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45 rue des saints-pères, 75270 Paris cedes 06, France

jerome.dedecker@parisdescartes.fr
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We consider Markov chains which are polynomially mixing, in a weak sense expressed
in terms of the space of functions on which the mixing speed is controlled. In this con-
text, we prove polynomial large and moderate deviations inequalities. These inequalities
can be applied in various natural situations coming from probability theory or dynam-
ical systems. Finally, we discuss examples from these various settings showing that our
inequalities are sharp.
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1. Introduction

For stationary α-mixing sequences in the sense of Rosenblatt (see [25]) a Fuk–
Nagaev type inequality has been proved by Rio (see Theorem 6.2 in [24]). This
deviation inequality is very powerful and gives for instance sharp upper bounds
for the deviation of partial sums when the strong mixing coefficients decrease at a
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polynomial rate. In particular for a bounded observable f of a strictly stationary
Markov chain (Yi)i∈Z with strong mixing coefficients of order O(n1−p) for p ≥ 2,
Rio’s inequality gives: for any x > 0 and any r ≥ 1,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ C

{
n

xp
+

nr/2

xr
+

(n log n)r/2

xr
1p=2

}
, (1.1)

where C depends on ‖f‖∞, p and r.
However, many stationary processes are not strong mixing in the sense of Rosen-

blatt. This is the case, for instance, of the iterates of an ergodic measure-preserving
transformation. In the recent paper [10], the authors proved, using a weaker ver-
sion of the α-mixing coefficients, that it is still possible to get the same upper
bound as (1.1) but for bounded variation observables and with the restriction
r ∈ (2(p − 1), 2p). This last restriction does not affect the asymptotic behavior
of the probability of large deviations (that is when x = ny in (1.1) with y fixed)
but gives a restriction for the moderate deviation behavior (that is when x = nαy

in (1.1) with α ∈ (1/2, 1) and y fixed).
The aim of this paper is to obtain upper bounds of the type (1.1) for stationary

Markov chains, when the mixing property of the chain is defined through a subclass
of bounded observables B, but without restriction on r. In that case, the deviation
inequality (see our Theorem 1.1) will be valid for any observable f ∈ B. Maybe
the same kind of inequalities can be proved in a more general (but non α-mixing)
context than the Markovian setting, but the proof we give here uses the Markovian
property in a crucial way.

Let us now present more precisely the assumptions on the Markov chains and
the main results of the paper.

Let (Yi)i∈Z be a homogeneous Markov chain on a state space X , with transition
operator K, admitting a stationary probability measure π. Let ‖·‖ be a norm on
a vector space B of functions from X to R. We always require that the constant
function equal to 1 belongs to B. This norm will be used to express mixing conditions
on the Markov chain.

We will need this norm to behave well with respect to products, and to control
the sup norm, as expressed in the next definition.

Definition 1.1. We say that ‖·‖ is a Banach algebra norm on bounded functions
if, for all f and g in B, one has ‖f‖∞ ≤ ‖f‖ and ‖fg‖ ≤ ‖f‖‖g‖.

Remark 1.1. If a norm ‖·‖ satisfies ‖f‖∞ ≤ C‖f‖ and ‖fg‖ ≤ C‖f‖‖g‖ for some
constant C, then it is equivalent to a Banach algebra norm on bounded functions,
namely ‖f‖′ = C‖f‖.
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The main mixing condition we require is that the iterates of functions in B
under the Markov chain converge polynomially to their average. This is expressed
in terms of the following two conditions.

Definition 1.2. Let p > 1. We say that the condition H1(p) is satisfied if
there exists a positive constant C1 such that, for any function f ∈ B and any
n ≥ 1,

π(|Kn(f) − π(f)|) ≤ C1‖f‖
np−1

. H1(p)

We say that the condition H2 is satisfied if the space B is invariant under the
iterates Kn of K, uniformly in n, i.e. there exists a positive constant C2 such that,
for any function f in B and any n ≥ 1,

‖Kn(f)‖ ≤ C2‖f‖. H2

When both conditions are satisfied, we say that the chain converges polynomially
to equilibrium for the norm ‖·‖ with exponent p, and we denote this condition
by H(p).

Heuristically, partial sums of bounded functions of such a polynomially mixing
chain behave like sums of independent random variables with a weak moment of
order p (see the paper by Nagaev [21] for precise results in that case). Indeed, if one
considers a Harris recurrent Markov chain (see the book [22] for the definition and
background) for which the excursion time away from an atom has a weak moment of
order p, then the successive excursions are independent and have a weak moment
of order p, and the mixing rate behaves like in the definition above. Hence, one
expects that one should prove, under H(p), results that are similar to results for
sums of i.i.d. random variables with a weak moment of order p.

In particular, let us consider the question of moderate deviations bounds

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ xnα

)
,

where f belongs to B, x > 0. In analogy with the i.i.d. case, one expects that, if
p ≥ 2, then for any α ∈ (1/2, 1] there should exist positive constants C depending
only on p and on ‖f‖, and v(x) depending only on x, such that

lim sup
n→∞

nαp−1
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ xnα

)
≤ Cv(x). (1.2)

Our main result ensures that this estimate indeed holds, with bounds that are
very similar to the case of the sum of i.i.d. random variables. We also deal with the
case p < 2, obtaining similar estimates. The proof of Theorem 1.1 below is given in
Sec. 2.

Theorem 1.1. Let (Yi)i∈Z be a stationary Markov chain with state space X , tran-
sition operator K and stationary measure π. Assume that there exists p > 1 such
that H1(p) holds, for a Banach algebra norm on bounded functions.
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(1) If p > 2 and we assume in addition that H2 is satisfied then, for any f ∈ B
and any x > 0,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ κnx−p + κ exp(−κ−1x2/n), (1.3)

where κ is a positive constant depending only on p, ‖f‖, C1 and C2.
(2) If p = 2 and we assume in addition that H2 is satisfied, then for any f ∈ B,

any x > 0 and any r ∈ (2, 4),

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ κnx−2 + κ(n logn)r/2x−r, (1.4)

where κ is a positive constant depending only on ‖f‖, C1, C2 and r.
(3) If 1 < p < 2, then for any f ∈ B and any x > 0,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ κnx−p, (1.5)

where κ is a positive constant depending only on p, ‖f‖ and C1.

As a consequence of this theorem, we obtain that, if p > 1, then (1.2) holds with
v(x) = x−p for any α > 1/2 such that 1/p ≤ α ≤ 1 provided that H(p) holds.

Remark 1.2. In (1.3), the exponential term κ exp(−κ−1x2/n) is negligible in the
regime x > nα, for any α > 1/2. Hence, the dominating term is κnx−p, as expected.
However, when x is of the order of n1/2, then κnx−p tends to 0, while the probability
on the left of (1.3) typically does not, thanks to the central limit theorem. Thus,
there has to be a remainder term, given here in exponential form κ exp(−κ−1x2/n).
For any r > 0, this is for instance bounded by Cκ,rn

r/x2r.

Remark 1.3. In (1.4), the ratio x2/(n logn) appearing in the error term is the
right one: in this setting there is sometimes a central limit theorem with anomalous
scaling

√
n log n (see for instance [15]), meaning that the probability on the left

of (1.4) does not tend to 0 when x is of the order of
√

n logn. While (1.3) is
completely satisfactory, we expect that the error term in (1.4) can be improved,
from (n log n)r/2x−r with r ∈ (2, 4) to (n log n)r/2x−r for any r > 2, or even to
exp(−κ−1x2/(n logn)). However, we are not able to prove such a result.

Remark 1.4. The spectral gap property for the operator K on the space B reads
as follows: there exist a positive constant C and a ρ ∈ (0, 1) such that for any f ∈ B
and any n ≥ 1

‖Knf − π(f)‖ ≤ Cρn‖f‖, (1.6)

which obviously implies H2 and H1(p) for any p > 1. However, Theorem 1.1 is use-
less in this case since a sub-Gaussian bound holds. For instance, using Proposition 2
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in [23], we get that for any n ≥ 1, any f ∈ B and any x > 0,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ 4

√
e exp(−κ−1x2/n), (1.7)

where κ is a positive constant depending only on ρ, C and ‖f‖. Note that the
geometrical mixing in not important here: what really matters is that one can
control the sup-norm in (1.6). More precisely, the deviation bound (1.7) still holds
provided that

∞∑
k=1

‖Knf − π(f)‖∞√
k

< ∞.

Alternatively, for Markov chains with a spectral gap in L
2 (ρ-mixing Markov

chains), a sub-Gaussian inequality holds for partial sums of bounded observables
(see [17], p. 861). This kind of upper bound is also true for geometrically ergodic
Markov chains (see [3]).

Let us discuss the relevance of the assumption H(p) in different contexts. Some
possible Banach algebra norms on bounded functions that appear in natural exam-
ples of Markov chains are the following:

(1) ‖f‖ = ‖f‖∞.

(2) X = R and ‖f‖ is the total variation norm of the bounded variation function
f , i.e. the sum of ‖f‖∞ and of the total variation of the measure df , i.e.
‖f‖ = ‖f‖∞ + |df |.

(3) If (X , d) is a metric space, then one can consider the Lipschitz norm

‖f‖ = ‖f‖∞ + ‖f‖Lip where ‖f‖Lip := sup
y �=z∈X

|f(y) − f(z)|
d(y, z)

,

or Hölder norms.
(4) X = R and ‖f‖ = ‖f‖∞ + ‖f ′‖Lr(λ) for r ≥ 1, when f is absolutely continuous

and f ′ is its almost sure derivative. One can also consider more general Sobolev
spaces, in dimension 1 or higher.

Here is a more detailed discussion of some corresponding examples:

(1) When H1(p) is satisfied with ‖f‖ = ‖f‖∞, then the chain is said to be strong
mixing in the sense of Rosenblatt with polynomial rate of convergence np−1,
and we write in this case

αn = sup
k≥n

sup
‖f‖∞≤1

π(|Kk(f) − π(f)|) ≤ C1

np−1
.

Note that for this norm, H2 is trivially satisfied. In this situation, for p ≥ 2, one
can apply the Fuk–Nagaev type inequality in [24], Theorem 6.1, (with q = cx
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for suitably small c) to deduce (1.1). Hence, (1.2) follows (note, however, that
the error term we get in (1.3) is better than the error term from (1.1)).

(2) When H(p) is satisfied with the total variation norm (i.e. B is the set of func-
tions of bounded variation), one does not have at our disposal a Fuk–Nagaev
type inequality as in the strong mixing case. If p > 2, an application of the
deviation inequality given in Proposition 5.1 of [10] gives that for any x > 0
and any r ∈ (2(p − 1), 2p),

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ x

)
≤ C

{
n

xp
+

nr/2

xr
+

(n log n)r/2

xr
1p=2

}
,

where C is a positive constant depending on p, ‖f‖, C1 and C2 but not on
n or on x. So, provided that p < 1/(1 − α), one can take 2p > r > 2(αp−1)

2α−1

and it follows that (1.2) is satisfied with v(x) = x−p. Our Theorem 1.1 above
shows that this restriction of α is not necessary, by removing the restriction
r ∈ (2(p − 1), 2p) for p > 2. Our proof is in the spirit of that given in [10], but
we can get a better bound by taking advantage of the Markovian setting.

Let us describe briefly a class of examples satisfying H(p) with the total
variation norm. Let Tγ be a GPM map, as defined in [7], that is an expanding
map of [0, 1] with a neutral fixed point at 0; the behavior of the map around 0 is
described by the parameter γ ∈ (0, 1). It is proved in [7] that the Markov chain
associated with Tγ satisfies H(p) for the total variation norm and p = 1/γ.
Hence, Theorem 1.1 applies to BV -functions f of such a chain, and then to
the maximum of partial sums

∑k
i=1(f ◦ T i

γ − π(f)) on the probability space
([0, 1], π) (see for instance inequality (4.3) in [10]).

(3) Several examples satisfy the assumption H(p) when ‖·‖ is the Lipschitz norm
or the Hölder norm.

For dynamical systems, there is a combinatorial model, called Young tower,
that can be used to model wide classes of systems and for which the assumption
H(p) is directly related to return time estimates to the basis of the tower
(this is explicitly written, for instance, in (4.3) of [9]). We refer the interested
readers for instance to the introduction of [16], where motivations, examples
and definitions are given. Our theorem applies to such examples, and improves
the previous upper bounds of the literature such as in Melbourne [18], who
obtained, when α ∈ (1/2, 1) and p ≥ 2, a rate of order (lnn)1−pn(p−1)(2α−1)

instead of nαp−1 in (1.2). Using specific properties of such systems established
in [16], we are also able to extend Theorem 1.1 to more general functionals than
additive functionals, see Theorem 4.1 in Sec. 4.

Here is another class of examples. Assume that the stationary Markov chain
(Xi)i≥0 with state space (X , d) may be written as Xi = F (Xi−1, εi), where
(εi)i≥1 is i.i.d. and independent of X0. Let Xn,x be the chain starting from
X0 = x.

1850017-6
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Let Λd be the set of Lipschitz functions such that |f(x) − f(y)| ≤ d(x, y).
Assume that one can prove that

π

(
sup

f∈Λd

|Kn(f) − π(f)|
)

≤ C1ρ
na

, (1.8)

for some ρ ∈ (0, 1), C1 > 0 and a > 0, and that

sup
n≥0

E(d(Xn,x, Xn,y)) ≤ C2d(x, y), (1.9)

for some C2 ≥ 1.
Let c be a concave, non-decreasing and sub-additive function from R

+ to R
+,

such that c(t) ≤ C3|log(t)|−γ in a neighborhood of 0, for some C3 > 0, γ > 0.
Then, dc(x, y) = c(d(x, y)) satisfies the triangle inequality, and one can prove
that

π

(
sup

f∈Λdc

|Kn(f) − π(f)|
)

≤ C4

naγ
,

and that, for any Lipschitz function f in Λdc ,

|Kn(f)(x) − Kn(f)(y)| ≤ C2c(d(x, y)).

It follows that H1(p) and H2 are satisfied for p − 1 = aγ if we consider the
space Bc with Lipschitz norm ‖f‖ = ‖f‖∞ + ‖f‖Lip(dc). Hence, Theorem 1.1
applies to a very large set of continuous bounded observables of the chain.

For instance the inequalities (1.8) and (1.9) will be satisfied with C2 = 1
and a = 1 if E(d(F (x, ε1), F (y, ε1))) ≤ ρd(x, y) and E(d(X0, x0)) < ∞ for some
x0 ∈ X . Other examples for which a < 1 are given in Sec. 4.0.2 of [20].

In addition, concerning the exponent of n, the bound (1.2) is optimal as we shall
show in Sec. 3. More precisely, we shall give there three different examples for which
the deviation probabilities of Theorem 1.1 are lower bounded by c nx−p for some
c > 0 and x in an appropriate bandwidth. These three examples are: a discrete
Markov chain on N for which H(p) is satisfied for the sup norm, a class of Young
towers with polynomial tails of the return times for which H(p) is satisfied for a
natural Lipschitz norm, and a Harris recurrent Markov chain with state space [0, 1]
for which H(p) is satisfied for both the sup norm and the total variation norm. For
each example, the accurate lower bound is given in Propositions 3.1, 3.2 and 3.3
respectively.

To be complete, we give in Sec. 4 an extension of Theorem 1.1 to more general
functionals in the specific setting of Young towers (see our Theorem 4.1). Let us
emphasize that the proofs of Theorems 1.1 and 4.1 are very different.

2. Upper Bounds for Moderate Deviations

In this section, we prove Theorem 1.1. Cases (3) and (2) follow more or less readily
from existing inequalities in the literature, while Case (1) is new.

1850017-7
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2.1. Proof of Item (3) in Theorem 1.1

Item (3) follows directly from an application of Proposition 4 in [8]. Indeed, let
M = ‖f‖∞ and

γ(k) = ‖E(f(Yk) | Y0) − π(f)‖1, for k ≥ 0.

Proposition 4 in [8] together with stationarity implies that for any integer q in [1, n],
and any x ≥ Mq,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ 4x

)
≤ 4nM

x2

q−1∑
i=0

γ(i) +
2n

xq

2q∑
i=q+1

γ(i).

Note that if x ≥ nM/2 the bound is trivial since the probability is equal to zero.
It is also trivial if x ≤ M

√
2n. Therefore we can always assume that M ≤ x ≤ nM

and select q = [x/M ]. Combined with the fact that, by H1(p),

γ(k) ≤ C1‖f‖(k + 1)1−p,

this gives

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ 4x

)
≤

(
4nMp−1C1‖f‖

2 − p
+ 2pMp−1C1‖f‖

)
nx−p.

This ends the proof of Item (3).

2.2. A deviation inequality

For r > 2, the Rosenthal inequality for sums of centered i.i.d. random variables Zi

is the following

E

(∣∣∣∣∣
N∑

i=1

Zi

∣∣∣∣∣
r)

≤ CNE(|Z1|r) + CN r/2
E(Z2

1 )r/2, (2.1)

where C is a positive constant only depending on r. What makes this inequal-
ity extremely useful is that the dominating coefficient N r/2 is multiplied by an
L2-norm, which is usually mild to control, while the larger Lr-norm only has a
coefficient N .

We will use repeatedly a Rosenthal-like inequality for weakly dependent
sequences, due to Merlevède and Peligrad [19], in the following form which is well-
suited for the applications to moderate deviations we have in mind. Note that, in
the following statement, all conditional expectations are of the form E(f(Zi) | G0)
for some i ≥ 2: this means that suitable mixing conditions can be used to control
such terms. The other two terms are of Rosenthal-type as in the i.i.d. case, and can
thus be controlled using minimal knowledge on Z1.

Theorem 2.1. Let Zi be a strictly stationary sequence of random variables, adapted
to a filtration Gi. Write Si =

∑i
1 Zk. Consider a real number r > 2. Then, for all

1850017-8



December 4, 2017 13:40 WSPC/S0219-4937 168-SD 1850017 9–38

Moderate deviations for bounded functions of slowly mixing Markov chains

N and all x,

P

(
max
i≤N

|Si| ≥ x

)
≤ C




N

x
‖E(Z2 | G0)‖1 +

N

xr
E(|Z1|r) +

N r/2

xr
(E(Z2

1 ))r/2

+
N

xr


 N∑

k=1

1
k1+2δ/r

(
k∑

i=2

‖E(Z2
i | G0) − E(Z2

i )‖r/2

)δ



r/(2δ)

,

where δ = min(1, 1/(r − 2)) ∈ (0, 1] and C is a positive constant only depending
on r.

Proof. Let Mi = Zi − E(Zi | Gi−2). Then

max
i≤N

|Si| ≤ max
2≤2j≤N

∣∣∣∣∣
j∑

i=1

M2i

∣∣∣∣∣ + max
1≤2j−1≤N

∣∣∣∣∣
j∑

i=1

M2i−1

∣∣∣∣∣ +
N∑

i=1

|E(Zi | Gi−2)|. (2.2)

If the maximum of the partial sums Si is at least x, one of these three terms is at
least x/3.

First, by Markov inequality and stationarity,

P

(
N∑

i=1

|E(Zi | Gi−2)| ≥ x/3

)
≤ 3

x
N‖E(Z2 | G0)‖1,

giving a term compatible with the statement of the theorem. The other two terms
in (2.2) are controlled similarly, let us consider for instance the even indices.

We use first Markov inequality with the exponent r, and then the Rosenthal-like
inequality in [19, Theorem 6], giving

P

(
max

2≤2j≤N

∣∣∣∣∣
j∑

i=1

M2i

∣∣∣∣∣ ≥ x

3

)

≤ C
N

xr


‖M1‖r

r +


N/2∑

k=1

1
k1+2δ/r

∥∥∥∥∥∥E



(

k∑
i=1

M2i

)2
∣∣∣∣∣∣G0



∥∥∥∥∥∥

δ

r/2




r/(2δ)

.

Since ‖M1‖r
r ≤ 2r

E(|Z1|r), the resulting term is compatible with the statement of
the theorem. As M2i is a sequence of martingale differences with respect to G2i, we
have

E



(

k∑
i=1

M2i

)2
∣∣∣∣∣∣G0


 =

k∑
i=1

E(M2
2i | G0) ≤

k∑
i=1

E(Z2
2i | G0).

Therefore, by stationarity,∥∥∥∥∥∥E


(

k∑
i=1

M2i

)2
∣∣∣∣∣∣G0



∥∥∥∥∥∥

r/2

≤
k∑

i=1

‖E(Z2
2i | G0) − E(Z2

2i)‖r/2 + kE(Z2
1 ).

1850017-9
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We substitute this estimate into the previous equation. The first term gives a con-
tribution as in the statement of the theorem. On the other hand, the contribution
of the second term kE(Z2

1 ) is

C
N

xr
E(Z2

1 )δ·r/(2δ) ·

N/2∑

k=1

1
k1+2δ/r

kδ




r/(2δ)

≤ C
N

xr
(E(Z2

1 ))r/2C′N r/2−1 = C′′N
r/2

xr
(E(Z2

1 ))r/2,

again one of the terms in the statement of the theorem.

Remark 2.1. Using different Rosenthal inequalities, one can obtain slightly differ-
ent statements. For instance, using the classical Rosenthal inequality of Burkholder
for martingales, one obtains a statement analogous to Theorem 2.1, where the last
term in the upper bound is replaced by

N r/2

xr
‖E(Z2

2 | G0) − E(Z2
2 )‖r/2

r/2. (2.3)

This statement uses the decorrelation less strongly than Theorem 2.1: For large i,
the quantity ‖E(Z2

i | G0) − E(Z2
i )‖r/2 is likely much smaller than ‖E(Z2

2 | G0) −
E(Z2

2 )‖r/2. Indeed, it turns out that, for the application below, Theorem 2.1 will
succeed while an estimate using (2.3) fails (compare for instance (2.10) below to
what would be obtained using (2.3)).

2.3. Proof of Items (1) and (2) in Theorem 1.1

Item (2) in Theorem 1.1 follows from an application of Proposition 5.1 in [10] (while
the result there applies directly to bounded variation functions, the proof works in
the full generality of Theorem 1.1). However, as we shall see it also follows from
our proof as a special case.

The strategy of the proof is to apply the Rosenthal bounds of Theorem 2.1 to
different parts of max1≤k≤n |∑k

i=1(f(Yi) − π(f))|. To illustrate why this strategy
might work, let us recall a way to prove moderate deviation bounds for sums of
centered i.i.d. random variables Zi in Lp. Consider an integer n and a real number
x > 0. Let Xi = Zi1|Zi|>n1/p − E(Zi1|Zi|>n1/p) and X ′

i = Zi − Xi. Then Rosenthal
inequality (2.1) (for sums of independent random variables) with the exponent
p applied to Xi gives E(|∑Xi|p) ≤ Cn, while Rosenthal inequality with some
exponent r > p applied to X ′

i gives E(|∑X ′
i|r) ≤ Cnr/2. Combining these two

inequalities, we deduce the moderate deviations bound

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≥ x

)
≤ C

{
n

xp
+

nr/2

xr

}
.

We will follow the same strategy in our context: split the sum to be estimated
in two different parts, and apply a Rosenthal inequality (in our case, Theorem 2.1)
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to each part, with suitable exponents. Instead of truncating, the splitting will be
done by constructing blocks, and separating a conditional average (which is small
in L1, but large in Lp, as Xi above) from the dominating term.

Here is a high level version of the (rather technical) proof to follow. First, we
write

∑
j f(Yj) − π(f) as a sum

∑
Bi, where Bi is a sum of f along a block of

length n1/p. Then, we write the term Bi as (Bi − E(Bi | GB
i−2)) + E(Bi | GB

i−2),
where GB

i is the natural filtration along which Bi is measurable. Then E(Bi | GB
i−2)

is small in L1, but possibly large in L∞. We control the probability of moderate
deviations of

∑
E(Bi | GB

i−2) by grouping these variables into blocks of size � x,
then applying Theorem 2.1: all the terms in the upper bound of this theorem can be
controlled, in a straightforward albeit tedious way, by using the assumption H1(p).
Then, to control the probability of moderate deviations of

∑
(Bi−E(Bi | GB

i−2)), we
consider separately the sums along even and odd indices, use that each such sum is
a martingale, and apply an exponential inequality for martingales (here, Freedman
inequality). It follows that, to control the probability of moderate deviations, it
suffices to control the deviations of the conditional quadratic averages. To handle
these, we group them again into blocks of size � x and apply again Theorem 2.1.
All the terms in the upper bound of this theorem can also be controlled directly
from H1(p).

Below are the details of the proof.

Proof of Items (1) and (2) in Theorem 1.1. We will use the following notations
throughout the proof. Let f (0) = f − π(f) and M = ‖f‖∞ and Fk = σ(Yi, i ≤ k)
and Ek(·) = E(· | Fk) and E

(0)
k (·) = E(· | Fk) − E(·).

Fix x > 0 and an integer n. It suffices to estimate

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f))

∣∣∣∣∣ ≥ 8x

)
. (2.4)

Indeed, if one proves the theorem for this quantity, then the original result follows
by letting x′ = x/8, as polynomial bounds involving x′ or x are equivalent. From
this point on, we concentrate on bounding (2.4).

We first notice that since ‖max1≤k≤n |∑k
i=1 f(Yi) − π(f)|‖∞ ≤ 2‖f‖∞n, we

can assume that

x ≤ 4−1‖f‖∞n, (2.5)

otherwise the probability under consideration equals zero. In addition, we can also
assume that

x ≥ 2‖f‖∞n1/p, (2.6)

otherwise what we have to prove is trivial as soon as κ is greater than or equal to
(16‖f‖∞)p. So from now on, we assume the two restrictions above on x.
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The strategy to prove the desired inequalities is in two steps. First, we split the
sum into blocks of size

t = [n1/p]

as this is the characteristic size when dealing with mixing bounds of exponent p.
Then, we write these blocks as sums of a martingale difference and a remainder.
For each of these two terms, we will prove the desired estimate on the deviation
probability using Theorem 2.1 with a suitable exponent r. While the different sizes
of blocks and the filtrations we will introduce all depend on n, we suppress n from
the notations for brevity.

Let

Bi =
it∑

j=(i−1)t+1

f (0)(Yj) and Xi = E(Bi | F(i−2)t).

Let nt = [n/t] be the number of size t blocks. The following inequality is then valid:

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f)

∣∣∣∣∣ ≤ 2t‖f‖∞ + max
1≤j≤nt

∣∣∣∣∣
j∑

i=1

(Bi − Xi)

∣∣∣∣∣ + max
1≤j≤nt

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣.
Since 2t‖f‖∞ ≤ 2n1/p‖f‖∞ ≤ x, it follows that

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(f(Yi) − π(f)

∣∣∣∣∣ ≥ 8x

)
≤ P

(
max

1≤j≤nt

∣∣∣∣∣
j∑

i=1

(Bi − Xi)

∣∣∣∣∣ ≥ 3x

)

+ P

(
max

1≤j≤nt

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ ≥ 4x

)
. (2.7)

We will control separately these two terms.

First step. Controlling P(max1≤j≤nt |
∑j

i=1 Xi| ≥ 4x).

Consider some r ∈ (2(p − 1), 2p). We will show that

P

(
max

1≤j≤nt

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ ≥ 4x

)
≤
{

κnx−p if p > 2

κ(nx−2 + (n log n)r/2x−r) if p = 2,
(2.8)

where κ is a positive constant depending only on p, r, ‖f‖, C1 and C2 but not on
x or n.

With this aim, we first let

u =
[

x

2‖f‖∞n1/p

]
and we notice that, by (2.6), u ≥ 1. We will regroup the Xi into blocks of length u,
which corresponds to blocks of size tu � x for Yj : this is the time scale where the
sum over a block cannot exceed x. By (2.5),

nt ≥ n

2t
≥ n

2n1/p
≥ 4x

2n1/p‖f‖∞ ≥ 4u. (2.9)
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Define

Ui =
iu∑

j=(i−1)u+1

Xj .

It is measurable with respect to GU
i = σ(Yi, 	 ≤ itu− 2t) thanks to the conditional

expectation in the definition of Xi. Since ‖Xi‖∞ ≤ 2‖f‖∞t, we have

max
1≤j≤nt

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ ≤ 2‖f‖∞tu + max
1≤j≤[nt/u]

∣∣∣∣∣
j∑

i=1

Ui

∣∣∣∣∣.
Since 2‖f‖∞tu ≤ x, it follows that

P

(
max

1≤j≤nt

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ ≥ 4x

)
≤ P

(
max

1≤j≤[nt/u]

∣∣∣∣∣
j∑

i=1

Ui

∣∣∣∣∣ ≥ 3x

)
,

which we will control using Theorem 2.1 applied to Zi = Ui and Gi = GU
i and

N = [nt/u] and the exponent r. We should thus show that all the terms in the
upper bound of this theorem are controlled as in (2.8).

By using H1(p),

‖E(U2 | GU
0 )‖1 ≤

2u∑
i=u+1

it∑
j=(i−1)t+1

‖E(f (0)(Yj) | F0)‖1 ≤ C1‖f (0)‖ ut

(ut)p−1
.

Note now that ut ≥ x(8‖f‖∞)−1. Therefore,

[nt/u]
x

‖E(U2 | GU
0 )‖1 ≤ C1‖f (0)‖nt/u

x

ut

(ut)p−1
≤ C1‖f (0)‖(8‖f‖∞)p−1nx−p.

This handles the first term in the upper bound of Theorem 2.1.
To control the term involving E(|U1|r), we recall that U1 is a sum of u random

variables Xi, all bounded in sup norm by 2‖f‖∞t. Any precise inequality for the r

norm of a sum will do here. We use for instance Theorem 2.5 in [24] with p = r/2.
It gives

E(|U1|r) ≤ (ur)r/2

(
u∑

i=1

‖X1‖∞‖E0(Xi)‖r/2

)r/2

.

Moreover,

‖E0(Xi)‖r/2 ≤
it∑

j=(i−1)t+1

‖E0(E(i−2)tf
(0)(Yj))‖r/2

=
it∑

j=(i−1)t+1

‖E(i−2)t∧0f
(0)(Yj)‖r/2

≤
it∑

j=(i−1)t+1

[‖E(i−2)t∧0f
(0)(Yj)‖r/2−1

∞ ‖E(i−2)t∧0f
(0)(Yj)‖1]1/(r/2).
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The first sup norm is bounded by 2‖f‖∞ ≤ 2‖f‖, while the L1 norm is
bounded by C1‖f (0)‖/(t ∨ (i − 1)t)p−1, thanks to H1(p). Hence, ‖E0(Xi)‖r/2 ≤

Ct
t(p−1)/(r/2)

1
(1∨(i−1))(p−1)/(r/2) , for some constant C. As r > 2(p− 1), we get a bound

E(|U1|r) ≤ Cur/2

(
u∑

i=1

t · t

t(p−1)/(r/2)

1
(1 ∨ (i − 1))(p−1)/(r/2)

)r/2

≤ C′ (t
2u)r/2

t(p−1)
· ur/2−(p−1).

Taking into account that ut ≤ x/(2‖f‖∞) and nt = [n/t], we derive

[nt/u]
xr

E(|U1|r) ≤ κnx−p.

This handles the second term in the upper bound of Theorem 2.1.
Let us now control the term involving E(U2

1 ). We have

E(U2
1 ) =

u∑
j=1

u∑
�=1

E(XjX�)

=
u∑

j=1

u∑
�=1

jt∑
k=(j−1)t+1

�t∑
m=(�−1)t+1

E[E(j−2)t(f (0)(Yk)) · E(�−2)t(f (0)(Ym))].

Each such term is equal to E[E(j−2)t∧(�−2)t(f (0)(Yk)) ·E(j−2)t∧(�−2)t(f (0)(Ym))]. We
bound one of the factors (corresponding to the minimal j or 	) by 2‖f‖∞, and use
H1(p) to bound the other one in terms of the gap size, which is at least (|	−j|+1)t.
Hence,

E(U2
1 ) ≤ 2‖f‖∞

u∑
j=1

u∑
�=1

t2
C1‖f‖

tp−1(|j − 	| + 1)p−1
≤ κut2 × 1

tp−1
(1 + (log n)1p=2)

as p ≥ 2, where κ is a positive constant. This yields

[nt/u]r/2
E(U2

1 )r/2 ≤ κr/2

(
n

tu
ut2 × 1

tp−1

)r/2 (
1 + (log n)r/21p=2

)

≤ κr/2

(
nt2 × 1

tp

)r/2

(1 + (log n)r/21p=2)

≤ 2rp/2κr/2nr/p(1 + (log n)r/21p=2).

Using (2.6), we note that as r ≥ p we have xr−p ≥ 2r−p‖f‖r−p
∞ nr/p−1. Hence,

[nt/u]r/2

xr
E(U2

1 )r/2 ≤ 2rp/2κr/2

(
2p−r‖f‖p−r

∞
n

xp
+

(n log n)r/2

xr
1p=2

)
.

This handles the third term in the upper bound of Theorem 2.1.
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We analyze now the last term in the upper bound of Theorem 2.1. With this
aim, we notice that GU

0 = F−2t. Therefore, for any i ≥ 2,

‖E(U2
i | GU

0 ) − E(U2
i )‖r/2 ≤

iu∑
j=(i−1)u+1

iu∑
�=(i−1)u+1

‖E(XjX� | F−2t) − E(XjX�)‖r/2

≤ 2
iu+2∑

j=(i−1)u+3

iu+2∑
�=j

‖E
(0)
0 (XjX�)‖r/2.

Fix j ∈ [(i − 1)u + 3, iu + 2] and 	 ∈ [j, iu + 2]. Then XjX� is a sum of t2 terms
of the form E(j−2)t(f (0)(Yk)) · E(�−2)t(f (0)(Ym)) for k ∈ [(j − 1)t + 1, jt] and m ∈
[(	−1)t+1, 	t]. For each such term, writing k′ = k− (j−2)t and m′ = m− (j−2)t,
we have

‖E
(0)
0 [E(j−2)t(f (0)(Yk)) · E(�−2)t(f (0)(Ym))]‖r/2

= ‖K(j−2)t[(Kk′
f (0)) · (Km′

f (0))] − π[(Kk′
f (0)) · (Km′

f (0))]‖π,r/2.

Therefore

‖E
(0)
0 [E(j−2)t(f (0)(Yk)) · E(�−2)t(f (0)(Ym))]‖r/2

r/2

≤ (8‖f‖2
∞)r/2−1‖K(j−2)t[(Kk′

f (0))·(Km′
f (0))]−π[(Kk′

f (0))·(Km′
f (0))]‖π,1.

Both functions Kk′
(f (0)) and Km′

(f (0)) belong to B, with a norm bounded by
C2‖f (0)‖ thanks to the condition H2. As ‖·‖ is a Banach algebra norm, their product
also belongs to B. Applying the condition H1(p) to this product, we deduce that

‖K(j−2)t[(Kk′
f (0)) · (Km′

f (0))] − π[(Kk′
f (0)) · (Km′

f (0))]‖π,1 ≤ C3

((j − 2)t)p−1
,

for some constant C3. Combining these inequalities yields

‖E
(0)
0 (XjX�)‖r/2 ≤ t2C4

((j − 2)t)(p−1)/(r/2)
.

Therefore, we get that for any i ≥ 2,

‖E(U2
i | G0) − E(U2

i )‖r/2 ≤ C5
(ut)2

(iut)2(p−1)/r
.

As r > 2(p − 1), this implies that

k∑
i=2

‖E(U2
i | G0) − E(U2

i )‖r/2 ≤ C6
(ut)2

(ut)2(p−1)/r
k1−2(p−1)/r.
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Hence

[nt/u]


[nt/u]∑

k=1

1
k1+2δ/r

(
k∑

i=2

‖E(U2
i | GU

0 ) − E(U2
i )‖r/2

)δ



r/(2δ)

≤ C
r/2
6

(ut)r

(ut)p−1

nt

u


[nt/u]∑

k=1

1
k1+2δ/r

(k1−2(p−1)/r)δ




r/(2δ)

.

As r < 2p, the sum over k is uniformly bounded, independently of n or x. Taking
into account that ut ≤ x/(2‖f‖∞), we get that there exists a positive constant κ

such that

[nt/u]
xr


[nt/u]∑

k=1

1
k1+2δ/r

(
k∑

i=2

‖E(U2
i | GU

0 ) − E(U2
i )‖r/2

)δ



r/(2δ)

≤ κnx−p. (2.10)

This handles the last term in the upper bound of Theorem 2.1. Altogether, this
proves (2.8) and concludes the proof of the first step.

Second step. Controlling P(max1≤j≤nt |
∑j

i=1 Bi − Xi| ≥ 3x).

We will prove

P

(
max

1≤k≤nt

∣∣∣∣∣
k∑

i=1

(Bi − Xi)

∣∣∣∣∣ ≥ 3x

)
≤

{
κnx−p+κ exp(−κ−1x2/n) if p > 2

κnx−2+κ exp(−κ−1x2/(n logn)) if p = 2,

(2.11)

where κ is a positive constant depending only on p, ‖f‖, C1 and C2 but not on x

or n. Starting from (2.7), this upper bound combined with (2.8) will end the proof
of Items 1 and 2 of the theorem.

To prove (2.11), we start by setting

di = Bi − Xi and GB
i = Fit,

and we write the following decomposition:

P

(
max

1≤k≤nt

∣∣∣∣∣
k∑

i=1

(Bi − Xi)

∣∣∣∣∣ ≥ 3x

)

≤ P

(
max

1≤2k≤nt

∣∣∣∣∣
k∑

i=1

d2i

∣∣∣∣∣ ≥ 3x/2

)
+ P

(
max

1≤2k−1≤nt

∣∣∣∣∣
k∑

i=1

d2i−1

∣∣∣∣∣ ≥ 3x/2

)
.

(2.12)

Note that (d2i)i∈Z (resp. (d2i−1)i∈Z) is a strictly stationary sequence of mar-
tingale differences with respect to the non-decreasing filtration (GB

2i)i∈Z (resp.
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(GB
2i−1)i∈Z). Therefore, since ‖d2i‖∞ ≤ 2t‖f‖∞ ≤ 2‖f‖∞n1/p a.s., by Proposition

2.1 in [13], for any y > 0,

P

(
max

2≤2k≤nt

∣∣∣∣∣
k∑

i=1

d2i

∣∣∣∣∣ ≥ 3x/2

)
≤ 2 exp

(−9x2

16y

)
+ 2 exp

( −9x

16‖f‖∞n1/p

)

+ P


[nt/2]∑

i=1

E(d2
2i | GB

2(i−1)) ≥ y


. (2.13)

Note now that

E(d2
2i | GB

2(i−1)) ≤ E(B2
2i | GB

2(i−1)).

Moreover, by stationarity, we infer that

[nt/2]∑
i=1

E(B2
2i) ≤ 2n‖f‖∞

t−1∑
k=0

‖E0(f (0)(Yk)‖1.

Therefore, by H1(p), there exists a positive constant κ depending only on p, ‖f‖
and C1 such that

[nt/2]∑
i=1

E(B2
2i) ≤ κn(1 + (log n)1p=2)).

Selecting

y =

{
max(2κn, 16xn1/p‖f‖∞) if p > 2

max(2κn log n, 16x(n logn)1/2‖f‖∞) if p = 2,

and starting from (2.13), we get that, for any r ≥ 1,

P

(
max

2≤2k≤nt

∣∣∣∣∣
k∑

i=1

d2i

∣∣∣∣∣ ≥ 3x/2

)

≤ c
n

xp
+ c exp

(
−c′

x2

n + n logn1p=2

)

+ P


[nt/2]∑

i=1

(E(B2
2i | GB

2(i−1)) − E(B2
2i)) ≥ y/2


, (2.14)

where c and c′ are positive constants.
Let us prove now that

P



∣∣∣∣∣∣
[nt/2]∑
i=1

(E(B2
2i | GB

2(i−1)) − E(B2
2i))

∣∣∣∣∣∣ ≥ y/2


 ≤ cnx−p, (2.15)

where c is a positive constant depending only on p, ‖f‖, C1 and C2 but not on x

or n. A similar bound will hold for odd indices. Hence, starting from (2.12) and
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considering the inequality (2.14), this upper bound will lead to (2.11) and then will
end the proof of Items 1 and 2 of the theorem.

It remains then to prove (2.15). With this aim, we do again blocks of size u with
as before u = [ x

2‖f‖∞n1/p ]. Let

Wi = E(B2
2i | GB

2(i−1)) − E(B2
2i), Vi =

iu∑
k=(i−1)u+1

Wk

and GV
i = GB

2(iu−1) = F2(iu−1)t. Setting nu = [ [nt/2]
u ] (note that, by (2.9), nu ≥ 1),

we have∣∣∣∣∣∣
[nt/2]∑
i=1

(E(B2
2i | GB

2(i−1)) − E(B2
2i))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
[nt/2]∑
i=1

Wi

∣∣∣∣∣∣ ≤
∣∣∣∣∣

nu∑
i=1

Vi

∣∣∣∣∣ + 8ut2‖f‖2
∞.

Note that

8ut2‖f‖2
∞ ≤ 4xn1/p‖f‖∞ ≤ y/4.

Therefore

P



∣∣∣∣∣∣
[nt/2]∑
i=1

(E(B2
2i | GB

2(i−1)) − E(B2
2i))

∣∣∣∣∣∣ ≥ y/2


 ≤ P

(∣∣∣∣∣
nu∑
i=1

Vi

∣∣∣∣∣ ≥ y/4

)
.

To prove (2.15), it suffices to show that

P

(∣∣∣∣∣
nu∑
i=1

Vi

∣∣∣∣∣ ≥ y/4

)
≤ cnx−p. (2.16)

We will show this inequality by applying Theorem 2.1 to Zi = Vi and Gi = GV
i and

N = nu and some fixed r ∈ (2p− 2, 2p). We should thus show that all the terms in
the upper bound of this theorem are controlled as in (2.16).

We start with the first term involving ‖E(V2 | GV
0 )‖1. Since y ≥ 16xn1/p‖f‖∞,

we have

nu

y
‖E(V2 | GV

0 )‖1 ≤ nu

xn1/p‖f‖∞
2uX

k=u+1

‖E(Wk | F−2t)‖1

≤ nu

xn1/p‖f‖∞
2uX

k=u+1

‖E(B2
2k | F−2t) − E(B2

2k)‖1

≤ 2nu

xn1/p‖f‖∞
2uX

k=u+1

2ktX

j=(2k−1)t+1

2ktX

�=j

‖E
(0)(f(0)(Yj)f

(0)(Y�)|F−2t)‖1.
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Using H(p), we infer that there exists a positive constant c depending on C1, C2

and ‖f (0)‖, such that this quantity is bounded by

c
n

xn1/ptu‖f‖∞ut2
1

(ut)p−1
≤ c

n

x‖f‖∞
1

(ut)p−1
≤ 8p−1c‖f‖p−2

∞ nx−p,

thanks to the inequality ut ≥ x(8‖f‖∞)−1. This handles the first term in the upper
bound of Theorem 2.1.

We turn to the second term, involving E(|V1|r). By stationarity and Theorem 2.5
in [24], we have

E(|V1|r)2/r =

∥∥∥∥∥
u∑

k=1

Wk

∥∥∥∥∥
2

r

≤ ur

u−1∑
k=0

‖W0E(Wk | F−2t)‖r/2

≤ ur‖W 2
0 ‖r/2 + ur‖W0‖∞

u−1∑
k=1

‖E(Wk | F−2t)‖r/2

≤ ur‖W 2
0 ‖r/2 + ur · 16t2‖f‖2

∞
u−1∑
k=1

‖E(Wk | F−2t)‖r/2.

Using H(p), we infer that there exists a positive constant c4 depending on C1, C2,
‖f‖ and r such that

‖W 2
0 ‖r/2 = ‖W0‖2

r = ‖E0(B2
2) − E(B2

2)‖2
r

≤

 2t∑

j=t+1

2t∑
i=t+1

‖E
(0)
0 (f (0)(Yj)f (0)(Yi))‖r




2

≤ c4

(
t2

1
t(p−1)/r

)2

≤ c4
u

u2(p−1)/r
· t4

t2(p−1)/r
,

as r > 2(p − 1). On the other hand, using again H(p), we get that there exists a
positive constant c5 such that for any k ≥ 1,

‖E(Wk | F−2t)‖r/2 ≤
2kt∑

j=(2k−1)t+1

2kt∑
i=(2k−1)t+1

‖E
(0)
−2t(f

(0)(Yj)f (0)(Yi))‖r/2

≤ c5t
2 1
(kt)2(p−1)/r

.

The sum of these quantities over k from 1 to u−1 is bounded by c6
t2

t2(p−1)/r · u
u2(p−1)/r ,

as r > 2(p − 1). We infer that there exists a positive constant c7 such that

nuE(|V1|r) ≤ c7nu(u2t4)r/2 1
(ut)p−1

≤ c7ntr(ut)r−p.

Hence, using the fact that y ≥ 16xn1/p‖f‖∞ and ut ≤ x(2‖f‖∞)−1 and t ≤ n1/p,
we get that

nu

yr
E(|V1|r) ≤ 8−rc7(2‖f‖∞)p−2r n

xp
.

This handles the second term in the upper bound of Theorem 2.1.

1850017-19



December 4, 2017 13:40 WSPC/S0219-4937 168-SD 1850017 20–38

J. Dedecker, S. Gouëzel & F. Merlevède

We turn to the third term, involving E(V 2
1 ). By stationarity, we have

E(V 2
1 ) =

∥∥∥∥∥
2u∑

k=u+1

Wk

∥∥∥∥∥
2

2

= u‖W1‖2
2 + 2

u−1∑
k=1

u−k∑
�=1

cov(W0, W�).

But, by using H(p), we infer that there exists a positive constant c1 such that

‖W1‖2 = ‖E
(0)
0 (B2

2)‖2 ≤
2t∑

j=t+1

2t∑
�=t+1

‖E
(0)
0 (f (0)(Yj)f (0)(Y�))‖2 ≤ c1

t2

t(p−1)/2
.

On the other hand, using again H(p), we get that there exists a positive constant
c2 such that for any 	 ≥ 1,

|cov(W0, W�)| ≤ ‖B2
0‖∞‖E−2t(B2

2�) − E(B2
2�)‖1

≤ (8t‖f‖)2
2�t∑

j=(2�−1)t+1

2�t∑
i=(2�−1)t+1

‖E
(0)
0 (f (0)(Yj)f (0)(Yi))‖1

≤ c2
t4

(	t)p−1
.

So, overall, there exists a positive constant c3 such that

E(V 2
1 ) ≤ c3u

t4

tp−1
(1 + (log n)1p=2).

This upper bound implies that

(nuE(V 2
1 ))r/2 ≤ (2pc3)r/2n2r/p(1 + (log n)r/21p=2).

Next using the fact that y ≥ 16xn1/p‖f‖∞ if p > 2 and y ≥ 16x(n log n)1/2‖f‖∞ if
p = 2, we get

n
r/2
u

yr
E(V 2

1 )r/2 ≤ (2pc3)r/2 nr/p

16rxr‖f‖r∞
.

By (2.6) and since r ≥ p, we have xr−p ≥ (2‖f‖∞)r−pnr/p−1. Therefore,

n
r/2
u

yr
E(V 2

1 )r/2 ≤ (2p−6c3)r/2(2‖f‖∞)p−2r n

xp
.

This handles the third term in the upper bound of Theorem 2.1.
Finally, we turn to the last term, involving ‖E(V 2

i | GV
0 ) − E(V 2

i )‖r/2. For any
i ≥ 2, we have

‖E(V 2
i | GV

0 ) − E(V 2
i )‖r/2

≤
iu∑

�=(i−1)u+1

iu∑
m=(i−1)u+1

‖E
(0)
−2t(W�Wm)‖r/2
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≤
iu∑

�=(i−1)u+1

iu∑
m=(i−1)u+1

‖E
(0)
−2t[E(B2

2� | GB
2(�−1))E(B2

2m | GB
2(m−1))]‖r/2

+ 2
iu∑

�=(i−1)u+1

iu∑
m=(i−1)u+1

E(B2
2�) · ‖E

(0)
−2t(B

2
2m)‖r/2,

where this expansion is obtained from the definition Wi = E(B2
2i | GB

2(i−1))−E(B2
2i)

by expanding the product W�Wm, using the fact that E
(0)
−2t is linear and vanishes

on the constant E(B2
2�) · E(B2

2m).
For any m ≥ 	 ≥ 1,

‖E
(0)
−2t[E(B2

2� | GB
2(�−1)) · E(B2

2m | GB
2(m−1))]‖r/2

= ‖E
(0)
−2t[E(B2

2� | GB
2(�−1)) · E(B2

2m | GB
2(�−1))]‖r/2

≤
2�t∑

a,a′=(2�−1)t+1

2mt∑
b,b′=(2m−1)t+1

‖E
(0)
−2t[E2(�−1)t(f (0)(Ya)f (0)(Ya′))

×E2(�−1)t(f (0)(Yb)f (0)(Yb′))]‖r/2

≤ 2t2 sup
a′,b′≥0

2(�+1)t∑
a=(2�+1)t+1

2(m+1)t∑
b=(2m+1)t+1

‖E
(0)
0 [E2�t(f (0)(Ya)f (0)(Ya+a′))

×E2�t(f (0)(Yb)f (0)(Yb+b′))]‖r/2,

where we have used stationarity. But

E2�t(f (0)(Ya)f (0)(Ya+a′)) = E2�t((f (0)Ka′
f (0))(Ya)) = (Ka−2�t(f (0)Ka′

f (0)))(Y2�t).

Hence,

E0[E2�t(f (0)(Ya)f (0)(Ya+a′ )) · E2�t(f (0)(Yb)f (0)(Yb+b′ ))]

= (K2�t[Ka−2�t(f (0)Ka′
f (0)) · Kb−2�t(f (0)Kb′f (0))])(Y0).

Therefore, thanks to H(p), we infer that there exists a positive constant c8 such
that for any m ≥ 	 ≥ (i − 1)u + 1,

‖E
(0)
−2t[E(B2

2� | GB
2(�−1)) · E(B2

2m | GB
2(m−1))]‖r/2 ≤ c8

t4

((i − 1)tu)2(p−1)/r
.

On the other hand, using again H(p), we infer that there exists a positive constant
c9 such that for any 	, m ≥ (i − 1)u + 1,

E(B2
2�) · ‖E

(0)
−2t(B

2
2m)‖r/2 ≤ c9t

2 · t2

((i − 1)tu)2(p−1)/r
.
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So, overall, as r > 2(p − 1), there exists a positive constant c10 such that
k∑

i=1

‖E(V 2
i | GV

0 ) − E(V 2
i )‖r/2 ≤ c10

u2t4

(tu)2(p−1)/r

k

k2(p−1)/r
.

Therefore, as in addition r < 2p, there exists a positive constant c11 such that
 nu∑

k=1

1
k1+2δ/r

(
k∑

i=1

‖E(V 2
i | GV

0 ) − E(V 2
i )‖r/2

)δ



r/(2δ)

≤ c11
(ut2)r

(tu)p−1
.

Using the fact that y ≥ 16xn1/p‖f‖∞, ut ≤ x(2‖f‖∞)−1 and t ≤ n1/p, this implies
that

nu

yr


 nu∑

k=1

1
k1+2δ/r

(
k∑

i=1

‖E(V 2
i | GV

0 )−E(V 2
i )‖r/2

)δ



r/(2δ)

≤ 8−rc11(2‖f‖∞)p−2r n

xp
.

This handles the last term in the upper bound of Theorem 2.1. Altogether, this
proves (2.16). This concludes the second step, and therefore the proof of Items 1
and 2 of the theorem.

3. Lower Bounds in Moderate Deviations: Three Examples

In this section, we exhibit several examples of Markov chains satisfying H(p) (for
different norms) for which one can prove a lower bound for the deviation proba-
bility of some particular observables. This shows that the upper bounds given in
Theorem 1.1 cannot be essentially improved.

3.1. Discrete Markov chains

Let p > 1. We consider a simple renewal type Markov chain on N, jumping from 0
to n > 0 with probability p0,n := 1/(ζ(p + 1)np+1) and from n > 0 to n − 1 with
probability 1. This Markov chain has an invariant probability measure π given by
π{n} =

∑
i≥n d/ip+1 for n > 0 and π{0} = π{1}, where d > 0 is chosen so that π

is of mass 1.
This Markov chain satisfies H(p) for the norm ‖f‖ = ‖f‖∞. Indeed, in this case,

π

(
sup

‖f‖∞≤1

|Kn(f) − π(f)|
)

≤ C1

∑
j≥n

∑
k≥j+1

p0,k ≤ C2n
1−p

(see [6] or Chap. 30 in [4] for more details).
Define a function f by f(n) = π{0} − 1n=0. Its average under π vanishes.

Proposition 3.1. Let (Yi)i∈N be a stationary Markov chain with transition kernel
described above, for some p > 1. There exists κ > 0 such that, for any n ∈ N

∗ and
any x ∈ [κn1/p, κ−1n],

P

(
n−1∑
i=0

f(Yi) ≥ x

)
≥ κ−1 n

xp
.
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This paragraph is devoted to the proof of this proposition. Since we are look-
ing for lower bound, it suffices to consider trajectories starting from 0. Denote by
τ0, τ1, . . . the lengths of the successive excursions outside of 0. This is a sequence
of i.i.d. random variables with a weak moment of order p, namely: P(τ0 > n | Y0 =
0) =

∑
i≥n 1/(ζ(p+1)ip+1). We first consider the case p > 2, and indicate then the

modifications to be done when p = 2 and when p ∈ (1, 2).
First, we study the probability that the lengths of excursions differ much from

their average.

Lemma 3.1. Assume p > 2. There exists C1 > 0 such that, for any n ≥ 1 and any
x ≥ n1/p, one has

P

(
n−1∑
i=0

τi ≥ nE(τ) + x

)
≥ C−1

1

n

xp
.

Proof. Write τ̄i = τi −E(τi). There exists σ2 > 0 such that
∑n−1

i=0 τ̄i/
√

n converges
to N (0, σ2). It follows that, for x ∈ [n1/p, n1/2], the left-hand side in the statement
of the lemma converges to a quantity which is bounded from below by P(N (0, σ2) ≥
1) > 0, while the right-hand side is bounded from above by C−1

1 . Taking C1 large
enough, the conclusion of the lemma follows for x in this range.

Let us now assume x ≥ √
n. For i < n, let

Ai = {τ̄i ≥ 3x} ∩



i−1∑
j=0

τ̄j ≤ x


 ∩




n−1∑
j=i+1

τ̄j ≤ x


.

This decomposition is the intersection of three independent sets. The first one has
probability at least c/xp as τ has polynomial tails of order p, while the measure of
the other ones is bounded from below thanks to the central limit theorem for τ̄ , as
we assume x ≥ √

n. Hence, for some constant c1, we obtain

P(Ai) ≥ c1/xp.

Moreover, Ai ∩Aj is contained in {τ̄i ≥ 3x}∩ {τ̄j ≥ 3x}. By independence, this set
has probability at most c2/x2p for some c2 > 0.

On the set
⋃

Ai, one has
∑n−1

i=0 τi ≥ nE(τ) + x by construction. To conclude,
we should bound from below the measure of this set. We have

P

(⋃
Ai

)
≥

n−1∑
i=0

P(Ai) −
n−1∑

i�=j=0

P(Ai ∩ Aj) ≥ c1
n

xp
− c2

n2

x2p
.

If n is large enough, one has c2n
2/x2p ≤ c1n/(2xp) when x ≥ √

n. Therefore, we
get P(

⋃
Ai) ≥ (c1/2)n/xp, proving the desired result. As the estimate is trivial for

bounded n, the result follows.

Proof of Proposition 3.1 for p > 2. Fix some n ∈ N. Let N denote the number
of visits to 0 of the Markov chain Yi starting from 0, strictly before time n. Then,
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given the definition of f , one has

n−1∑
i=0

f(Yi) = nπ{0} − N.

Therefore, for any x ≥ 0,{
n−1∑
i=0

f(Yi) ≥ x

}
= {N ≤ nπ{0} − x} =




[nπ{0}−x]−1∑
j=0

τj ≥ n


.

Let m = [nπ{0} − x]. It is positive when x ≤ κ−1n, if κ is large enough. We write
n as mE(τ) + y for some y. As E(τ) = 1/π{0} by Kac formula, we have

y = n − [nπ{0} − x]/π{0} ≥ x/π{0}.
If x ≥ κn1/p with large enough κ, then y ≥ n1/p. Hence, we can apply Lemma 3.1
to obtain

P0

(
n−1∑
i=0

f(Yi) ≥ x

)
≥ C−1

1

m

yp
≥ C−1

2

n

xp
.

We obtain the same lower bound for the random walk started from π, with an
additional multiplicative factor π{0}.

Proof of Proposition 3.1 for p = 2. In this case,
∑n−1

j=0 τ̄j/
√

n log n converges
to a Gaussian (see for instance [12]). Following the proof of Lemma 3.1, one deduces
first that this lemma holds trivially for any x ∈ [n1/p,

√
n log n], and also that it

holds for any x ≥ √
n log n. It follows then from the same proof as in the p > 2 case

that the proposition holds for all x ∈ [κn1/p, κ−1n].

Proof of Proposition 3.1 for p < 2. In this case,
∑n−1

j=0 τ̄j/n1/p converges to
a stable law (which is totally asymmetric of index p, see [12]). Hence, Lemma 3.1
holds for any x ≥ n1/p. It follows then from the same proof as in the p > 2 case
that the proposition holds for all x ∈ [κn1/p, κ−1n].

3.2. Young towers

As we will not need specifics of Young towers, we refer the reader to [16] for the
precise definitions, recalling below only what we need for the current argument (and
that of Sec. 4). A Young tower is a dynamical system T preserving a probability
measure π, on a metric space Z, together with a subset Z0 (the basis of the tower)
for which the successive returns to Z0 create some form of decorrelation. Thus, an
important feature of the Young tower is the return time τ from Z0 to itself, and in
particular its integrability properties.

Starting from any z ∈ Z, there is a canonical way to choose at random a point
among the preimages of z under T . This defines a Markov chain Yn for which π
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is stationary, and which is dual to the dynamics (in the sense that Y0, . . . , Yn−1 is
distributed like T n−1z, . . . , z when z is picked according to π).

Consider now a Young tower T : Z → Z with invariant measure π for which the
return time τ to the basis Z0 of the tower satisfies π{τ = n} ∼ c/np+1 on Z0, for
some p > 1. In perfect analogy with the previous paragraph, we define a function f

by f = π(Z0)−1Z0 . Its average under π vanishes. The corresponding Markov chain
satisfies H(p) for the Hölder norm on the tower, see for instance [16] and references
therein.

Starting from Y0 distributed according to π, we can consider Y0, T (Y0), . . . ,
T n−1(Y0), or the dual Markov chain Y0, . . . , Yn−1. Then Y0, . . . , Yn−1 is distributed
as T n−1(Y0), . . . , Y0, as explained at the beginning of Sec. 4. It follows that mod-
erate deviations controls for one process or the other are equivalent. We will state
the lower bound statement for the Markov chain, but we will prove it using the
dynamical time direction.

Proposition 3.2. In this context, assume p > 1. There exists κ > 0 such that, for
any n ∈ N

∗ and any x ∈ [κn1/p, κ−1n],

P

(
n−1∑
i=0

f(Yi) ≥ x

)
≥ κ−1 n

xp
.

Proof. We work using the dynamical time direction. Starting from a point in the
basis Z0 of the tower, let τ0, τ1, . . . denote the lengths of the successive excursions out
of Z0. The proof will be the same as for Proposition 3.1 (notice that the statement
is exactly the same). The only difference is that the successive returns to the basis
are not independent, which means that the proof of Lemma 3.1 has to be amended.
We only give the proof for p > 2, as the other cases are virtually identical.

Let T0 : Z0 → Z0 be the map induced by T on the basis. It preserves the
probability π0 induced by π on Z0. By definition, T0 is a Gibbs–Markov map with
onto branches, i.e. there is a partition α0 of Z0 into positive measure subsets, such
that T0 maps bijectively each a ∈ α0 to Z0, with the following bounded distortion
property. A length k cylinder is a set of the form [a0, . . . , ak−1] =

⋂
i<k T−i

0 ai for
some a0, . . . , ak−1 ∈ α0. Then there exists a constant C such that, for any k > 0,
for any length k cylinder A and for any measurable set B,

C−1π0(A)π0(B) ≤ π0(A ∩ T−k
0 B) ≤ Cπ0(A)π0(B). (3.1)

(See for instance the last line in Sec. 1 of [2].) This estimate readily extends if A is
a union of length k cylinders.

We can now prove the analogue of Lemma 3.1 in our situation. Let τ̄i = τi−E(τi).
Define

Ai = {τ̄i ≥ 3x} ∩



i−1∑
j=0

τ̄j ≤ x


 ∩




n−1∑
j=i+1

τ̄j ≤ x


 = A1

i ∩ A2
i ∩ A3

i .
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We should show that, if x ≥ √
n, then π0(Ai) ≥ c1/xp for some c1 > 0 independent

of i or n, and that π0(Ai ∩ Aj) ≤ c2/x2p for i < j. Then, the proof of Lemma 3.1
applies. In this lemma, the inequality P(Ai) ≥ c1/xp follows from independence and
the fact that P(A2

i ) ≥ c and P(A3
i ) ≥ c and P(A1

i ) ≥ c/xp. In our context, these three
inequalities still hold (the first two ones follow from the fact that the Birkhoff sums
of τ satisfy the central limit theorem or converge to a stable law, see [1] and [2], and
the last one from the assumptions on the tails of τ), but independence fails. It will be
replaced by (3.1). Let us give the details. Recall that τ̄i = τ(T i

0z)−π(τ) := τ̄(T i
0z).

Define

B1 = {y : τ̄ (y) ≥ 3x}, B2 =


y :

i−1∑
j=0

τ̄ (T j
0 y) ≤ x


 and

B3 =


y :

n−1−(i+1)∑
j=0

τ̄ (T j
0 y) ≤ x


.

We have A1
i = T−i

0 (B1), A2
i = B2 and A3

i = T
−(i+1)
0 B3. Therefore,

π0(Ai) = π0(B2 ∩ T−i
0 (B1 ∩ T−1

0 (B3))).

Applying inequality (3.1) with k = i, A = B2 and B = B1 ∩ T−1
0 (B3) (which is

possible since B2 is a union of length i cylinders since τ is constant on elements
of α0), we get π0(Ai) ≥ C−1π0(B2)π0(B1 ∩ T−1

0 (B3)). Next, applying again (3.1)
this time with k = 1, A = B1 and B = B3 (which is possible since B1 is a union of
length 1 cylinders), we have π0(B1 ∩ T−1

0 (B3)) ≥ C−1π0(B1)π0(B3). So overall,

π0(Ai) ≥ C−2π0(A2
i )π0(A1

i )π0(A3
i ).

This inequality replaces the independence assumption and implies that π0(Ai) ≥
c1/xp. The inequality π0(Ai ∩ Aj) ≤ c2/x2p is proved in the same way, using the
upper bound in (3.1).

3.3. Harris Markov chains with state space [0, 1]

Let a = p − 1 with p > 1. Let λ denote the Lebesgue measure on [0, 1]. Define the
probability laws ν and π by

ν = (1 + a)xaλ and π = axa−1λ.

We define now a strictly stationary Markov chain by specifying its transition prob-
abilities K(x, A) as follows:

K(x, A) = (1 − x)δx(A) + xν(A),

where δx denotes the Dirac measure. Then π is the unique invariant probability
measure of the chain with transition probabilities K(x, ·). Let (Yi)i∈Z be the sta-
tionary Markov chain on [0, 1] with transition probabilities K(x, ·) and law π. For
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γ > 0, we set

ca,γ =
a

a + γ
, Xi = fγ(Yi) − E(fγ(Yi)) := Y γ

i − ca,γ and Sn =
n−1∑
i=0

Xi.

Denote by

βn :=
1
2
π

(
sup

‖f‖∞≤1

|Kn(f) − π(f)|
)

,

and set T (x) = 1 − x. According to Lemma 2 in [11],

βn ≤ 3 Eπ(T [n/2]).

Note now that for any b > −1,∫ 1

0

(1 − x)kxb dx = k−(b+1)

∫ k

0

(1 − x/k)kxb dx.

Since for any x ∈ [0, 1], log(1 − x) ≤ −x, it follows that∫ 1

0

(1 − x)kxb dx ≤ k−(b+1)

∫ k

0

e−xxb dx ≤ k−(b+1)Γ(b + 1), (3.2)

implying that

Eπ(T k) ≤ aΓ(a)k−a.

Therefore

sup
‖f‖∞≤1

π(|Kn(f) − π(f)|) ≤ 2βn ≤ Cn−a,

which shows that the condition H1(p) is satisfied for the two norms ‖f‖∞ and
‖f‖BV . For the norm ‖f‖∞, the condition H2 is trivially satisfied with C2 = 1.
Hence, Theorem 1.1 applies to (fγ(Yi))i∈Z. We shall verify that the condition H2

also holds for the norm ‖f‖BV = ‖f‖∞+ |df | at the end of this section. Concerning
the lower bound, the following proposition holds:

Proposition 3.3. Let (Yi)i∈N be a stationary Markov chain with transition kernel
described above. Assume p > 1 and γ > 0. There exists κ > 0 such that, for any
n ∈ N

∗ and any x ∈ [κn1/p, κ−1n],

P

(
max

1≤k≤n

∣∣∣∣∣
k−1∑
i=0

(Y γ
i − E(Y γ

i ))

∣∣∣∣∣ ≥ x

)
≥ κ−1 n

xp
.

Proof. We first define a sequence (Tk)k≥0 of stopping time as follows:

T0 = inf{i > 0 :Yi 
= Yi−1} and Tk = inf{i > Tk−1 : Yi 
= Yi−1} for k > 0.

Let τk = Tk+1 − Tk. The r.v.’s (YTk
, τk)k≥0 are i.i.d., YTk

has law ν and the condi-
tional distribution of τk given YTk

= y is the geometric distribution G(1 − y). We
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have in particular that τ0 is integrable. The key inequality for proving the lower
bound is the following:

P

(
max

0≤k≤n−1
τk|XTk

| ≥ 24x

)
≤ 9P

(
max

1≤k≤[nE(τ1)]+1
|Sk| ≥ x

)

+ 3P(Tn ≥ 2[nE(τ1)] + 1). (3.3)

Before proving it, let us show how it will entail the lower bound.
Using the fact that the r.v.’s (YTk

, τk)k≥0 are i.i.d., YTk
has law ν and the

conditional distribution of τk given YTk
= y is the geometric distribution G(1 − y),

straightforward computations imply that for x ≥ κn1/p with κ large enough,

P

(
max

0≤k≤n−1
τk|XTk

| ≥ 24x

)
≥ Cp,γ

n

xp
, (3.4)

where

Cp,γ =
1
4

(ca,γη

48

)p

pΓ(p), with η = 1 − (ca,γ/2)1/γ .

On the other hand,

P(Tn ≥ 2[nE(τ1)] + 1) ≤ P

(
T0 +

n−1∑
i=0

(τi − E(τi)) ≥ [nE(τ1)]

)
.

Since E(τ1) ≥ 1, this gives

P(Tn ≥ 2[nE(τ1)] + 1) ≤ P(T0 ≥ n/2) + P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
.

Since P(T0 ≥ n/2) ≤ ∫ 1

0
(1 − x)n/2dπ(x), according to (3.2)

P(T0 ≥ n/2) ≤ 2aan−aΓ(a).

Assume from now that p ≥ 2. Since the (τk)k≥0 are i.i.d., the Fuk–Nagaev inequality
for independent random variables (see for instance Theorem B.3 and its proof in
[24]) gives that, for any u > 0 and any v2

n(u) ≥ ∑n−1
i=0 E((τi ∧ u)2),

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ nP(τ1 ≥ u) + exp

(
− n

4u
log

(
1 +

nu

2v2
n(u)

))
. (3.5)

We shall apply this inequality with the following choice of u:

u =
n

8(p − 1)
.

The selection of v2
n(u) will be different if p > 2 or if p = 2. Assume first that p > 2.

In this case, we take v2
n(u) = nE(τ2

1 ). Since YTk
has law ν and the conditional

distribution of τk given YTk
= y is the geometric distribution G(1 − y), simple

computations give

E(τ2
1 ) =

p2

(p − 1)(p − 2)
:= cp and then v2

n(u) = cpn.
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On the other hand, if p = 2, we first note that

E((τ1 ∧ u)2) = E(τ2
1 1τ1≤u) + u2

P(τ1 ≥ u) ≤
[u−1]∑
�=0

(2	 + 1)P(τ1 ≥ 	) + u2
P(τ1 ≥ u).

Now (3.2) implies that P(τ1 ≥ 	) ≤ 2	−2. Therefore, if n ≥ 8,

E((τ1 ∧ u)2) ≤ log(u) + 5 ≤ 3 log(n).

So, in case p = 2, we take v2
n(u) = 3n logn.

If p > 2, then (3.5) together with the fact that, by (3.2), P(τ1 ≥ 	) ≤ pΓ(p)	−p

imply that

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ pΓ(p) × (8(p − 1))pn−p+1

+ (16(p− 1)cp)2(p−1)n−2(p−1). (3.6)

So, overall, starting from (3.3) and taking into account (3.4) and (3.6), we get that
for κ large enough

P

(
max

1≤k≤[nE(τ1)]+1
|Sk| ≥ x

)
≥ 9−1pΓ(p)

{
4−1

(ca,γη

48

)p

nx−p − 6(8(p − 1))pn−p+1
}

− 3−1(16(p − 1)cp)2(p−1)n−2(p−1).

Since n−p ≤ (xκ)−p and E(τ1) = p
p−1 ≤ 2, it follows that for κ large enough

P

(
max

1≤k≤2n+1
|Sk| ≥ x

)
≥ 2n

κxp
,

giving the lower bound when p > 2.
We turn now to the case when p = 2, we derive this time

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ 2 × 82n−1 + (3 × 16)2(log n)2n−2.

Proceeding as before, the lower bound follows.
We end the proof by considering the case 1 < p < 2. Let u be a positive real

and set τ̄i = (τi ∧ u). Note that
n−1∑
i=0

(τi − E(τi)) =
n−1∑
i=0

(τ̄i − E(τ̄i)) +
n−1∑
i=0

((τi − u)+ − E((τi − u)+))

≤
n−1∑
i=0

(τ̄i − E(τ̄i)) +
n−1∑
i=0

(τi − u)+,

which implies that

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ P((τ̄i − E(τ̄i)) ≥ n/2) +

n−1∑
i=0

P(τi ≥ u).
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Next, by Markov inequality, we get that for any u > 0,

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ 4n−1

E((τ1 ∧ u)2) + nP(τ1 ≥ u)

≤ 4n−1
E(τ2

1 1τ1≤u) + 4n−1u2
P(τ1 ≥ u) + nP(τ1 ≥ u).

We have

E(τ2
1 1τ1≤u) ≤ 2

∫ u

0

tP(τ1 ≥ t) dt ≤ 1 + 2pΓ(p)
∫ u

1

t

[t]p
dt ≤ 1 +

2p+1pΓ(p)
2 − p

u2−p.

Therefore, choosing u = n, we get overall that, in the case 1 < p < 2,

P

(
n−1∑
i=0

(τi − E(τi)) ≥ n/2

)
≤ 4n−1 + n1−ppΓ(p)

(
5 +

2p+3

2 − p

)
.

Proceeding as before, the lower bound follows.
To end the proof of the lower bound, it remains to prove inequality (3.3). With

this aim, setting

Z0 = T0X0 and Zk = τk−1XTk−1 for k ≥ 1

we note that

max
0≤k≤n−1

τk|XTk
| ≤ max

0≤k≤n
|Zk|.

But for any k ≥ 1, Zk =
∑k

i=0 Zi −
∑k−1

i=0 Zi. Therefore

max
0≤k≤n

|Zk| ≤ 2 max
0≤k≤n

∣∣∣∣∣
k∑

i=0

Zi

∣∣∣∣∣.
The above considerations imply that

P

(
max

0≤k≤n−1
τk|XTk

| ≥ 24x

)
≤ P

(
max

0≤k≤n

∣∣∣∣∣
k∑

i=0

Zi

∣∣∣∣∣ ≥ 12x

)
.

(Zk)k≥0 being a sequence of independent random variables, Etemadi’s inequality
entails that

P

(
max

0≤k≤n

∣∣∣∣∣
k∑

i=0

Zi

∣∣∣∣∣ ≥ 12x

)
≤ 3P

(∣∣∣∣∣
n∑

i=0

Zi

∣∣∣∣∣ ≥ 4x

)
.

Note now that
n∑

i=0

Zi =
T0−1∑
k=0

X0 +
n∑

i=1

(Ti − Ti−1)XTi−1 =
T0−1∑
k=0

Xk +
n∑

i=1

Ti−1∑
j=Ti−1

Xj =
Tn−1∑
k=0

Xk.

Therefore

P

(∣∣∣∣∣
n∑

i=0

Zi

∣∣∣∣∣ ≥ 4x

)
≤ P



∣∣∣∣∣∣
[nE(τ1)]−1∑

i=0

Xi

∣∣∣∣∣∣ ≥ 2x


 + P(|STn − S[nE(τ1)]| ≥ 2x).
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Inequality (3.3) follows from all the considerations above, together with the fact
that

P(|STn − S[nE(τ1)]| ≥ 2x) ≤ 2P

(
max

1≤k≤[nE(τ1)]+1
|Sk| ≥ x

)
+ P(Tn ≥ 2[nE(τ1)] + 1).

The proof is complete.

To complete this section, it remains to show that the transition operator K of
the Markov chain satisfies condition H2 for the semi norm |df |. With this aim, we
first note that

K(f)(x) = (1 − x)f(x) + xν(f).

So iterating, we get for any positive integer n,

Knf(x) = (1 − x)nf(x) +
n−1∑
k=0

x(1 − x)kν(Kn−1−k(f)).

Therefore, we infer that

Knf(x) = (1 − x)n(f(x) − ν(f)) + ν(Kn−1(f))

+
n−1∑
k=1

(1 − x)n−k(ν(Kk−1(f)) − ν(Kk(f))).

It follows that

|dKn(f)| ≤ 3|df | +
n−1∑
k=1

|ν(Kk−1(f)) − ν(Kk(f))|. (3.7)

Setting g0 = f − f(0), note now that, for any positive integer k,

|ν(Kk−1(f)) − ν(Kk(f))| = |ν(Kk−1(g0)) − ν(Kk(g0))|.
Therefore

n−1∑
k=1

|ν(Kk−1(f)) − ν(Kk(f))| ≤
n−1∑
k=1

∫ 1

0

|Kk−1(g0)(x) − Kk(g0)(x)| dν(x).

But supx∈[0,1]|g0(x)| ≤ |df |. Hence∫ 1

0

|Kk−1(g0)(x) − Kk(g0)(x)| dν(x) =
∫ 1

0

|(δxKk−1 − δxKk)(g0)| dν(x)

≤ |df |
∫ 1

0

|δxKk−1 − δxKk| dν(x). (3.8)

From (3.7) and (3.8), to complete the proof of the fact that K satisfies H2, it
remains to show that ∑

k≥1

∫ 1

0

|δxKk−1 − δxKk| dν(x) < ∞. (3.9)
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Set T (x) = 1 − x. According to the computations leading to the first inequality on
p. 76 of [11], we have, for any integer k ≥ 2

|δxKk−1 − δxKk| ≤ 2(T (x))k−1 +
k−1∑
i=1

(1 − T (x))(T (x))i−1|νKk−1−i − νKk−i|,

implying that∫ 1

0

|δxKk−1 − δxKk| dν(x)

≤ 2Eν(T k−1) +
k−1∑
i=1

Eν((1 − T )T i−1)|νKk−1−i − νKk−i|. (3.10)

But, by taking into account (3.2), we get

Eν(T k) = (1 + a)
∫ 1

0

(1 − x)kxa dx ≤ k−(a+1)(a + 1)Γ(a + 1) (3.11)

and, for any integer i ≥ 2,

Eν((1 − T )T i−1) = (1 + a)
∫ 1

0

(1 − x)i−1xa+1 dx ≤ (i − 1)−(a+2)(a + 1)Γ(a + 2).

(3.12)

We need now to give an upper bound of |νKj −νKj+1| for any nonnegative integer
j. With this aim, we first notice that

Kj(f) − Kj+1(f) = sKj(f) − sν(Kj(f)),

where s(x) = x. Therefore setting µ = s(x)
ν(s)ν, we have

νKj − νKj+1 = ν(s)(µKj − νKj).

Taking into account the relation (9.11) in [24], this gives

(ν(s))−1(νKj − νKj+1) =
j∑

�=1

a�νQj−� + µQj − νQj , (3.13)

where

Q(x, A) = K(x, A) − s(x)ν(A) = T (x)δx(A) and a� = µK�−1(s) − νK�−1(s).

If we can prove that for any positive integer 	, a� is nonnegative, the relation (3.13)
will imply that the signed measures νKj − νKj+1 of null mass can be rewritten
as the differences of two positive measures with finite mass (the second one being
equal to νQj), and therefore we will have

|νKj − νKj+1| ≤ 2ν(s)νQj(1) = 2ν(s)Eν(T j). (3.14)
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Hence, starting from (3.10) and taking into account (3.11), (3.12) and (3.14), we
will get that for any integer k ≥ 2,∫ 1

0

|δxKk−1 − δxKk| dν(x) ≤ Ca

(
1

ka+1
+

k−1∑
i=1

1
ia+2

× 1
(k − i)a+1

)
≤ C̃a

1
ka+1

,

(3.15)

provided that one can prove that, for any positive integer 	, a� is nonnegative.
This can be proved by using (3.13) and the arguments developed in the proof of
Lemma 9.3 in [24]. We complete the proof by noticing that (3.15) implies (3.9) since
a > 0.

4. Concentration for Maps that Can be Modeled by Young Towers

In this section, in the specific setting of Young towers, we extend Theorem 1.1
to more general functionals. We refer to Sec. 3.2 for a brief description of the
dynamical systems called “Young towers”, and we keep the same notations as in
this subsection.

Let T be a Young tower, and let τ be the return time to the basis. As already
mentioned in Sec. 3.2, the decorrelation properties of the Markov chain associated
with T are related to the return time τ . Namely, if τ has a weak moment of order
p > 1, then the Markov chain satisfies H(p) for this p and the Hölder norm on the
tower.

Proving quantitative estimates for the Markov chain or the dynamics is equiva-
lent. In this section, we shall for simplicity formulate the results for the dynamics.
Indeed the estimates of [16] that we shall use below are formulated in this context.

The class of functionals for which we will prove moderate deviations is the class
of separately Lipschitz functions: these are the functions K = K(z0, . . . , zn−1) such
that, for all i ∈ [0, n − 1], there exists a constant Li (the Lipschitz constant of K
for the ith variable) with

|K(z0, . . . , zi−1, zi, zi+1, . . . , zn−1) −K(z0, . . . , zi−1, z
′
i, zi+1, . . . , zn−1)| ≤ Lid(zi, z

′
i)

for all points z0, . . . , zn−1, z
′
i. We will write EK for the average of K with respect

to the natural measure along trajectories coming from the dynamics, i.e.

EK =
∫

K(z, T z, . . . , T n−1z) dπ(z).

The article [16] proves optimal moment estimates for K−EK. We can prove moder-
ate deviations for this quantity, extending in this context the results of Theorem 1.1
to more general functionals than additive functionals.

Theorem 4.1. Consider a Young tower T : Z → Z, for which the return time τ

to the basis has a weak moment of order p > 1. Let K be a separately Lipschitz
function, with Lipschitz constants Li. Then
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• If p > 2, then for all x > 0 one has

π{z : |K(z, . . . , T n−1z) − EK| > x} ≤ κ

∑n−1
i=0 Lp

i

xp
+ κ exp

(
−κ−1 x2∑

L2
i

)
.

(4.1)

• If p = 2, then for all x > 0 one has

π{z : |K(z, . . . , T n−1z) − EK| > x}

≤ κ

∑n−1
i=0 L2

i

x2
+ κ exp

(
−κ−1 x2

(
∑

L2
i ) · (1 + log (

∑
Li) − log(

∑
L2

i )1/2)

)
.

(4.2)

• If p < 2, then for all x > 0 one has

π{z : |K(z, . . . , T n−1z) − EK| > x} ≤ κ

∑n−1
i=0 Lp

i

xp
. (4.3)

In all these statements, κ is a positive constant that does not depend on K or n.

The case p < 2 is already proved in Theorem 1.9 of [16] and is included only for
completeness. The logarithms in the p = 2 case are not surprising: this expression
is homogeneous in the Li (i.e. if one multiplies all the Li by a constant, then the
contribution of the logarithms does not vary), and it reduces to a multiple of logn

when all the Li are equal to 1. The same expression appears in the moment control
when p = 2 in [16, Theorem 1.9].

To prove this theorem, we use the following deviation inequality for martingales
(see [14], Corollary 3′, in which we keep separately the term corresponding to excess
probabilities, as in Corollary 3 of the same paper).

Proposition 4.1. Let d1, . . . , dk be a martingale difference sequence with respect
to the nondecreasing σ-fields F0, . . . ,Fk. Let p ≥ 2. Set β = p/(p + 2) and c∗p =
(1 − β)2/(2ep). Then, for all x > 0,

P

(
max

1≤j≤k

∣∣∣∣∣
j∑

i=1

di

∣∣∣∣∣ ≥ x

)
≤

k∑
i=1

P(|di| ≥ βx) +
2

βpxp

k∑
i=1

‖E(|di|p1|di|≤βx | Fi−1)‖∞

+ 2 exp
(
−c∗p

x2∑ ‖E(d2
i | Fi−1)‖∞

)
.

As
∑k

i=j di =
∑k

i=1 di −
∑j−1

i=1 dk, a similar result follows for reverse martingale
difference sequences, by applying the previous result to the martingale dk−i:

Corollary 4.1. Let d1, . . . , dk be a reverse martingale difference sequence w.r.t. the
nonincreasing σ-fields F1, . . . ,Fk+1 (so E(di | Fi+1) = 0 and di is Fi-measurable).
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Let p ≥ 2. Set β̃ = p/(p + 2) and c̃∗p = (1 − β)2/(8ep). Then, for all x > 0,

P

(
max

1≤j≤k

∣∣∣∣∣
j∑

i=1

di

∣∣∣∣∣ ≥ x

)
≤

k∑
i=1

P(|di| ≥ β̃x) +
2p+1

β̃pxp

n∑
1

‖E(|di|p1|di|≤β̃x | Fi+1)‖∞

+ 4 exp
(
−c̃∗p

x2∑ ‖E(d2
i | Fi+1)‖∞

)
.

We will use the following consequence for reverse martingales having a condi-
tional weak moment of order p, as follows (the same corollary holds as well for
martingales). This is a finer version of Corollary 3′ in [14], replacing the strong
norm there with a weak norm.

Corollary 4.2. Let d1, . . . , dk be a reverse martingale difference sequence w.r.t. the
nonincreasing σ-fields F1, . . . ,Fk+1 (so E(di | Fi+1) = 0 and di is Fi-measurable).
Let p ≥ 2. Assume that, for all i, di has a conditional weak moment of order p

bounded by a constant Mi, i.e. P(|di| ≥ x | Fi+1) ≤ Mp
i /xp. Then there exists a

constant Cp only depending on p such that, for all x > 0,

P

(
max

1≤j≤k

∣∣∣∣∣
j∑

i=1

di

∣∣∣∣∣ ≥ x

)
≤ Cp

xp

k∑
i=1

Mp
i + 4 exp

(
−C−1

p

x2∑ ‖E(d2
i | Fi+1)‖∞

)
.

Proof. We apply Corollary 4.1 with any q > p, for instance q = p + 1. Since
P(|di| ≥ β̃x) ≤ Mp

i /(β̃x)p, the first term in the upper bound of this lemma is
bounded as desired. The last term is also bounded as desired. It remains to handle
the terms involving x−q‖E(|di|q1|di|≤β̃x | Fi+1)‖∞. We have

x−q
E(|di|q1|di|≤β̃x | Fi+1) ≤ x−qq

∫ β̃x

u=0

uq−1
P(|di| ≥ u | Fi+1) du

≤ x−qqMp
i

∫ β̃x

u=0

uq−1u−p du = x−qqMp
i

(β̃x)q−p

q − p

≤ CMp
i /xp.

Summing these terms over i gives a bound as in the statement of the corollary.

We can now start the proof of Theorem 4.1. Assume that τ has a weak moment
of order p ≥ 2. Starting from a separately Lipschitz function K, Chazottes and
Gouëzel consider in [5] a sequence (dk)k≥0 of reverse martingale differences with
respect to the filtration Fk of functions depending only on coordinates xk, xk+1, . . .,
given by

dk = E(K | Fk) − E(K | Fk+1).

On p. 869 in [5], it is proved that, if p > 2, then

E(d2
k | Fk+1) ≤

∑
j≤k

c
(0)
k−jL

2
j ,
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where c
(0)
k denotes a generic summable sequence that does not depend on K or n.

Therefore, ∑
k

‖E(d2
k | Fk+1)‖∞ ≤ C

∑
L2

j . (4.4)

Moreover, if p = 2, Gouëzel and Melbourne (see Sec. 4.2 in [16]) show that

∑
k

‖E(d2
k | Fk+1)‖∞ ≤ C

(∑
L2

i

)
·
[
1 + log

(∑
Li

)
− log

(∑
L2

i

)1/2
]
. (4.5)

Now we use the following modification of [5, Lemma 6.2]:

Lemma 4.1. For all t > 0 and all integer k,

P(|dk| ≥ t | Fk+1) ≤ Ct−p
k∑

j=0

Lp
jc

(0)
k−j + Ct−p sup

h>0


h−1

k∑
j=k−h+1

Lj




p

.

Proof. We just follow the lines of the proof of Lemma 6.2 in [5] up to (6.1). Note
that this paper requires the condition p > 2 (for the validity of (4.8) there), but
Lemma 4.2 in [16] replaces this inequality for p = 2.

For the first sum we have as in [5]∑
A1(zα)≥t/2

g(zα) ≤ Ct−p
∑
j≤k

Lp
jc

(0)
k−j .

On the other hand, if h denotes the smallest 	 such that
∑k

j=k−�+1 Lj ≥ t/2, then

∑
A2(zα)≥t/2

g(zα) ≤ Cπ(τ ≥ h) ≤ Ch−p ≤ Ct−p sup
h>0


h−1

k∑
j=k−h+1

Lj




p

.

Proof of Theorem 4.1 when p ≥ 2. We apply Corollary 4.2 to dk, with

Mp
k = C

k∑
j=0

Lp
jc

(0)
k−j + C sup

h>0


h−1

k∑
j=k−h+1

Lj




p

(4.6)

thanks to Lemma 4.1. As c
(0)
k is summable, the sum over k of the first term is

bounded by C′ ∑Lp
j . An application of the Hardy–Littlewood maximal inequality

in 	p gives

∑
k≥0

sup
h>0


h−1

k∑
j=k−h+1

Lj




p

≤ C
∑

j

Lp
j .

Hence, the sum over k of the second term in (4.6) is also bounded by C
∑

j Lp
j . This

shows that the first term in Corollary 4.2 gives rise to a bound C
∑

Lp
i /xp.
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Finally, the second term in Lemma 4.2 gives rise to the exponential error term
in the statement of the theorem, thanks to (4.4) when p > 2 and to (4.5) when
p = 2.

Remark 4.1. Assume that p > 2 and for any i, Li ≤ 1. In this case, integrating
inequality (4.1) leads to

‖K − EK‖2(p−1)
π,2(p−1) ≤ Cnp−1,

where C is a positive constant not depending on K nor n. However, in the case of
general Li, we do not recover for this moment the bound C(

∑
L2

i )
p−1 proved in [16,

Theorem 1.9] (consider for instance the case L0 = 1 and L1 = · · · = Ln−1 = 1/
√

n).
This moment bound, combined with Markov inequality, gives

π{|K − EK| > x} ≤ κ

(∑
L2

i

)p−1

x2p−2
.

For the case where all Li are of the order of 1, this bound is worse than the bound
of Theorem 4.1. However, surprisingly, it can be better when the Li vary a lot, for
instance when L0 = 1 and L1 = · · · = Ln−1 = 1/

√
n, and x = n1/4.
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1850017-37



December 4, 2017 13:40 WSPC/S0219-4937 168-SD 1850017 38–38

J. Dedecker, S. Gouëzel & F. Merlevède
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