] and [10], and generalized for Lipschitz maps on noncom-
pact manifolds in [36] taking only in consideration ergodic measures. This appendix
treats the case of nonergodic measures as well as the equality with Katok and local
(Brin–Katok) entropies relative to small dynamical balls. The extension of this appen-
dix to the orbifold setting is open, as discussed in our last paragraph.

A.1. Different notions of entropy

Let . zM;g/ be a smooth complete connected Riemannian manifold with pinched neg-
ative sectional curvature �b2 � Kg � �a2, for some 0 < a � b. Let M D zM=� be
a quotient manifold, with � D �1.M/ a discrete group, and p� W T 1 zM ! T 1M the
differential of the quotient map zM !M . We will denote by .gt / both geodesic flows
on T 1 zM and T 1M D T 1 zM=� .

For all definitions of entropy, the entropy of the geodesic flow .gt / with respect to
an invariant probability measure � on T 1M is defined as the entropy of its time-one-
map g1 with respect to �. If � is ergodic with respect to the flow, it is not necessarily
ergodic with respect to this time-one-map g1. However, in this case, almost every time
� 2 R is ergodic, so that the relation h.g� / D j� jh.g1/ allows us to assume, without
loss of generality, that � is ergodic with respect to g1.
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A.1.1. The Kolmogorov–Sinai entropy. Let M1 be the set of g1 invariant proba-
bility measures on T 1M and let � 2M1. In this appendix, the word partition always
denotes a finite or countable measurable partition of T 1M . Let P be such a partition.
The entropy of P is defined by

H.�;P / D �
X
P2P

�.P / log�.P /:

The join P n D
Wn
iD0 g

�iP is the partition whose atoms are the nonempty subsets of
the form

P0 \ g
�1P1 \ � � � \ g

�nPn;

where the sets Pi are in P . The entropy of � with respect to P is the limit

h.�;P / D lim
n!1

1

n
H.�;P n/:

The Kolmogorov–Sinai entropy of � is the least upper bound

hKS .�/ WD sup
P

h.�;P /

over all partitions P with finite entropy.
For any v 2 T 1M , denote by P .v/ the atom of P containing v. The Shannon–

McMillan–Breiman theorem (see, for instance, [1]) asserts that whenever� is ergodic,
then for �-a.e. v 2 T 1M , we have

h.�;P / D lim
n!1

�
1

n
log�.P n.v//:

Moreover, when � is not ergodic, we haveZ
T 1M

lim
n!1

�
1

n
log�.P n.v// d�.v/ D h.�;P /:

A.1.2. The Katok entropies. For completeness, let us recall the following defini-
tions. Let d be any metric on T 1 zM , bi-Lipschitz equivalent to the Sasaki metric. By
an abuse of notation, we will denote by d the corresponding induced metric on T 1M
and by Bd .v; r/ the corresponding metric ball centered at v with radius r > 0.

Let zv 2 T 1 zM and "; T > 0. The dynamical ball B.zv; "IT / on the universal cover
is defined by

B.zv; "IT / D ¹ zw 2 T 1 zM I 8t 2 Œ0; T �; d.gt zv; gt zw/ � "º:

As in [44, Remark 3.1], we consider on T 1M the small dynamical ball B�.v; "IT /D
p�.B.zv; "IT // and the big dynamical ball

Bdyn.v; "IT / D ¹w 2 T
1M I 8t 2 Œ0; T �; d.gtv; gtw/ � "º � B�.v; "IT /: (25)
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Both balls coincide as soon as the injectivity radius of M is bounded from below
away from zero uniformly on T 1M and " is small enough. More generally, if along
the orbit .gtv/0�t�T , the injectivity radius at the point �.gtv/ is larger than ", then

Bdyn.v; "IT / D B�.v; "IT /: (26)

Given a probability measure � on T 1M , ı 2 .0; 1/ and "; T > 0, a set V � T 1M
is .�; ı; "IT /-spanning (respectively, dynamically-.�; ı; "IT /-spanning) if

�

� [
v2V

B�.v; "IT /

�
� ı; respectively, �

� [
v2V

Bdyn.v; "IT /

�
� ı:

Of course, a .�; ı; "IT /-spanning set is also a dynamically-.�; ı; "IT /-spanning.
Let S�.�; ı; "I T / (respectively, Sdyn.�; ı; "I T /) be the minimal cardinality of a

.�; ı; "IT /-spanning set (respectively, of a dynamically-.�; ı; "IT /-spanning set).
The Katok entropy of � with respect to the small (respectively, big) dynamical

balls are defined respectively as

h�Katok.�/ D inf
ı>0

sup
">0

lim sup
T!1

1

T
logS�.�; ı; "IT /;

and
h

dyn
Katok.�/ D inf

ı>0
sup
">0

lim sup
T!1

1

T
logSdyn.�; ı; "IT /:

A.1.3. The Brin–Katok entropies. Given a nonempty compact subset K � T 1M ,
we define the local entropies on K relative respectively to small and big dynamical
balls as

xh�loc.�;K/ D sup
">0

ess sup
v2K

lim sup
T!1; gT v2K

�
1

T
log�.B�.v; "IT //;

and
xh

dyn
loc .�;K/ D sup

">0

ess sup
v2K

lim sup
T!1; gT v2K

�
1

T
log�.Bdyn.v; "IT //:

Taking the least upper bound over nonempty compact subsets K leads to the definition
of the upper Brin–Katok local entropies

xh�BK.�/ D sup
K

xh�loc.�;K/ and xh
dyn
BK.�/ D sup

K

xh
dyn
loc .�;K/:
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A.2. All entropies coincide

The main result of this appendix is stated below. Despite of being expected, its rele-
vance lies in its many potential applications. For example, in [44, Theorem 1.4], a for-
mula relating local entropies of invariant measures through a change of the Riemann-
ian metric has been established, which brings as consequence such a formula for
Kolmogorov–Sinai entropies. In particular, it also gives a relationship between topo-
logical entropies of geodesic flows coming from perturbations of a given Riemannian
metric by the use of measures of maximal entropies on the corresponding dynamics.

Theorem A.1. Let .M;g/ be a complete connected Riemannian manifold with pinch-
ed negative curvatures �b2 � Kg � �a2 < 0. Let � 2M1 be an ergodic invariant
probability measure for the geodesic flow on T 1M . Then

hKS .�/ D xh
�
BK.�/ D

xh
dyn
BK.�/ D h

�
Katok.�/ D h

dyn
Katok.�/:

Proof of Theorem A.1. We will prove Theorem A.1 in two steps. The first step is
to prove that the Kolmogorov–Sinai entropy coincides with the local Brin–Katok
entropies, and the second one is the analogue with the Katok entropies.

Step 1. The inequality hKS .�/� xh
dyn
BK.�/ is due to Brin–Katok [10]. In this reference,

equality is proved on a compact manifold, but the proof of this inequality does not use
compactness. The inequality xhdyn

BK.�/ �
xh�BK.�/ is immediate from (25). Therefore,

we just need to prove that xh�BK.�/ � hKS .�/.
The proof relies on a crucial geometric property: as the curvature is bounded from

below, the injectivity radius along a geodesic decays at most exponentially. More
precisely, for every compact subset C � M , there exists a positive constant c > 0

such that for all vectors w 2 T 1C , and all t 2 R, we have

rinj.g
tw/ � c�1e�cjt j: (27)

This geometric inequality follows from [14, Theorem 4.7], see also [15, Proposi-
tion 4.19].

For the next proposition we do not need the ergodicity of �. In particular, the
corollary stated after its proof is satisfied for any invariant probability measure.

Proposition A.2. For every compact subset K � T 1M with �.K/ > 0, and for
every " > 0, there exists a partition PK of K with finite entropy such that, if P D

PK t .T
1M nK/, for �-a.e. v 2 K , the sequence nk !1 of return times in K

of .gnv/n2N satisfies
P nk .v/ � B�.v; "Ink/:
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In particular, for every compact subset K 2 T 1M , for �-a.e. v 2K ,

lim sup
n!1;gnv2K

�
1

n
log�.B�.v; "In// � lim sup

n!1;gnv2K

�
1

n
log�.P n.v//: (28)

Proof. By [35, Proposition 1.34], for every compact subset K � T 1M , there exists
c0 > 0 such that for all ı > 0, there exists a partition Pı of K whose atoms Pı.v/ for
any v 2 T 1M all have diameter at most ı, with �.@Pı.v// D 0, and #Pı � c0ı

�d

where d is the dimension of T 1M . As�.K/ > 0, by the Poincaré recurrence theorem,
we know that for �-a.e. v 2 K , infinitely often gnv 2 K . Divide the set K (up to a
measure 0 set) into the return time partition: for all k � 1, let

Ak D ¹v 2K; gkv 2K; and giv …K for all 1 � i � k � 1º:

For all k � 1, set ık D "=.Lec/k , where L is the Lipschitz-constant for the time-one-
map g1 of the geodesic flow, and c > 0 is the constant associated with the compact
subset C D �.K/ � M from equation (27). For v 2 Ak , define P .v/ as P .v/ WD

Pık .v/ \ Ak . For v …K , set P .v/ D T 1M nK .
Thanks to the choice of ık , an immediate verification shows that for v 2 Ak , we

have P .v/ � Bdyn.v; "=e
ckI k/. By equations (26) and (27), in fact, we have in this

case
P .v/ � B�

�
v;

"

eck
I k
�
D Bdyn

�
v;

"

eck
I k
�
:

Recall the notation

P n.v/ D P .v/ \ g�1P .gv/ \ � � � \ g�.n�1/P .gn�1v/:

Now, for almost all v 2K , let nk !1 be the sequence of return times of .gnv/n�0
inside K (with n0 D 0). Let zv be any lift of v into T 1 zM . By construction of P , and
by the above, for almost every v 2 T 1M , we have

P nk .v/ � P .v/ \ g�n1P .gn1v/ \ � � � \ g�nk�1P .gnk�1v/

�

k�1\
iD0

g�niBdyn

�
gniv;

"

ec.niC1�ni /
IniC1 � ni

�
D

k�1\
iD0

g�niB�

�
gniv;

"

ec.niC1�ni /
IniC1 � ni

�
�

k�1\
iD0

g�nip�.Bdyn.g
ni zv; "IniC1 � ni //

D

k�1\
iD0

p�.g
�niBdyn.g

ni zv; "IniC1 � ni //:
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Note that we are strongly using the fact that dynamical balls for the time-one-map
coincide with dynamical balls for the flow at integer times. Without loss of general-
ity, we may assume that " � c�1. In particular, the quotient map p� is an isometry
restricted to each of the dynamical balls involved in the last intersection, thanks
to (27). Hence, we get

P nk .v/ � p�

� k�1\
iD0

g�niBdyn.g
ni zv; "IniC1 � ni /

�
D p�.Bdyn.zv; "Ink//

D B�.v; "Ink/:

It remains to prove that P is a partition of finite entropy. By construction recall
that

#¹P 2 P W P � Akº � c0ı
�d
k D c0

�
"

.Lec/k

��d
:

We have

H�.P / D �
X
P2P

�.P / log�.P /

D ��.Kc/ log�.Kc/ �

1X
kD1

X
P2P ;P�Ak

�.P / log�.P /

� ��.Kc/ log�.Kc/ �

1X
kD1

�.Ak/ log�.Ak/

C

1X
kD1

�.Ak/ log #¹P 2 P W P � Akº

� ��.Kc/ log�.Kc/ �

1X
kD1

�.Ak/ log�.Ak/

�

� 1X
kD1

�.Ak/

�
� log.c0"d /C

1X
kD1

�.Ak/ � k log.Lec/d :

The first term is some finite constant. The third term is bounded from above by a
constant times �.K/ and is therefore finite. By the Kac lemma, the last term, up to a
constant, is equal to

1X
kD1

k�.Ak/ D �.T
1M/ � 1:
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The second term is finite since [35, Lemma 1.35] together with
P
k k�.Ak/ < 1

imply X
k

�.Ak/ log�.Ak/ <1:

Therefore, P has finite entropy.

Integrating (28) over v 2 K on the left, and over v 2 T 1M on the right, and
using the Shannon–McMillan–Breiman theorem, Proposition A.2 leads to the follow-
ing corollary.

Corollary A.3. Under the same assumptions, we haveZ
K

lim sup
n!1;
gnv2K

�
1

n
log�.B�.v; n; "// d�.v/

�

Z
T 1M

lim sup
n!1;
gnv2K

�
1

n
log P n.v/ d�.v/ � hKS .�/:

Assume now that K is large enough so that there exists v 2K with�.Bd .v;1// >
0 and Bd .v; 2/ �K . Let us define

K�1 D ¹v 2K I d.v;Kc/ � 1º �K:

By our assumption, �.K�1/ > 0. Note that for all v 2K�1, we have

lim sup
T!1;

gT v2K�1; T2R

�
1

T
log�.B�.v; T; "// � lim sup

n!1;
gnv2K; n2N

�
1

n
log�.B�.v; n; "//:

If we consider the essential least upper bound over v 2 K on the left and on the
right in (28), using the ergodicity of � and the Shannon–McMillan–Breiman theorem,
we get

xh�loc.�;K�1/ � h.�;P /:

This already implies xh�BK.�/� hKS .�/ since the right hand side of the inequality
is less than hKS .�/ and K � T 1M is arbitrary.

Step 2. The goal now is to prove the equality between the Katok entropies and the
Kolmogorov–Sinai entropy. The inequality hKS .�/ � h

dyn
Katok.�/ follows immediately

from Katok [28, formula (1.4)], where the author considers coverings instead of span-
ning sets. In this reference, equality is proved on a compact manifold, but the proof
of this inequality does not use compactness. The inequality hdyn

Katok.�/ � h
�
Katok.�/ is

immediate from (25). Hence by Step 1, we just need to prove that h�Katok.�/�
xh�BK.�/.
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Let h WD xh�BK.�/. By definition of local entropy, for any � > 0, there exists a
compact subset K � T 1M and " > 0 such that �.K/ > 4=5 and for �-a.e. v 2 K ,
we have

lim sup
T!1;

gT v2K

�
1

T
log�.B�.v; "=2IT // � hC �:

For every � > 0, set

K� WD ¹v 2K W �.B�.v; "=2IT // � exp.�T .hC 2�//; 8T � �; gT v 2Kº:

Then there exists �0 > 0 such that �.K�0/ > 3=4. Note that �.YT / > 1=2 for every
T � �0, where YT DK�0 \ g

�TK�0 . Let 0 < ı < 1=2. Then

h�Katok.�/ � lim sup
T!1

1

T
logS�.�; ı; "IT / � lim sup

T!1

1

T
logS�.YT ; "IT /;

where S�.YT ; "; T / is the minimal cardinality of a ."; T /-spanning set of YT .
Choose a maximal ."=2;T /-separated set E in YT , and denote by†�.YT ; "=2;T /

its cardinality. By maximality, E is also ."; T /-spanning, so that

S�.YT ; "; T / � †�.YT ; "=2; T /:

By construction, we have

e�T.hC�/†�.YT ; "=2; T / �
X
y2E

�.B�.y; "=2IT // � 1:

With the above inequalities, we deduce that

h�Katok.�/ � hC �:

As � is arbitrary, the result follows.

A.3. Comparison between entropies for orbifolds

A Riemannian orbifold is said to be good when it is the quotient of a simply connected
manifold zM by a discrete group of isometries �: it is the setting to which all the results
in the article apply except this appendix which assumes, moreover, that the action of �
is free, i.e., zM=� is a manifold. A good orbifold M D zM=� is said to be very good
when it has a subgroup � 0 < � of finite index acting on zM without fixed point, i.e.,
if M has a finite covering which is a manifold.

Theorem A.1 extends immediately to very good orbifolds since the entropies
which we consider are invariant by finite coverings. Unfortunately, it does not extend
yet to general good orbifolds for the following reason.
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We have crucially used in the proof of Step 1 (which is used for Step 2) the fact that
the injectivity radius cannot decrease more than exponentially fast along geodesics.
The notion of injectivity radius on orbifold is delicate: note that the length of the
shortest geodesic loop based at x goes to 0 as x approaches a singularity. There are
however notions of injectivity radius adapted to orbifolds which are automatically
positive on compact sets, such as the cone injectivity radius considered in [3, Chap-
ter 9]. Nevertheless, it is unknown whether such injectivity radius can decrease faster
than exponentially along the geodesics of an orbifolds with bounded sectional cur-
vature. The proof of (27) given for manifolds in [14] is based on the study of the
Riemannian heat kernel. Therefore, its adaptation to orbifolds is delicate.
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