
SUBADDITIVE COCYCLES AND HOROFUNCTIONS

SÉBASTIEN GOUËZEL

The aim of this text is to present and put in perspective the results we have proved with
Anders Karlsson in the article [GK15]. The topic of this article is the study, in an ergodic
theoretic context, of some subadditivity properties, and their relationships with dynamical
questions with a more geometric flavor, dealing with the asymptotic behavior of random
semicontractions on general metric spaces. This text is translated from an article written
in French on the occasion of the first congress of the French Mathematical Society [Gou17].
The proof of the main ergodic-theoretic result in [GK15] has been completely formalized and
checked in the computer proof assistant Isabelle/HOL [Gou16].

1. Iteration of a semicontraction on Euclidean space

In order to explain the problems we want to consider, it is enlightening to start with a
more elementary example, showing how subadditivity techniques can be useful to understand
a deterministic semicontraction. In the next section, we will see how these results can be
extended to random semicontractions.

Definition 1.1. A transformation T on a metric space X is a semicontraction if it is 1-
Lipschitz, i.e., if d(T (x), T (y)) 6 d(x, y) for all x, y ∈ X.

If T is a semicontraction, its iterates also are. Hence, for any points x and y, the distance
between Tn(x) and Tn(y) remains uniformly bounded, by d(x, y) (where we write Tn =
T ◦ · · · ◦ T ). As a consequence, the asymptotic behavior of Tn(x) (up to bounded error) is
independent of x.

In the Euclidean space Rd, the first examples of semicontractions are given by translations
(where Tn(x) tends to infinity as nv+O(1), where v is the translation vector) and homotheties
with ratio 6 1 (for which Tn(x) remains bounded). The following theorem, proved in 1981
in [KN81] under slightly stronger assumptions, shows that these examples are typical since there
always exists an asymptotic translation vector. The proof we give is due to Karlsson [Kar01].

Theorem 1.2. Consider a semicontraction T : X → X on a subset X of Euclidean space Rd.
Then there exists a vector v such that Tn(x)/n converges to v for all x ∈ X.

Note that the asymptotic behavior of Tn(x)/n does not depend on x, therefore it suffices to
prove the theorem for one single point x. Translating everything if necessary, we can assume
0 ∈ X and take x = 0 to simplify notations.

The proof relies crucially on the subadditivity properties of the sequence un = d(0, Tn(0)).

Definition 1.3. A sequence (un)n∈N of real numbers is subadditive if uk+` 6 uk + u` for all
k, `.
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The main property of such a sequence is given in the next lemma, due to Fekete.

Lemma 1.4. Let un be a subadditive sequence. Then un/n converges, to Inf{un/n, n > 0} ∈
R ∪ {−∞}.

Proof. Fix a positive integer N . It follows from the subadditivity of u that ukN+r 6 kuN + ur.
Writing an arbitrary integer n as kN + r with r < N , dividing by n and taking the limit,
we get lim supun/n 6 uN/N . Hence, lim supun/n 6 Inf{uN/N}. The result follows as
lim inf un/n > Inf{uN/N}. �

Recalling the notation un = d(0, Tn(0)), we have

uk+` = d(0, T k+`(0)) 6 d(0, T k(0)) + d(T k(0), T k(T `(0)))

6 d(0, T k(0)) + d(0, T `(0)) = uk + u`,
(1.1)

where we used the semicontractivity of T k. Hence, Fekete’s Lemma shows that un/n converges
to a limit A > 0. At time n, the point Tn(0) is close to the sphere of radius An centered at
0. If A = 0, this proves Theorem 1.2. However, if A > 0, we should also prove the directional
convergence of Tn(0). For this, we will use times where the sequence u is almost additive, given
by the following lemma.

Lemma 1.5. Let ε > 0. Consider a subadditive sequence un such that un/n→ A ∈ R. Then
there exist arbitrarily large integers n such that, for all 1 6 ` 6 n,

(1.2) un > un−` + (A− ε)`.

As u` is of magnitude A`, this inequality can informally be read as un > un−`+u`−δ, where
δ is small. It entails additivity of the sequence at all intermediate times between 1 and n, up
to a well controlled error.

Proof. The sequence un − (A − ε)n is equivalent to εn, and tends therefore to infinity. In
particular, there exist arbitrarily large times n which are records for this sequence, beating
every previous value. For such an n, we have for ` 6 n the inequality un−` − (A− ε)(n− `) 6
un − (A− ε)n, which is equivalent to the result we claim. �

For εi = 2−i, let us consider a corresponding sequence of times ni given by Lemma 1.5,
tending to infinity. Let hi be a norm-1 linear form, equal to −‖Tni(0)‖ on Tni(0). Then, for
all ` 6 ni,

hi(T
`(0)) = hi(T

`(0)− Tni(0)) + hi(T
ni(0)) 6 ‖T `(0)− Tni(0)‖ − ‖Tni(0)‖

6 ‖Tni−`(0)‖ − ‖Tni(0)‖ = uni−` − uni 6 −(A− εi)`,

where the last inequality follows from (1.2). In the inequality hi(T `(0)) 6 −(A− εi)` that we
just obtained, it is remarkable that every mention of ni has disappeared.

Let us now consider h a limit (weak or strong, as we are in finite dimension) of the sequence
hi, it is a norm-1 linear form. As εi tends to 0 with i, we deduce from the above the following
inequality:

(1.3) for every integer `, h(T `(0)) 6 −A`.
This inequality entails that T `(0) belongs to the half-space directed by h, at distance A`

from the origin. As it also has essentially norm A`, we deduce that it is essentially pointing in
the direction of h (see Figure 1). This shows the convergence of T `(0)/`. If one wants a more
explicit argument, one can for instance consider a cluster value v of T `(0)/`. It is a vector of
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A`

‖·‖ 6 (A+ ε)`

h(·) 6 −A`

Figure 1. T `(0) belongs to the intersection of the dashed areas

norm A, satisfying h(v) = −A. As h has norm 1, this determines uniquely v thanks to the
strict convexity of the Euclidean norm. Therefore, T `(0)/` has a unique cluster value, and it
converges. This concludes the proof of Theorem 1.2. �

Remark 1.6. The proof has not used finite-dimensionality (if one replaces strong limits with
weak limits). Therefore, the result is still true in Hilbert spaces, or more generally in uniformly
convex Banach spaces.

Remark 1.7. Most of the proof is valid in a general Banach space: there always exists a linear
form h with norm at most 1 such that h(T `(0)) 6 −A` for all ` (this already implies non-trivial
results, for instance the sequence (T `(0))`>0 is contained in a half-space if A > 0, as the linear
form h is necessarily nonzero in this case). The only point where the proof breaks is the last
argument, relying on strict convexity of the norm.

One may wonder if this is a limitation of the proof, or if the proof captures all the relevant
information. In fact, the above theorem is wrong without convexity assumptions on the norm.
Let us describe quickly a counter-example due to [KN81], in R2 with the sup norm. Let us
fix the two vectors v+ = (1, 1) and v− = (1,−1), both of norm 1. We define a continuous
path γ : R+ → R2 starting from 0, of the form γ(t) = (t, ϕ(t)), by following the direction v+
during a time S0, then the direction v− during a time S1 � S0, then the direction v+ during
a time S2 � S1, and so on. One can ensure that the angle between γ(t) and the horizontal
line fluctuates between −π/4 et π/4. As the slopes of v+ and v− are 1, the path γ is an
isometry from R+ onto its image. Let h(x1, x2) = x1 be the first coordinate. Then the map
T : x 7→ γ(|h(x)| + 1) is a semicontraction, as a composition of 1-Lipschitz functions. One
checks easily that Tn(0) = γ(n). Therefore, by construction, Tn(0)/n does not converge.

2. Horofunctions

Many interesting geometric spaces, which are not vector spaces, have semicontractions. We
would like to have a version of Theorem 1.2 for these spaces. The conclusion of the theorem can
not be of the form “Tn(x)/n is converging” as division by n makes no sense. It is always true
that d(Tn(x), x)/n converges to a limit A > 0, by subadditivity. However, the meaning to give
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to directional convergence is less obvious. Such theorems already exist in different contexts.
Let us mention for instance the following Denjoy-Wolff Theorem [Den26, Wol26]:

Theorem 2.1. Let T be a holomorphic map from the unit disk D in C into itself. Then, either
T has a fixed point in the disk, or Tn(0) converges to a point on the unit circle.

This statement is indeed a particular case of the previous discussion, as a holomorphic map
of the unit disk if a semicontraction for the hyperbolic distance.

In the general case, the counter-example from Remark 1.7 shows that one can not hope to
have convergence at infinity in a strong sense without additional assumptions of geometric
nature on the space. If we follow the proof of Theorem 1.2 in the context of a general metric
space, we see that it is possible to make sense of all arguments up to the inequality (1.3), in
terms of horofunctions.

Definition 2.2. Let (X, d) be a metric space with a basepoint x0. For x ∈ X, we say that the
function hx : y 7→ d(x, y)− d(x, x0) is an internal horofunction. A horofunction is an element
of the closure of the set of internal horofunctions, for the topology of pointwise convergence.

For every x ∈ X, the internal horofunction hx vanishes at x0 and it is 1-Lipschitz. Therefore,
hx(y) belongs to the compact interval [−d(y, x0), d(y, x0)]. As a product of compact spaces is
compact for the topology of pointwise convergence (i.e., the product topology), we deduce that
the set XB of horofunctions, endowed with the topology of pointwise convergence, is a compact
space in which the set X (seen as the set of internal horofunctions) is dense. A horofunction
vanishes at x0 and is 1-Lipschitz, as these properties are preserved by pointwise limits.

In the same way that we distinguish between a point x ∈ X and the corresponding internal
horofunction, we will distinguish by the notations between an abstract point ξ ∈ XB and the
corresponding horofunction hξ.

Remark 2.3. In general, X is not an open subset of XB, contrary to the usual requirements
for compactifications. For instance, consider for X a countable number of rays R+, all coming
from the same point x0, with the graph distance. If a sequence converges to infinity along one
of the rays (say the ray with index i), then the sequence of corresponding internal horofunctions
converges to an (external) horofunction hi. When i tends to infinity, one checks easily that hi
tends to hx0 .

On the other hand, if the space is proper (i.e., every closed ball B(x, r) is compact) and
geodesic (between any two points x and y, there is a geodesic, i.e., a path isometric to the
segment [0, d(x, y)]), then XB is a compactification of X in the usual sense.

One should think of external horofunctions as analogues of linear forms, but on general metric
spaces. In the case of Euclidean space, the two notions coincide exactly. In geometric terms,
what is interesting is not so much the horofunction h itself, than the sequence of horoballs
{x : h(x) 6 c} it defines, for c ∈ R. This is a kind of family of half-spaces, increasing with c,
defining a direction at infinity when c→ −∞.

The notion of horofunction is exactly the one we need to extend the above proof of Theo-
rem 1.2 to a general metric space:

Theorem 2.4 (Karlsson [Kar01]). Let T be a semicontraction on a metric space (X, d) with
a basepoint x0. Then d(Tn(x0), x0)/n converges to a limit A > 0. Moreover, there exists a
horofunction h such that, for all ` ∈ N, we have h(T `(x0)) 6 −A`.
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Proof. The proof is exactly the same as the proof of the inequality (1.3), if one replaces the
notion of linear form (which relied on the linearity of the underlying space) with the notion
of horofunction. Indeed, let us define A as in the proof of this theorem, by subadditivity. Let
εi = 2−i, and consider an increasing sequence ni such that, for all ` 6 ni, holds d(x0, T

nix0) >
d(x0, T

ni−`x0) + (A− εi)`, thanks to Lemma 1.5. Then, we use the internal horofunction based
at Tnix0. It satisfies, for ` 6 ni,

hTni (x0)(T
`(x0)) = d(Tni(x0), T

`(x0))− d(Tni(x0), x0) 6 d(Tni−`(x0), x0)− d(Tni(x0), x0)

6 −(A− εi)`.

This shows that the set of horofunctions satisfying h(T `(x0)) 6 −(A − εi)` for all ` 6 ni
is nonempty. Moreover, it is compact, and decreases with i. As the set of horofunctions is
compact, the intersection of these sets is nonempty. Any element h of this intersection satisfies
h(T `(x0)) 6 −A` for all `, as desired. (In the case where the space X is second-countable, the
topology on XB is metrizable, and one can just take for h any cluster value of the sequence
hTni (x0).) �

This theorem entails that T `(x0) is in the intersection of the ball of radius (A+ ε)` and of
the half-space {h 6 −A`} for ` large enough, as in Figure 1, with the difference that the shapes
of the ball and the half-space depend on the geometry of (X, d). Deciding if one can deduce
from this statement a stronger convergence at infinity will thus depend on X. For instance,
this is true in a uniformly convex Banach space, thanks to Remark 1.6, but this is false in R2

with the sup norm, by Remark 1.7.

One can therefore say that Theorem 2.4 decouples the dynamics from the geometry, capturing
all the information about iterations of semicontractions on metric spaces, and reducing the
question of convergence at infinity to a purely geometric question on the geometric shape of
horofunctions.

Example 2.5. An important class of metric spaces is the CAT(0) spaces, i.e., metric spaces
(they do not have to be manifolds) which have non-positive curvature in an extended sense,
see [BH99]. In such a space, there is a natural geometric notion of boundary at infinity, which
turns out to be in bijection with external horofunctions. Moreover, the horofunctions can be
described with sufficient precision to extend the argument given above in Euclidean space: If a
sequence satisfies d(xn, x0)/n→ A > 0 and h(xn)/n→ −A where h is a horofunction, then xn
converges to the point at infinity corresponding to h. This applies to xn = Tn(x0) when T is a
semicontraction. We obtain a generalization of Theorem 1.2 to a much broader class of metric
spaces.

A weakness of the previous result is that it does not give much when A = 0. For instance, it
does not seem to reprove Theorem 2.1 of Denjoy and Wolff when A = 0 (while the convergence
to a point on the boundary follows directly when A > 0, as the disk with the hyperbolic
distance is CAT(0) – and even CAT(−1)). In fact, one can fully recover Theorem 2.1 from
Theorem 2.4 thanks to the following lemma due to Całka [Cał84], for which we give a direct
proof.

Lemma 2.6. Let T be a semicontraction of a proper metric space. Let x0 ∈ X. If there exists
a subsequence ni along which d(x0, T

nix0) stays bounded, then the whole sequence d(x0, T
nx0)

is bounded.
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Proof. Let O be the orbit of x0. It has a cluster point x1 by assumption. Let B = O∩B(x1, 1).
By properness, B is covered by a finite number of balls Bi = O ∩B(xi, 1/2), with xi ∈ O. For
each i, choose ki > 0 such that T ki(xi) ∈ B(x1, 1/2), this is possible as x1 is a cluster point of
O. Then T ki(Bi) ⊆ B as T is a semicontraction.

Consider now n > max ki. Then

Tn(B) ⊆
⋃
i

Tn(Bi) =
⋃
i

Tn−ki(T kiBi) ⊆
⋃
i

Tn−kiB ⊆
⋃
m<n

Tm(B).

We deduce by induction that Tn(B) ⊆
⋃
m6max ki

Tm(B). Hence,
⋃
n T

n(B) is within bounded
distance of x0. Finally, x0 has an iterate that enters B. All its subsequent iterates remain in
the above set. �

Proof of Theorem 2.1 of Denjoy-Wolff. We endow the unit disk with the hyperbolic distance,
for which any holomorphic map is a semicontraction.

Assume first that Tn(0) stays bounded for this distance. Then K =
⋂
n

⋃
m>n{Tm(0)} is

a nonempty compact set, satisfying T (K) = K. The set K is contained in a unique ball of
minimal radius (this is a general property of nonpositive curvature, see [BH99, Proposition 2.7])
that we denote by B(x, r). Then K = T (K) is included in B(T (x), r) as T is a semicontraction.
By uniqueness, x = T (x), and T has a fixed point.

Assume now that Tn(0) is unbounded. By Lemma 2.6, it tends to infinity in the hyperbolic
disk, i.e., to the unit circle S1 in C. Moreover, Theorem 2.4 shows that the sequence Tn(0)
stays in a horoball {x : h(x) 6 0} for some horofunction h. In this setting, horoballs are
Euclidean disks with 0 in their boundary and tangent to the unit circle. In particular, the
closure of such a horoball meets S1 at a unique point, to which Tn(0) must converge. �

3. Iteration of random semicontractions

The problem of interest to us is the composition of random semicontractions. Let us describe
it in the simplest case. Fix a metric space (X, d) with a basepoint x0, consider a finite number
of semicontractions T1, . . . , TI on X, and fix a probability measure P0 on {1, . . . , I}, i.e., a
sequence of positive real numbers pi > 0 with

∑
pi = 1. Then we can describe a left random

walk Ln on X as follows. At time 0, let L0 = x0. Then, choose randomly a semicontraction
T (1) among T1, . . . , TI , taking Ti with probability pi, and jump to L1 = T (1)(x0). Then, choose
T (2) like T (1), independently of the choices already made, and jump to L2 = T (2)(L1). And so
on. Formally,

Ln = T (n) ◦ · · · ◦ T (1)(x0),

where the T (k) are random semicontractions, chosen independently according to the distribution
P0. We should write T (k) = T (k)(ω) and Ln = Ln(ω) where ω is a random parameter, living in
a probability space which parameterizes all objects we use (here, we can take Ω = {1, . . . , I}N
with the probability measure P = P⊗N0 ). As usual in probability theory, we will not write
explicitly the parameter ω to get simpler formulas (but it will reappear in the more general
context we will describe later on).

One can also consider a right random walk Rn given by

Rn = T (1) ◦ · · · ◦ T (n)(x0).

Its geometric meaning is less clear at first sight, but its convergence behavior is much better
as we will explain now. In general, Ln can be very far away from Ln−1, while

d(Rn, Rn−1) = d(T (1) ◦ · · · ◦ T (n)(x0), T
(1) ◦ · · · ◦ T (n−1)(x0)) 6 d(T (n)(x0), x0),
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where the last inequality follows from the fact that T (1) ◦ · · · ◦ T (n−1) is a semicontraction.
Therefore, Rn is within bounded distance of Rn−1. The random walk Rn makes bounded
jumps, contrary to Ln.

Example 3.1. The isometries of the hyperbolic disk are of three type: elliptic (with a fixed
point inside the disk), parabolic (with a unique fixed point on the boundary, the dynamics is
a rotation on horospheres centered at this point) and loxodromic (with two fixed points on
the boundary, one attractive and one repulsive). Assume that all Ti are loxodromic isometries,
with attractive fixed point ξi. We expect that, independently of the position of Ln−1, the map
T (n) = Tin sends it close to its attractive point ξin . Hence, the sequence Ln should tend towards
the circle at infinity, but alternate between different possible limit points since, almost surely,
in will take every value in {1, . . . , I} infinitely often when n tends to infinity. In particular,
we should not expect Ln to converge typically. On the other hand, in Rn, the map that is
applied last is always T (1), so that Rn should be close to ξi1 , up to an error depending on the
next terms in the sequence. As the maps we are composing are contractions on the boundary
(away from their repulsive fixed point), the influence of the n-th map should be exponentially
small. Therefore, Rn should typically be a Cauchy sequence in D, and it should converge (to
a random limit, that depends on the random parameter ω). In this geometric context, this
heuristic description is correct (the almost sure convergence of Rn to a limit point is due to
Furstenberg, in a broader context).

We will consider a more general setting, encompassing the previous one, in which the
semicontractions we compose are not any more independent from each other.

Let us consider a space Ω with a probability measure P and a measurable map U which
preserves the measure (i.e., for every measurable subset B, we have P(U−1B) = P(B)). We
will moreover assume that U is ergodic: any measurable set B with U−1(B) = B has measure
0 or 1. Finally, let us fix a map ω 7→ T (ω) associating to ω ∈ Ω a semicontraction T (ω) on
the space (X, d), in a measurable way. We also require an integrability assumption: we will
always assume

∫
d(x0, T (ω)x0) dP(ω) < ∞. Then we can define “random walks” on (X, d)

as follows. Writing x0 for a basepoint in X, let Ln(ω) = T (Un−1(ω)) ◦ · · · ◦ T (ω)(x0) and
Rn(ω) = T (ω) ◦ · · · ◦ T (Un−1ω)(x0). We will mainly be interested in Rn(ω), since this is the
walk for which one can expect convergence results, as explained in Example 3.1. Therefore, let
us write Tn(ω) = T (ω) ◦ · · · ◦ T (Un−1ω).

This setting is a generalization of the case of random compositions: It is recovered by taking
Ω = {1, · · · I}N and P = PN

0 and U the left shift (given by U((ωk)k∈N) = (ωk+1)k∈N) and
T ((ωk)k∈N) = Tω0 . The non-independent case is in general more delicate to study since several
probabilistic tools do not apply any more (for instance, Furstenberg’s proof in Example 3.1
relies on the martingale convergence theorem, which does not hold in this broader context).

The setting we have studied in Sections 1 and 2, of a single semicontraction, is also a
particular case of the general setting, taking Ω reduced to a point. We can ask how much of
the results proved in this particular case extend to the general situation.

The first result (asymptotic behavior of the distance to the origin) follows directly from an
ergodic theorem, Kingman’s Theorem, which is the analogue of Fekete’s Lemma in an ergodic
context. We will come back later to this statement, given below as Theorem 4.2. This theorem
readily implies the following:

Proposition 3.2. There exists A > 0 such that d(x0, T
n(ω)x0)/n→ A for almost every ω.
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To go further and obtain a directional convergence, we would like the analogue of Theorem 2.4,
i.e., obtain for almost every ω a horofunction hω describing the asymptotic behavior of the walk.
This result is considerably more delicate. We have proved it in full generality with Karlsson
in [GK15], after several partial results:

Theorem 3.3 (Karlsson-Margulis [KM99]). Let ε > 0. For almost every ω, there exists a
horofunction hω such that all cluster values of the sequence hω(Tn(ω)x0)/n belong to the interval
[−A,−A+ ε].

Theorem 3.4 (Karlsson-Ledrappier [KL06]). Assume moreover that all the maps T (ω) are
isometries of X. For almost every ω, there exists a horofunction hω such that hω(Tn(ω)x0)/n→
−A.

Theorem 3.5 (Gouëzel-Karlsson [GK15]). Without further assumptions, for almost every ω,
there exists a horofunction hω such that hω(Tn(ω)x0)/n→ −A.

The last theorem realizes the full decoupling between dynamics and geometry that we
already explained in Section 2 for the dynamics of a single semicontraction: Assume that, for
A > 0, a sequence satisfying d(xn, x0) ∼ An and h(xn) ∼ −An converges necessarily towards
a point in a given geometric compactification of X (this is purely a geometric property of X
and its compactification). Then we deduce that, for almost every ω, the sequence Tn(ω)x0
converges in the compactification. This is for instance the case when X is CAT(0), as explained
in Example 2.5. However, we note that, in the CAT(0) case, Theorem 3.3 is sufficient to
obtain this convergence (see [KM99]), thanks to additional geometric arguments (that can be
completely avoided if one uses Theorem 3.5).

These theorems have many applications in different contexts. For instance, if one applies
them to isometries of the symmetric space associated to GL(d,R) (which is CAT(0), so that
any of the above theorems would suffice), one can recover Oseledets’ Theorem on random
products of matrices. One can also obtain a random version of the theorem of Denjoy and
Wolff (Theorem 2.1), or applications to operator theory, to Teichmüller theory. This note is
not devoted to applications, we refer the reader to the articles cited above. We rather want to
explore a little bit the proofs of these statements: contrary to the intuition, they have nothing
geometric, they rely exclusively on subadditivity arguments (just like the proofs in Sections 1
and 2).

This is not completely true for the proof given by Karlsson and Ledrappier of Theorem 3.4:
they take advantage of the fact that the maps are isometries by arguing that isometries act
on the set of horofunctions. One can then use a cocycle on this space, which is geometric in
spirit. However, this is true for the proofs of Theorems 3.3 et 3.5, that we will sketch in the
next section.

Remark 3.6. Theorem 3.5 constructs a horofunction that satisfies hω(Tn(ω)x0) 6 −An+o(n),
which is weaker than the conclusion of Theorem 2.4 giving h(Tnx0) 6 −An in the case of a
single semicontraction. It is easy to see that it is impossible to get such a strong conclusion
in the random case: it would for instance imply that the points Tn(ω)x0 would almost surely
stay in a horoball. This is not the case if the T (ω) can go in every direction, for instance if
one chooses on R uniformly between the translation of 2 and the translation of −1 (we have
chosen two vectors with different norms to ensure that A is nonzero).
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4. Ergodic theory and subadditivity

The analogue of subadditive sequences in a dynamical setting is given by the notion of
subadditive cocycle (this terminology is very bad, as a subadditive cocycle is not a cocycle, the
word subcocycle would certainly be better, but it is too late to change).

Definition 4.1. Let (Ω,P) be a probability space and U : Ω → Ω an ergodic map preserving
the measure. A measurable function u : N× Ω→ R is a subadditive cocycle if, for all k, ` and
for almost every ω,

u(k + `, ω) 6 u(k, ω) + u(`, Ukω).

A subadditive cocycle is integrable if
∫
u+(1, ω) dP(ω) <∞, where u+ is the positive part of u.

Let us consider for instance a family of semicontractions T (ω) depending measurably on
ω ∈ Ω. Let u(n, ω) = d(x0, T

n(ω)(x0)). This is a subadditive cocycle: for all k, ` and ω, we
have

u(k + `, ω) = d(x0, T
k+`(ω)x0) = d(x0, T

k(ω)(T `(Ukω)(x0)))

6 d(x0, T
k(ω)(x0)) + d(T k(ω)(x0), T

k(ω)(T `(Ukω)(x0)))

6 d(x0, T
k(ω)(x0)) + d(x0, T

`(Ukω)(x0)) = u(k, ω) + u(`, Ukω),

where we used the triangular inequality to go from the first to the second line, and the fact
that T k(ω) is a semicontraction to go from the second to the third line. This is precisely the
same computation as for one single semicontraction in (1.1), with an additional dependency on
ω that has to be written correctly.

In the same way that results on subadditive sequences (Lemmas 1.4 and 1.5) were instru-
mental in the proofs of Sections 1 and 2 on the behavior of one semicontraction, we will be
able to analyze the behavior of random semicontractions if we have sufficiently precise tools
on subadditive cocycles.

The first central result in this direction is Kingman’s Theorem, replacing in this context
Fekete’s Lemma 1.4.

Theorem 4.2 (Kingman [Kin68]). Let u be an integrable subadditive cocycle. There exists
A ∈ [−∞,∞) such that, almost surely, u(n, ω)/n→ A. Moreover, if A > −∞, the convergence
also holds in L1. Finally, A is the limit of the sequence (

∫
u(n, ω) dP(ω))/n, which is convergent

by subadditivity.

Since d(x0, T
n(ω)(x0)) is a subadditive cocycle when the T (ω) are semicontractions, this

result implies Proposition 3.2, i.e., the almost sure convergence of d(x0, T
n(ω)(x0))/n.

There are many proofs of Kingman’s Theorem in the literature. The simplest one is probably
the proof of Steele [Ste89], that we will sketch now.

Proof sketch. Consider the measurable function f(ω) = lim inf u(n, ω)/n. The subadditivity
of u implies that f(ω) 6 f(Uω) almost surely. We deduce thanks to Poincaré recurrence
theorem that f(ω) = f(Uω) almost everywhere. Indeed, by this theorem, almost every point
in Va = f−1([−∞, a]) comes back infinitely often to Va under the iteration of U . A point with
f(ω) < f(Uω) would belong to Va for each rational a in (f(ω), f(Uω)) but can only come back
to it if it belongs to a 0 measure set.

The function f , which is almost everywhere invariant, is almost everywhere constant by
ergodicity, equal to some A ∈ [−∞,+∞). Assume for instance A > −∞, and take ε > 0. Fix
also N > 0. For almost every ω, there exists an integer n(ω) with u(n(ω), ω) 6 n(ω)(A+ ε), by
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definition of the inferior limit. Given a point ω, we define a sequence of times as follows. Start
from n0 = 0. If n(Un0ω) > N (i.e., we have to wait too long to see the almost realization of the
liminf), we are not patient enough and we let n1 = n0 + 1. Otherwise, set n1 = n0 + n(Un0ω),
so that u(n1 − n0, Un0ω) 6 (n1 − n0)(A + ε). We continue this construction by induction,
therefore partitioning the integers into intervals [ni, ni+1 − 1]. On most of them, the value of u
is bounded by (ni+1 − ni) · (A+ ε) by construction. On the other ones, we do not have a good
control, but their frequency is very small if N is large.

Combining these two estimates and using the subadditivity of u to bound u(ni, ω) by the sum
of the contributions of each individual interval, we obtain u(ni, ω) 6 ni ·(A+ε)+oN (1)ni. This
is bounded by ni · (A+ 2ε) if N is large enough. Finally, we obtain lim supu(n, ω)/n 6 A+ 2ε
(first along the subsequence ni, then for any integer as two consecutive terms of this sequence
are separated at most by N). Letting ε tend to 0, we finally get lim supu(n, ω)/n 6 A =
lim inf u(n, ω)/n. This concludes the proof of the almost sure convergence. �

One can note that this proof looks very closely like the proof of Fekete’s Lemma 1.4. The
difference is that, instead of using subadditivity always with respect to the same time N (which
almost realizes the liminf), one has to use a time which depends on the point we are currently
at. Apart from this, the two proofs can be written completely in parallel.

To prove Theorem 3.5, we need a substitute for Lemma 1.5 if we want to use the proof
strategy of Section 1. The direct analogue of this lemma in our context would be the following
statement:

Let ε > 0. Let u be an integrable subadditive cocycle, such that u(n, ω)/n → A > −∞
almost everywhere. For almost every ω, there exist arbitrarily large integers n such that, for
all 1 6 ` 6 n, we have u(n, ω) > u(n− `, U `(ω)) + (A− ε)`.

However, this statement is wrong. Take for instance u(n, ω) =
∑n−1

k=0 v(Ukω) for some
function v (this is an additive cocycle, whose limit A is equal to

∫
v). If the above statement

holds, then taking ` = 1 we get v(ω) > A − ε. Letting ε tend to 0, we get v(ω) > A =
∫
v

almost everywhere, which is wrong if v is not almost surely constant.
This argument shows that any valid statement has to allow some fluctuations for each `. At

the same time, it is crucial for the application to semicontractions to have a statement which
controls all intermediate times between 1 and n. The main result of [GK15] is the following
theorem, compatible with these two constraints.

Theorem 4.3. Let u be an integrable subadditive cocycle, such that u(n, ω)/n → A > −∞
almost everywhere. For almost every ω, there exists a sequence δ` → 0 and arbitrarily large
integers n such that, for all 1 6 ` 6 n, we have u(n, ω) > u(n− `, U `(ω)) + (A− δ`)`.

In a setting of random semicontractions, applying this theorem to the subadditive cocy-
cle u(n, ω) = d(x0, T

n(ω)(x0)) and following the arguments of Section 2, we obtain readily
Theorem 3.5.

Note that the subadditivity of u ensures that u(n, ω) 6 u(n − `, U `(ω)) + u(`, ω). As
u(`, ω) ∼ A` by Kingman’s theorem, an upper bound u(n, ω) 6 u(n− `, U `(ω)) + (A+ δ`)` is
automatic. The difficulty in Theorem 4.3 is that, instead, we are looking after a lower bound,
ensuring that the subadditive cocycle u is in fact almost additive at all intermediate times
between 1 and n, for some good times n.

To prove this theorem, a first idea is to try to use the concept of records, at the heart of the
proof of Lemma 1.5. It would work very well to prove the existence of infinitely many times
n for which u(n, ω) > u(n− `, ω) + (A− δ`)` for all intermediate time `. Unfortunately, this
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is not the statement we are interested in: we do not want a statement involving u(n − `, ω),
but rather u(n − `, U `(ω)) since this is the quantity that is relevant for the application to
semicontractions. We need a different argument.

The proof of Theorem 3.3 by Karlsson and Margulis in [KM99] relied on a statement which
is slightly weaker than Theorem 4.3. In the same context, they show that, given ε > 0, there
exist almost surely a time k(ω) and arbitrarily large integers n such that, for all k(ω) 6 ` 6 n,
we have u(n, ω) > u(n− `, U `(ω)) + (A− ε)`. This is enough to prove Theorem 3.3 by following
the proof in Section 2. At first, one could think that this statement is very close to Theorem 4.3:
a strategy to prove this theorem could be to start from the statement of Karlsson and Margulis
for εi = 2−i, and then apply some kind of diagonal argument to obtain times n that work
simultaneously for ε0, ε1, . . . , εN (with N arbitrarily large). The problem with this approach is
that the theorem of Karlsson and Margulis is not quantitative: it does not guarantee that there
are many good times (and, in fact, their proof gives a very small set of good times). Typically,
there is no integer which is good both for ε0 and ε1, ruining the diagonal argument!

If we want to use this kind of approach, we need large sets of good times, when ε is fixed.
This is what we will do to prove Theorem 4.3. The notion of largeness we will use is the (lower)
asymptotic density

DensB = lim inf
N→∞

Card(B ∩ {1, . . . , N})
N

.

The main steps in the proof are the following. Going to the natural extension if necessary,
we can assume that U is invertible. Then we define a new subadditive cocycle ũ(n, ω′) =
u(n,U−nω′) (it is subadditive for U−1). Its interest is that, writing ω′ = Unω, then

u(n, ω)− u(n− `, U `ω) = ũ(n, ω′)− ũ(n− `, ω′).

In the right hand side term, the same point ω′ appears in both instances of ũ. This will make
it possible to use some combinatorial arguments that do not work directly for u. The price to
pay is that good times for ũ are not good times for u: there is an additional change of variables,
which spoils the argument if the information on the set of good times is only qualitative, but
which works if we have quantitative estimates in terms of asymptotic density for the set of
good times.

Then, we show that ũ has many good times, with the following lemmas:

Lemma 4.4. Let δ > 0. Then there exists C > 0 such that, for almost every ω,

Dens{n ∈ N : ∀` ∈ [1, n], ũ(n, ω)− ũ(n− `, ω) > (A− C)`} > 1− δ.

Lemma 4.5. Let δ > 0 and ε > 0. Then there exists an integer k such that, for almost every
ω,

Dens{n ∈ N : ∀` ∈ [k, n], ũ(n, ω)− ũ(n− `, ω) > (A− ε)`} > 1− δ.

The second lemma is essentially a more precise variant of the first one. Their proofs are
essentially combinatorial, and borrow some ideas to the proof by Steele of Kingman’s Theorem
that we have described above.

As the intersection of two sets with asymptotic density close to 1 still has an asymptotic
density close to 1, we will then be able to intersect the sets of good times produced by these
lemmas (and, in the case of Lemma 4.5, for different values of ε), while keeping sets with large
density. This makes it possible to implement the diagonal argument alluded to earlier. After
a final change of variables to go back to u, we finally obtain Theorem 4.3. The details are
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rather delicate and technical, the interested reader is referred to [GK15] for a full proof and
to [Gou16] for a computer-checked formalization of the proof.
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