
STABLE LAWS FOR THE DOUBLING MAP

SÉBASTIEN GOUËZEL

Abstract. We prove stable limit theorems for the functions fα(x) = x−α, α ≥ 1/2, under
the iteration of the doubling map T : x→ 2x mod 1. The limiting distributions are smaller
(resp. larger) than the sum of corresponding i.i.d. random variables when α > 1 (resp. < 1).

Let T : [0, 1]→ [0, 1] be the doubling map T (x) = 2x mod 1, preserving Lebesgue measure
Leb. Our goal in this expository article is to study the limit theorems satisfied by the Birkhoff
sums of the functions fα(x) = x−α. Our main concern is not the result in itself (it could
very easily be extended to general uniformly expanding maps of the interval using similar
arguments, or to more general observables), but rather the techniques: they were developed
primarily to study intermittent dynamics, and our goal here is to present them in a simple
different setting, where they also prove quite efficient.

When α < 1/2, the function fα is in L2(Leb). In this case, numerous criteria apply to
show that the Birkhoff sums of fα satisfy a central limit theorem. While most criteria are
formulated in terms of the L2modulus of continuity of fα, we can for instance use the following
one, due to Dedecker, which has the great advantage of avoiding completely computations:

Theorem 0.1. If f ∈ L2(Leb) is piecewise monotonic (with a finite number of branches),
then the Birkhoff sums of f satisfy the central limit theorem: there exists σ2 ≥ 0 such that
Sn(f −

∫
f)/
√
n converges in distribution to a Gaussian distribution N (0, σ2).

This theorem is proved using classical martingale techniques, and a clever covariance in-
equality given in [Ded04].

Our main focus will be on the case α ≥ 1/2, where martingale techniques do not apply.

1. The independent case

To see what is likely to happen, let us first consider the (easier) i.i.d. case. So, let X0, X1, . . .
be distributed like fα, we will show that this sequence satisfies a limit theorem. Let us first
estimate the characteristic function of Xj , i.e. φ(t) = E(eitXj ). Since it satisfies φ(−t) = φ(t),
we can without loss of generality consider only t ≥ 0

Proposition 1.1. Let α ≥ 1/2. For t ≥ 0,

• If α > 1, then E(eitX0) = 1− Γ
(
1− 1

α

)
cos
(
π
2α

)
t1/α

(
1− i tan

(
π
2α

))
+ o(t1/α).

• If 1/2 < α < 1, then E(eitX0) = 1 + i
1−α t− Γ

(
1− 1

α

)
cos
(
π
2α

)
t1/α

(
1− i tan

(
π
2α

))
+

o(t1/α).
• If α = 1, then E(eitX0) = 1− it ln t+ ((1− γ)i− π/2)t+ o(t).
• If α = 1/2, then E(eitX0) = 1 + 2it+ t2 ln t+ o(t2 ln t).
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In the α = 1 case, γ is the Euler constant, i.e., the limit of
∑n

k=1 1/k − lnn. When α < 1,
the leading term i

1−α t is simply itE(X0) (this is not surprising, since eix = 1 + ix + o(x),
hence E(eitX0) = 1 + itE(X0) + o(t) whenever X0 is integrable).

Proof. Since the values of the different constants will not be important to us, we will leave
their computation to the interested reader (or to Maple): we will obtain them as (explicit)
integrals.

We have

E(eitX0) =
∫ 1

x=0
eitfα(x) dLeb(x) =

∫ 1

x=0
eitx

−α
dx =

1
α

∫ ∞
y=1

eity
dy

y1+1/α

=
t1/α

α

∫ ∞
z=t

eiz
dz

z1+1/α
.

If α > 1, we have eiz = 1 +O(z). Moreover,
∫ t

0 z
−1/α dz = O(t1−1/α). Hence,

E(eitX0) =
t1/α

α

∫ ∞
z=t

(eiz − 1)
dz

z1+1/α
+
t1/α

α

∫ ∞
z=t

dz
z1+1/α

=
t1/α

α
(Cα +O(t1−1/α)) + 1,

where Cα =
∫∞

0 (eiz − 1) dz
z1+1/α . This proves the first case of the proposition.

Assume now that 1/2 < α < 1. The previous computation breaks down since (eiz −
1)/z1+1/α is not any more integrable at 0. The trick is to go one step further in the Taylor
expansion of eiz to recover integrability:

E(eitX0) =
t1/α

α

∫ ∞
z=t

(eiz − 1− iz) dz
z1+1/α

+
t1/α

α

∫ ∞
z=t

(1 + iz)
dz

z1+1/α

=
t1/α

α
(Cα +O(t2−1/α)) + 1 +

it1/α

α

t1−1/α

1/α− 1
,

since
∫ t

0 z
1−1/α = O(t2−1/α). This again proves the proposition.

When α = 1, we have a problem at 0 if we consider eiz − 1 (as in the case α > 1), and a
problem at infinity if we consider eiz − 1− iz (as in the case α < 1). The idea is to consider
eiz − 1 − iφ(z) where φ is a function behaving like z at 0 and bounded at infinity, to avoid
both problems. The choice of φ is essentially arbitrary, common choices in the literature are
φ(z) = z/(1 + z2) or φ(z) = sin(z), we will use φ(z) = z1z≤1 to simplify the computations.
We get

E(eitX0) = t

∫ ∞
z=t

(eiz − 1− iz1z≤1)
dz
z2

+ t

∫ ∞
z=t

(1 + iz1z≤1)
dz
z2

= t(C1 +O(t)) + 1− it ln t,

where C1 =
∫∞

0 (eiz − 1− iz1z≤1)dz
z2

. This proves the third case of the proposition.
The case α = 1/2 is similar, but we need to write eiz = 1+iz−z2/2+O(z3) to conclude. �

Corollary 1.2. For α ≥ 1/2, define sequences An = An(α) and Bn = Bn(α) by
(1) if α > 1, then An = 0 and Bn = nα.
(2) if 1/2 < α < 1, then An = nE(X0) = n/(1− α) and Bn = nα.
(3) if α = 1, then An = n lnn and Bn = n.
(4) if α = 1/2, then An = nE(X0) = n/(1− α) and Bn =

√
n lnn.

There exists a nondegenerate random variable Wα such that (
∑n−1

k=0 Xk −An)/Bn →Wα.
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By nondegenerate, we mean that Wα is not almost surely constant. The characteristic
function of Wα is explicit, and given in the proof.

Proof. Assume first that α > 1. By Proposition 1.1, for t ≥ 0, the characteristic function φ of
X0 is equal to 1 +Cαt

1/α(1 + o(1)). The characteristic function of (
∑n−1

k=0 Xk)/nα is equal to
φ(t/nα)n, i.e. (1+Cαt1/α/n+o(1/n))n. This quantity converges to exp(Cαt1/α) when n tends
to infinity. Since convergence of random variables is equivalent to the pointwise convergence
of characteristic functions, this concludes the proof of the convergence of (

∑n−1
k=0 Xk)/nα.

Moreover, the characteristic function of the limit law Wα is given, for t ≥ 0, by exp(Cαt1/α).
Assume now 1/2 < α < 1. The characteristic function of X0 − E(X0) is equal to 1 +

Cαt
1/α(1 + o(1)), again by Proposition 1.1. The result follows as in the previous case.

Let now α = 1. In this case, φ(t) = 1− it ln t+ ct+ o(t) = exp(−it ln t+ ct+ o(t)). Hence,
the characteristic function of (

∑n−1
k=0 Xk − n lnn)/n is equal to the exponential of

n

[
−i t
n

ln
(
t

n

)
+ c

t

n
+ o(1/n)

]
− it lnn = [−it ln t+ it lnn+ ct+ o(1)]− it lnn

= ct− it ln t+ o(1).

Since this converges when n→∞, this concludes the proof.
Finally, if α = 1/2, the characteristic function of X0 − E(X0) is equal to exp(t2 ln t +

o(t2 ln t)), hence the characteristic function of (
∑n−1

k=0 Xk−nE(X0))/
√
n lnn is the exponential

of

(1) n
t2

n lnn
ln
(

t√
n lnn

)
(1 + o(1)) = (t2 ln t/ lnn− t2 ln

√
n lnn/ lnn)(1 + o(1)).

This quantity converges to −t2/2, as desired. �

Proposition 1.1 and Corollary 1.2 are special cases of the well-known description of the
domain of attraction of stable laws (see e.g. [GK68, Fel66]), i.e., the random variables X for
which there exist An and Bn such that (

∑n−1
k=0 Xk−An)/Bn converges in distribution to a non-

constant random variables, when Xk are i.i.d. and distributed like X. Essentially, there should
exist p < 2, a slowly varying function L (as defined below in Definition 4.2) and c1, c2 > 0 with
c1 + c2 = 1 such that P (X > x) = (c1 + o(1))x−pL(x) and P (X < −x) = (c2 + o(1))x−pL(x)
when x → ∞ (or a slightly different condition in the p = 2 case). Of course, the random
variables considered in Proposition 1.1 and Corollary 1.2 satisfy this condition, for some
constant function L.

2. The strategy

We now turn back to the dynamical situation: T is the doubling map, and fα(x) = x−α.
If fα(x) is large, then x is close to 0, so that T (x) is also close to 0, hence fα(Tx) is also
large. This argument indicates that fα and fα ◦ T are not independent, and the asymptotic
behavior may be different from the independent case.

In fact, two opposite phenomena coexist:
• If fα(x) is large, then fα(Tx) is also large, so the Birkhoff sums Snf(x), when they

are large, should be larger than the sums of the corresponding i.i.d. random variables.
• If fα(x) is large, then fα(Tx) ≤ fα(x): one can not add a much larger term in the

end. This phenomenon tends to make the Birkhoff sums smaller than the sums of the
corresponding i.i.d. random variables.
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These two phenomena compete. It will turn out that, for α < 1, the first one is prominent,
while for α > 1 the second one is more important. For α = 1, the two phenomena bal-
ance almost exactly, and the asymptotic behavior of Snf1 is very close to the behavior of
i.i.d. random variables.

Our main theorem is the following. For α ≥ 1/2, consider the sequences An = An(α)
and Bn = Bn(α) given by Corollary 1.2, ensuring the converge of (

∑n−1
k=0 Xk − An)/Bn to a

nondegenerate limit law Wα, when Xk is an i.i.d. sequence distributed like fα.

Theorem 2.1. Let α ≥ 1/2. If α 6= 1, the sequence (2α−1)(
∑n−1

k=0 fα◦T k−An)/Bn converges
in distribution to Wα. If α = 1, the sequence (

∑n−1
k=0 fα ◦ T k −An + 2n ln 2)/Bn converges in

distribution to Wα.

Since 2α − 1 is > 1 (resp. < 1) when α > 1 (resp. α < 1), this justifies the above claims:
the Birkhoff sums are smaller than the sum of corresponding i.i.d. random variables when
α > 1, and larger when α < 1, while the asymptotic behavior is the same for α = 1, up to a
centering term.

To study the behavior of the sums, one would like to use a Markov partition. The most
natural one is the partition into [0, 1/2) and [1/2, 1), but this partition is too small: knowing
that x belongs to [0, 1/2) gives almost no information on the value of fα(x). One is therefore
led to consider the partition into the intervals In = [1/2n+1, 1/2n): on In, fα(x) is of the
order of magnitude 2αn. However, the lack of independence becomes apparent: while T (I0) =⋃
n∈N In, we have T (In) = In−1 for n > 0.
To regain independence, it is natural to induce on the interval Y = I0. For x ∈ Y ,

let φ(x) = inf{n > 0 | Tn(x) ∈ Y } be its first return time, and define the induced map
TY : Y → Y by TY (x) = T φ(x)(x). This map is Markov for the partition of the interval
(1/2, 1] into the intervals Jn = [1/2 + 1/2n+1, 1/2 + 1/2n]. More precisely, TY is affine on Jn
with slope 2n, corresponds there to n iterates of T , and TY (Jn) = IY for all n. The return
time φ is equal to n on Jn.

Define the induced function gα by gα(x) =
∑φ(x)−1

k=0 fα(x). In this way, the Birkhoff sums
of gα for TY form a subsequence of the Birkhoff sums of fα for T . It is therefore reasonable
to hope to study the latter by understanding the former.

We can compute gα: for x ∈ Jn,

(2) gα(x) = x−α +
n−2∑
k=0

(2k(2x− 1))−α = x−α +
1

(2x− 1)α
1− 2−(n−1)α

1− 2−α
.

In particular, since 2x− 1 ≥ 2−n, we get

(3) gα(x) =
1

(1− 2−α)(2x− 1)α
+O(1) =

1
(2α − 1)(x− 1/2)α

+O(1).

Let aα(x) = 1
(2α−1)(x−1/2)α and bα = gα − aα. Since bα is bounded, it will satisfy the central

limit theorem, and will therefore play no important role in the limit theorem. Moreover, in
this induced setting, there is enough independence gained at each iteration of TY so that the
Birkhoff sums of aα satisfy the same limit behavior as the sum of corresponding i.i.d. random
variables (which are distributed like a rescaled version of fα, hence Corollary 1.2 applies
to give their asymptotic behavior). In this way, we will show in Theorem 3.9 that the sums∑n−1

k=0 gα◦T kY satisfy an explicit limit theorem (and the norming constants are rescaled versions
of the constants appearing in the i.i.d. case for fα).
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Since the Birkhoff sums
∑n−1

k=0 gα◦T kY form a subsequence of the Birkhoff sums
∑N−1

j=0 fα◦T j ,
it is then possible to obtain a limit theorem for fα using the previously mentioned limit
theorem for gα: this is a very general mechanism, that we describe in details in Section 4.

3. The induced map

The main result of this paragraph is Theorem 3.9, in which we describe the limit theorems
satisfied by the Birkhoff sums

∑n−1
k=0 gα ◦ T kY . It will be proved using the decomposition

gα = aα + bα where aα(x) = 1
(2α−1)(x−1/2)α and, for x ∈ Jn,

(4) bα(x) = x−α − 2−(n−1)α

1− 2−α
1

(2x− 1)α
.

Since bα is bounded, its Birkhoff sums will be quite easy to understand. Our main interest
it therefore to describe the Birkhoff sum SYn aα =

∑n−1
k=0 aα ◦ T kY , or rather its characteristic

function. We will do so by using the classical Nagaev argument on perturbations of Perron-
Frobenius operators.

Let L be the Perron-Frobenius operator associated to TY , defined by duality by
∫
u · v ◦

TY dLebY =
∫
Lu · v dLebY , where LebY denotes the Lebesgue measure on Y normalized to

be of mass 1. This operator is explicitly given by

(5) Lu(x) =
∑

TY (y)=x

u(y)
T ′Y (y)

=
∑
n≥1

2−nu(vnx),

where vn : Y → Jn is the inverse branch of TY , given by vn(x) = 2−nx + 1/2 (the space
of functions it acts on will be specified later, let us say for now that if u ∈ L1 then Lu
is well defined and also belongs to L1). Let us also define, for t ∈ R, an operator Lt by
Ltu = L(eitaαu). The interest of this definition is that

(6)
∫
eitS

Y
n aα dLebY =

∫
Lnt (1) dLebY .

Hence, understanding the iterates of Lt will give a good description of the characteristic
function of SYn aα, and enable us to prove limit theorems for these Birkhoff sums.

The strategy is to find a good functional space B (contained in L1) on which the operator
L has a simple eigenvalue at 1 and a spectral gap, and such that Lt is a small perturbation of
L: in this way, Lnt (1) will essentially be described by λ(t)n where λ(t) is the eigenvalue close
to 1 of Lt.

For 0 < γ ≤ 1, let Bγ be the Banach space of functions on Y which are γ-Hölder continuous.
Its norm is given by

(7) ‖u‖Bγ = sup |u|+ inf{C | ∀x, y, |u(x)− u(y)| ≤ C|x− y|γ}.

Let us choose once and for all some γ ∈ (0, 1] with 1/(2α) < γ < 1/α if α > 1/2, and γ = 1
if α = 1/2. We will work on B = Bγ .

Lemma 3.1. We have ‖Lnu‖B ≤ 21−γn ‖u‖B + ‖u‖L1.

Proof. Let u ∈ B. Denote by Höl(u) its best Hölder constant.
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We have Lnu(x) =
∑

i1,...,in
2−(i1+...+in)u(vi1 · · · vinx). Since |vi1 · · · vinx − vi1 · · · viny| ≤

2−n|x− y| for any choice of i1, . . . , in, we get

(8) |Lnu(x)− Lnu(y)| ≤
∑
i1,...,in

2−(i1+...+in) Höl(u)(2−n|x− y|)γ = 2−γn Höl(u)|x− y|γ .

Hence, Höl(Lnu) ≤ 2−γn Höl(u).
For any x, y, we obtain |Lnu(x)| ≤ |Lnu(y)|+ Höl(Lnu). Integrating over y and using the

fact that
∫
Ln|u| =

∫
|u|, we obtain |Lnu(x)| ≤ ‖u‖L1 + Höl(Lnu). This yields the desired

control on the supremum of |Lnu|, and concludes the proof of the lemma. �

By an abstract functional-analytic argument that we shall explain later, this lemma implies
that L acting on B has a finite number of eigenvalues of modulus 1. To understand the
corresponding eigenfunctions, the next lemma will prove useful.

Lemma 3.2. For any u ∈ L1, the function Lnu converges in L1 to
∫
udLebY when n→∞.

Proof. If u is constant on each interval Jn, then Lu is constant equal to
∫
u. More generally,

if u is constant on each interval of the partition
∨k−1
i=0 T

−i
Y {Jn}, then Lku is constant equal

to
∫
u. Hence, the statement of the lemma holds for these functions. Since they are dense in

L1, the lemma follows. �

The proof of this lemma is quite specific to the situation of TY , whose derivative is constant
on each branch. This implies that, for any function u constant on each interval of the partition∨k−1
i=0 T

−i
Y {Jn}, and any function v, then u and v ◦ T kY are independent. The proof is a

reformulation of this fact. The lemma would still hold for more general piecewise expanding
maps, but the proof would require additional (very classical) dynamical arguments.

We will now study the perturbations Lt of L.

Lemma 3.3. There exists C > 0 such that, for any t ∈ R and any u ∈ B,

(9) ‖(Lt − L)u‖B ≤ C|t|
γ ‖u‖B .

Proof. Let us first estimate the Hölder constant of (Lt − L)u. For x, y ∈ Y , we write

(Lt − L)u(x)− (Lt − L)u(y)

=
∑

2−n(eitaα(vnx) − 1)u(vnx)−
∑

2−n(eitaα(vny) − 1)u(vny)

=
∑

2−n(eitaα(vny) − 1)(u(vny)− u(vnx)) +
∑

2−n(eitaα(vnx) − eitaα(vny))u(vnx).

(10)

Let us bound the first term. Let C be such that |eia − 1| ≤ C|a|γ for any a ∈ R. Then

(11) |eitaα(vny) − 1| ≤ C|taα(vny)|γ ≤ C|t|γ2αγn.

Since |u(vnx)− u(vny)| ≤ Höl(u)|x− y|γ , we get

(12)
∣∣∣∑ 2−n(eitaα(vny) − 1)(u(vny)− u(vnx))

∣∣∣ ≤ C|t|γ∑ 2−n2αγn|x− y|γ Höl(u).

Since αγ < 1 by construction, the sum is finite.
We now turn to the second term of (10). By (2) and the formula for vn,

(13) |aα(vnx)− aα(vny)| ≤ C
∣∣∣∣ 1
(2vn(x)− 1)α

− 1
(2vn(y)− 1)α

∣∣∣∣ ≤ C2αn|x− y|.
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Hence,∣∣∣∑ 2−n(eitaα(vnx) − eitaα(vny))u(vnx)
∣∣∣ ≤∑ 2−n|eit(aα(vnx)−aα(vny)) − 1| sup |u|

≤
∑

2−nC|t|γ |aα(vnx)− aα(vny)|γ sup |u|

≤ C ‖u‖B |t|
γ
∑

2−n2γαn|x− y|γ .

Since αγ < 1, the sum is finite. We have proved that

(14) Höl((Lt − L)u) ≤ C|t|γ ‖u‖B .
As in the end of the proof of Lemma 3.1, we have sup |(Lt − L)u| ≤ ‖(Lt − L)u‖L1 +

Höl((Lt − L)u). Moreover,

(15) ‖(Lt − L)u‖L1 =
∥∥L((eitaα − 1)u)

∥∥
L1 ≤

∥∥(eitaα − 1)u
∥∥
L1 ≤

∥∥eitaα − 1
∥∥
L1 sup |u|.

The conclusion of the proof therefore follow from the inequality

(16)
∫
|eitaα − 1| ≤ C

∫
|taα|γ ≤ C|t|γ

∫ 1

x=1/2

dx
(2x− 1)αγ

,

the last integral being finite since αγ < 1. �

Putting together the previous lemmas gives the following spectral description of the oper-
ators Lt.

Theorem 3.4. There exist C > 0, σ < 1 and ε > 0 such that, for |t| ≤ ε, there exists a
decomposition B = Et ⊕ Ft, where Et is one-dimensional and Ft is a closed hyperplane in B,
with the following properties:

(1) The subspaces Et and Ft are invariant under Lt.
(2) The restriction of Lt to Et is the multiplication by a number λ(t), with |λ(t) − 1| ≤

C|t|γ.
(3) The restriction of Lt to Ft satisfies

∥∥∥(Lt)n|Ft
∥∥∥ ≤ Cσn.

(4) The projection Pt on Et with kernel Ft satisfies ‖Pt − P0‖ ≤ C|t|γ.

Proof. The inclusion of L1 into B is compact. Moreover, the operator L satisfies a Doeblin-
Fortet inequality ‖Lnu‖ ≤ C2−γn ‖u‖+C ‖u‖L1 , by Lemma 3.1. Heuristically, this inequality
can be interpreted as follows: L should be the sum of an operator of spectral radius at most
2−γ and of a compact operator. The first operator would have no spectrum outside of the
disk of radius 2−γ , while the second operator would only have eigenvalues of finite multiplicity
there. Hopefully, the operator L should share the same kind of property.

This intuition is made precise by Hennion’s theorem [Hen93]: using only the Doeblin-Fortet
inequality and compactness, it shows that L has finitely many eigenvalues of modulus 1, of
finite multiplicity, and that the rest of its spectrum is contained in a disk of radius < 1.

If u is an eigenfunction for an eigenvalue λ of modulus 1, then Lnu = λnu. However, Lnu
converges in L1 to

∫
u by Lemma 3.2, hence u is constant. This shows that 1 is the only

eigenvalue of modulus 1 of L, and that the corresponding eigenspace is one-dimensional. This
proves the statement of the theorem for t = 0.

For t small, the operator Lt is close to L, by Lemma 3.3. Hence, their spectra are close,
as well as the corresponding spectral projections, by classical perturbation theory (it easily
follows from the integral expression of the spectral projections, see [Kat66]). This yields the
statement of the theorem for small t. �
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Proposition 3.5. The eigenvalue λ(t) given in the previous theorem satisfies

(17) λ(t) = φα

(
2α

2α − 1
t

)
+O(|t|2γ),

where φα is the characteristic function of fα, studied in Proposition 1.1.

Proof. Let ξt = Pt(1)/
∫
Pt(1) dLebY : it satisfies Ltξt = λ(t)ξt, moreover

∫
ξt = 1 and

‖ξt − ξ0‖ ≤ C|t|γ . Therefore,

(18) λ(t) =
∫
λ(t)ξt =

∫
Ltξt =

∫
(Lt − L0)(ξt − ξ0) +

∫
Ltξ0.

The first term is O(|t|2γ) since ‖Lt − L0‖ = O(|t|γ) and ‖ξt − ξ0‖ = O(|t|γ). Since ξ0 = 1, the
second term is equal to

∫
eitaα . Moreover, aα(x) = 1

(2α−1)(x−1/2)α , hence∫ 1

1/2
eitaα(x) dLebY (x) = 2

∫ 1/2

0
exp(itx−α/(2α − 1)) dx

=
∫ 1

0
exp(it(y/2)−α/(2α − 1)) dy = φα(t2α/(2α − 1)). �

Corollary 3.6. Let Wα and An = An(α), Bn = Bn(α) be defined in Corollary 1.2. Then
((1− 2−α)SYn aα −An)/Bn →Wα.

Proof. For An ∈ R and Bn →∞, we have∫
eit(S

Y
n aα−An)/Bn = e−itAn/Bn

∫
Lt/Bn(1) = e−itAn/Bn

[
λ(t/Bn)n

∫
Pt/Bn(1) +O(σn)

]
= e−itAn/Bnλ(t/Bn)n(1 + o(1)) +O(σn).

If An and Bn are such that e−itAn/Bnλ(t/Bn)n converges to the characteristic function of a
random variable W , then the convergence of (SYn aα −An)/Bn to W follows.

Due to the previous proposition and the inequality 2γ > 1/α (or 2γ = 1/α if α = 1/2), we
get that λ((1 − 2−α)t) satisfies the same asymptotics as φα(t) described in Proposition 1.1.
This is enough to apply the proof of Corollary 1.2 in our setting, and obtain the statement
of the corollary. �

We now turn to the study of the Birkhoff sums of bα. Since this function is bounded, these
sums will satisfy the central limit theorem. However, we will only prove the following weaker
estimate, which is sufficient for our purposes.

Lemma 3.7. For α ≥ 1/2, the sequence (SYn bα − n
∫
bα dLebY )/

√
n lnn converges to 0 in

probability.

Proof. Let us define a new perturbed transfer operator L̃t acting on B1 the space of Lipschitz
functions, by L̃tu = L(eitbαu). It satisfies the same kind of properties as the operators defined
using aα. In particular, we can check that

∥∥∥L̃t − L∥∥∥ ≤ C|t| (the estimate is better for L̃t than
Lt because we can work on B1 instead of Bγ , the function bα being smooth enough). we can
check as in the proof of Proposition 3.5 that λ̃(t) =

∫
eitbα +O(t2). Since bα is bounded, this

gives λ̃(t) = 1 + itE(bα) +O(t2). Then

(19) E(eit(S
Y
n bα−nE(bα))/

√
n lnn) = e−itnE(bα)/

√
n lnnλ̃(t/

√
n lnn)n(1 + o(1)) +O(σn)

converges to 1, as desired. �
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To proceed, it is necessary to compute E(bα).

Lemma 3.8. We have
∫
bα dLebY = 1

1−α
2α−2
2α−1 if α 6= 1, and

∫
b1 dLebY = −2 ln 2.

Proof. On Jn = [1/2n+1, 1/2n], we have bα(x) = x−α − 2−(n−1)α

2α−1 (x− 1/2)−α. Hence,

(20)
∫
bα dLebY = 2

[∫ 1

1/2
x−α dx−

∞∑
n=1

2−(n−1)α

2α − 1

∫ 1/2n

1/2n+1

x−α dx

]
.

If α 6= 1, we obtain∫
bα dLebY = 2

[
1− (1/2)1−α

1− α
−
∞∑
n=1

2−(n−1)α

2α − 1
2−n(1−α) − 2−(n+1)(1−α)

1− α

]

=
2

1− α

[
1− 2α−1 − 2α

2α − 1
(1− 2α−1)

]
=

2
1− α

2α−1 − 1
2α − 1

.

If α = 1, we can compute in the same way (or use the computation for α 6= 1 and let α tend
to 1). �

Theorem 3.9. The Birkhoff sums of gα satisfy the following limit theorem. The limiting
distribution Wα has been defined in Corollary 1.2.

• If α > 1, then (1− 2−α)SYn gα/n
α →Wα.

• If 1/2 < α < 1, then (1− 2−α)(SYn gα − 2n/(1− α))/nα →Wα.
• If α = 1, then (2−1SYn g1 − n ln(n/2))/n→W1.
• If α = 1/2, then (1− 2−α)(SYn gα − 2n/(1− α))/

√
n lnn→Wα.

Proof. We write SYn gα = SYn aα+SYn (bα−E(bα))+nE(bα). The contribution of SYn (bα−E(bα))
is negligible by Lemma 3.7.

Assume first α > 1. Then the contribution of nE(bα)/nα also tends to 0, hence SYn gα
satisfies the same limit theorem as SYn aα. The conclusion follows by Corollary 3.6.

Assume now 1/2 ≤ α < 1. Corollary 3.6 gives the convergence

(21) (1− 2−α)
(
SYn aα −

n

(1− α)(1− 2−α)

)
/Bn →Wα,

where Bn = nα (resp.
√
n lnn) if α > 1/2 (resp. α = 1/2). Therefore, the theorem follows if

(22)
1

(1− α)(1− 2−α)
+ E(bα) =

2
1− α

.

This equality follows from Lemma 3.8.
Finally, for α = 1, the statement is a consequence of the limit behavior of SYn a1 given by

Corollary 3.6 and the integral of b1 given in Lemma 3.8. �

In the α < 1 case, the centering factor 2/(1−α) is the integral of gα, as should be expected
from Birkhoff theorem.

4. Inducing limit theorems

In this section, we deduce Theorem 2.1 from Theorem 3.9. We will rely on a general
argument ensuring that a limit theorem for an induced map implies a limit theorem for the
original map (see [ADU93, Zwe03, MT04, Gou07]).
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4.1. Limit theorems do not depend on the reference measure. The following theorem
has been proved by Eagleson [Eag76] and popularized by Zweimüller (in much more general
contexts, [Zwe07]).

Theorem 4.1. Let T : X → X be an ergodic probability preserving map. Let f : X → R be
measurable, let An ∈ R, let Bn tend to ∞ and let m′ be an absolutely continuous probability
measure. Then (Snf −An)/Bn converges in distribution to a random variable W with respect
to m if and only if it satisfies the same convergence with respect to m′.

Proof. For the proof, let us write M(n, g, φ) =
∫
g((Snf−An)/Bn)φ dm, where g is a bounded

Lipschitz function and φ is an integrable function.
We claim that

(23) M(n, g, φ)−M(n, g, φ ◦ T )→ 0 when n→∞.
Let us first prove this assuming that φ is bounded. Then

|M(n, g, φ)−M(n, g, φ ◦ T )| =
∣∣∣∣∫ (g(Snf(x)−An

Bn

)
− g

(
Snf(Tx)−An

Bn

))
φ(Tx) dm(x)

∣∣∣∣
≤ C

∫
min(1, |Snf(x)− Snf(Tx)|/Bn) dm

= C

∫
min(1, |f(x)− f(Tnx)|/Bn) dm

≤ C
∫

(min(1, |f |/Bn) + min(1, |f | ◦ Tn/Bn)) dm

≤ C
∫

min(1, |f |/Bn) dm.

This quantity converges to 0 when n→∞, since Bn →∞. This proves (23) for bounded φ.
In general, we have

(24) |M(n, g, ψ)| ≤ ‖g‖∞ ‖ψ‖L1 .

Hence, the general case of (23) follows by writing φ = φ1+φ2 with φ1 bounded and ‖φ2‖L1 ≤ ε:
we obtain lim sup |M(n, g, φ)−M(n, g, φ ◦ T )| ≤ 2ε.

Assume now that (Snf − An)/Bn converges in distribution with respect to m′ towards
W . Write dm′ = φdm with φ integrable (and of integral 1). Let g be a bounded Lipschitz
function. Then M(n, g, φ) → E(g(W )), hence M(n, g, φ ◦ T k) → E(g(W )) by (23). Hence,
M(n, g, Skφ/k)→ E(g(W )). Let ε > 0, and choose k large enough so that ‖Skφ/k − 1‖L1 ≤ ε.
Then

lim sup |M(n, g, 1)− E(g(W ))|
≤ lim sup |M(n, g, 1)−M(n, g, Skφ/k)|+ lim sup |M(n, g, Skφ/k)− E(g(W ))|.

The first term is at most ε by (24), while the second one is 0. Hence, M(n, g, 1) converges to
E(g(W )). This proves the convergence of (Snf −An)/Bn to W with respect to m.

Conversely, if (Snf − An)/Bn converges to W with respect to m, the convergence with
respect to m′ follows in the same way:

lim sup |M(n, g, φ)− E(g(W ))| ≤ lim sup |M(n, g, φ)−M(n, g, Skφ/k)|
+ lim sup |M(n, g, Skφ/k)−M(n, g, 1)|+ lim sup |M(n, g, 1)− E(g(W ))|.
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The third term tends to 0 by assumption, the first one tends to 0 by (23), and the second
one is at most C ‖Skφ/k − 1‖L1 , which can be made arbitrarily small by choosing k large
enough. �

4.2. Limit theorem do not depend on random indices.

Definition 4.2. A continuous function L : R∗+ → R∗+ is slowly varying if, for any λ > 0,
L(λx)/L(x) → 1 when x → ∞. A function f is regularly varying with index d if it can be
written as xdL(x) where L is slowly varying. A sequence an is regularly varying with index d
is there exists a function f , regularly varying with index d, such that an = f(n).

Theorem 4.3. Let T : X → X be a probability preserving map, and let α(n) and Bn be two
sequences of integers which are regularly varying with positive indexes. Let also An ∈ R. Let
f : X → R measurable be such that (Snf − An)/Bn converges in distribution to a random
variable W . Let also t1, t2, . . . be a sequence of integer valued measurable functions on X,
and let c > 0. Assume that either

(25)
tn − cn
α(n)

tends in probability to 0 and max
0≤k≤α(n)

|Skf |/Bn is tight

or

(26)
tn − cn
α(n)

is tight and max
0≤k≤α(n)

|Skf |/Bn tends in probability to 0.

Then the sequence (Stnf −Abcnc)/Bbcnc converges in distribution to W .

Proof. We will show that, under (25) or (26), there exists a sequence β(n) of integers such
that

(27) |tn − cn|/β(n) and max
0≤k≤2β(n)

|Skf |/Bn tend in probability to 0.

Let us show how it implies the theorem. It is sufficient to prove that

(28) m

{
x |
∣∣∣∣Stn(x)f − Sbcncf

Bbcnc

∣∣∣∣ ≥ ε}→ 0.

Abusing notations, we will omit the integer parts. The measure of the set in the last equation
is bounded by m{|tn − cn| ≥ β(n)} + m{∃i ∈ [γ(n), β(n)], |Scn+if − Scnf | ≥ εBcn}, where
γ(n) = −min(cn, β(n)). The measure of the first set tends to 0 by (27). If x belongs to
the second set, then either |Scnf − Scn+γ(n)f | ≥ εBcn/2 or |Scn+if − Scn+γ(n)f | ≥ εBcn/2.
In both cases, max0≤k≤2β(n) |Skf |(T cn+γ(n)x) ≥ εBcn/2. Since Bn is regularly varying, there
exists C such that Bcn/2 ≥ CBn. Hence, the measure of the second set is bounded by
m{max0≤k≤2β(n) |Skf | ≥ CεBn}, which also tends to 0 by (27).

To conclude the proof, it is therefore sufficient to construct β(n) satisfying (27).

Lemma 4.4. Let Yn be a sequence of real random variables tending in probability to 0. There
exists a non-decreasing sequence A(n)→∞ such that A(n)Yn still tends in probability to 0.

Proof. For k > 0, let N(k) be such that, for n ≥ N(k), P (|Yn| > 1/k2) ≤ 1/k. We can
also assume that N(k + 1) > N(k). Define A by A(n) = k when N(k) ≤ n < N(k + 1),
this sequence tends to infinity. Consider k ∈ N, and n ≥ N(k). Let l ≥ k be such that
N(l) ≤ n < N(l + 1). Then

(29) P (A(n)|Yn| > 1/k) ≤ P (A(n)|Yn| > 1/l) = P (|Yn| > 1/l2) ≤ 1/l = 1/A(n).

Hence, P (A(n)|Yn| > 1/k) tends to 0 for any k. �
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Lemma 4.5. Let Bn be a regularly varying sequence with positive index, and let Yn be a
sequence of real random variables such that Yn/Bn converges in probability to 0. Then there
exists a non-decreasing sequence φ(n) = o(n) such that Yn/Bφ(n) still converges in probability
to 0. We can also ensure φ(n+ 1) ≤ 2φ(n) for any n, and φ(n)→∞.

Proof. Applying the previous lemma to Yn/Bn, we obtain a non-decreasing sequence A(n)
tending to infinity such that A(n)Yn/Bn converges in probability to 0. Replacing A(n) with
min(A(n), log n) if necessary, we can assume A(n) = O(log n). Write Bn = ndL(n) where
L is slowly varying. Let φ(n) be the integer part of n/A(n)1/(2d), it satisfies the equation
φ(n+ 1) ≤ 2φ(n) since A is non-decreasing, tends to infinity since A(n) = O(log n), and

(30)
Yn
Bφ(n)

=
A(n)Yn
Bn

· Bn
A(n)Bφ(n)

.

The first factor tends to 0 in probability, while the second one is equivalent to

(31)
ndL(n)

A(n)(nd/A(n)1/2)L(n/A(n)1/(2d))
.

By Potter’s bounds [BGT87, Theorem 1.5.6], for any ε > 0, there exists C > 0 such that
L(n)/L(n/A(n)1/(2d)) ≤ CA(n)ε. Taking ε = 1/4, we obtain that the last equation is bounded
by C/A(n)1/4, and therefore tends to 0. �

We can now prove (27).
Assume first (25). Applying the last lemma to Yn = (tn − cn), we obtain a non-decreasing

sequence φ(n) = o(n) such that (tn − cn)/α(φ(n))→ 0. Let β(n) = α(φ(n))/2, then

(32) max
0≤k≤2β(n)

|Skf |/Bn =
Bφ(n)

Bn
max

0≤k≤α(φ(n))
|Skf |/Bφ(n).

The factor Bφ(n)/Bn tends to 0 since φ(n) = o(n) and Bn is regularly varying with positive
index. The second factor is tight by assumption. Hence, (32) tends in probability to 0, as
desired.

Assume now (26). Applying the last lemma to Yn = max0≤k≤α(n) |Skf |, we obtain a non-
decreasing sequence φ(n) = o(n) such that

(33) max
0≤k≤α(n)

|Skf |/Bφ(n) tends in probability to 0.

Let ψ(n) be the smallest integer p such that φ(p) ≥ n/2. Then φ(ψ(n)) ≥ n/2. Moreover,
φ(ψ(n) − 1) < n/2, hence φ(ψ(n)) < n by the inequality φ(k + 1) ≤ 2φ(k). Therefore,
Bn ≥ C−1Bφ(ψ(n)) since the sequence Bn, being regularly varying with positive index, is
increasing up to a constant multiplicative factor.

Let β(n) = α(ψ(n))/2, we get

(34) max
0≤k≤2β(n)

|Skf |/Bn = max
0≤k≤α(ψ(n))

|Skf |/Bn ≤ C max
0≤k≤α(ψ(n))

|Skf |/Bφ(ψ(n)).

This converges to 0 in probability by (33).
Since φ(ψ(n)) ≥ n/2 and φ(k) = o(k), we have n = o(ψ(n)). Since α is regularly varying

with positive index, this yields α(n) = o(β(n)). In particular, the tightness of (tn− cn)/α(n)
implies the convergence to 0 of (tn − cn)/β(n). We have proved (27) as desired. �
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4.3. Inducing limit theorems.

Theorem 4.6. Let T : X → X be an ergodic probability preserving map, let αn and Bn be
two sequences of integers which are regularly varying with positive indexes, let An ∈ R, and let
Y ⊂ X be a subset with positive measure. We will denote by mY := m|Y /m(Y ) the induced
probability measure.

Let φ : Y → N∗ be the return time of T to Y , and TY = T φ : Y → Y the induced map.
Consider a measurable function f : X → R and define fY : Y → R by fY =

∑φ−1
k=0 f ◦T

k. Let
us define the sequence of Birkhoff sums SYn fY =

∑n−1
k=0 fY ◦TY . Assume that (SYn fY −An)/Bn

converges in distribution (with respect to mY ) to a random variable W . Additionally, assume
either that

(35)
SYn φ− n/m(Y )

α(n)
tends in probability to 0 and max

0≤k≤α(n)
|SYk fY |/Bn is tight

or

(36)
SYn φ− n/m(Y )

α(n)
is tight and max

0≤k≤α(n)
|SYk fY |/Bn tends in probability to 0.

Then (Snf −Abnm(Y )c)/Bbnm(Y )c converges in distribution (with respect to m) to W .

Proof. Going to the natural extension, we can without loss of generality assume that T is
invertible. Abusing notations, we will write Bnm(Y ) instead of Bbnm(Y )c. We will prove that
(Snf − Anm(Y ))/Bnm(Y ) converges to W in distribution with respect to mY : this will imply
the desired result by Theorem 4.1, since mY is absolutely continuous with respect to m.

For x ∈ Y and N ∈ N, let n(x,N) = Card{1 ≤ i < N, T ix ∈ Y } denote the number of
visits of x to Y . By construction, it satisfies

(37) n(x,N) ≥ k ⇐⇒ SYk φ(x) < N.

Define also a function H on X by H(x) =
∑ψ(x)

k=1 f(T−kx), where ψ(x) = inf{n ≥ 1 | T−nx ∈
Y }. By construction, for x ∈ Y ,

(38) SNf(x) = SYn(x,N)fY (x) +H(TNx).

Moreover, H ◦TN/BNm(Y ) converges to 0 in distribution on X (since the measure is invariant
and Bn tends to infinity), and therefore on Y . To prove the theorem, it is therefore sufficient
to show that

(39)
SYn(x,N)fY −ANm(Y )

BNm(Y )
→W.

This will follow from Theorem 4.3 if we can check its assumptions for tN (x) = n(x,N) and
c = m(Y ) (the assumptions for the Birkhoff sums of fY are already part of the assumptions
of Theorem 4.6).

Birkhoff’s theorem ensures that n(x,N) = Nm(Y ) + o(N) for almost every x. Therefore,
along any subsequence Nk for which α(Nk) ≥ δNk with δ > 0, we get that m{|n(x,Nk) −
Nkm(Y )|/α(Nk)} converges in probability to 0, and there is nothing left to prove. Thus, it
is sufficient to consider only values of N along which α(N)/N → 0.
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For any a > 0, we have by (37)

m

{
n(x,N)−Nm(Y )

α(N)
≥ a

}
= m

{
SYNm(Y )+α(N)aφ < N

}
= m

{
SYNm(Y )+α(N)aφ− (Nm(Y ) + α(N)a)/m(Y )

α(Nm(Y ) + α(N)a)
< − α(N)

α(Nm(Y ) + α(N)a)
a

m(Y )

}
.

Since we are considering values of N for which α(N) = o(N), we have Nm(Y ) + α(N)a ≤
2Nm(Y ) if N is large enough. Since α is regularly varying with positive index, this yields

α(N)
α(Nm(Y )+α(N)a) ≥ C > 0. Hence,

(40) m

{
n(x,N)−Nm(Y )

α(N)
≥ a

}
≤ m

{
SYp(N)φ− p(N)/m(Y )

α(p(N))
< −Ca

}

for some integer p(N) which tends to infinity with N .
Let us now study m

{
n(x,N)−Nm(Y )

α(N) < −a
}

. Using again α(N) = o(N), we get Nm(Y ) −
α(N)a ≥ Nm(Y )/2 > 0 for large enough N . Hence,

m

{
n(x,N)−Nm(Y )

α(N)
< −a

}
= m

{
SYNm(Y )−α(N)aφ ≥ N

}
= m

{
SYNm(Y )−α(N)aφ− (Nm(Y )− α(N)a)/m(Y )

α(Nm(Y )− α(N)a)
≥ α(N)
α(Nm(Y )− α(N)a)

a

m(Y )

}
.

Since α(N)
α(Nm(Y )−α(N)a) ≥ C > 0, we obtain

(41) m

{
n(x,N)−Nm(Y )

α(N)
< −a

}
≤ m

{
SYq(N)φ− q(N)/m(Y )

α(q(N))
≥ Ca

}
,

for some q(N) tending to infinity with N .
The equations (40) and (41) together show that the tightness (resp. the convergence in

probability to 0) of (SYn φ − n/m(Y ))/α(n) implies the tightness (resp. the convergence in
probability to 0) of (n(x,N) − Nm(Y ))/α(N). We can therefore apply Theorem 4.3, to
conclude the proof. �

Example 1. The setting of [MT04].
Assume that SYn φ and SYn fY satisfy the central limit theorem (so that Bn =

√
n), and

that fY is integrable with
∫
fY = 0. By Birkhoff’s theorem, SYn fY = o(n) almost surely.

Hence, max0≤k≤n |Skf | = o(n) almost surely. The assumption (36) is therefore satisfied for
α(n) = Bn =

√
n.

Example 2. The setting of [CG06]: convergence with tight maxima.
By Birkhoff’s theorem, (SYn φ− n/m(Y ))/n converges in probability to 0. We obtain that,

if SYn fY /Bn converges in distribution and max0≤k≤n |SYk fY |/Bn is tight, the assumption (35)
is satisfied for α(n) = n.
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4.4. Application to the doubling map.

Proof of Theorem 2.1. Let α ≥ 1/2. Theorem 3.9 gives two explicit regularly varying se-
quences A′n and B′n such that (SYn gα − A′n)/B′n converges in distribution to Wα. We claim
that (Snfα−A′n/2)/B′n/2 also converges in distribution to Wα – this is the desired conclusion.

To prove it, we will apply Theorem 4.6 (and more precisely (36)) with α(n) =
√
n, to

Y = [1/2, 1]. The return time function φ is square-integrable and locally constant, hence
it satisfies the central limit theorem (in this specific case, the successive iterates φ ◦ T kY are
independent, hence this is the usual central limit theorem for i.i.d. random variables). The
tightness of (SYn φ− 2n)/

√
n therefore holds.

We have to prove that max0≤k≤
√
n |SYk gα|/B′n tends in probability to 0. Since gα is positive,

the maximum is attained for k =
√
n. Moreover, the distributional convergence of Theorem

3.9 shows that
• For α > 1, SYk gα/k

α is tight.
• For α = 1, SYk gα/(k ln k) is tight.
• For α < 1, SYk gα/k is tight.

In the three cases, this shows that SY√
n
gα/B

′
n tends in distribution to 0. This concludes the

proof. �
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