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IRMAR, Université de Rennes 1, Campus de Beaulieu, Bâtiment 22, Rennes Cedex 35042, France

E-mail: sebastien.gouezel@univ-rennes1.fr

Received 20 March 2007
Published 3 May 2007
Online at stacks.iop.org/Non/20/1491

Recommended by C Liverani

Abstract
We consider intermittent maps T of the interval, with an absolutely continuous
invariant probability measure µ. Kim showed that there exists a sequence of
intervals An such that

∑
µ(An) = ∞, but {An} does not satisfy the dynamical

Borel–Cantelli lemma, i.e. for almost every x, the set {n : T n(x) ∈ An} is
finite. If

∑
Leb(An) = ∞, we prove that {An} satisfies the Borel–Cantelli

lemma. Our results apply in particular to some maps T whose correlations are
not summable.

Mathematics Subject Classification: 37A25, 37C30, 37E05

1. Introduction

Let T be an ergodic probability preserving transformation of a space (X,µ), and let An be a
sequence of subsets ofX with

∑
µ(An) = +∞. It is an interesting question to know whether,

for almost every point x, T n(x) belongs to An infinitely often. By the classical Borel–Cantelli
lemma, this holds if the sets T −nAn are pairwise independent, but this condition is almost
never satisfied for dynamical systems, so one is led to looking for weaker conditions.

If T is invertible, taking An = T n(A) for some fixed set A gives a trivial counterexample
(and similar counterexamples also exist for noninvertible maps) . Hence, some regularity
conditions on the sets An are necessary. For uniformly hyperbolic dynamical systems,
Chernov and Kleinbock have solved the problem for lots of families of balls in [CK01]
(see also [Mau06]). The partially hyperbolic case is dealt with in [Dol04]. Concerning
nonuniformly hyperbolic (or expanding) systems, Kim has considered in [Kim07] a family of
interval maps with neutral fixed points and obtained partial results. Our goal in this paper is
to complete these results (for the same family of maps) and obtain a full description of the
situation.
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Consider some parameter α > 0 and let Tα : (0, 1] → (0, 1] be given by

Tα(x) =
{
x(1 + 2αxα) ifx ∈ (0, 1/2],
2x − 1 ifx ∈ (1/2, 1].

(1.1)

It preserves a unique (up to multiplication by a scalar) absolutely continuous measure µ, and
this measure has finite mass if and only if α < 1. Henceforth, we will only consider this case
and assume that µ is normalized to be a probability measure. We will also denote by Leb the
Lebesgue measure on (0, 1].

In [Kim07], Kim proves the following result: for any α < 1, there exist intervals An such
that

∑
µ(An) = ∞ but, for almost every x, T nα (x) ∈ An occurs only finitely many times. In

other words, the answer to the Borel–Cantelli problem in this setting is not always positive.
On the other hand, he proves that if An is a sequence of intervals in (d, 1] for some d > 0,
with

∑
µ(An) = ∞, and

• either An+1 ⊂ An for all n
• or α < (3 − √

5)/2

then, for almost every x, T nα (x) belongs to An infinitely many times. In this paper, we prove
the following theorem.

Theorem 1.1. Let α < 1, and let An be a sequence of intervals with
∑

Leb(An) = ∞. Then,
for almost every x, T nα (x) belongs to An infinitely many times.

The measures µ and Leb are uniformly equivalent on every interval (d, 1] (more precisely,
on every interval (d, 1], the density h of µ with respect to Leb is Lipschitz continuous and
bounded from above and below). Hence, this theorem implies the aforementioned result of
Kim.

The proof involves a measurement of how sets T −i
α Ai and T

−j
α Aj are ‘close to be

independent’. For the following informal description of the proof, assume for the sake of
simplicity that the intervalsAn are all contained in (1/2, 1]. The speed of decay of correlations
of the map Tα is exactly 1/nβ−1 for β = 1/α, which means that the best estimate we could
hope for is of the form

|µ(T −i
α Ai ∩ T −j

α Aj )− µ(Ai)µ(Aj )| � Cµ(Aj )

(j − i)β−1
, (1.2)

for j > i. This estimate indeed holds and implies theorem 1.1 when the sequence 1/nβ−1 is
summable, that is, when α < 1/2. However, it is not sufficient when 1/2 � α < 1, and we
need to know further terms in the asymptotics of the correlations. Here comes into play our
main technical tool, the renewal sequence of transfer operators, studied by Sarig in [Sar02].
Using the results in [Gou04a], we will prove the existence of a sequence cn converging to 1
such that

|µ(T −i
α Ai ∩ T −j

α Aj )− cj−iµ(Ai)µ(Aj )| � Cµ(Aj )

(j − i)β
. (1.3)

This sequence is of the form cn = 1 + c/nβ−1 +o(1/nβ−1) for some nonzero constant c, which
shows that (1.2) is indeed optimal. For the purposes of the Borel–Cantelli problem, (1.3)
is sufficient and will imply theorem 1.1 in all cases, since the sequence 1/nβ is summable
whenever α < 1.

On the technical level, the results in [Sar02, Gou04a] deal with spaces of Lipschitz
functions. However, the essential results are formulated in an abstract Banach spaces
framework. They can therefore also be applied to spaces of functions with bounded variation,
which is what is needed here to deal with the characteristic functions of intervals.
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Remark 1.2. Theorem 1.1 still holds for transformations with an even more neutral fixed
point, as long as there is still an absolutely continuous invariant probability measure. This is,
for example, the case if the fixed point is of the form x + x2(log x)2 or more generally for the
class of maps introduced by Holland in [Hol05]. However, the results of [Gou04a] are not
sufficient to prove this, and one needs to use results in the unpublished thesis [Gou04b], for
example, remark 2.4.8 or remark 2.4.11.

2. Abstract tools

First of all, let us recall a criterion implying the Borel–Cantelli property (proved, e.g. in [Spi64,
proposition 6.26.3]).

Theorem 2.1. Let Bn be sets of a probability space (X,µ) with
∑
µ(Bn) = ∞. Assume that

lim sup
n→∞

∑
0�i<j<n µ(Bi ∩ Bj)(∑n−1

j=0 µ(Bj )
)2 � 1

2
. (2.1)

Then almost every point of X belongs to infinitely many Bns.

We will apply this result to Bn = T −n
α (An). Hence, we need a good quantitative estimate

on µ(T −i
α Ai ∩ T

−j
α Aj ). This estimate will be provided by renewal sequences of transfer

operators, as used by Sarig in [Sar02]. For our purpose, the following abstract result will be
most useful. Let D̄ be the closed unit disc in C.

Theorem 2.2. Let BV be a Banach space, and let (Rn)n�1 be a sequence of continuous
linear operators on BV . Assume that, for some β > 1,

∑
k>n ‖Rk‖ = O(1/nβ). Hence,

R(z) = ∑
Rnz

n and R′(z) = ∑
nRnz

n−1 are well-defined operators on BV , for z ∈ D̄.
Assume moreover that 1 is a simple isolated eigenvalue of R(1) and that the corresponding
eigenprojector P satisfies PR′(1)P = γP for some γ 	= 0. Assume also that, for any
z ∈ D̄\{1}, I − R(z) is invertible on BV .

Let Tn = ∑∞
l=1

∑
k1+...+kl=n Rk1 . . . Rkl . This operator acts continuously on BV . Then

there exists a sequence cn ∈ C converging to 1 such that Tn − cnP/γ = O(1/nβ).

Proof. [Gou04a, theorem 5.4] (for large enough N ) shows that Tn converges to P/γ and that
there exists a sequence of operatorsQn such that Tn−PQnP = O(1/nβ). This theorem even
gives a closed form expression for Qn, but we will not need it.

Since P is a one-dimensional projection, there exists a complex number dn such that
PQnP = dnP . The convergence of Tn to P/γ shows that dn converges to 1/γ . We obtain
the theorem for cn = γ dn. �

In [Sar02, Gou04a], this theorem is applied by taking Rn to be the ‘first return transfer
operators’ to Y = (1/2, 1], acting on the space of Lipschitz continuous functions on Y . Here,
we will use the same operators Rn, but we will use for BV the space of functions of bounded
variation on Y .

3. Proof of the main theorem

In this entire section, we fix α ∈ (0, 1) and write T for Tα . Also let β = 1/α.
Let Y = (1/2, 1]; let φ : Y → N

∗ denote the first return time from Y to itself. Also let T̂
be the transfer operator associated with T , given for f ∈ L1(Leb) by

T̂ f (x) =
∑
Ty=x

f (y)/T ′(y). (3.1)
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LetRnf = T̂ n(1Y∩{φ=n}f ) and Tnf = 1Y T̂ n(1Y f ). These operators act onL1(Y ). Moreover,
Rn corresponds to considering the first returns at time n, while Tn considers all returns at time n.
It is therefore easy to check the following renewal equation (see, e.g. [Sar02, proposition 1]):

Tn =
∞∑
l=1

∑
k1+...+kl=n

Rk1 . . . Rkl . (3.2)

Let BV be the space of functions of bounded variation on Y . An element f of BV is a bounded
function on R, supported in Y , and its norm is

Var(f ) := sup
N∈N

sup
x0<...<xN

N−1∑
i=0

|f (xi+1)− f (xi)|, (3.3)

where the xis are real numbers (not necessarily in Y ). In particular, ‖f ‖L∞ � Var(f )/2.

Lemma 3.1. The operators Rn acting on BV satisfy the assumptions of theorem 2.2. The
spectral projection P corresponding to the eigenvalue 1 of R(1) is given by

Pf =
(∫
Y
f dLeb

)
µ(Y )

hY , (3.4)

where hY is the restriction to Y of the density h of the invariant probability measure µ.
Additionally, PR′(1)P = P/µ(Y ).

Proof. This lemma is proved in [Gou04a] for the action of Rn on the space L of Lipschitz
functions on Y . We will adapt this proof to the space BV .

The set {φ = n} is a subinterval In of Y , and T n is a diffeomorphism between In and Y .
Moreover, |In| ∼ c/nβ+1 for some constant c > 0, and the distortion of T n on In is uniformly
bounded, independently of n, in the following sense: there exists C > 0 such that, for all
x, y ∈ In, ∣∣∣∣1 − (T n)′(x)

(T n)′(y)

∣∣∣∣ � C|T nx − T ny|. (3.5)

These facts are easily proved and are folklore since Thaler’s work [Tha80] (see, e.g. [LSV99,
p 8] or [You99, section 6]). Let ψn : Y → In be the inverse of T n on In, so that

Rnf (x) = ψ ′
n(x)f (ψnx). (3.6)

Then

Var(Rnf ) � ‖ψ ′
n‖L∞Var(f ◦ ψn) + ‖f ‖L∞Var(ψ ′

n) � C|In|Var(f ). (3.7)

In particular,

‖Rn‖BV→BV � C

nβ+1
. (3.8)

As in theorem 2.2, we define for z ∈ D̄ an operatorR(z) = ∑
Rnz

n. By (3.8), this operator
is well defined on BV . Moreover, by [Gou04a, paragraph 6.3], R(z) also acts continuously on
the space L of Lipschitz continuous functions on Y and satisfies the following properties. First
of all, R(z) satisfies a Lasota–Yorke inequality between L and L1. Hence, by the theorem of
Ionescu-Tulcea and Marinescu, any eigenfunction of R(z) (for an eigenvalue of modulus 1)
which belongs to L1 belongs in fact to L. Moreover, for z ∈ D̄\{1}, I − R(z) is invertible on
L, while R(1) has a simple eigenvalue at 1, the corresponding eigenfunction being hY .

Let us now prove that, for any z ∈ D̄, the essential spectral radius of R(z) acting on BV
is < 1. This could be proved by mimicking the arguments in [Ryc83], but it is easier to refer
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to [Rue96, theorem B.1]. Indeed, this theorem shows that the essential spectral radius of R(z)
is bounded by ‖zφ/(T φ)′‖L∞ < 1.

Let z ∈ D̄\{1}. If I − R(z) were not invertible on BV , then there would exist a function
f ∈ BV such that R(z)f = f . The function f would in particular belong to L1; hence, by the
above argument, it would belong to L. This is a contradiction since I − R(z) is invertible on
L. In the same way, we check that R(1) has a simple eigenvalue at 1, the eigenfunction still
being the density of the invariant measure. Moreover, the eigenprojection is given by (3.4).

We finally compute PR′(1)P . The formula for Pf gives

PR′(1)Pf =
(∫
Y
R′(1)hY dLeb

)
µ(Y )

(∫
Y
f dLeb

)
µ(Y )

hY = γPf, (3.9)

for γ = (∫
Y
R′(1)hY dLeb

)
/µ(Y ). Moreover,∫

RnhY dLeb =
∫
T̂ n(1{φ=n}hY ) dLeb =

∫
1{φ=n}hY dLeb = µ{φ = n}. (3.10)

Summing these formulae over n gives∫
R′(1)hY dLeb =

∑
nµ{φ = n} =

∫
Y

φ dµ = 1 (3.11)

by Kac’s formula. Hence, γ = 1/µ(Y ). �

Corollary 3.2. There exist C > 0 and a sequence cn of complex numbers converging to 1
when n tends to infinity, such that, for any functions f, g supported in Y , for any n > 0,∣∣∣∣
∫
f · g ◦ T n dLeb − cn

(∫
f dLeb

)(∫
gdµ

)∣∣∣∣ � C‖f ‖BV‖g‖L1(Leb)

nβ
. (3.12)

Proof. We have∫
f · g ◦ T n dLeb =

∫
1Y T̂

n(1Y f )g dLeb =
∫
Tnf · g dLeb. (3.13)

Moreover, by (3.2), lemma 3.1 and theorem 2.2, there exist a sequence cn converging to 1 and
a constant C such that∥∥∥∥Tnf − cn

(∫
Y

f dLeb

)
hY

∥∥∥∥
BV

= ‖Tnf − cnµ(Y )Pf ‖BV � ‖f ‖BV ‖Tn − cnµ(Y )P ‖

� C ‖f ‖BV
nβ

.

Together with (3.13), this concludes the proof. �

Proof of theorem 1.1. First let An be a sequence of intervals contained in (1/2, 1], with∑
Leb(An) = ∞ (or, equivalently,

∑
µ(An) = ∞). Let Bn = T −nAn. Let j > i. Applying

corollary 3.2 to f = 1AihY , g = 1Aj and n = j − i, we get∣∣µ(Bi ∩ Bj)− cj−iµ(Bi)µ(Bj )
∣∣

=
∣∣∣∣
∫

1AihY · 1Aj ◦ T j−i dLeb − cj−i

(∫
1AihY dLeb

)(∫
1Aj dµ

)∣∣∣∣
� CVar(1AihY )Leb(Aj )

(j − i)β
.
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The function h is Lipschitz continuous on Y and bounded from below. In particular,
Leb(Aj ) � Cµ(Aj ) = Cµ(Bj ). We conclude

∣∣µ(Bi ∩ Bj)− cj−iµ(Bi)µ(Bj )
∣∣ � C ′µ(Bj )

(j − i)β
. (3.14)

Let ε > 0. Let K be such that, for n � K , |cn| � 1 + ε. Then

∑
0�i<j<n

µ(Bi ∩ Bj) �
∑

0�i<j<n
|cj−i |µ(Bi)µ(Bj ) +

n−1∑
j=1

(
j−1∑
i=0

C ′

(j − i)β

)
µ(Bj )

�
∑

0�i<j<n
(1 + ε)µ(Bi)µ(Bj ) +

n−1∑
j=1


K sup

p∈N

|cp| +
∞∑
p=1

C ′

pβ


µ(Bj ).

Therefore,∑
0�i<j<n µ(Bi ∩ Bj)(∑n−1

j=0 µ(Bj )
)2 � 1 + ε

2
+


K sup

p∈N

|cp| +
∞∑
p=1

C ′

pβ


 1∑n−1

j=0 µ(Bj )
. (3.15)

Since
∑

j∈N
µ(Bj ) = ∞, this upper bound is at most 1/2 + ε for large enough n. We have

proved that

lim sup
n→∞

∑
0�i<j<n µ(Bi ∩ Bj)(∑n−1

j=0 µ(Bj )
)2 � 1

2
. (3.16)

By theorem 2.1, this concludes the proof in this case.
Consider now An an arbitrary sequence of intervals in (0, 1] with

∑
Leb(An) = ∞. Let

A′
n = T −1(An+1)∩ (1/2, 1]. Since Leb(A′

n) = Leb(An)/2, this sequence of intervals satisfies∑
Leb(A′

n) = ∞, and A′
n is a subinterval of (1/2, 1]. The first part of the proof shows

that, for almost every x, T nx belongs to A′
n infinitely often. However, if T n(x) ∈ A′

n, then
T n+1(x) ∈ An+1. This concludes the proof. �
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