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1. Introduction

Braid monoids are finitely presented monoids with a rich combinatorics, mainly based 
on the existence of a normal form for their elements. Consider the braid monoid B+

n

on n strands: it has n − 1 Artin generators which represent the elementary twists of 
two neighbor strands. The Artin length of an element x ∈ B+

n is the number m such 
that x can be written as a product of m Artin generators. The decomposition is not 
unique, yet m is well defined. The Garside normal form, also called the greedy normal 
form, arises from the following fact: there exists a finite subset S of B+

n , that not only 
generates B+

n , but also such that any x ∈ B+
n writes uniquely as a product x1 · . . . ·xk of 

elements of S, provided that the sequence (x1, . . . , xk) satisfies a condition of the form 
x1 → x2 → · · · → xk, where x → y is some binary relation on S.

Fix an integer j and pick an element x in B+
n at random among elements of Artin 

length m, with m large. Then consider the j first elements (x1, . . . , xj) in the normal 
form of x. This is a complex random object: the sequence (x1, . . . , xj) has no Markovian 
structure in general, and the law of (x1, . . . , xj) depends on m. However, some regularity 
appears when considering the limit with m → ∞. Indeed, the limit law of the sequence 
(x1, . . . , xj) is Markovian, which already brings qualitative information on the typical 
behavior of “large random elements” in a braid monoid. First motivated by this kind 
of question, we have introduced in a previous work [1] the notion of uniform measure 
at infinity for braid monoids. The marginals of the uniform measure give back the limit 
form of the law of (x1, . . . , xj) when m → ∞, hence yielding an appropriate notion of 
uniform measure for “infinite braid elements”. The notion of uniform measure at infinity 
allowed us to settle open questions regarding the behavior of the normal form of large 
braids, asked by Gebhardt and Tawn in [2].

The following questions were left open in [1]: how much of these techniques extend to 
more general monoids? Furthermore, on top of the qualitative information brought by the 
Markovian properties of the uniform measure at infinity, can we also obtain asymptotics 
on some combinatorial statistics? Here is a typical statistics for which precise asymptotics 
might be expected. Beside the Artin length of elements in B+

n , the height of x ∈ B+
n is 

the length k of the normal form (x1, . . . , xk) of x. What is the typical behavior of the 
ratio m/k when k is the height of a random element in B+

n of Artin length m large? 
Assume that this ratio is close to some constant γ. Is there a limit law for the quantity √
k(m/k−γ) when m → ∞? Hence, we were left with the two following natural extensions 

to carry over: 1) extension to other monoids than braid monoids; and 2) asymptotics for 
combinatorial statistics.

A natural candidate for the generalization of braid monoids is the class of Artin–Tits 
monoids. This class encompasses both braid monoids and trace monoids—the later are 
also called heap monoids [3] and free partially commutative monoids [4] in the literature. 
Contrasting with braid monoids, a trace monoid is not a lattice for the left divisibility 
order; in particular, it has no Garside element. Actually, trace monoids and braid monoids 
can be seen as two typical representatives of Artin–Tits monoids of type FC, which 
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is a subclass of Artin–Tits monoids already large enough to provide a good view on 
Artin–Tits monoids.

In this paper, we develop the notion of uniform measure at infinity for Artin–Tits 
monoids. More generally, we consider the class of multiplicative measures at infinity for 
an Artin–Tits monoid, among which is the uniform measure at infinity. We first de-
fine the boundary at infinity ∂A of an Artin–Tits monoid A as the topological space 
of “A-infinite elements”. It has the property that A ∪ ∂A is a compactification of A. 
Multiplicative measures at infinity are probability measures on ∂A with a purely alge-
braic definition. The combinatorics of the monoid is reflected within these measures. For 
instance, the explicit expression for the uniform measure at infinity involves the root of 
smallest modulus of the Möbius polynomial of the monoid A. The Möbius polynomial 
encodes some information on the combinatorics of the monoid. Its root of smallest mod-
ulus is the inverse of the growth rate of the monoid. By analogy, multiplicative measures 
at infinity play in an Artin–Tits monoid a role which corresponds to the role of the 
standard Bernoulli measures in a free monoid, as illustrated below:

Σ∗: monoid 
of Σ-words

Σ∞: space of 
infinite Σ-sequences

m: Bernoulli 
measure on Σ∞

A: Artin–Tits 
monoid

∂A: boundary 
at infinity of A

m: multiplicative 
measure on ∂A

The uniform measure at infinity describes the qualitative behavior of a large random 
element of the monoid. As for braid monoids, the first j elements in the normal form of a 
random element x ∈ A of large size converge in law toward a Markov chain, for which the 
initial distribution and the transition matrix are explicitly described. This Markov chain 
corresponds to the marginal of the uniform measure at infinity. Multiplicative measures 
play an analogous role when large elements, instead of being picked uniformly at random, 
are chosen at random with multiplicative weights associated to the elementary generators 
of the monoid.

A second device that we introduce is the conditioned weighted graph (CWG) asso-
ciated with an Artin–Tits monoid. This is essentially a non-negative matrix encoding 
the combinatorics of the monoid, together with weights attributed to the generators of 
the monoid. CWG are reminiscent of several tools and techniques found elsewhere in the 
literature and can almost be considered as folklore; we show in particular the relation-
ship with the classical notion of survival process. Our contribution consists in applying 
spectral methods to derive asymptotics for CWG, including a concentration result with 
a convergence in law and a Central Limit Theorem.

We have thus two devices for studying the asymptotic combinatorics of Artin–Tits 
monoids. On the one hand, the uniform measure at infinity has a purely algebraic def-
inition, and naturally encodes some information on the combinatorics of the monoid. 
On the other hand, the CWG associated with the monoid entirely encodes the combi-
natorics of the monoid and analytical methods can be used to obtain information on 
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its asymptotic. Our program consists in using the analytical results for CWG in order 
to 1) derive asymptotic results for large random elements in the monoid; and 2) de-
rive additional information regarding multiplicative measures at infinity. In particular, 
the set of finite probabilistic parameters that entirely describe multiplicative measures 
at infinity is shown to be homeomorphic to a standard simplex, and by this way we 
prove the existence of the uniform measure at infinity in all cases, which is a non-trivial 
task.

The paper brings original contributions in the area of pure combinatorics of Artin–
Tits monoids. In particular, the following results are of interest per se: 1) If an Artin–Tits 
monoid is irreducible, its graph of proper simple elements is strongly connected—
this graph contains as vertices all the simple elements of the monoid, excepted the 
unit element and the Garside element if it exists. 2) We introduce a generalized 
Möbius transform and we give an explicit form of its inverse for general Artin–Tits 
monoids. 3) We give a simple characterization of monoids of type FC among Artin–Tits 
monoids.

Finally, we observe that our methods also apply outside the framework of Artin–Tits 
monoids. We isolate a working framework where the chain of arguments that we use can 
be repeated mutatis mutandis. We illustrate this working framework by giving examples 
of monoids fitting into it, yet living outside the class of Artin–Tits monoids. Of partic-
ular interest is the class of dual braid monoids and their generalizations for Artin–Tits 
monoids of spherical type. We show that they fit indeed into our general framework.

Outline In Section 2, we first recall the basic definitions and some results regarding 
the combinatorics of Artin–Tits monoids. The notion of normal form of elements of an 
Artin–Tits monoid leads us to the definition of the boundary at infinity of the monoid. 
We describe the relationship between measures at infinity and Möbius transform on 
the monoid. We particularize then our study to the class of multiplicative measures at 
infinity, among which is the uniform measure at infinity. We characterize multiplica-
tive measures at infinity by a finite number of probabilistic parameters with suitable 
normalization conditions, and we state a uniqueness result for the uniform measure.

In Section 3 we introduce a technical device: the notion of conditioned weighted graph 
(CWG). Based on the Perron–Frobenius theory for primitive matrices, we observe that 
a natural notion of weighted measure at infinity can be attached to any CWG.

In Section 4, we show how the theory of CWG applies in particular to Artin–Tits 
monoids. The two notions of uniform measure at infinity introduced above are related to 
each other. We obtain in particular a parametrization of all multiplicative measures at 
infinity for an Artin–Tits monoid, and the existence of the uniform measure at infinity.

Section 5 is devoted to the asymptotic study of combinatorial statistics, first in the 
general case of CWG, and then applied to the case of Artin–Tits monoids. Using spectral 
methods, we state a concentration result and a Central Limit Theorem in the framework 
of CWG, relatively to weak convergences. We state the corresponding convergence results 
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for the asymptotic combinatorics of Artin–Tits monoids, yielding very general answers 
to the questions raised in the first part of this introduction, for braids.

Finally, in Section 6, we extract some minimal properties that were needed to carry our 
analysis. Provided that these minimal properties hold indeed, one states the correspond-
ing results for more general monoids. We also give examples of such monoids outside the 
class of Artin–Tits monoids, including the class of dual monoids of Artin–Tits monoids 
of spherical type.

2. Probability measures on the boundary of Artin–Tits monoids

In this section we review some background on the combinatorics of Artin–Tits 
monoids. It turns out that the notion of Garside family is of great interest, both from a 
theoretical and from a computational viewpoint. Therefore we focus on Garside subsets 
for Artin–Tits monoids and related notions: simple elements and the associated normal 
form in particular. We shall see later that the probabilistic viewpoint also takes great ad-
vantage of these notions, which were originally devised mainly to explore combinatorial 
aspects of Artin–Tits monoids.

2.1. Definitions and examples of Artin–Tits monoids

2.1.1. Definition of Artin–Tits monoids
Let a finite, non-empty alphabet Σ be equipped with a symmetric function � : Σ ×Σ �→

{2, 3, 4, . . .} ∪ {∞}, i.e., such that �(a, b) = �(b, a) for all (a, b) ∈ Σ × Σ. Associate to 
the pair (Σ, �) the binary relation I on Σ, and the monoid A = A(Σ, �) defined by the 
following presentation [5]:

A =
〈
Σ
∣∣ ababa . . . = babab . . . for (a, b) ∈ I

〉+
,

where ababa . . . and babab . . . both have length �(a, b),

and I =
{
(a, b) ∈ Σ × Σ

∣∣ a �= b and �(a, b) < ∞
}
.

Note that the values of � on the diagonal of Σ ×Σ are irrelevant. Such a monoid is called 
an Artin–Tits monoid.

2.1.2. Examples of Artin–Tits monoids
The free monoid generated by Σ is isomorphic to A(Σ, �) with �(·, ·) = ∞. The free 

Abelian monoid generated by Σ is isomorphic to A(Σ, �) with �(·, ·) = 2. More generally, 
considering A(Σ, �) with � ranging only over {2, ∞}, but assuming possibly both values, 
yields the class of so-called heap monoids on Σ, also called trace monoids on Σ. They 
are the monoids analogous to the so-called right-angled Artin groups [6].

Braid monoids are also specific instances of Artin–Tits monoids. Indeed, for every 
integer n ≥ 3, the braid monoid on n strands is the monoid B+

n generated by n − 1
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elements σ1, . . . , σn−1 with the following relations [7]: the braid relations σiσjσi = σjσiσj

for 1 ≤ i ≤ n − 2 and j = i + 1, and the commutativity relations σiσj = σjσi for 
1 ≤ i, j ≤ n − 1 and |i − j| > 1. Hence B+

n is isomorphic to A(Σ, �) by choosing 
Σ = {σ1, . . . , σn−1} and �(σi, σj) = 3 for |i − j| = 1 and �(σi, σj) = 2 for |i − j| > 1.

2.1.3. Length and orders
Let A = A(Σ, �) be an Artin–Tits monoid. The length of x ∈ A, denoted by |x|, is the 

length of any word in the equivalence class x, with respect to the congruence defining A
(it does not depend on the choice of the word as the relations do not modify the length).

In particular, elements of Σ are characterized as those x ∈ A such that |x| = 1. It 
follows that, when considering an Artin–Tits monoid A, we may refer to the pair (Σ, �)
such that A = A(Σ, �). In particular, elements of Σ are called generators of A.

The monoid A is equipped with the left and with the right divisibility relations, 
denoted respectively by ≤l and by ≤r, which are both partial orders on A, defined by:

x ≤l y ⇐⇒ ∃z ∈ A y = x · z ,

x ≤r y ⇐⇒ ∃z ∈ A y = z · x .

We also denote by <l and <r the associated strict orders.
The results stated in this paragraph and the next one are proved in [8, Ch. IX, 

Prop. 1.26]. Every Artin–Tits monoid A is both left and right cancellative, meaning:

∀x, y, z ∈ A (z · x = z · y =⇒ x = y) ∧ (x · z = y · z =⇒ x = y).

The partially ordered set (A, ≤l) is a lower semilattice, i.e., any finite set has a greatest 
lower bound. Furthermore, any ≤l-bounded set has a ≤l-least upper bound.

We denote by 
∧

l X and by 
∨

l X the greatest ≤l-lower bound and the least upper 
bound of a subset X ⊆ A, if they exist. We use the standard notations a ∧l b =

∧
l{a, b}

for a, b ∈ A. We also write a ∨l b =
∨

l{a, b} when defined. The analogous notations
∨

r, 
etc., are defined with respect to the right divisibility relation.

Unlike braid monoids, (A, ≤l) is not necessarily a lattice. For instance, distinct gener-
ators a and b of a free monoid have no common multiple and thus {a, b} has no ≤l-upper 
bound.

If a and b are two generators of A, then a ∨l b exists if and only if �(a, b) < ∞, if and 
only if a ∨r b exists, and then a ∨l b = a ∨r b = ababa . . ., where the rightmost member 
has length �(a, b). More generally, let S ⊆ Σ be a set of generators of A. Then it follows 
from [8, Ch. IX, Proposition 1.29] that the following conditions are equivalent: (i) S is 
≤l-bounded; (ii)

∨
l S exists; (iii) S is ≤r-bounded; (iv)

∨
r S exists. If these conditions 

are fulfilled, the element ΔS =
∨

l S has the following property:

∀x ∈ A x ≤l ΔS ⇐⇒ x ≤r ΔS . (2.1)
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It implies in particular:

ΔS =
∨

r
S, and ∀x ∈ S x ≤r ΔS . (2.2)

Furthermore, it follows from [8, Ch. IX, Cor. 1.12] that the sub-monoid of A generated 
by S is isomorphic to the Artin–Tits monoid A(S, �

∣∣
S×S

). In particular:

ΔS ∈ 〈S〉, the sub-monoid of A generated by S. (2.3)

If X is a subset of A, we say that X is closed under existing ∨l to mean that, if a and 
b are elements of X such that a ∨l b exists in A, then a ∨l b ∈ X.

2.1.4. Artin–Tits monoids of spherical type
The monoid A = A(Σ, �) is said to have spherical type if 

∨
l Σ exists. In this case, the 

partially ordered set (A, ≤l) is a lattice. The element 
∨

l Σ is denoted by Δ and is called 
the Garside element of A.

An equivalent definition, often found in the literature, is the following. Let C = C(Σ, �)
be the presented group with Σ as set of generators, and with the same relations given 
in Section 2.1.1 in the definition of A(Σ, �), together with all the relations s2 = 1 for s
ranging over Σ. The group C is the Coxeter group [9] associated with A. Then A has 
spherical type if and only if C is finite, see [5, Th. 5.6].

For instance, it is well known that the braid monoid B+
n defined as in Section 2.1.2

has spherical type, with Garside element given by Δ = (σ1 · σ2 · . . . · σn−1) · (σ1 · σ2 · . . . ·
σn−2) · . . . · (σ1 · σ2) · σ1. A heap monoid is of spherical type if and only if it is a free 
Abelian monoid.

2.1.5. Irreducibility of Artin–Tits monoids and Coxeter graph

Definition 2.1. An Artin–Tits monoid A is called irreducible if it is not isomorphic to 
the direct product of two Artin–Tits monoids.

For instance, braid monoids and free monoids are all irreducible. A free Abelian 
monoid is irreducible if and only if it has only one generator. For a heap monoid 
M = A(Σ, �) with �(·, ·) ∈ {2, ∞}, define D = {(a, b) ∈ Σ × Σ 

∣∣ a = b or �(a, b) = ∞}. 
Then M is irreducible if and only if the undirected graph (Σ, D) is connected.

More generally, the irreducibility is related to the Coxeter graph of the monoid, defined 
as follows.

Definition 2.2. The Coxeter graph of an Artin–Tits monoid A(Σ, �) is the undirected 
graph G = (Σ, E), with E = {(s, t) ∈ Σ × Σ 

∣∣ s = t or �(s, t) ≥ 3 or �(s, t) = ∞}.

As observed in [5, § 7.1], we have the following result.
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Proposition 2.3. An Artin–Tits monoid is irreducible if and only if its Coxeter graph is 
connected.

2.2. Normal sequences and normal form of elements

We fix an Artin–Tits monoid A = A(Σ, �).

2.2.1. Garside subsets
A subset G of A is a Garside subset of A if it contains Σ and if it is closed under 

existing ∨l and downward closed under ≤r, the latter meaning:

∀x ∈ G ∀y ∈ A y ≤r x =⇒ y ∈ G.

The following result is proved in [10].

Proposition 2.4. Any Artin–Tits monoid admits a finite Garside subset.

The class of Garside subsets of A is obviously closed by intersection, hence A admits 
a smallest Garside subset, which we denote throughout the paper by S. The subset S
is the closure of Σ under ≤r and existing ∨l. Proposition 2.4 tells us that the set S thus 
constructed is finite. By construction, S contains Σ ∪ {e}, where e is the unit element 
of the monoid.

Definition 2.5. The elements of the smallest Garside subset of an Artin–Tits monoid are 
called its simple elements.

Assume that A is of spherical type. Then, according to [8, Ch. IX, Prop. 1.29], the set 
S coincides with the set of left divisors of Δ, which is also the set of right divisors of Δ. 
Hence: Δ =

∨
l Σ =

∨
r Σ =

∨
l S =

∨
r S, and Δ is the maximum of the sub-lattice (S, ≤l).

2.2.2. Artin–Tits monoids of type FC
If the smallest Garside subset of an Artin–Tits monoid is closed under left divisibility, 

then the combinatorics of the monoid is a bit more simple to study.

Definition 2.6. An Artin–Tits monoid A, with smallest Garside subset S, is of type FC
if S is closed under left divisibility.

It is proved in [11, Th. 2.85] that this definition is indeed equivalent to the one found 
in the literature [12,8]. In particular, heap monoids and braid monoids are monoids of 
type FC.

Not all Artin–Tits monoids are of type FC: see an example in Section 2.3.4 below.
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2.2.3. Normal sequences
Most of what is known on the combinatorics of Artin–Tits monoids is based on the 

notion of normal sequence.

Definition 2.7. Let A be an Artin–Tits monoid with smallest Garside subset S. A se-
quence (x1, . . . , xk), with k ≥ 1, of elements of A is normal if it satisfies:

1. xi ∈ S for all i = 1, . . . , k.
2. xi =

∨
l
{
ζ ∈ S

∣∣ ζ ≤l xi · . . . · xk

}
for all i = 1, . . . , k.

A fundamental property of normal sequences is the following.

Lemma 2.8. Let A be an Artin–Tits monoid.

1. A sequence (x1, . . . , xk), with k ≥ 1, of simple elements of A is normal if and only 
if it satisfies:

xi =
∨

l

{
ζ ∈ S

∣∣ ζ ≤l xi · xi+1
}

for all i = 1, . . . , k − 1.

2. A sequence (x1, . . . , xk), with k ≥ 1, of simple elements of A is normal if and only 
if all sequences (xi, xi+1) are normal, for i ∈ {1, . . . , k − 1}.

Proof. Point 1 is proved in [10], and point 2 follows at once from point 1. �
Let x → y denote the relation x =

∨
l
{
ζ ∈ S

∣∣ ζ ≤ x · y
}
, defined for (x, y) ∈ S × S. 

Point 2 of Lemma 2.8 reduces the study of normality of sequences to the study of the 
binary relation → on S.

The unit element e of A satisfies:

∀x ∈ S x → e, ∀x ∈ S e → x ⇐⇒ x = e. (2.4)

Hence e can only occur at the end of normal sequences, and e is the only element of S
satisfying the two properties in (2.4).

Dually, if A is of spherical type, the Garside element Δ =
∨

l Σ satisfies:

∀x ∈ S Δ → x, ∀x ∈ S x → Δ ⇐⇒ x = Δ. (2.5)

Hence Δ can only occur at the beginning of normal sequences. Obviously, Δ is the only 
simple element satisfying the two properties in (2.5).

2.2.4. Charney graph
We define the Charney graph (C , →) of an Artin–Tits monoid A as follows. If A is 

of spherical type, we put C = S \ {Δ, e}, where Δ is the Garside element of A. If not, 
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we put C = S \ {e}. In all cases, the edge relation → is the restriction to C × C of the 
relation → defined above on S × S.

The relevance of this definition will appear in Section 2.2.7 below.

2.2.5. Normal form of elements and height
Let A be an Artin–Tits monoid. Then, for every element x ∈ A with x �= e, there 

exists a unique integer k ≥ 1 and a unique normal sequence (x1, . . . , xk) of non-unit 
simple elements such that x = x1 · . . . · xk. This sequence is called the normal form of x. 
By convention, we decide that (e) is the normal form of the unit element of A.

The integer k is called the height of x, and we denote it:

k = τ(x).

The following result is standard [8, Chap. III, Prop. 1.36]. It shows that comparing 
elements can be done after ‘cutting’ at the right height.

Lemma 2.9. Let A be an Artin–Tits monoid, and let S be the smallest Garside subset 
of A. Then:

1. If (x1, . . . , xk) is the normal form of and element x ∈ A, then x1 · . . . · xj =
∨

l{z ∈
Sj
∣∣ z ≤l x} for all j ∈ {1, . . . , k}, where Sj = {u1·. . .·uj

∣∣ (u1, . . . , uj) ∈ S×· · ·×S}.
2. The height τ(x) of an element x ∈ A is the smallest integer j ≥ 1 such that x ∈ Sj.

The normal form of elements does not behave ‘nicely’ with respect to the monoid 
multiplication. For instance, the multiplication of an element x ∈ A, of normal form 
(x1, . . . , xk), by an element y ∈ A, yields in general an element z of normal form 
(z1, . . . , zk′) with no simple relation between xj and zj .

It is even possible that the multiplication x · σ of x ∈ A with a generator σ ∈ Σ, 
satisfies τ(x · σ) < τ(x) (see an example in Section 2.3.4). This contrasts with monoids 
of type FC, where τ(x · σ) ≥ τ(x) always holds.

2.2.6. Conditions for normality of sequences
Aiming at studying the connectedness of the Charney graph in the next section, one 

needs theoretical tools to construct normal sequences. Such tools exist in the literature. 
They include the letter set, the left set and the right set of an element x ∈ A, which are 
respectively defined as the following subsets of Σ:

L(x) = {σ ∈ Σ
∣∣ ∃y, z ∈ A x = y · σ · z},

L(x) = {σ ∈ Σ
∣∣ σ ≤l x},

R(x) = {σ ∈ Σ
∣∣ σ ≤r x or (∃η ∈ L(x) σ �= η and �(σ, η) = ∞)}.
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The letter set L(x) of x is the set of letters that appear in some word representing x
or, equivalently, in any word representing x, as relations in Artin–Tits monoids use the 
same letters on both sides of the relation.

Lemma 2.10. Let A = A(Σ, �) be an Artin–Tits monoid. The subsets

G = {x ∈ A
∣∣ ∀σ ∈ Σ ∀y, z ∈ A x �= y · σ2 · z},

I = {x ∈ A
∣∣ ∀σ, η ∈ L(x) σ �= η =⇒ �(σ, η) < ∞},

are Garside subsets of A.

Proof. It is proved in [8, Theorem 6.27] that G is a Garside subset. Since I is clearly 
downward closed under ≤r and contains Σ, we focus on proving that I is closed under ∨l. 
In passing, we also note that I is downward closed under ≤l.

Seeking a contradiction, assume the existence of x, y ∈ I such that z = x ∨l y exists in 
A but z /∈ I. Without loss of generality, we assume that z is such an element of minimal 
length and that the element w = x ∧l y is maximal among all the elements of the set 
{u ∧l v

∣∣ u, v ∈ I and u ∨l v = z}. Consequently, a contradiction, and therefore a proof 
of the lemma, is obtained by proving the following claim:

(†) There exist elements x′ and y′ in I such that x′ ∨l y
′ = z and w <l (x′ ∧l y

′).

Since z /∈ {x, y}, observe that neither x ≤l y nor y ≤l x hold, whence w <l x and 
w <l y. Thus we pick σ, η ∈ Σ such that w · σ ≤l x and w · η ≤l y. Then w · σ ≤l z and 
w · η ≤l z, which implies that σ and η have a common ≤l-upper bound, and thus σ ∨l η

exists by the remarks made in Section 2.1.3, and it is equal to σησ · · · .
Since I is ≤l-downward closed, and since x and y belong to I, the elements w · σ and 

w · η both belong to I. It follows that �(a, b) < ∞ for all pairs (a, b) with a �= b and 
a, b ∈ L(w) ∪ {σ, η}. Therefore, putting t = w · (σ ∨l η), we have that t ∈ I. Since t also 
writes as t = (w · σ) ∨l (w · η), it is clear that t ≤l z.

Hence, the element u = t ∨lx exists, and u ≤l z. If u = z, then setting x′ = x and y′ = t

gives us w <l (w·σ) ≤l (x′∧ly
′) and z = x′∨ly

′. If u <l z, then by minimality of z we have 
u ∈ I, and therefore setting x′ = u and y′ = y gives us w <l (w ·η) ≤l (t ∧ly) ≤l (x′∧ly

′), 
z = (x ∨l y) ≤l (x′ ∨l y

′) and (x′ ∨l y
′) ≤l z, whence z = x′ ∨l y

′. This completes the proof 
of the claim and of the lemma. �

We obtain the following sufficient criterion for detecting normal sequences.

Corollary 2.11. Let A be an Artin–Tits monoid.

1. If x and y are two non-unit simple elements of A satisfying L(y) ⊆ R(x), then (x, y)
is normal.
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2. If (x1, . . . , xk), with k ≥ 1, is a sequence of non-unit simple elements of A satisfying 
L(xi+1) ⊆ R(xi) for all i ∈ {1, . . . , k − 1}, then it is normal.

Proof. Point 2 follows from point 1, in view of Lemma 2.8, point 2. To prove point 1, let 
x and y be as in the statement and let u =

∨
l
{
z ∈ S

∣∣ z ≤l x · y
}
; we prove that x = u.

Clearly, x ≤l u. Seeking a contradiction, assume that u �= x. Then there exists z ∈ S
such that x <l z ≤l x · y. Let σ ∈ Σ be such that x · σ ≤l z. Then x · σ ≤l x · y and thus 
σ ≤l y since A is left cancellative, hence σ ∈ L(y) ⊆ R(x).

Let G and I be the Garside subsets of A introduced in Lemma 2.10. Discussing the 
property σ ∈ R(x), one has: (1) if σ ≤r x then x · σ /∈ G, and (2) if �(σ, η) = ∞ for some 
η ∈ L(x) with η �= σ, then x · σ /∈ I. In both cases, we have thus x · σ /∈ G ∩ I. Since 
G and I are both closed under ≤l, so is G ∩ I, and thus z /∈ G ∩ I since x · σ ≤l z. But 
S ⊆ G ∩ I according to Lemma 2.10, which contradicts that z ∈ S and completes the 
proof. �
2.2.7. Connectedness of the Charney graph

Recall that we have defined the Charney graph of an Artin–Tits monoid in Sec-
tion 2.2.4. We aim to prove the following result.

Theorem 2.12. The Charney graph of an irreducible Artin–Tits monoid is strongly con-
nected.

We postpone the proof of this theorem to the end of the section, and prove two 
intermediate results first.

Lemma 2.13. Let A = A(Σ, �) be an Artin–Tits monoid, let S be a subset of Σ such that 
the element ΔS =

∨
l S exists, and let σ ∈ Σ \ S.

1. Let L∗(σ, S) = {η ∈ S
∣∣ �(σ, η) = 2}. Then:

L(σ · ΔS) = {σ} ∪ L∗(σ, S), R(σ · ΔS) ⊇ S ∪ {η ∈ Σ
∣∣ �(σ, η) = ∞}.

2. If �(σ, η) < ∞ for all η ∈ S, then σ · ΔS is simple.

Proof. 1. The rightmost inclusion follows from the following two observations: the rela-
tion R(σ · ΔS) ⊇ {η ∈ Σ 

∣∣ �(σ, η) = ∞} is immediate from the definitions stated at the 
beginning of Section 2.2.6, and the relation R(σ·ΔS) ⊇ S derives from the property (2.2), 
Section 2.1.3.

For the leftmost equality, we first observe that the inclusion {σ} ∪L∗(σ, S) ⊆ L(σ ·ΔS)
is obvious. For the converse inclusion, the relation L(σ · ΔS) ⊆ L(σ · ΔS) is immediate, 
and L(ΔS) = S follows from (2.3), hence we obtain L(σ · ΔS) ⊆ {σ} ∪ S. Thus, it is 
enough to prove that η /∈ L(σ · ΔS) for every η ∈ S such that �(σ, η) > 2.
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Suppose, for the sake of contradiction, that η ≤l σ ·ΔS for such an element η. Then σ
and η have the common ≤l-upper bound σ ·ΔS . This implies that �(σ, η) < ∞ according 
to the remarks of Section 2.1.3, and that σ∨l η ≤l σ ·ΔS . Furthermore, σ ·η ·σ ≤l (σ∨l η)
since �(σ, η) > 2, whence σ · η · σ ≤l σ ·ΔS , and thus η · σ ≤l ΔS . Since σ /∈ S, the latter 
relation is impossible.

2. Let S denote the set of simple elements of A. Then for all η ∈ S, it follows from 
the relation �(σ, η) < ∞ that σ ∨l η ∈ S, and from the relation σ · η ≤r (σ ∨l η) that 
σ · η ∈ S. Since σ · ΔS =

∨
l{σ · η

∣∣ η ∈ S}, it implies that σ · ΔS ∈ S. �
For the next result, we follow the same lines as in the proof of [13, Proposition 4.9].

Proposition 2.14. Let A be an irreducible Artin–Tits monoid, and let S be the smallest 
Garside subset of A. Let a and b be non-unit elements of S. If either A does not have 
spherical type, or a = Δ, or b �= Δ, then there exists some normal sequence (x1, . . . , xk)
such that a = x1 and b = xk.

Proof. Let G be the Coxeter graph of A (see Section 2.1.5), and let dG(·, ·) denote the 
graph metric in G. For each set S ⊆ Σ, we denote by c(S) the number of connected 
components of S in the graph G, and by dG(·, S) the sum 

∑
s∈S dG(·, s).

First, observe that if L(b) = Σ, then b is a ≤l-upper bound of Σ, hence A has spherical 
type and Δ = b since Δ =

∨
l Σ. According to our assumptions, this only occurs with 

a = Δ, and then the normal sequence (Δ) has first and last letters a and b. Hence, we 
assume that L(b) �= Σ.

Next, since a �= e, the set R(a) is non-empty. Hence, let ρ ∈ R(a) be some node of G. 
Since (a, ρ) is a normal sequence according to Corollary 2.11, point 1, we assume without 
loss of generality that a is an element of Σ.

Now, we put S = L(b), and we discuss different cases. We take into account that G is 
connected, which follows from the assumption that A is irreducible via Proposition 2.3. 
We also note that 

∨
l S exists, since b is a ≤l-upper bound of S.

1. If dG(a, S) = 0, then S = {a}, hence L(b) ⊆ R(a) and therefore the sequence (a, b)
is normal by Corollary 2.11, point 1.

2. If c(S) = |S| and dG(a, S) > 0. Then the set S is G-independent and contains some 
vertex σ �= a.
Let n = dG(σ, a) ≥ 1, and let s0, s1, . . . , sn be a path in G such that s0 = a, sn = σ. 
Since S is G-independent, the vertex sn−1 does not belong to S. Consider the sets:

Q = {sn−1} ∪ {t ∈ S
∣∣ dG(t, sn−1) ≥ 2}, T = {t ∈ S

∣∣ �(sn−1, t) < ∞}.

We note that ΔT =
∨

l T exists since 
∨

l S exists. Lemma 2.13, point 1, proves:

L(sn−1 · ΔT ) ⊆ Q, R(sn−1 · ΔT ) ⊇ T ∪ {t ∈ S : �(sn−1, t) = ∞} = S,
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and Lemma 2.13, point 2, proves that sn−1 · ΔT ∈ S. By construction, the set Q is 
G-independent, whence c(Q) = |Q|. Finally, we observe:

dG(a, S) − dG(a,Q) =
∑
t∈S

1
(
dG(t, sn−1) = 1

)
dG(a, t) − dG(a, sn−1)

≥ dG(a, σ) − dG(a, sn−1) = 1,

and thus dG(a, Q) < dG(a, S).
Since we have observed that L(sn−1 · ΔT ) ⊆ Q, we may assume as an induction 
assumption on dG(a, S) the existence of a normal sequence (w1, . . . , wj) such that 
w1 = a and wj = sn−1 · ΔT . Since we have also observed that R(wj) ⊇ S = L(b), it 
follows from Corollary 2.11, point 1, that (wj , b) is a normal sequence, and thus the 
sequence (w1, . . . , wj , b) is also normal according to Lemma 2.8, point 2.

3. If c(S) < |S|, then, for every subset T of Σ, let p(T ) be the maximal cardinal of a 
connected component of T in G, and let q(T ) be the number of connected components 
of T with this maximal cardinal.
Consider some connected component S′ of S in G of maximal cardinal, and let 
η0 /∈ S be some neighbor of S′ in G. Such a vertex η0 exists since S �= Σ. In 
addition, consider the sets:

Q = {η0} ∪ {s ∈ S
∣∣ dG(η0, s) ≥ 2}, T = {t ∈ S

∣∣ �(η0, t) < ∞}.

As in case 2 above, we note that ΔT =
∨

l T exists since 
∨

l S exists, and we apply 
Lemma 2.13 to obtain:

L(η0 · ΔT ) ⊆ Q, R(η0 · ΔT ) ⊇ S, η0 · ΔT ∈ S.

It is obvious that p(Q) ≤ p(S). Moreover, since η0 is a neighbor of S′, S′ ∩Q � S′. 
Therefore, since S′ has been chosen of maximal cardinal among the connected com-
ponents of S on the one hand, and since |S′| ≥ 2 by the assumption c(S) < |S|
on the other hand, at least one of the inequalities p(Q) < p(S) and q(Q) < q(S)
holds. It implies that 

(
p(Q), q(Q)

)
<
(
p(S), q(S)

)
holds in the lexicographical order 

on N ×N. We may thus assume as an induction hypothesis (using Case 2 if p(Q) = 1) 
the existence of a normal sequence (w1, . . . , wj) such that w1 = a and wj = η0 ·ΔT . 
As in case 2 above, we use that L(b) = S ⊆ R(wj) to conclude that (wj , b), and thus 
(w1, . . . , wj , b) are normal sequences.

The proof is complete. �
Theorem 2.12 follows at once from Proposition 2.14.
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2.3. Finite measures on the completion of Artin–Tits monoids

2.3.1. Boundary at infinity of an Artin–Tits monoid
Let A be an Artin–Tits monoid, with smallest Garside subset S. Elements of A \ {e}

are in bijection with normal sequences according to the results recalled in Section 2.2.5. 
Hence, they identify with finite paths in the graph (S \ {e}, →). It is therefore natural 
to introduce boundary elements of A as infinite paths in the very same graph.

In order to uniformly treat elements and boundary elements of the monoid, we extend 
the notion of normal form as follows. If x is an element of A, with height k ≥ 1 and 
normal form (x1, . . . , xk), we put xj = e for all integers j > k. The sequence (xj)j≥1
thus obtained is the generalized normal form of x.

We say that an infinite sequence (xk)k≥1 of elements of S is normal if xk → xk+1 holds 
for all k ≥ 1. Among infinite normal sequences, those hitting e at least once actually 
stay in e forever because of (2.4), and these sequences correspond bijectively to the usual 
elements of A. And those normal sequences never hitting e correspond to the boundary 
elements of A.

Definition 2.15. The generalized elements of an Artin–Tits monoid A are the infinite 
normal sequences of simple elements of A. Their set is called the completion of A, and 
is denoted by A. The boundary elements of A are the generalized elements that avoid 
the unit e. Their set is called the boundary at infinity of A, or shortly boundary of A, 
and is denoted by ∂A. Identifying elements of A with their generalized normal form, we 
have thus: A = A ∪ ∂A.

Both sets ∂A and A are endowed with their natural topologies, as subsets of the 
countable product S × S × · · · , where S is the smallest Garside subset of A, and with 
the associated Borelian σ-algebras.

For every element x of A, of height k and with normal form (x1, . . . , xk), the Garside 
cylinder of base x is the open and closed subset of A defined by:

Cx = {y = (yj)j≥1 ∈ A
∣∣ y1 = x1, . . . , yk = xk}.

Note that Ce = {e}.
The partial ordering ≤l is extended on A by putting, for x = (xk)k≥1 and y = (yk)k≥1:

x ≤l y ⇐⇒ (∀k ≥ 1 ∃j ≥ 1 x1 · . . . · xk ≤l y1 · . . . · yj).

For every x ∈ A, the visual cylinder ↑ x ⊆ ∂A and the full visual cylinder ⇑ x ⊆ A are:

↑ x = {y ∈ ∂A
∣∣ x ≤l y}, ⇑ x = {y ∈ A

∣∣ x ≤l y}.

Both spaces A and ∂A are metrisable and compact, and A is the topological closure 
of A. More generally, for any x ∈ A, the full visual cylinder ⇑ x is the topological closure 
in A of {y ∈ A 

∣∣ x ≤l y}.
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The collection 
{
Cx
∣∣ x ∈ A

}
∪ {∅} is closed under intersection and generates the 

σ-algebra on A. Therefore, any finite measure ν on A is entirely determined by the 
family of values

(
ν(Cx)

)
x∈A.

The following lemma provides an alternative description of the relation x ≤l y for 
x ∈ A and y ∈ A.

Lemma 2.16. Let x be an element of an Artin–Tits monoid A, and let k = τ(x). Let 
y = (yj)j≥1 be a generalized element of A. Then x ≤l y in A if and only if x ≤l y1 ·. . .·yk
in A. In particular, if y ∈ A, then the relation x ≤l y holds in A if and only if it holds 
in A.

Proof. Let x ∈ A, k = τ(x) and y ∈ A with y = (yj)j≥1. Assume that x ≤l y. Then 
there is an integer j ≥ k such that x ≤l y

′, with y′ = y1 · . . . · yj . Applying Lemma 2.9, 
point 1, we obtain that x ≤l y1 · . . . · yk, which is what we wanted to prove. The converse 
implication also follows from Lemma 2.9: if x ≤l y1 · . . . · yk then x1 · . . . ·xj ≤l y1 · . . . · yj
for all j ≤ k, and x1 · . . . · xj = x ≤l y1 · . . . · yk ≤l y1 · . . . · yj for all j > k. �
2.3.2. Relating Garside cylinders and visual cylinders

Visual cylinders are natural from the point of view of the algebraic structure of the 
monoid, whereas Garside cylinders have a more operational presentation as they rely on 
the normal form of elements. Since both points of view are interesting, it is important 
to relate the two kinds of cylinders to one another, which we do now.

Given any two Garside cylinders Cx and Cy, either Cx ∩ Cy = ∅ or Cx ⊆ Cy or Cy ⊆ Cx. 
Furthermore, for all x ∈ A, the Garside cylinder Cx is contained into the full visual 
cylinder ⇑ x. Consequently, for every open set A ⊆ A, i.e., every union of sets of the 
form ⇑ x with x ∈ A, there exists a unique set B such that A is the disjoint union of 
the Garside cylinders Cx for x ∈ B. We say that B is a Garside base of A.

A case of special interest is that of the set A =⇑ x, where x ∈ A.

Definition 2.17. Let A be an Artin–Tits monoid. For every x ∈ A, we denote by A[x]
the Garside base of the set ⇑ x, i.e., the unique set such that the full cylinder ⇑ x has 
the following decomposition as a disjoint union:

⇑ x =
⋃

y∈A[x]

Cy . (2.6)

Note that, equivalently, we might define the set A[x] as

A[x] =
{
y ∈ A ∩ ⇑ x

∣∣ ∀z ∈⇑ x Cy ⊆ Cz ⇒ y = z
}
. (2.7)

It follows from Lemma 2.18 below that the set A[x] is finite, and therefore that the 
disjoint union of (2.6) is finite.
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Lemma 2.18. Let A be an Artin–Tits monoid. For every x ∈ A and y ∈ A[x], it holds: 
τ(y) ≤ τ(x).

Proof. From x ≤l y with y = (yj)j≥1, we know from Lemma 2.16 that x ≤ y1 · . . . · yk
with k = τ(x), whence the result. �

If x ∈ S, then every y ∈ A[x] has height exactly 1, and thus A[x] = {y ∈ S
∣∣ x ≤l y}. 

However, if x is of height at least 2, elements y ∈ A[x] may satisfy the strict inequality 
τ(y) < τ(x). This is illustrated in Section 2.3.4. This situation, valid for general Artin–
Tits monoids, contrasts with the case of specific monoids such as heap monoids and braid 
monoids, or more generally monoids of type FC; this is investigated in Section 2.3.4.

In addition, the very definition of A[x] has immediate consequences when considering 
finite measures on A.

Proposition 2.19. Let ν be a finite measure on the completion of an Artin–Tits monoid A. 
Then the measures of full visual cylinders and of Garside cylinders are related by the 
following formulas, for x ranging over A:

ν(⇑ x) =
∑

y∈A[x]

ν(Cy). (2.8)

Assume given a finite measure ν for which the values ν( ⇑ x) are known—this will hold 
indeed for a family of probability measures that we shall construct later in Sections 2.4
and 4. Let f, h : A → R be the functions defined by f(x) = ν( ⇑ x) and h(x) = ν(Cx). 
Then, in view of (2.8), expressing the quantities h(x) = ν(Cx) by means of the values 
f(x) = ν( ⇑ x) amounts to inverting the linear operator T∗ defined by:

T∗h(x) =
∑

y∈A[x]

h(y). (2.9)

Giving an explicit expression for the inverse of T∗ is the topic of the next section.

2.3.3. Graded Möbius transform
Measure-theoretic reasoning provides a hint for guessing the right transformation. Let 

ν be a finite measure defined on the boundary ∂A of an Artin–Tits monoid A = A(Σ, �). 
For x an element of A, we put:

E(x) =
{
u ∈ A

∣∣ τ(x · u) ≤ τ(x)
}
\ {e},

D(x) = {≤l-minimal elements of E(x)}.
(2.10)

The set E(x) may be empty, in which case D(x) = ∅ as well.
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We claim that, for every x ∈ A, the following equality of sets holds:

Cx =⇑ x \
⋃

u∈D(x)

⇑ (x · u). (2.11)

Proof of (2.11). Let (x1, . . . , xk) be the normal form of x, and let y ∈ Cx. Let (yj)j≥1 be 
the extended normal form of y, with yj = xj for all j ∈ {1, . . . , k}. Hence x ≤l (y1 ·. . .·yj)
for all j ≥ k, and thus y ∈⇑ x according to the definition of the partial ordering ≤l on A
given in Definition 2.15. Let u ∈ A be such that τ(x · u) ≤ τ(x) and y ∈⇑ (x · u). It 
follows from Lemma 2.16 that x · u ≤l y1 · . . . · yk, and since y1 · . . . · yk = x it implies 
that u = e. Hence u /∈ D(x) and the ⊆ inclusion in (2.11) follows.

Conversely, let y be an element of the right-hand set of (2.11), and let (yj)j≥1 be the 
generalized normal form of y. Let us prove that y1 · . . . ·yk = x, which entails that y ∈ Cx. 
For this, we use the characterization given in Lemma 2.9, point 1:

y1 · . . . · yk =
∨

l
U, with U = {z ∈ Sk

∣∣ z ≤l y}.

We have x ∈ U since x ≤l y and τ(x) = k by assumption. Let z =
∨

l U and, seeking 
a contradiction, assume that x �= z. Then z = x · u with u �= e and τ(x · u) ≤ τ(x), thus 
u ∈ D(x). But then y ∈⇑ (x · u), contradicting the assumption on y. �

We observe that for any elements u, u′ ∈ D(x), one has that (x · u) ∨l (x · u′) exists 
in A if and only if u ∨l u

′ exists in A, if and only if ⇑ (x · u) ∩ ⇑ (x · u′) �= ∅. If these 
conditions are fulfilled, we have:

⇑ (x · u)∩ ⇑ (x · u′) =⇑
(
x · (u ∨l u

′)
)
,

and the latter generalizes to intersections of the form ⇑ (x · u1) ∩ · · · ∩ ⇑ (x · uk)
for u1, . . . , uk ∈ D(x). Taking the measure of both members in (2.11), and applying the 
inclusion-exclusion principle, which is basically the essence of Möbius inversion formulas, 
we obtain thus:

ν(Cx) = ν(⇑ x) −
∑

D�D(x), D �=∅
(−1)|D|+1ν

(
⇑
(
x ·
∨

l
D
))
,

where D � D(x) means that D is a subset of D(x) and that 
∨

l D exists in A. Observing 
that ∅ � D(x) with 

∨
l ∅ = e, we get:

ν(Cx) =
∑

D�D(x)

(−1)|D|ν
(
⇑
(
x ·
∨

l
D
))
. (2.12)

We are thus brought to introduce the following definition.
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Definition 2.20. Let A be an Artin–Tits monoid. The graded Möbius transform of a 
function f : A → R is the function Tf : A → R, defined as follows for every x ∈ A:

Tf(x) =
∑

D�D(x)

(−1)|D|f
(
x ·
∨

l
D
)
,

where D(·) has been defined in (2.10) and D � D(x) means that D is a subset of D(x)
such that 

∨
l D exists in A.

The inverse graded Möbius transform of a function h : A → R is the function T∗h :
A → R, defined as follows for every x ∈ A:

T∗h(x) =
∑

y∈A[x]

h(y),

where A[·] has been defined in (2.7).

Section 2.3.4 below details the expression of the graded Möbius transform for some 
specific examples. Before that, we bring additional information on the range of summa-
tion in the definition of the graded Möbius transform.

Lemma 2.21. In an Artin–Tits monoid A, for any x ∈ A, one has D(x) = D(u), where 
u is the last simple element in the normal form of x.

Proof. Let (x1, . . . , xk) be the normal form of x. We first show the following:

∀y ∈ S D(x) ∩ ↓ y = ∅ ⇐⇒ D(xk) ∩ ↓ y = ∅, (2.13)

where ↓ y = {z ∈ A 
∣∣ z ≤l y}. Indeed, for y ∈ S, one has according to Lemma 2.9:

xk → y ⇐⇒ x =
∨

l
{z ∈ Sk

∣∣ z ≤l x · y}
⇐⇒ E(x) ∩ ↓ y = ∅ ⇐⇒ D(x) ∩ ↓ y = ∅.

Applying the above equivalence with x = xk on the one hand, and with x on the other 
hand, yields (2.13). From (2.13), and since D(x) and D(xk) are two ≤l-antichains, we 
deduce that D(x) = D(xk), as expected. �

With Definition 2.20, we reformulate (2.12) as follows.

Proposition 2.22. Consider a finite measure ν on the completion of an Artin–Tits 
monoid A. For every x ∈ A, let f(x) = ν( ⇑ x) and let h(x) = ν(Cx). Then h is 
the graded Möbius transform of f .

If ν and ν′ are two finite measures such that ν( ⇑ x) = ν′( ⇑ x) for all x ∈ A, then 
ν = ν′.
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Proof. The first part of the statement is a simple rephrasing of (2.12). For the second 
part, if ν( ⇑ x) = ν′( ⇑ x) for all x ∈ A, then ν(Cx) = ν′(Cx) for all x ∈ A. We have 
already observed that this implies ν = ν′. �

Propositions 2.17 and 2.22 show that the transformations T and T∗ are inverse of each 
other when operating on functions f and h of the form f(x) = ν( ⇑ x) and h(x) = ν(Cx). 
We actually have the following more general result, of a purely combinatorial nature.

Theorem 2.23. Let A be an Artin–Tits monoid. Then the graded Möbius transform T
and the inverse graded Möbius transform T∗ are two endomorphisms inverse of each 
other, defined on the space of functions A → R.

We first prove the following lemma.

Lemma 2.24. Let A be an Artin–Tits monoid, let x, y ∈ A, and let:

B(x, y) =
{
D � D(x)

∣∣ y ∈ A
[
x ·
∨

l
D
]}

.

Then: ∑
D∈B(x,y)

(−1)|D| = 1(x = y). (2.14)

Proof. For x, y ∈ A, we put:

K(x, y) =
{
z ∈ A

∣∣ x · z ≤l y and τ(x · z) ≤ τ(x)
}
,

K(x, y) =
{
D � D(x)

∣∣ ∨
l D ∈ K(x, y)

}
.

Then we claim:

∑
D∈K(x,y)

(−1)|D| =
{

1, if y ∈ Cx ,
0, otherwise.

(2.15)

Let us first prove (2.15). If x ≤l y does not hold, then K(x, y) = K(x, y) = ∅ and (2.15)
is true. Hence we assume that x ≤l y. Let (y1, . . . , yk) be the normal form of y. We put 
y′ = y1 · . . . · yj , where j = min{i ≥ 1 

∣∣ x ≤l y1 · . . . · yi}, and thus x ≤l y
′ holds, with 

equality if and only if y ∈ Cx. We observe that K(x, y) is a lattice: this follows from 
Lemma 2.9; and thus K(x, y) is a Boolean lattice.

We discuss two cases. If x = y′, then K(x, y) = {e} and K(x, y) = {∅}, and thus (2.15)
is true. However, if x �= y′, then Lemma 2.16 proves that τ(y′) ≤ τ(x). Hence, the set 
K(x, y′) contains a minimal non-unit element z. This element satisfies {z} ∈ K(x, y), 
which is thus a non-trivial Boolean lattice. Hence (2.15) is true in all cases.
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We now come to the proof of (2.14). The case where x = y or ¬(x ≤l y) holds is 
easily settled, hence we assume below that x <l y. In particular, observe that y �= e. 
Let (y1, . . . , yk) be the normal form of y, and let ỹ = y1 · . . . · yk−1. Then we have 
K(x, ̃y) ⊆ K(x, y) and B(x, y) = K(x, y) \ K(x, ̃y). Therefore, using (2.15), we have:∑

D∈B(x,y)

(−1)|D| = A(x, y) −A(x, ỹ), (2.16)

with A(u, v) =
{

1, if v ∈ Cu,
0, otherwise.

If ỹ belongs to the Garside cylinder Cx, so does y. Conversely, since x �= y, if y ∈ Cx
then the normal form of x is a strict prefix of the normal form of y, and therefore ỹ ∈ Cx. 
Together with (2.16) this completes the proof of (2.14). �
Proof of Theorem 2.23. Let h : A → R be given. We compute, exchanging the order of 
summation:

T
(
T∗(h)

)
(x) =

∑
y∈A

h(y)
( ∑
D∈B(x,y)

(−1)|D|
)

= h(x),

where we have put B(x, y) =
{
D � D(x) 

∣∣ y ∈ A[x ·
∨
D]
}
, and where the last equality 

follows from Lemma 2.24.
Let E denote the vector space of functions A → R. Then T is an endomorphism of E, 

and it remains to prove that T is injective. Let f be a non-zero function f ∈ E, let k
be the smallest integer such that f is non-zero on Sk, and let x be a maximal element 
of Sk such that f(x) �= 0. For all non-empty sets D � D(x), we have x <l x ·

∨
l D, and 

x ·
∨

l D ∈ S� for some � ≤ k, hence f(x ·
∨

l D) = 0. It follows that T(f)(x) = f(x) �= 0, 
which completes the proof. �
2.3.4. Examples and particular cases

In this section, we first develop the expression of the graded Möbius transform for 
monoids of type FC, pointing out the simplification that arises in this case. By contrast, 
we introduce then the example of an Artin–Tits monoid which is not of type FC. Finally, 
we give the expression of the graded Möbius transform and its inverse evaluated on the 
simple elements of a general Artin–Tits monoid.

Let us first examine the case of Artin–Tits monoids of type FC.

Proposition 2.25. Let A be an Artin–Tits monoid of type FC. Then, for every x ∈ A, 
the sets A[x] and D(x) have the following expressions:

A[x] = {y ∈ A
∣∣ x ≤l y and τ(y) ≤ τ(x)}

= {y ∈ A
∣∣ x ≤l y and τ(y) = τ(x)}

D(x) = {σ ∈ Σ
∣∣ τ(x · σ) = τ(x)}.
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Proof. Let x, y ∈ A such that x ≤l y and τ(y) ≤ τ(x). Let k = τ(y), and let (y1, . . . , yk)
be the normal form of y. The following statement is proved in [11, Prop. 2.95]:

(‡) Let A be an Artin–Tits monoid of type FC. For all a, b ∈ A such that a ≤l b,

we have τ(a) ≤ τ(b).

It follows from (‡) that τ(x) = τ(y) = k, i.e., that x ≤l y1 · . . . ·yk and that ¬(x ≤l y1 · . . . ·
yj) for all j ≤ k−1. This proves the inclusion A[x] ⊇ {y ∈ A 

∣∣ x ≤l y and τ(y) ≤ τ(x)}, 
whereas the converse inclusion follows from Lemma 2.18. Then, the claim (‡) also proves 
the inclusion {y ∈ A 

∣∣ x ≤l y and τ(y) ≤ τ(x)} ⊆ {y ∈ A 
∣∣ x ≤l y and τ(y) = τ(x)}, 

and the converse inclusion is immediate.
Finally, assume that D(x) is non-empty, and let z be an element of D(x). Since z �= e, 

we can write z = σ ·z′ for some σ ∈ Σ and z′ ∈ A. Since x ≤l x ·σ ≤l x ·z and k = τ(x) =
τ(x · z), it follows from (‡) that k = τ(x · σ), i.e., that x · σ ∈ A[x]. By minimality of z, 
we must have z = σ. It follows that D(x) ⊆ {σ ∈ Σ 

∣∣ x ·σ ∈ A[x]}, whereas the converse 
inclusion is immediate. Recalling that A[x] = {y ∈ A 

∣∣ x ≤l y and τ(y) = τ(x)}, the 
proof is complete. �

Recalling that D(x) = D(u) according to Lemma 2.21, where u is the last element in 
the normal form of x, it follows that the graded Möbius transform, in a monoid of type 
FC, has the following form:

Tf(x) =
∑

D�Σ : u·(
∨

l D)∈S
(−1)|D|f

(
x ·
∨

l
D
)
.

Compared to monoids of type FC, general Artin–Tits monoids have the pathology 
that the smallest Garside subset S is not necessarily closed by left divisibility. It entails 
that the strict inequality τ(x · σ) < τ(x) may occur. This is illustrated in the following 
example, where we point out two consequences of this fact.

Let A be the Artin–Tits monoid defined below, known as the Artin–Tits groups of 
type affine Ã2—see, for instance, [14]. It admits the set S described below as smallest 
Garside subset:

A = 〈a, b, c
∣∣ aba = bab, bcb = cbc, cac = aca〉

S = {e, a, b, c, ab, ac, ba, bc, ca, cb, aba, bcb, cac, abcb, bcac, caba}.

Hence, the normal forms of x = abc and y = abcb are, respectively, (ab, c) and (abcb), 
which shows that τ(x · b) = 1 < τ(x) = 2. The Hasse diagram of (S, ≤l) is depicted on 
Fig. 1.

As a first consequence of S not being closed by left divisibility, the Garside cylinders 
Cy may not be disjoint, for x ∈ A fixed and for y ranging over {z ∈ A 

∣∣ x ≤l z and τ(z) ≤
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Fig. 1. Hasse diagram of (S, ≤l) for the Artin–Tits monoid A = 〈a, b, c | aba = bab, bcb = cbc, cac = aca〉. 
In this example, S is not closed by left divisibility since, for instance, caba ∈ S whereas cab /∈ S.

τ(x)}. Indeed, consider again x = abc, of height 2, and y = abcb and y′ = abcba, of height 
1 and 2 respectively, the latter since the normal form of y′ is (abcb, a). Then both y and 
y′ belong to the set described above; yet, Cy ⊆ Cy′ and thus Cy ∩ Cy′ �= ∅. Whereas, 
combining Proposition 2.17 and Proposition 2.25, one sees that this situation cannot 
happen in monoids of type FC.

As a second consequence of S not being closed by left divisibility, the sets D(x) are 
not in general subsets of Σ, but of S itself. Indeed, one has for instance: D(ab) = {a, cb}, 
contrary to the second statement of Proposition 2.25 for monoids of type FC.

We note however that D(e) ⊆ Σ in any Artin–Tits monoid. Therefore, evaluated at e, 
the graded Möbius transform has the following expression:

Tf(e) =
∑
D�Σ

(−1)|D|f
(∨

l
D
)
. (2.17)

Consider in particular the case of a function f of the form f(x) = p|x|, for some real 
number p. Then:

Tf(e) =
∑
D�Σ

(−1)|D|p|
∨

l D|. (2.18)

This is a polynomial expression in p. We shall see in Section 4.1.2 that this polynomial 
corresponds to the Möbius polynomial of the monoid, which is a simplified version of the 
Möbius function in the sense of Rota [15] associated with the partial order.

Furthermore, if x is simple in a general Artin–Tits monoid, then A[x] has the following 
expression: A[x] = {y ∈ S

∣∣ x ≤l y}. Therefore, restricted to S, the inverse graded 
Möbius transform takes the following form:

for x ∈ S T∗h(x) =
∑

y∈S : x≤ly

h(y). (2.19)
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2.4. Multiplicative probability measures on the boundary

In this section, we introduce a particular class of measures defined on the boundary 
of Artin–Tits monoids, the class of multiplicative measures. Measures defined on the 
boundary of an Artin–Tits monoid A can be seen as those measures ν on the completion 
A with support in ∂A, i.e., such that ν(x) = 0 for all x ∈ A. In Section 2.4.2, we entirely 
characterize multiplicative measures through a finite family of probabilistic parameters. 
Each multiplicative measure induces a natural finite Markov chain. Finally, we investigate 
in Section 2.4.3 the particular case of the uniform measure.

2.4.1. Multiplicative measures and valuations
Multiplicative measures on the boundary of Artin–Tits monoids are probability mea-

sures that generalize the classical Bernoulli measures on infinite sequences of letters.

Definition 2.26. Let A be an Artin–Tits monoid. A finite measure ν on the boundary 
∂A is multiplicative if it satisfies the two following properties:

∀x ∈ A ν( ↑ x) > 0

∀x ∈ A ∀y ∈ A ν( ↑ (x · y)) = ν( ↑ x) · ν( ↑ y).

A valuation on A is any function f : A → (0, +∞) satisfying f(x · y) = f(x) · f(y)
for all x, y ∈ A.

If ν is a multiplicative measure on ∂A, then the valuation associated with ν is the 
function f : A → (0, +∞) defined by f(x) = ν( ↑ x) for all x ∈ A.

Remark 2.27.

1. Assuming that multiplicative measures exist, which is not obvious to prove, any such 
measure satisfies ν(∂A) = ν( ↑ e) = 1, hence is a probability measure.

2. If A is a free monoid, multiplicative measures correspond to the usual Bernoulli 
measures characterizing i.i.d. sequences. If A is a heap monoid or a braid monoid, 
multiplicative measures have been introduced respectively in [16] and in [1].

Let us put aside a trivial multiplicative measure which is found in Artin–Tits monoids 
of spherical type.

Definition 2.28. Let A be an Artin–Tits monoid of spherical type. Let Δ∞ denote the 
boundary element Δ∞ = (Δ, Δ, . . . ), where Δ is the Garside element of A. Then the con-
stant valuation f(x) = 1 on A corresponds to the multiplicative measure ν = δΔ∞ , which 
we call degenerate. Any other multiplicative measure on the boundary of an Artin–Tits 
monoid, either of spherical type or not, is non-degenerate.
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By Proposition 2.22, a multiplicative measure is entirely determined by its associated 
valuation. We note that valuations always exist: it suffices to consider for instance f to 
be constant on the set Σ of generators of A, say equal to r. Then f extends uniquely to a 
valuation on A, given by f(x) = r|x| for all x ∈ A. Since we will give a special attention 
to this kind of valuation and associated multiplicative measures whenever they exist, we 
introduce the following definition.

Definition 2.29. A valuation f : A → (0, +∞) on an Artin–Tits monoid A = A(Σ, �)
is uniform if it is constant on Σ, or equivalently if it is of the form f(x) = p|x| for 
some p ∈ (0, +∞). A multiplicative measure is uniform if it is non-degenerate and if its 
associated valuation is uniform.

2.4.2. Characterization and realization of multiplicative measures
Our aim is to characterize the valuations that correspond to multiplicative measures. 

To this end, we introduce the following definition.

Definition 2.30. Let f : A → (0, +∞) be a valuation on an Artin–Tits monoid A, and 
let h = Tf be the graded Möbius transform of f . We say that f is a Möbius valuation
whenever:

h(e) = 0, and ∀x ∈ S \ {e} h(x) > 0,

where S denotes as usual the smallest Garside subset of A.

This definition is motivated by the following result, which shows in particular that 
being Möbius is a necessary and sufficient condition for a valuation to be associated with 
some non-degenerate multiplicative measure. It also details the nature of the probabilistic 
process associated with the boundary elements.

Theorem 2.31. Let A be an irreducible Artin–Tits monoid, and let ν be a non-degenerate 
multiplicative measure on ∂A. Then the valuation f(·) = ν( ↑ ·) is a Möbius valuation.

Conversely, if f is a Möbius valuation on A, then there exists a non-degenerate mul-
tiplicative measure on ∂A, necessarily unique, say ν, such that f(·) = ν( ↑ ·). Hence, 
non-degenerate multiplicative measures on ∂A correspond bijectively to Möbius valua-
tions on A.

Furthermore, let (f, ν) be such a corresponding pair. Let h be the graded Möbius trans-
form of f . For every integer n ≥ 1, let Xn : ∂A → S \ {e} denote the nth canonical 
projection of boundary elements, which maps a boundary element ξ = (yj)j≥1 to the sim-
ple element yn. Then, under the probability measure ν, the sequence of random variables 
(Xn)n≥1 is a homogeneous Markov chain with values in the finite set S \{e}, with initial 
distribution and with transition matrix P given by:

∀x ∈ S \ {e} ν(X1 = x) = h(x),
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∀x, y ∈ S \ {e} Px,y = 1(x → y)f(x)h(y)
h(x) .

This Markov chain is ergodic if A is not of spherical type; and has S \ {e, Δ} as 
unique ergodic component if A is of spherical type.

The following lemmas are central in the proof of Theorem 2.31, and also for subsequent 
results.

Lemma 2.32. Let A be an Artin–Tits monoid, of smallest Garside subset S. Let f : A →
(0, +∞) be a valuation, and let h = Tf be the graded Möbius transform of f . For an 
element x ∈ A, let u ∈ S be the last element in the normal form of x, and let x̃ ∈ A be 
such that x = x̃ · u. It holds that:

h(x) = f(x̃)h(u).

Proof. Lemma 2.21 proves that D(x) = D(u), and since f is a valuation it follows that

h(x) =
∑

D�D(x)

(−1)|D|f
(
x ·
∨

l
D
)

=
∑

D�D(u)

(−1)|D|f(x̃)f
(
u ·
∨

l
D
)
= f(x̃)h(u). �

Lemma 2.33. Let A be an Artin–Tits monoid, of smallest Garside subset S. Let f : A →
(0, +∞) be a valuation, and let h = Tf be the graded Möbius transform of f . Let also 
g : A → R be the function defined by:

g(x) =
∑

y∈S : u→y

h(y),

where u ∈ S is the last element in the normal form of x. Then h(x) = f(x) · g(x) holds 
for all x ∈ A.

Proof. Let P(S) denote the powerset of S, and let F, G : P(S) → R be the two functions 
defined by:

F (U) =
∑
D�U

(−1)|D|f
(∨

l
D
)
, G(U) =

∑
y∈S

1(U∩ ↓ y = ∅)h(y),

where ↓ y = {z ∈ A 
∣∣ z ≤l y}.

We first prove the equality F (U) = G(U) for all U ∈ P(S). For any x ∈ S, we have 
f(x) = T∗h(x) according to Theorem 2.23. According to (2.19), this writes as follows:

f(x) =
∑

y∈S : x≤l y

h(y).
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This works in particular for x =
∨

l D for any D � S, since then x ∈ S, yielding:

F (U) =
∑
D�U

(−1)|D|
(∑

y∈S
1
(∨

l
D ≤l y

)
h(y)

)
=
∑
y∈S

( ∑
D�U

1
(∨

l
D ≤l y

)
(−1)|D|

)
· h(y) (2.20)

=
∑
y∈S

( ∑
D⊆(U∩↓y)

(−1)|D|
)
· h(y) = G(U). (2.21)

Next, we observe that for every u, y ∈ S, one has u → y if and only if D(u)∩ ↓ y = ∅, 
which implies:

g(u) = G
(
D(u)

)
. (2.22)

And, using that f is a valuation, we have:

h(u) =
∑

D�D(u)

(−1)|D|f
(
u ·
∨

l
D
)

= f(u) ·
( ∑
D�D(u)

(−1)|D|f
(∨

l
D
))

= f(u) · F
(
D(u)

)
. (2.23)

Putting together (2.23), (2.22) and (2.20) with U = D(u), we obtain h(u) = f(u) · g(u).
So far, we have proved the statement of the lemma for x = u ∈ S. For an element 

x ∈ A, let u ∈ S be the last element in the normal form of x, and let x̃ ∈ A be such that 
x = x̃ ·u. Lemma 2.32 states that h(x) = f(x̃) ·h(u). We also have g(x) = g(u), and thus 
by the first part of the proof: h(x) = f(x̃) · f(u) · g(u) = f(x) · g(x), which completes the 
proof. �
Lemma 2.34. Let f : A → (0, +∞) be a valuation defined on an irreducible Artin–Tits 
monoid A with at least two generators. Let h = Tf be the graded Möbius transform of f , 
that we assume to satisfy h(e) = 0.

We consider the Charney graph (C , →), and the non-negative square matrix B =
(Bx,y)(x,y)∈C×C defined by Bx,y = 1(x → y)f(y). Let also g : A → R be the function 
defined as in Lemma 2.33. Then:

1. The matrix B is primitive, and the column vector g = (g(x))x∈C satisfies B · g = g.
2. Furthermore, if f(·) = ν( ↑ ·) for some multiplicative measure ν, then the assump-

tion h(e) = 0 is necessarily satisfied, and one and only one of the following two 
propositions is true:
(a) h and g are identically zero on C . In this case, A is necessarily of spherical type, 

and ν is the degenerate measure δΔ∞ .
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(b) h and g are positive on C , B has spectral radius 1, g is the Perron eigenvector 
of B and ν is non-degenerate.

Proof. The graph (C , →) is non-empty since A is assumed to have at least two gener-
ators. The function f is positive on C by definition of valuations; the graph (C , →) is 
strongly connected according to Theorem 2.12, and has loops since every element σ ∈ Σ
belongs to C and satisfies σ → σ. It follows that B is indeed primitive. Finally, to see 
that g is a fixed point of B, we compute:

(B · g)x =
∑

y∈C : x→y

f(y)g(y) =
∑

y∈C : x→y

h(y),

the latter equality by Lemma 2.33. Now the set C differs from S by at most two elements: 
either e, if A is not of spherical type, or e and Δ if A is of spherical type. Since h(e) = 0
by assumption, and since x → Δ does not hold for any x ∈ C , the above equality writes 
(B · g)x =

∑
y∈S : x→y h(y) = g(x), which completes the proof of point 1.

For point 2, assume that f(·) = ν( ↑ ·) for some multiplicative measure ν on ∂A. 
Write ξ = (X1, X2, . . . ) for a generic element ξ ∈ ∂A. Then, by Proposition 2.22 applied 
to elements of S, one has h(x) = ν(X1 = x) for all x ∈ S. It implies on the one hand 
that h is non-negative on S. On the second hand, since X1 takes its values in S \ {e}
only, the total probability law yields:

∑
y∈S\{e}

h(y) = 1. (2.24)

Applying formula (2.19) to x = e yields:

∑
y∈S

h(y) = ν( ↑ e) = ν(∂A) = 1. (2.25)

Comparing (2.24) and (2.25) yields h(e) = 0.
Since h is non-negative, the vector g is also non-negative. Since B is primitive, it 

follows from the Perron–Frobenius Theorem for primitive matrices [17] that g is either 
identically zero or positive.

Assume that g = 0. Then Lemma 2.33 implies that h = 0 on C . It follows from (2.24)
that C \ {e} �= ∅, and thus that A is of spherical type and that h(Δ) = 1, where Δ
is the Garside element of A. For any element x ∈ A, if u ∈ S is the last element of 
the normal form of x, and if x̃ ∈ A is such that x = x̃ · u, Lemma 2.32 states that 
h(x) = f(x̃)h(u). Hence, for all normal sequences (x1, . . . , xk), if xi �= Δ for some i ≤ k, 
then by Proposition 2.22 we have:

ν(X1 = x1, . . . , Xk = xk) ≤ ν(X1 = x1, . . . , Xi = xi) = h(x1 · . . . · xi) = 0,
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from which follows ν
(
ξ = (Δ, Δ, . . . )

)
= ν
(
∂A) = 1, or in other words, ν = δΔ∞ , as 

claimed in point 2a.
Assume now that g �= 0, and thus that g is positive. Since g is a fixed point of B, 

it follows from the Perron–Frobenius Theorem for primitive matrices that g is a Perron 
eigenvector of B, and thus B is of spectral radius 1. From g > 0 and from Lemma 2.33, 
we deduce that h > 0 on C , and this implies that ν is non-degenerate as claimed in 
point 2b. �
Proof of Theorem 2.31. We first prove that, if ν is a non-degenerate multiplicative mea-
sure on A, then f : A → (0, ∞) defined by f(·) = ν( ↑ ·) is Möbius. Let h = Tf . It 
follows from Lemma 2.34 that h(e) = 0, and since ν is non-degenerate, point 2b shows 
that h > 0 on C . To obtain that f is a Möbius valuation, it remains only to prove, in 
case where A is of spherical type, that h(Δ) > 0 for Δ the Garside element of A. But, 
since Δ satisfies Δ → x for all x ∈ S, one has D(Δ) = ∅ and thus h(Δ) = f(Δ) > 0. 
This proves the first statement of Theorem 2.31.

Conversely, let f be a Möbius valuation on A. Define a non-negative matrix Q =
(Qx,y)(x,y)∈(S\{e})×(S\{e}) by

Qx,y = 1(x → y)f(x)h(y)
h(x) .

Since h(e) = 0, Lemma 2.33 shows that Q is stochastic. Furthermore, the non-negative 
vector (h(x))x∈S\{e} satisfies, using that h(e) = 0 and Theorem 2.23:

∑
x∈S\{e}

h(x) =
∑
x∈S

h(x) = T∗h(e) = f(e) = 1.

It is thus a probability vector.
Consider the canonical probability space (Ω, F, P) associated to the Markov chain 

(Xn)n≥1 with values in S\{e}, with initial distribution (h(x))x∈S\{e} and with transition 
matrix Q. Let also π : Ω → ∂A be the canonical mapping, defined with P-probability 1, 
and let ν = π∗P, the image probability measure on ∂A. Then we claim that ν( ↑ ·) = f(·).

Indeed, by Theorem 2.23 and Proposition 2.22, it is enough to prove that, for every 
integer n ≥ 1, the law of (X1, . . . , Xn) satisfies: P(X1 = x1, . . . , Xn = xn) = h(x1 ·. . .·xn)
for every sequence (x1, . . . , xn). If the sequence (x1, . . . , xn) is not normal, then both 
members vanish. And if the sequence is normal, then the consecutive cancellations yield:

P(X1 = x1, . . . , Xn = xn) = f(x1 · . . . · xn−1) · h(xn) = h(x1 · . . . · xn),

the latter equality using Lemma 2.32. This proves that ν( ↑ ·) = f(·), as expected.
This also proves that, for any non-degenerate multiplicative measure ν on ∂A, the 

sequence (Xn)n≥1 defined in the statement of Theorem 2.31 is indeed a Markov chain 
with the specified transition matrix and initial distribution.
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If A is of spherical type, then f(Δ) = ν( ↑ Δ) < 1. Indeed, otherwise one would have 
ν( ↑ Δn) = ν( ↑ Δ)n = 1, and therefore ν = δΔ∞ , contradicting its non-degeneracy. The 
ergodicity statements derive at once from the fact that the Charney graph is irreducible 
on the one hand, and that Δ is initial with QΔ,Δ = f(Δ) < 1 if A is of spherical type, 
on the other hand. The proof is complete. �
2.4.3. Uniqueness of the uniform measure for Artin–Tits monoids

Although we have not yet proved the existence of non-degenerate uniform measures 
on the boundary of Artin–Tits monoids—which is deferred to Section 4.2—, we are ready 
to prove the following uniqueness result.

Theorem 2.35. Let A be an irreducible Artin–Tits monoid. Then there exists at most one 
uniform measure on ∂A.

Recall that, by Definition 2.29, uniform measures are non-degenerate.

Proof of Theorem 2.35. Let ν and ν′ be two uniform measures, say associated to the 
two uniform valuations f1(x) = p

|x|
1 and f2(x) = p

|x|
2 . Without loss of generality, we may 

assume that p1 ≤ p2.
Consider the primitive matrices B1 and B2 constructed as in Lemma 2.34, associated 

to f1 and to f2 respectively. Then B1 ≤ B2 since p1 ≤ p2, and both matrices have 
spectral radius 1. It follows from the Perron–Frobenius Theorem [17] that B1 = B2, and 
thus p1 = p2 and f1 = f2. Then Proposition 2.22 implies that ν1 = ν2. �
3. Conditioned weighted graphs

3.1. General framework

3.1.1. Non-negative matrices
Although we already appealed to the concept of non-negative matrix and to the 

Perron–Frobenius theory, we recall now some standard definitions from this theory, see 
for instance [17]. A real square matrix M is non-negative, denoted M ≥ 0, if all its entries 
are non-negative, and positive, denoted M > 0, if all its entries are positive. The same 
definitions apply to vectors. If M ≥ 0, it is primitive if MK > 0 for some integer power 
K > 0, and then Mk > 0 for all k ≥ K. The matrix M is irreducible if for every pair 
(i, j) of indices, there exists an integer k > 0 such that Mk

i,j > 0.
We interpret non-negative matrices as labeled oriented graphs, which we simply call 

graphs for brevity; vertices are represented by the indices of the matrix, and there is 
an edge from x to x′, labeled by the entry Mx,x′ , whenever Mx,x′ > 0. A path in the 
graph is any non-empty sequence (x0, . . . , xk) of indices such that Mxi,xi+1 > 0 for all 
i = 0, . . . , k − 1. The non-negative integer k is the length of the path. The path is a 
circuit if, in addition, xk = x0.
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In this representation, irreducible matrices correspond to strongly connected graphs 
and primitive matrices correspond to strongly connected graphs such that circuits have 
1 as greatest common divisor of their lengths.

The spectral radius, denoted ρ(M), of a non-negative matrix M is defined as the 
largest modulus of its complex eigenvalues. In the seek of completeness, we establish the 
following elementary lemma, which is probably found elsewhere as a textbook exercise.

Lemma 3.1. Let M be a non-negative square matrix of size N > 1. Assume that M has a 
unique eigenvalue of maximal modulus, which is simple. Let λ be this eigenvalue. Then:

1. λ is real and positive, and thus λ = ρ(M).
2. There exists a pair (�, r) of non-negative vectors, such that � is a left (row) 

λ-eigenvector and r is a right (column) λ-eigenvector of M , and such that � · r = 1. 
Any other such pair is of the form (t�, t−1r) for some t > 0.

3. With (�, r) a pair of non-negative vectors as above, the matrix M has the following 
decomposition:

M = λΠ + Q, with Π = r · �,

and where Q is a matrix satisfying Π · Q = Q · Π = 0 and ρ(Q) < λ. It entails the 
following convergence:

lim
k→∞

( 1
λ
M
)k

= Π. (3.1)

Proof. Observe first that λ �= 0, otherwise M could not have other eigenvalues than 
λ = 0, contradicting that λ is simple. Hence, considering (1/|λ|)M , which is still non-
negative, instead of M , we assume without loss of generality that |λ| = 1. Secondly, 
the spectral decomposition of M entails that M writes as M = λΠ + Q, where Π is 
the matrix of a projector of rank 1, Q is a matrix with all eigenvalues less than 1 in 
modulus, and Π ·Q = Q ·Π = 0. Consequently, the powers Mk form a bounded sequence 
of matrices.

Now, let x be a right λ-eigenvector of M , and let |x| denote the vector with |x|i = |xi|
for all i ∈ {1, . . . , N}. Then 

∑
j Mi,jxj = λxi yields |x|i ≤

∑
j Mi,j |xj |, or in other words: 

M · |x| ≥ |x|. Since M is non-negative, it follows that Mk+1 · |x| ≥ Mk · |x|, so that each 
coordinate of Mk · |x| is a non-decreasing sequence of reals. Since (Mk)k>0 is bounded, 
it follows that (Mk · |x|)k>0 converges toward a non-negative vector r, satisfying r ≥ |x|
and M · r = r. Since |x| �= 0, in particular r �= 0 and thus 1 is an eigenvalue of M , which 
implies that λ = 1.

We have already found that r is a non-negative fixed point of M for its right action 
on vectors. The same reasoning applied to the transpose of M (or to the left action of 
M on vectors) yields the existence of a non-negative left fixed point, say �, of M .
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The decomposition seen at the beginning of the proof now writes as M = Π +Q with 
ρ(Q) < 1 and Π ·Q = Q · Π = 0. It implies at once Mk = Π + Qk for all integers k > 0
and thus limk→∞ Mk = Π.

To obtain the existence of the pair (�, r) with the normalization condition � · r = 1, 
it suffices to prove that � · r > 0. For this, we observe first that r and � are respectively 
right and left fixed point of Π, since Π is associated to the λ-characteristic subspace 
of M . Being a rank 1 projector with r as right fixed point, Π writes as Π = r · �′ for some 
non-zero row vector �′. Hence � = � · Π = (� · r)�′. This implies that � · r �= 0, which was 
to be proved.

Assuming now that the normalization condition � · r = 1 holds, we obtain �′ = � and 
thus Π = r · �, completing the proof. �
3.1.2. Conditioned weighted graphs

The central object of study of this section is the following.

Definition 3.2 (CWG). A conditioned weighted graph (CWG) is given by a triple G =
(M, w−, w+), where M is a non-negative matrix of size N ×N with N > 1, and

w− : {1, . . . , N} → R+ , w+ : {1, . . . , N} → R+ ,

are two real-valued and non-negative functions, respectively called initial and final. We 
identify w− with the corresponding row vector of size N , and we identify w+ with 
the corresponding column vector of size N . Furthermore, we assume that the triple 
(M, w−, w+) satisfies the following conditions.

1. M has a unique eigenvalue of maximal modulus, which is simple. Let λ be this 
eigenvalue, which is real and positive according to Lemma 3.1.

2. Let (�, r) be a pair of nonzero non-negative left and right λ-eigenvectors of M . We 
assume that w− · r > 0 and � · w+ > 0 both hold.

3.1.3. Two particular cases
For the study of Artin–Tits monoids, we shall be interested in triples (M, w−, w+)

falling into one of the two following cases.

Case A. M is primitive, and the functions w− and w+ are non-identically zero.
Case B. For some integer 0 < K < N and for some non-negative matrices A, T and M̃

of sizes K × K, K × (N − K), and (N − K) × (N − K) respectively, M has the 
following form:

M =
(
A T

0 M̃

)
(3.2)
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where M̃ is primitive, and the spectral radii ρ(A) and ρ(M̃) satisfy ρ(A) < ρ(M̃). 
The functions w− and w+ are assumed to be non-identically zero on the N−K last 
indices.

Proposition 3.3. In either case A or B described above, the triple (M, w−, w+) is a CWG.

Proof. In case A, this is a direct application of the Perron–Frobenius Theorem for prim-
itive matrices. In case B, let M be as in (3.2). Let λ be the Perron eigenvalue of M̃ , i.e., 
according to the Perron–Frobenius Theorem for primitive matrices, the simple, unique 
eigenvalue of M̃ of largest modulus. Then λ is the unique eigenvalue of M of maximal 
modulus since ρ(A) < ρ(M̃), and it is simple as an eigenvalue of M .

It remains only to prove the existence of a pair (�, r) of λ-eigenvectors of M such 
that w− · r > 0 and � · w+ > 0. For this, let (�̃, ̃r) be a pair of positive left and right 
λ-eigenvectors of M̃ , and consider the vectors � and r defined by:

� =
(
0 �̃

)
r =

(
(λI −A)−1 · T · r̃

r̃

)

The hypothesis ρ(A) < ρ(M̃) implies that λI−A is invertible, hence r is well defined, 
and � and r are left and right λ-eigenvectors of M , which, due to Lemma 3.1, have 
non-negative entries. Since w− and w+ are assumed to be non-identically zero on their 
last (N − K) coordinates, and since �̃ and r̃ are positive, they satisfy w− · r > 0 and 
� · w+ > 0. �
3.2. Weak convergence of weighted distributions

Let G = (M, w−, w+) be a CWG. Given a path x = (x0, . . . , xk) associated to M , we 
define its weight w(x) as the following non-negative real:

w(x) = w−(x0) ·Mx0,x1 · . . . ·Mxk−1,xk
· w+(xk) .

From now on, our study of conditioned weight graphs focuses on paths and on prob-
ability distributions over sets of paths. As a first elementary result, we show that paths 
of positive weight and of length k exist for all k large enough.

Lemma 3.4. Let G = (M, w−, w+) be a conditioned weighted graph. Then there exists an 
integer K such that, for each k ≥ K, the set of paths of length k and with positive weight 
is non-empty.

Proof. Let Zk be the sum of the weights of all paths of length k. Then, identifying 
the functions w− and w+ with the corresponding row and column vectors, one has: 
Zk = w− · Mk · w+. Let (�, r) be a pair of left and right λ-eigenvectors of M and 
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satisfying � · r = 1, where λ is the eigenvalue of maximal modulus of M . Then, putting 
Π = r · �, and according to Lemma 3.1:

1
λk

Zk = w− · 1
λk

Mk · w+ −−−−→
k→∞

w− · Π · w+ = (w− · r)(� · w+) > 0.

It follows that Zk > 0 for all k large enough, and in particular the set of paths with 
positive weight is non-empty. �
Definition 3.5. Let G = (M, w−, w+) be a conditioned weighted graph, and for each 
integer k ≥ 1, let Gk denote the set of paths of length k in G. The weighted distribution
on Gk is the probability distribution μk on Gk defined by:

∀z ∈ Gk μk(z) = w(z)
Zk

, with Zk =
∑
z∈Gk

w(z) ,

which is well defined at least for k large enough according to Lemma 3.4.
For each integer j ≥ 1, and for k large enough, we denote by μ−

k,j the joint law of the 
first j + 1 elements (x0, . . . , xj) of a path (x0, . . . , xk) of length k distributed according 
to μk. We call μ−

k,j the left j-window distribution with respect to μk.

Let G = (M, w−, w+) be a conditioned weighted graph, and for each integer k ≥ 0, let 
Ωk denote the set of paths of length at most k. Let also Ω be the set of finite or infinite 
paths, with its canonical topology (for which it is a compact space). The set of finite 
paths 

⋃
k Ωk is dense in Ω.

In general, the collection (μk)k≥0 is not a projective system of probability measures, 
since the measure induced by μk+1 on the set Gk of paths of length k does not coincide 
with μk. Hence, the projective limit of (μk)k≥0 is not defined in general.

Yet, weak limits of measures are an adequate tool to replace projective limits in 
this case. Indeed, each Gk is naturally embedded into Ω. Through this embedding, the 
distribution μk identifies with a discrete probability measure, still denoted by μk, on the 
space Ω equipped with its Borel σ-algebra.

Theorem 3.6. Let G = (M, w−, w+) be a conditioned weighted graph, and consider as 
in Definition 3.2 the eigenvalue λ of maximal modulus together with the pair (�, r) of 
associated eigenvectors.

The sequence (μk)k≥0 of weighted distributions converges weakly toward a probability 
measure μ on Ω, which is concentrated on the set Ξ ⊆ Ω of infinite paths.

For each integer k ≥ 0, let Xk : Ξ → {1, . . . , N} denote the kth natural projection. 
Then, under μ, (Xk)k≥0 is a Markov chain. Its initial distribution, denoted h, and its 
transition matrix, denoted P = (Pi,j) where Pi,j is the probability to jump from state i
to state j, are given by:
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h(i) = w−(i)r(i)
w− · r , Pi,j = λ−1Mi,j

r(j)
r(i) , if r(i) �= 0,

independently of the choice of r. If r(i) = 0, the line Pi,• is defined as an arbitrary 
probability vector. The chain can only reach the set of states i such that r(i) �= 0.

Restricted to the set of reachable states, the chain has a unique stationary measure, 
say π, given by:

∀i ∈ {1, . . . , N} π(i) = �(i)r(i).

In Case A introduced in Section 3.1.3, the chain (Xk)k≥1 is ergodic. In Case B, the 
chain has a unique ergodic component, namely the N −K last indices {K + 1, . . . , N}, 
and hence the states in {1, . . . , K} are all transient.

In view of the above result, we introduce the following definition.

Definition 3.7. The probability measure μ on the space of infinite sequences characterized 
in Theorem 3.6 is called the limit weighted measure of the conditioned weighted graph G.

Proof of Theorem 3.6. For x a finite path of length j, denote by Cx the elementary 
cylinder of base x, i.e., the set of finite or infinite words that start with x. For all 
integers k such that k ≥ j and such that μk is well defined, one has:

μk(Cx) = 1
Zk

∑
z∈Gk : θj(z)=x

w(z) , (3.3)

where θj is the truncation map that only keeps the first j steps of a path.
Let w̃ be the real-valued function defined on finite paths by:

w̃(x0, . . . , xj) = w−(x0)Mx0,x1 · · ·Mxj−1,xj
.

Then both terms of the quotient in (3.3) can be written through powers of the ma-
trix M :

μk(Cx) = 1
w− ·Mk · w+ w̃(x)1xj

·Mk−j · w+ ,

where 1xj
denotes the row vector filled with 0s, except for the entry xj where it has a 1.

According to Lemma 3.1, the following asymptotics holds for the powers of M :

Mk = λk(r · �)
(
1 + o(1)

)
, k → ∞.

Therefore (μk(Cx))k≥0 is convergent, with limit given by:

lim
k→∞

μk(Cx) = λ−jw̃(x)
(1xj

· r)(� · w+)
(w− · r)(� · w+) = λ−jw̃(x) r(xj)

w− · r . (3.4)
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Elementary cylinders, together with the empty set, are stable under finite intersections 
and generate the Borel σ-algebra on Ω. Elementary cylinders are clopen sets and thus of 
empty topological boundary. And finally, Ω is a compact metric space. According to [18, 
Th. 25.8], this is enough to deduce the weak convergence of (μk)k≥0 toward a probability 
measure μ on Ω such that μ(Cx) coincides with the value of the limit in (3.4).

It is clear that the support of μ only contains infinite paths since, for every finite path 
z = (x0, . . . , xj), one has μk({z}) = 0 for k large enough. It follows that μ

(
{z}
)

= 0, 
and thus μ(Ξ) = 1 since finite paths are countably many.

The vector h and the matrix P defined in the statement are indeed respectively a 
probability vector and a stochastic matrix on {1, . . . , N}. The Markov chain with initial 
law h and transition matrix P gives to the cylinder Cx the following probability:

h(x0)Px0,x1Px1,x2 · · ·Pxj−1,xj

= w−(x0)r(x0)
w− · r · λ−1Mx0,x1

r(x1)
r(x0)

· λ−1Mx1,x2

r(x2)
r(x1)

· · ·λ−1Mxj−1,xj

r(xj)
r(xj−1)

= w−(x0)r(xj)
w− · r λ−jMx0,x1 · · ·Mxj−1,xj

= μ(Cx),

by (3.4). This shows that this Markov chain has the same joint marginals as (Xk)k≥0
under μ, or equivalently, that (Xk)k≥0 under μ is the Markov chain with initial law h
and transition matrix P .

By the normalization condition � · r = 1, the vector π is indeed a probability distribu-
tion, which is readily seen to be left invariant for P . Furthermore, left invariant vectors 
θ for P and left λ-eigenvectors θ′ for M , with support within the set of reachable states, 
correspond to each other by θ′(i) = θ(i)/r(i). Since M has a unique left λ-eigenvector �, 
the unique ergodic component of the chain corresponds to the support of �. In case A, 
� > 0 hence the chain is ergodic. In Case B, the unique ergodic component corresponds 
to the last N −K states. �
Corollary 3.8. We keep the same notations as in Theorem 3.6. Let j ≥ 1 be an integer. 
Then, with respect to μk, as k → ∞, the left j-window distributions μ−

k,j converge toward 
the joint law of (X0, . . . , Xj) under the uniform distribution at infinity μ.

Proof. This is a rephrasing of the weak convergence stated in Theorem 3.6. �
3.3. Related notions found in the literature

The notion of conditioned weighted graph is often found in the literature under dis-
guised forms. For instance, the transition matrix P of the Markov chain introduced in 
Theorem 3.6 corresponds to the transformation of an incidence matrix first introduced 
by Parry [19–21] in its construction of a stationary Markov chain reaching the maximum 
entropy.
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This matrix P also has the very same form as the transition matrix of the survival 
process of a discrete time, finite states absorbing Markov chain [22,23]. Actually, discrete 
time, finite states absorbing Markov chains can be interpreted as a particular case of 
conditioned weighted graph, as we briefly explain now.

A finite absorbing Markov chain (Yi)i≥0 is a Markov chain on {0, . . . , N} such that 
P0,0 = 1, and such that 0 can be reached in a finite number of states from any other 
state. Usually, it is assumed that all states in {1, . . . , N} are strongly connected, which 
we assume too. For each x ∈ {1, . . . , N}, we consider the conditioned weighted graph 
Gx = (M, wx, w+) defined as follows: M is the restriction of P to the entries in {1, . . . , N}; 
w+ is the constant vector with entries 1; and wx is the indicator function of x.

Assume that (Yi)i≥0 starts from 1. Let T be the first hitting time of 0 of the chain 
(Yi)i≥0. Then it is clear that the marginal law of (Y0, . . . , Yj) conditioned on {T > k}
corresponds to our left j-window distribution for the conditioned weighted graph G1. 
The survival process, if it exists, is a process (Xi)i≥0 such that:

P(X0 = x0, . . . , Xj = xj) = lim
k→∞

P(Y0 = x0, . . . , Yj = xj |T > k) . (3.5)

We recover thus the existence of the survival process, and its form as a Markov chain, 
through Theorem 3.6 (or Corollary 3.8); this is established for instance in [23, Sections 3.1 
and 3.2] for continuous-time Markov chains.

4. Application to Artin–Tits monoids

We apply the notion of Conditioned Weighted Graphs (CWG) introduced in Section 3
to the counting of elements of Artin–Tits monoids, maybe with a multiplicative positive 
weight. The limit of the associated weighted measures is found to be concentrated on 
the boundary of the monoid and to be multiplicative. This yields another representation 
of multiplicative measures, introduced in Section 2, as weak limits of finite probability 
distributions, and provides a proof of existence for multiplicative measures. It also yields 
a parametrization of multiplicative measures.

4.1. CWG associated to an irreducible Artin–Tits monoid

4.1.1. Uniform case

Definition 4.1. Let A be an irreducible Artin–Tits monoid, and let S be the smallest 
Garside subset of A. Let J = {(x, i) 

∣∣ x ∈ S \ {e} and 1 ≤ i ≤ |x|} and N = #J . The
CWG associated with A is the triple (M, w−, w+), where M is the non-negative square 
matrix of size N ×N indexed by J , and w− and w+ are defined by:
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M(x,i),(y,j) =

⎧⎪⎪⎨⎪⎪⎩
1, if x = y and j = i + 1
1, if x → y and i = |x| and j = 1
0, otherwise

w−(x, i) = 1(i = 1),w+(x, i) = 1(i = |x|).

The motivation behind this definition is that elements of A correspond bijectively 
to paths in the graph associated with the matrix M , or more precisely with the triple 
(M, w−, w+). Indeed, let x be an element of A, with x �= e, and let (x1, . . . , xj) be the 
normal form of x. We associate to x the sequence x̃ defined by:

x̃ =
(
(x1, 1), . . . , (x1, |x1|), (x2, 1), . . . , (x2, |x2|), . . . , (xj , 1), . . . , (xj , |xj |)

)
. (4.1)

Then x̃ is indeed a path in the graph corresponding to the triple (M, w−, w+), of length 
|x1| + · · · + |xj | − 1 = |x| − 1.

This correspondence is a bijection between elements of A of length k > 0 and paths 
in (M, w−, w+) of length k − 1, whence:

#{x ∈ A
∣∣ |x| = k} = w− ·Mk−1 · w+. (4.2)

Proposition 4.2. Let A be an irreducible Artin–Tits monoid with at least two generators. 
Then the triple (M, w−, w+) introduced in Definition 4.1 is indeed a CWG, corresponding 
either to Case A of Section 3.1.3 if A is not of spherical type, or to case B if A is of 
spherical type.

Proof. Assume that A is not of spherical type. Then the graph (S \ {e}, →) is strongly 
connected according to Theorem 2.12, which yields that the graph associated with 
M is strongly connected. Since x → x holds for every x ∈ Σ, the diagonal element 
M
(
(x, 1), (x, 1)

)
is 1, hence M is primitive. The conditions on w− and w+ are trivially 

satisfied, and thus (M, w−, w+) is of type A.
If A is of spherical type, let JΔ = {(Δ, i) 

∣∣ 1 ≤ i ≤ |Δ|}. Then the matrix M has the 
following form:

M =
(
A T

0 M̃

)
with A =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0

0 1 0 · · · 0
...

...
· · · 0 1

1 0 · · · 0

⎞⎟⎟⎟⎟⎠
where A has size #JΔ × #JΔ, and M̃ is irreducible according to Theorem 2.12 and by 
the same reasoning as above. The matrix T is filled with 0s, except for its last line where 
it has a 1 at each column indexed by (x, 1) for x ∈ S \ {e, Δ}.

Since A#JΔ = I, all the eigenvalues of A have modulus 1 and thus the spectral radius 
of A is 1. On the other hand, since A is assumed to have at least two generators and to 



S. Abbes et al. / Journal of Algebra 525 (2019) 497–561 535
be irreducible, there exist elements x, y, z ∈ S\{e, Δ} such that y �= z, x → y and x → z. 
Hence, M̃ is greater than a permutation matrix; being primitive, M̃ has a spectral radius 
greater than 1 by the Perron–Frobenius Theorem. Finally, the conditions on w− and w+

are trivially satisfied, hence (M, w−, w+) falls into case B. �
Proposition 4.3. Let A be an irreducible Artin–Tits monoid with at least two generators. 
For each integer k ≥ 0, let λk = #{x ∈ A 

∣∣ |x| = k}. Then there exist two real constants 
C > 0 and p0 ∈ (0, 1), that depend on A, such that:

λk ∼k→∞ Cp−k
0 . (4.3)

The real p0 is the inverse of the Perron eigenvalue of the CWG associated to A.

Proof. By (4.2), we have λk = w−Mk−1w+. Hence, putting p0 = λ−1, where λ is 
the Perron eigenvalue of M , we obtain the expected form according to Lemma 3.1, 
point 3. �
4.1.2. Möbius polynomial

There is a nice combinatorial interpretation of the real p0 introduced in Proposi-
tion 4.3. It is much similar to the case of other monoids such as braid monoids or trace 
monoids; see [1] or [16] for more details.

The Möbius polynomial of an Artin–Tits monoid A = A(Σ, �) is the polynomial 
μA ∈ Z[T ] defined by:

μA =
∑
D�Σ

(−1)|D|T |
∨

l D|,

where the notation D � Σ has been introduced in Definition 2.20. Note that this is 
nothing but the polynomial expression found for h(e) in Section 2.3.4, where h(·) was 
the graded Möbius transform of the uniform valuation f(x) = p|x| on A.

Let also the growth series G ∈ Z[[T ]] be the formal series defined by:

G =
∑
x∈A

T |x| =
∑
k≥0

λkT
k. (4.4)

Then G is a rational series, inverse of the Möbius polynomial: G(T ) = 1/μA(T ); see a 
proof for a slightly more general result below in Section 4.1.3. Since G has non-negative 
terms, its radius of convergence is one of its singularities by Pringsheim’s Theorem [24]. 
Since G is rational with coefficients of the form (4.3), provided that A is irreducible with 
at least two generators, this singularity is necessarily of order 1, and there is no other 
singularity of G with the same modulus.

These facts reformulate as follows: If A is an irreducible Artin–Tits monoid with at 
least two generators, the Möbius polynomial of A has a unique root of smallest modu-
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lus. This root is simple, real, lies in (0, 1), and coincides with the real p0 introduced in 
Proposition 4.3.

4.1.3. Multiplicative case
More generally, assume given a multiplicative and positive weight on the elements 

of an Artin–Tits monoid A, hence what we called a valuation ω : A → (0, +∞). We 
associate to the pair (A, ω) the following square matrix M with the same indices as in 
the uniform case (Definition 4.1), and the initial and final vectors w− and w+ given by:

M(x,i),(y,j) =

⎧⎪⎪⎨⎪⎪⎩
1, if x = y and j = i + 1
ω(y), if x → y and i = |x| and j = 1
0, otherwise

w−(x, i) = 1(i = 1)ω(x) w+(x, i) = 1(i = |x|)

Then we claim that (M, w−, w+) is a CWG.
Indeed, if A is not of spherical type, then the same arguments used in the proof of 

Proposition 4.2 show that (M, w−, w+) is a CWG since M is primitive. Assume now that 
A is of spherical type. If ω is constant on Σ, so that ω(x) = p|x| for all x ∈ A and for some 
positive real number p, then the same arguments used in the proof of Proposition 4.2
show that (M, w−, w+) is a CWG. If, however, ω is non-constant on Σ, introduce again 
JΔ = {(Δ, i) 

∣∣ i ≤ |Δ|}, A the restriction of M to JΔ×JΔ and M̃ the restriction of M to 
(J \JΔ) × (J \JΔ). Let x ∈ Σ be such that ω(x) = maxω(Σ). Since ω is a valuation, and 
since Δ is divisible by some element y ∈ Σ such that ω(y) < ω(x), it comes at once that 
ω(Δ) < ω(x)|Δ|. Due to the loop x → x, it follows that ρ(M̃) ≥ ω(x) > ω(Δ)1/|Δ| =
ρ(A), which proves that (M, w−, w+) is a CWG in this case too.

Let Gω be the generating series:

Gω =
∑
x∈A

ω(x)T |x| =
∑
k≥0

Zω(k)T k, with Zω(k) =
∑

x∈A : |x|=k

ω(x).

Then the coefficients Zω(k) have the following expression, for all k > 0:

Zω(k) = w− ·Mk−1 · w+. (4.5)

The uniform case seen in Section 4.1.1 corresponds to the constant valuation ω(x) = 1, 
in which case Gω is the growth series (4.4) of the monoid. We note that Gω = 1/μω, 
hence is rational, where μω ∈ Z[T ] is the following polynomial:

μω =
∑
D�S

(−1)|D|ω
(∨

l
D
)
T |
∨

l D| .

To prove the equality Gω = 1/μω, one has μωGω =
∑

x∈A axT
|x|, where ax is com-

puted by:



S. Abbes et al. / Journal of Algebra 525 (2019) 497–561 537
ax =
∑

D�S, y∈A :(∨
l D
)
·y=x

(−1)|D|ω
(∨

l
D
)
ω(y)

= ω(x)
( ∑
D�S :

∨
l D≤lx

(−1)|D|
)

= 1(x = e).

4.2. Parametrization of multiplicative measures

Assume given a valuation ω : A → (0, +∞) defined on an irreducible Artin–Tits 
monoid with at least two generators. For each integer k ≥ 1, let Ak = {x ∈ A 

∣∣ |x| = k}
and let mω,k be the probability distribution on Ak proportional to ω:

mω,k(x) = ω(x)
Zω(k) for x ∈ Ak .

Then the finite probability space (Ak, mω,k) is isomorphic to the finite probability 
space of all paths of length k − 1 in the CWG (M, w−, w+) equipped with the associ-
ated probability distribution from Definition 3.5 (Section 3.2). Furthermore, the space of 
infinite paths in the CWG (M, w−, w+) is homeomorphic to the boundary ∂A. By The-
orem 3.6, we deduce that the sequence (mω,k)k≥0 converges weakly toward a probability 
measure mω,∞ on ∂A. The following result gives the form of this limit measure.

Theorem 4.4. Let ω : A → (0, +∞) be a valuation defined on an irreducible Artin–Tits 
monoid with at least two generators. Then the weak limit mω,∞ of the sequence of fi-
nite probability distributions (mω,k)k≥0 is a multiplicative measure on ∂A. Its associated 
valuation is given as follows, for any x ∈ A:

mω,∞( ↑ x) = λ−|x|ω(x),

where λ is the Perron eigenvalue of the CWG associated to ω.

Proof. Recall that A = A ∪ ∂A denotes the completion of A, and ⇑ x denotes the full 
visual cylinder with base x (see Definition 2.15). Since the support of mω,∞ is a subset 
of ∂A, one has mω,∞( ↑ x) = mω,∞( ⇑ x). Since ⇑ x is both open and closed in A, its 
topological boundary is empty, and therefore by [18, Th. 25.8]:

mω,∞(⇑ x) = lim
k→∞

mω,k(⇑ x).

Next, using that A is left cancellative, we compute for k ≥ |x|:

mω,k(⇑ x) = 1
Zω(k)

( ∑
y∈Ak : x≤ly

ω(y)
)

= ω(x)Zω(k − |x|)
Zω(k) .



538 S. Abbes et al. / Journal of Algebra 525 (2019) 497–561
Given the expression (4.5) for Zω(·) on the one hand, and the asymptotics from 
Lemma 3.1 for the powers of M on the other hand, we deduce mω,∞( ↑ x) = λ−|x|ω(x). 
This is indeed a valuation, hence mω,∞ is a multiplicative measure. �
Corollary 4.5. Let A be an irreducible Artin–Tits monoid with at least two generators. 
Then there exists a unique non-degenerate uniform measure ν on ∂A. It is characterized 
by ν( ↑ x) = p

|x|
0 for all x ∈ A, where p0 is the unique root of smallest modulus of the 

Möbius polynomial of A.

Proof. The uniqueness of the non-degenerate uniform measure has already been proved 
in Theorem 2.35. For the existence, let ω(x) = 1 be the constant uniform valuation 
on A, and let ν = mω,∞. Then, according to Theorem 4.4, we have ν( ↑ x) = λ−|x| for 
all x ∈ A and for λ the Perron eigenvalue of the CWG associated with ω. We have seen 
in Section 4.1.2 that λ = p−1

0 , whence the result. �
As illustrated by the above corollary, Theorem 4.4 provides a mean for proving the 

existence of multiplicative measures. We shall see that all multiplicative measures can 
be obtained as weak limits of such finite ‘multiplicative distributions’. This yields in 
Theorem 4.7 below a parametrization of all multiplicative measures on the boundary.

From the operational point of view however, expressing a measure on the boundary 
∂A as a weak limit of finite distributions on A does not provide a realization result simi-
lar to Theorem 2.31. It is therefore not much useful for simulation purposes for instance. 
Nevertheless, it yields a way to obtain asymptotic information on these finite ‘multi-
plicative distributions’, which are of interest per se. The latter aspect will be developed 
in Section 5.2.

Let us first investigate the structure of valuations on an Artin–Tits monoid: this task 
does not present any difficulty, and therefore the proof of the following result is omitted.

Proposition 4.6. Let A = A(Σ, �) be an Artin–Tits monoid. Let R be the reflexive and 
transitive closure of the symmetric relation R ⊆ Σ × Σ defined by:

R =
{
(x, y) ∈ Σ × Σ

∣∣ x �= y and �(x, y) < ∞ and �(x, y) = 1 mod 2
}
,

and let R be the set of equivalence classes of R.
Then, for any valuation f : A → (0, +∞), and for any equivalence class r ∈ R, the 

value f(a) is constant for a ranging over r. Conversely, if xr ∈ (0, +∞) is arbitrarily 
fixed for every r ∈ R, then there exists a unique valuation f : A → (0, +∞) such that 
f(a) = xr(a) for every a ∈ Σ, where r(a) is the equivalence class of a.

Valuations on A are thus in bijection with the product set F = (0, +∞)K , where K
is the number of equivalence classes of R. Let M denote the subset of F correspond-
ing to parameters of Möbius valuations, hence those associated with a non-degenerate 
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multiplicative measure. Theorem 4.7 below shows that M has a familiar topological 
structure.

We first introduce the following notation. If ω : A → (0, ∞) is a valuation, and if κ is a 
positive real number, then κω denotes the valuation on A defined by (κω)(x) = κ|x|ω(x)
for all x ∈ A. The half-line (0, ∞)ω is the set of valuations of the form κω for κ ranging 
over (0, ∞).

Theorem 4.7. Let A be an irreducible Artin–Tits monoid with at least two generators. Let 
K be the number of equivalence classes of the relation R from Proposition 4.6. Then the 
set M ⊆ (0, +∞)K of parameters of non-degenerate multiplicative measures defined on 
∂A intersects any half-line (0, +∞)ω in exactly one point. This gives a homeomorphism 
between M and the open simplex P

(
(0, +∞)K

)
of dimension K − 1 (if K = 1, the open 

simplex of dimension 0 reduces to a singleton).

We first need the following lemma, which generalizes the uniqueness result of uniform 
measures proved in Theorem 2.35 with the same technique of proof.

Lemma 4.8. Let A be an irreducible Artin–Tits monoid with at least two generators. Let ν
and ν′ be two multiplicative non-degenerate measures on ∂A, with associated valuations 
f and f ′. Assume that there exists a constant κ > 0 such that f ′ = κf . Then f = f ′.

Proof. Without loss of generality, we assume that κ ≤ 1. Let S be the smallest Garside 
subset of A. Let B and B′ be the square non-negative matrices, indexed by (S\{e, Δ}) ×
(S \ {e, Δ}), with Δ to be ignored if A is not of spherical type, and defined by:

Bx,x′ = 1(x → x′)f(x′), B′
x,x′ = 1(x → x′)f ′(x′).

Then B′ ≤ B. According to Lemma 2.34, point 2b, both matrices are primitive of the 
same spectral radius 1. According to Perron–Frobenius Theorem [17], it implies B = B′

and thus f = f ′. �
Proof of Theorem 4.7. Let K be defined as in the statement, and let F = (0, +∞)K . 
We identify the set of valuations on A with the product set F , which is justified by 
Proposition 4.6. Let ω be a valuation on A, and let (M, w−, w+) be the CWG associated 
to ω. Let also λ be the Perron eigenvalue of M , and let f = λ−1ω. The valuation f
corresponds to a non-degenerate multiplicative measure according to Theorem 4.4. This 
association defines thus a mapping Φ : F → M.

We first prove that Φ(r) = r for every r ∈ M. If r ∈ M, then both r and Φ(r)
correspond to non-degenerate multiplicative measures, and they are related for some 
constant κ > 0 by Φ(r) = κr. According to Lemma 4.8, it implies that Φ(r) = r, as 
claimed. In particular, we deduce that Φ is onto. By the same lemma, we also observe 
that Φ is constant on all half-lines (0, ∞)ω, for any ω ∈ F .
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Let R be the set of equivalence classes of R, and let S be the open simplex of dimension 
K − 1 defined by:

S =
{
r = (ra)a∈R ∈ F

∣∣ ∑
a∈R

ra = 1
}
,

and let Ψ = Φ
∣∣
S
. Since Φ is onto, and constant on the half-lines of F , it follows at once 

that Ψ is onto. If Ψ(f) = Ψ(f ′) for f and f ′ in S, then f and f ′ are related by a relation 
of the form f ′ = κf for some κ > 0, and thus obviously f = f ′. Hence Ψ is one-to-one 
and thus bijective.

The mapping which associates to a family r ∈ S the corresponding matrix M is obvi-
ously continuous, as well as the one mapping a primitive matrix to its Perron eigenvalue 
(see [25, Fact 10 of Section 9.2]). Hence Ψ is continuous. And Ψ−1 is continuous since, 
for f ∈ M, the unique ω ∈ S such that Ψ(ω) = f is given by:

∀a ∈ R ω(a) = f(a)∑
b∈R f(b) .

Hence Ψ is a homeomorphism. �
5. Asymptotics: concentration of ergodic means and Central Limit Theorem

5.1. Case of conditioned weighted graphs

Consider a conditioned weighted graph G = (M, w−, w+), with M of order N , and a 
cost function f : {1, . . . , N} → R. The ergodic sums Skf(z) and ergodic means Rkf(z)
of f along a path z = (x0, . . . , xk) of length k are defined by:

Skf(z) =
k∑

i=0
f(xi) , Rkf(z) = 1

k + 1

k∑
i=0

f(xi) . (5.1)

For each integer k ≥ 0, let Gk denote the set of paths in G of length k, equipped with 
the associated weighted distribution as in Definition 3.5. The function Rkf : Gk → R

can be seen as a random variable on the discrete probability space (Gk, μk). Since this 
collection of random variables are not defined on the same probability spaces, the only 
way we have to compare them is to consider their laws and their convergence in law.

A weak variant of the Law of large numbers, adapted to the framework of conditioned 
weighted graphs, is the following concentration result—to be refined in a Central Limit 
Theorem next.

Theorem 5.1. Let G = (M, w−, w+) be a conditioned weighted graph, with M of order N . 
Let π be the stationary measure on {1, . . . , N} associated with the limit weighted measure 
of G.
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Then, for every function f : {1, . . . , N} → R, the sequence of ergodic means (Rkf)k≥0, 
with Rkf defined on (Gk, μk) by (5.1), converges in distribution toward the Dirac mea-
sure δγf

, where γf is the constant defined by:

γf =
N∑
j=1

π(j)f(j) . (5.2)

Proof. Using the characteristic functions, it is enough to show the following convergence, 
for every real t:

lim
k→∞

Eμk
(eitRkf ) = eitγf , (5.3)

where Eμk
(·) denotes the expectation with respect to μk, and γf is the constant defined 

in (5.2).
We express the above expectation in matrix terms, as follows. For each complex num-

ber u, let Mf (u) be the complex-valued matrix defined by:

Mf (u) = Df (u)M , Df (u) = Diag(euf ) ,

where the last matrix is the diagonal matrix with entry euf(i) at position (i, i).
Let also vf (u) be the column vector defined by vf (u) = Df (u)w+. Then:

Eμk
(eitRkf ) = 1

Zk
w−(Mf (u)

)k
vf (u) , with u = it

k + 1 ,

where Zk = w− ·Mk · w+ is the normalization factor.
For small values of u, Df (u) is an analytic perturbation of the identity. By assumption, 

M has a unique eigenvalue of maximal modulus, say λ, and it is simple; the same spectral 
picture persists for Mf (u) for small values of u. Hence, according to [26, Theorem III.8], 
denoting by λ(u) the eigenvalue of highest modulus of Mf (u), by �(u) and by r(u) the 
unique left and right associated eigenvectors normalized by the conditions � · r(u) = 1
and �(u) · r(u) = 1, all these quantities are analytic in u around zero, and for u small 
enough:

Mf (u) = λ(u)Π(u) + Q(u) , with Π(u) = r(u) · �(u),

where the spectrum of Q(u) is included in a fixed disk of radius < λ, and Π(u) ·Q(u) =
Q(u) · Π(u) = 0. Raising to the power k yields:

(
Mf (u)

)k = λ(u)kΠ(u) + Q(u)k , ‖Q(u)k‖ = O
(
(λε)k

)
for any spectral norm ‖ · ‖ and for some 0 < ε < 1.
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Put � = �(0) and r = r(0), consistently with our previous notation for the pair (�, r). 
For t fixed and for k large enough, u = t

k+1 eventually reaches the region of validity of 
the above estimate. Hence, recalling that Zk = w− ·Mk · w+ = w− ·

(
Mf (0)

)k · w+,

Eμk
(eitRkf ) =k→∞

(
λ(u)
λ

)k
w− · Π(u) · vf (u)
w− · Π(0) · vf (0) + o(1) .

As the last fraction on the right tends to 1 when u → 0, this gives

Eμk
(eitRkf ) =k→∞

(
λ(u)
λ

)k

(1 + o(1)) + o(1) .

Passing to the limit as k → ∞ above yields, using the development of λ(·) around 
zero at order 1:

lim
k→∞

Eμk
(eitRkf ) = lim

k→∞

(
λ
( it
k+1
)

λ

)k

= ei
λ′(0)

λ t . (5.4)

It remains to evaluate λ′(0). For this, we first differentiate the equality � · r(u) = 1 at 
0 and obtain � · r′(0) = 0. We also differentiate the equality Mf (u) · r(u) = λ(u)r(u) at 
0 and obtain:

M ′
f (0) · r + M · r′(0) = λ′(0)r + λr′(0) .

We multiply both members of the above equality by � on the left to derive:

� ·M ′
f (0) · r = λ′(0) , since � · r′(0) = 0, � ·M = λ� and � · r = 1.

By the definition Mf (u) = Df (u) ·M , we have M ′
f (0) ·r = Diag(f) ·M ·r = λ Diag(f) ·r, 

and thus:

λ′(0) = λ� · Diag
(
f
)
· r = λ

N∑
j=1

f(j)�(j)r(j) = λγf .

Returning to (5.4), we deduce the validity of (5.3), which completes the proof. �
Extending the analysis to the next order yields a Central Limit Theorem.

Theorem 5.2. Let G = (M, w−, w+) be a conditioned weighted graph, with M of order N . 
Let π be the stationary measure on {1, . . . , N} associated with the uniform measure at 
infinity of G. Let f : {1, . . . , N} → R be a function.

Then there exists a non-negative σ2 such that the following convergence in law with 
respect to μk toward a Normal law holds:
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1√
k + 1

(
Skf − (k + 1)γf

) L−−−−→
k→∞

N (0, σ2) .

Moreover, σ2 = 0 if and only if there exists a function g : {1, . . . , N} → R such that 
f(i) = γf + g(i) − g(j) whenever Mi,j > 0 and i, j ∈ suppπ.

Proof. We keep the same notations introduced in the proof of Theorem 5.1. Replacing 
f by f − γf if necessary, we assume without loss of generality that γf = 0. We evaluate 
the characteristic function of (Skf)/

√
k + 1:

Eμk

(
ei

t√
k+1Skf

)
=k→∞

(
λ
( it√

k+1

)
λ

)k

(1 + o(1)) + o(1) . (5.5)

Since γf = 0, it follows from the computations performed previously that λ′(0) = 0, 
and thus, for κ = λ′′(0)/(2λ), around zero:

λ(u) = λ(1 + κu2) + o(u2) .

Passing to the limit in (5.5) yields:

lim
k→∞

Eμk

(
ei

t√
k+1Skf

)
= e−κt2 .

Since the left member in the above equation is uniformly bounded in t and in k, 
it entails that κ = σ2 ≥ 0, and this proves the convergence in law of (Skf)/

√
k + 1

toward N (0, σ2).
To prove the non-degeneracy criterion, we need to compute the second derivative of λ. 

First, we claim that we can assume that r(0)(i) > 0 for all i. Indeed, in the general case, 
we can partition {1, . . . , N} into the set where r(0) > 0 and the set where r(0) = 0. 
This gives rise to a block-triangular decomposition of M , with diagonal blocks A (on 
r(0) > 0) and B (on r(0) = 0). The spectrum of M is the union of the spectra of A and B, 
hence A has λ as a unique eigenvalue of maximal modulus, while B has strictly smaller 
spectral radius. When one perturbs M into M(u), the block-triangular decomposition 
survives. By continuity of the spectrum, the dominating eigenvalue λ(u) of M(u) is 
also the dominating eigenvalue of A(u), which is of the same type except that r(0) is 
everywhere positive for A.

From now on, we assume that r(0)(i) > 0 for all i. To compute the second derivative 
of λ, it is more convenient to reduce by conjugation to a situation where r′(0) = 0, as 
follows. The vector r̃(u) = Diag(e−ur′(0)/r(0)) · r(u) is equal to r + O(u2), and it is an 
eigenvector of the matrix

M̃f (u) = Diag
(
e−ur′(0)/r(0)) ·Mf (u) · Diag

(
eur

′(0)/r(0)) ,
for the eigenvalue λ(u). Differentiating twice the equality λ(u)r̃(u) = M̃f (u) · r̃(u) yields
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λ′′(0)r + 2λ′(0)r̃′(0) + λr̃′′(0) = M̃ ′′
f (0) · r + 2M̃ ′

f (0) · r̃′(0) + M̃f (0) · r̃′′(0) .

By construction, r̃′(0) = 0. Multiplying this equation on the left by �, the terms λr̃′′(0)
and M̃f (0) · r̃′′(0) cancel each other as � · M̃f (0) = � ·M = λ�. Thus,

λ′′(0) = � · M̃ ′′
f (0) · r.

Moreover:

(
M̃f (u)

)
i,j

= Mi,j · expu
(
f(i) − r′(0)(i)

r(0)(i) + r′(0)(j)
r(0)(j)

)
.

Finally, writing g(i) = r′(0)(i)/r(0)(i), we get the formula

λ′′(0) =
∑
i,j

�(i)
(
f(i) − g(i) + g(j)

)2
Mi,jr(j).

Note that g is real-valued, as the matrix Df (u) for small real u is real-valued and has a 
dominating real-valued eigenvector.

If follows from this expression that, if the variance vanishes, then f(i) = g(i) − g(j)
whenever Mi,j > 0 and �(i) > 0 and r(j) > 0 (these last two conditions are satisfied if i
and j belong to the support of π).

Conversely, assume that there exists g such that f(i) = g(i) − g(j) whenever i, j ∈
suppπ and Mi,j > 0. Then, along any path x = (x0, . . . , xk) in the graph with nonzero 
weight and in the support of π, the quantity Skf = g(x0) − g(xk) + f(xk) is uniformly 
bounded. For the limit weighted measure μ, almost every path enters the support of π
by ergodicity. Hence, Skf remains bounded along almost every path. In particular, for 
any ε > 0, there is a clopen set Kε of μ-measure > 1 − ε on which Skf is bounded 
for all k by a constant C(ε). As μk converges weakly to μ by Theorem 3.6, it follows 
that μk(Kε) > 1 − ε for large enough k. Hence, Skf is also bounded by C(ε) with 
μk-probability 1 − ε. This shows that Skf/

√
k + 1 converges in distribution with respect 

to μk towards the Dirac mass at 0. �
5.2. Asymptotics for Artin–Tits monoids

Let an Artin–Tits monoid A, that we assume to be irreducible and with at least two 
generators, be equipped with a Möbius valuation ω. Let (M, w−, w+) be the associated
CWG. We have already observed that, for every integer k ≥ 0, the finite probability 
distribution mω,k on Ak = {x ∈ A 

∣∣ |x| = k} which is proportional to ω corresponds to 
the weighted distribution on the set of paths of length k − 1 in the CWG. Let mω,∞ be 
the weak limit on ∂A of (mω,k)k≥0.

Let Ξ denote the space of infinite paths in the CWG, equipped with the limit weighted 
measure m̃. Then the natural correspondence between ∂A and Ξ makes the two proba-
bility measures mω,∞ and m̃ image of each other.
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By Theorems 2.31 and 3.6, both measures correspond to finite homogeneous Markov 
chains, but on two different finite sets of states: the set S \ {e} for mω,∞ and the set 
J =

{
(x, i) ∈ (S \ {e}) × N 

∣∣ 1 ≤ i ≤ |x|
}

for m̃. We wish to relate the stationary 
measures of these chains, that is to say, the finite probability distributions which are left 
invariant with respect to the transition matrices.

Lemma 5.3. Let f : A → (0, +∞) be the valuation corresponding to a non-degenerate 
multiplicative measure m on the boundary at infinity of an Artin–Tits monoid A. Let P
be the transition matrix of the Markov chain on S \{e} associated to m, and let θ be the 
unique probability vector on S \ {e} left invariant for P .

Let (M, w−, w+) be the CWG associated with f as described in Section 4.1.3, and let 
P̃ be the transition matrix on J =

{
(x, i) ∈ (S \ {e}) × N 

∣∣ 1 ≤ i ≤ |x|
}

of the Markov 
chain corresponding to the limit weighted measure of the CWG (see Definition 3.7).

Then the probability vector θ̃ on J defined by:

θ̃(x, i) = 1
κ
θ(x), with κ =

∑
x∈S\{e}

|x|θ(x),

is left invariant for P̃ .

Proof. We put S ′ = S \ {e} to shorten the notations. Let h be the Möbius transform 
of f , and let g : S ′ → R be the normalization vector defined on S ′ by:

∀y ∈ S ′ g(x) =
∑

y∈S′ : x→y

h(y).

It follows from Theorem 2.31 that f is a Möbius valuation, hence h(e) = 0. Therefore 
g coincides on S ′ with the function g defined in Lemma 2.33, and thus h(x) = f(x)g(x)
holds in particular for all x ∈ S ′. Furthermore, since m is non-degenerate, g > 0 according 
to Lemma 2.34.

Writing down the equation θP = θ yields, for every x ∈ S ′, and using the expression 
for P given by Theorem 2.31:

θ(x) =
∑
y∈S′

θ(y)Py,x =
∑

y∈S′ : y→x

f(y) θ(y)
h(y)h(x) .

Using the identities h(x) = f(x)g(x) and f(y)/h(y) = 1/g(y), we obtain:

f(x) ·
( ∑

y∈S′ : y→x

θ(y)
g(y)

)
= θ(x)

g(x) . (5.6)
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Now we claim:

(†) The vectors u and v defined, for (x, i) ∈ J, by u(x,i) = θ(x)/g(x) and

v(x,i) = g(x), are respectively left and right invariant for M, hence satisfy

u ·M = u and M · v = v.

The claim follows from the following computations, referring to the definition for the 
matrix M given in Section 4.1.3:

(u ·M)(x,1) =
∑

y∈S′ : y→x

θ(y)
g(y)f(x) = u(x,1) ,

where the last equality derives from (5.6). And for i > 1:

(u ·M)(x,i) = u(x,i−1) = u(x,i) .

This proves that u is left invariant for M . To prove the right invariance of v, we compute 
as follows:

for i = |x|: (M · v)(x,|x|) =
∑

y∈S′ : x→y

f(y)g(y) =
∑

y∈S′ : x→y

h(y) = g(x) = v(x,|x|)

for i < |x|: (M · v)(x,i) = g(x) = v(x,i)

This proves the claim (†).
Thus, the stationary distribution of P̃ is proportional to the vector u(x, i)v(x, i) = θ(x)

and is a probability vector; whence the result. �
Definition 5.4. Let A be an irreducible Artin–Tits monoid with at least two generators, 
equipped with a valuation ω : A → (0, +∞). The speedup of ω is the quantity:

κ =
∑

x∈S\{e}
|x|θ(x),

where S is the smallest Garside subset of A, and θ is the stationary distribution of the 
Markov chain on S \ {e} associated with the multiplicative measure mω,∞ on ∂A.

We note that θ(Δ) = 0 if A is of spherical type. We now come to the study of 
asymptotics for combinatorial statistics defined on Artin–Tits monoids.

Definition 5.5. Let A be an Artin–Tits monoid. A function F : A → R is said to be:

1. Additive if F (x · y) = F (x) + F (y) for all x, y ∈ A.
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2. Normal-additive if F (x1 · . . . · xn) = F (x1) + . . . + F (xn) whenever (x1, . . . , xn) is a 
normal sequence of A.

Additive functions are normal additive, but the converse needs not to be true. For 
instance, the height function is normal additive without being additive in general.

Theorem 5.6. Let A be an irreducible Artin–Tits monoid with at least two generators. 
Let ω : A → (0, +∞) be a valuation, and let F : A → R be a normal-additive function.

If k > 0 is an integer, we let x denote a random element in Ak distributed according 
to the finite distribution mω,k. Let θ be the stationary distribution on S \ {e} of the 
Markov chain associated with the weak limit mω,∞ = limk→∞ mω,k.

Then the following convergence in distribution holds:

F (x)
|x|

L−−−−→
k→∞

δγ , with γ = 1
κ

∑
x∈S\{e,Δ}

θ(x)F (x),

where κ is the speedup of ω, and where Δ is to be ignored if A is not of spherical type.
Assume furthermore that: (1) A has at least three generators in case that it is of 

spherical type, and (2) F is not proportional on S \ {e, Δ} to the length function (with 
Δ to be ignored if A is not of spherical type). Then there exists a constant s2 > 0 such 
that the following convergence in distribution toward a Normal law holds:

1√
k

(
F (x) − kγ

) L−−−−→
k→∞

N (0, s2).

Proof. We assume without loss of generality that ω is a Möbius valuation. For otherwise, 
we normalize it by putting ω′ = κω, for the unique positive real κ such that, according 
to Theorem 4.7, the resulting valuation ω′ is a Möbius valuation. Then the weighted 
distributions associated with ω′ are the same as the weighted distributions associated 
with ω, and the convergences that we shall establish for ω′ correspond to the convergences 
for ω.

Let (M, w−, w+) be the CWG associated to ω. We express F (x) for x ∈ Ak as an 
ergodic sum in order to apply Theorem 5.1. For this, let F̃ : J → R, with J = {(x, i) ∈
(S \ {e}) × N 

∣∣ 1 ≤ i ≤ |x|}, be defined by:

F̃ (x, i) =
{

0, if i < |x|
F (x) if i = |x|

Then, for x ∈ Ak, if x̃ is the corresponding path in the CWG as in (4.1), one has 
F (x) = Sk−1F̃ (x̃), where Sk−1F̃ denotes the ergodic sums associated to F̃ , and thus 
F (x)/|x| = Rk−1F̃ (x̃) where Rk−1F̃ denotes the ergodic means associated to F̃ . Let θ̃
be the stationary distribution given by Theorem 3.6 applied to the CWG (M, w−, w+). 
Then Theorem 5.1 entails the convergence in distribution:
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F (x)
|x|

L−−−−→
k→∞

δγ , with γ =
∑

(x,i)∈J

θ̃(x, i)F̃ (x, i) = 1
κ

∑
x∈S\{e}

θ(x)F (x),

where the last equality comes from Lemma 5.3. If A is of spherical type, then θ(Δ) = 0
hence the sum ranges over S \ {e, Δ}.

We now aim at applying the Central Limit Theorem 5.2. For this, let H(x) = F (x) −
γ|x| and let H̃ be defined with respect to H in the same way than F̃ was defined 
with respect to F . We prove that H̃ satisfies the non-degeneration criterion stated in 
Theorem 5.2. For this, since γH = 0, assume that there exists a function g(·, ·) on J such 
that H̃(x, i) = g(x, i) − g(y, j) whenever M(x,i),(y,j) > 0 and (x, i), (y, j) belong to the 
support of the invariant measure of the Markov chain, i.e., x, y ∈ S \ {e, Δ} (with Δ
appearing only if A is of spherical type).

For any x ∈ S \ {e, Δ}, and for i < |x|, one has H̃(x, i) = 0 = g(x, i) − g(x, i + 1), 
hence the value of g(x, i) is independent of i ∈ {1, . . . , |x|}. And for all y such that x → y

holds, H̃(x, |x|) = g(x, |x|) − g(y, 1). Therefore the value of g(y, 1) is independent of y, 
provided that x → y holds.

To prove that g is globally constant, it is thus enough to show that the transitive 
closure on S \ {e, Δ} of the relation relating x and y if there exists z such that z → x

and z → y, is S \ {e, Δ}. In turn, this derives from the following claim:

(†) For every x ∈ S \ {e,Δ} (with Δ appearing only if A is of spherical type),

let D(x) =
{
y ∈ S \ {e,Δ}

∣∣ x → y
}
. Then there exists a subset I of

S \ {e,Δ} such that:

∀x, y ∈ I x �= y =⇒ D(x) ∩D(y) �= ∅, (5.7)

∀y ∈ S \ {e,Δ} ∃x ∈ I y ∈ D(x). (5.8)

We prove (†). If A is not of spherical type, any singleton I = {x} is suitable if x
is maximal in the finite poset (S, ≤l). Indeed, (5.7) is trivially true, and for (5.8), by 
maximality of x, any y ∈ S \ {e} satisfies x =

∨
l{ζ ∈ S

∣∣ ζ ≤l x · y} and thus y ∈ D(x)
by Lemma 2.8.

For A of spherical type, we put I =
{
ΔA

∣∣ ∃a ∈ Σ A = Σ \ {a}
}
, where ΔA =

∨
l A. 

Let A = Σ \ {a} and B = Σ \ {b} with a �= b. Then there exists c /∈ {a, b} since |Σ| > 2, 
and then L(c) = {c} ⊆ R(ΔA), R(ΔB), hence c ∈ D(ΔA) ∩D(ΔB) using Corollary 2.11. 
This proves (5.7). To prove (5.8), consider any x ∈ S \ {e, Δ}. Then L(x) �= Σ hence 
L(x) ⊆ R(ΔA) for any A = Σ \ {a} such that a /∈ L(x), and thus x ∈ D(ΔA).

Hence we have proved the claim (†), and thus that g is globally constant. It entails 
that H̃ is itself constant, equal to zero, and that F is proportional on S \ {e, Δ} to the 
length function, contradicting our assumption. Consequently, Theorem 5.2 applies and 
we derive the stated convergence. �
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Remark 5.7. Let N (0, 0) denote the Dirac measure on R concentrated on 0. We remark 
that, in the cases excluded in the last paragraph of Theorem 5.6, the same convergence 
holds with s2 = 0, hence toward N (0, 0).

For functions F proportional to the length function, the quantity F (x) −kγ identically 
vanishes, hence the convergence is trivial. The statement also excludes the case of an 
Artin–Tits monoid A of spherical type and with two generators only. Since A is assumed 
to be irreducible, it is the case of A = A

(
{a, b}, �

)
with 3 ≤ �(a, b) < ∞. Such a monoid 

is easily investigated. Putting n = �(a, b), one has S = {e, x1, . . . , xn−1, y1, . . . , yn−1, Δ}
with xi = abab · · · , yi = baba · · · and |xi| = |yi| = i, and Δ = xn = yn. Furthermore, 
putting X = {xj

∣∣ 1 ≤ j < n} and Y = {yj
∣∣ 1 ≤ j < n}, one has:

for 2i + 1 < n: D(x2i+1) = X, D(y2i+1) = Y,

for 2i < n: D(x2i) = Y, D(y2i) = X.

Consider a Möbius valuation ω, and let G be the normal-additive function defined by 
G(x2i) = 1, G(y2i) = −1, G(x2i+1) = G(y2i+1) = 0. Observe that ω(x2i) = ω(y2i), hence 
γ = 0 for symmetry reasons. For any x ∈ A, with normal form x = Δix · s1 · . . . · sm, 
one has G(x) = ixG(Δ) + εm with εm ∈ {−1, 0, 1}, where ix is the number of Δs in the 
normal form of x. Hence, for any a > 0:

ωk

(∣∣∣G(x)√
k

∣∣∣ ≥ a
)
≤ ωk

(
ix ≥ a

√
k − 1

1 + |G(Δ)|
)
.

Since ix converges in law toward a geometric law, it follows that the right-hand member 
above, and thus the left-hand member, converges toward 0, and so G(x)/

√
k converges 

in law toward N (0, 0), as expected.
An inspection of the proof of Theorem 5.6 shows that the functions for which the non-

degeneracy criterion for the convergence applies, are exactly those in the two-dimensional 
vector space generated by the length function and G. Hence, for normal-additive func-
tions outside this vector space, the convergence stated in Theorem 5.6 applies with 
s2 > 0.

Let us apply Theorem 5.6 to obtain information on the following statistics: the ratio 
height over length of large elements in an irreducible Artin–Tits monoid.

Corollary 5.8. Let A be an Artin–Tits monoid. We assume that A is irreducible, has at 
least two generators and is not a free monoid. Let κ be the speedup associated to the 
constant valuation ω(x) = 1 on A.

Then, for all reals a < b distinct from κ−1, one has:

lim
k→∞

#{x ∈ Ak

∣∣ a < τ(x)/k < b}
#Ak

= 1(a < κ−1 < b),
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and for a and b distinct from κ:

lim
k→∞

#{x ∈ Ak

∣∣ a < k/τ(x) < b}
#Ak

= 1(a < κ < b).

It entails the convergence of the following expectations, where Ek denotes the expec-
tation with respect to the uniform distribution on Ak:

lim
k→∞

1
k
Ekτ(·) = κ−1, lim

k→∞
kEk

( 1
τ(·)
)

= κ.

Furthermore, there is a positive constant s2 such that, for any two reals a < b, one 
has:

lim
k→∞

#
{
x ∈ Ak

∣∣ a√k < τ(x) − kκ−1 < b
√
k
}

#Ak
= 1√

2πs2

b∫
a

exp
(
− t2

2s2

)
dt, (5.9)

lim
k→∞

#
{
x ∈ Ak

∣∣ a <
√
k
(
k/τ(x) − κ) < b

}
#Ak

= 1√
2πs2κ−4

b∫
a

exp
(
− t2

2s2κ−4

)
dt.

(5.10)

Proof. We apply Theorem 5.6 with the height function F (x) = τ(x), which is normal-
additive. It is not proportional on S \ {e, Δ} to the length function since A is not a 
free monoid. If A is of spherical type with only two generators, the function F does not 
belong to the vector space generated by the length function and the function G described 
in the above Remark. Hence, Theorem 5.6 applies.

The ratios τ(x)/|x| converge in distribution toward δγ with:

γ = 1
κ

∑
x∈S\{e}

θ(x) = 1
κ
.

Since it is a constant, it entails the convergence in distribution of the inverse ratios 
|x|/τ(x) toward the constant γ−1 = κ. The two first points derive at once, as well as the 
convergence of the expectations.

The convergence (5.9) is the reformulation of the convergence in distribution √
k
(
τ(x)/|x| − κ−1) L−→ N (0, s2). It is then well know how to derive the following 

convergence:

√
k
( |x|
τ(x) − κ

)
L−−−−→

k→∞
N (0, s2γ4),

based on the Delta method, see [18, p. 359]. The convergence (5.10) follows. �
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6. Similar results for other monoids

So far, our results only focused on Artin–Tits monoids and their Garside normal 
forms, with the help of conditioned weighted graphs. However, the arguments developed 
above may apply to other monoids as well, provided that their combinatorial structure 
is similar to that of Artin–Tits monoids.

In Section 6.1, we list the different properties on which our arguments rely, and then we 
state the corresponding results. In Section 6.2, we underline that the main objects that we 
construct—the boundary at infinity and the class of multiplicative probability measures 
on the boundary—are intrinsically attached to the monoid, although the construction 
uses non-intrinsic objects such as a particular Garside subset. Finally, we identify in 
Section 6.3 several examples of monoids fitting into this more general framework, and 
not falling into the class of Artin–Tits monoids.

6.1. A more general working framework

The properties that must be satisfied by the monoid A to follow the sequence of 
arguments that we developed are the following:

(P1) There exists a length function on the monoid A, i.e., a function |·| : A → Z≥0 such 
that:

∀x, y ∈ A |x · y| = |x| + |y| and ∀x ∈ A x = e ⇐⇒ |x| = 0.

(P2) The monoid A is both left and right cancellative, meaning:

∀x, y, z ∈ A (z · x = z · y =⇒ x = y) and (x · z = y · z =⇒ x = y).

(P3) The ordered set (A, ≤l) is a lower semi-lattice, i.e., any non-empty set has a greatest 
lower bound in A.

(P4) There exists a finite Garside subset S, i.e., a finite subset of A which generates A
and is closed under existing ∨l and downward closed under ≤r (the condition that 
S contains Σ is dropped: it does not make sense in our context as we have not 
singled out a generating set Σ in our assumptions).

(P5) The Charney graph (C , →) is strongly connected, where C is the subset of S and 
→ is the relation on S × S defined by:

C =
{
S \ {Δ, e}, if (S,≤l) has a maximum Δ
S \ {e}, otherwise

x → y ⇐⇒ x =
∨

l

{
z ∈ S

∣∣ z ≤l x · y
}
.
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(P6) The integers in the set:{
|z1| + . . . + |zk|

∣∣ k ≥ 1, z1, . . . , zk ∈ S, z1 → z2 → . . . → zk → z1
}
,

are setwise coprime, i.e., have 1 as greatest common divisor.
(P7) If (S, ≤l) has a maximum, then the Charney graph (C , →) has at least one vertex 

with out-degree two or more.

We observe that all irreducible Artin–Tits monoids with at least two generators satisfy 
the above axioms.

Property (P1) states the conditions that must be met by the notion of length of an 
element, and then Properties (P2) to (P4) lead to the notion of Garside normal form 
and its variants, such as the generalized Garside normal form.

Property (P5) is then equivalent with Theorem 2.12. Property (P6) is used to obtain 
aperiodic, and therefore primitive matrices. Property (P7) ensures that the Δ component, 
if it exists, will have a small spectral radius. In the case of irreducible Artin–Tits monoids, 
(P7) holds for monoids with at least two generators, and only for them.

The results obtained in the previous sections for irreducible Artin–Tits monoids with 
at least two generators, and regarding the construction of multiplicative probability 
measures at infinity, generalize to all monoids satisfying Properties (P1) to (P7).

Theorem 6.1. Let A be a monoid satisfying Properties (P1)–(P7). Then Theorem 2.35, 
Proposition 4.3, Theorem 4.4, Corollary 4.5, Theorem 4.7 and Theorem 5.6 hold for the 
monoid A.

In view of Theorem 6.1, two questions naturally arise:

• Assume given a monoid A satisfying (P1)–(P7). The central objects that we consider 
are the boundary at infinity of A, the multiplicative measures and the uniform 
measure on the boundary. How much of these objects are intrinsic to A? And on 
the contrary, how much depend on the specific length function and on the Garside 
subset that were chosen?

• What are typical examples of monoids satisfying (P1)–(P7) outside the family of 
Artin–Tits monoids?

We answer the first question below in Section 6.2, showing that most of our objects 
of interest are intrinsic to the monoid. The answer to the second question is the topic of 
Section 6.3.

6.2. The boundary at infinity and the multiplicative measures are intrinsic

We have constructed in Section 2.3.1 a compactification A of an Artin–Tits monoid 
A as the set of infinite paths in the graph (S, →), where S is the smallest finite Garside 
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subset of A. Then A identifies with the set of paths that hit e, whereas the boundary is 
the set of paths that never hit e.

The same construction is carried over for an arbitrary monoid A equipped with a finite 
Garside subset S, and this was implicitly understood in the statement of Theorem 6.1. 
We have thus an operational description of the compactification and of the boundary at 
infinity relative to the Garside subset S, say AS and ∂AS . It is not obvious however to 
see that the two compact spaces thus obtained are essentially independent of S. We sum 
up an alternative construction of the boundary at infinity, already used in [16], and the 
fact that it is equivalent to the previous construction in the following result, the proof 
of which we omit.

Proposition 6.2. Let A be a monoid, and define the preorder ≤l on A by putting x ≤l
y ⇐⇒ (∃z ∈ A y = x · z). Let H =

{
(xi)i≥0

∣∣ ∀i ≥ 0 xi ∈ A xi ≤l xi+1
}
. Equip H with 

the preordering relation defined, for x = (xi)i≥0 and y = (yi)i≥0, by:

x � y ⇐⇒
(
∀i ≥ 0 ∃j ≥ 0 xi ≤l yj

)
.

Let finally (A, ≤l) be the collapse of (H, �). That is to say, A is the partially ordered 
set obtained as the quotient of H by the equivalence relation � ∩(�)−1.

Assume that A satisfies Properties (P1), (P2) and (P4).

1. Then (A, ≤l) is a partial order that identifies with its image in A through the com-
posed mapping A → H → A, where the mapping A → H sends an element x to the 
constant sequence (x, x, . . . ).

One equips A with the smallest topology containing as open sets all sets of the form 
↑ x with x ∈ A and all sets of the form A \ ↑ x with x ∈ A (in Domain theory, this 
corresponds to the Lawson topology [27, p. 211]). Finally, the boundary at infinity of A
is the topological space defined by ∂A = A \ A.

2. There is a canonical mapping between AS and A. This mapping makes (AS , ≤l) and 
(A, ≤l) isomorphic as partial orders, and the topological spaces homeomorphic. Its 
restriction to ∂AS induces a homeomorphism from ∂AS to ∂A.

Multiplicative measures on the boundary are those measures m on ∂A satisfying 
m
(
↑ (x · y)

)
= m( ↑ x) ·m( ↑ y). We deduce the following corollary.

Corollary 6.3. Let A be a monoid satisfying Properties (P1) to (P7). Then the notions of 
boundary at infinity and of multiplicative measure are intrinsic to A, and do not depend 
either on the specific length function nor on the specific finite Garside subset considered.

By contrast, the notion of uniform measure does depend on the specific length func-
tion one considers. Nevertheless, the uniform measure associated to any length function 



554 S. Abbes et al. / Journal of Algebra 525 (2019) 497–561
belongs to the class of multiplicative measures—and this class is intrinsic to A according 
to Corollary 6.3.

6.3. Examples outside the family of Artin–Tits monoids

We now mention two families of monoids matching the general working framework 
introduced in Section 6.1, and yet outside the family of Artin–Tits monoids.

6.3.1. Dual braid monoids
Braid monoids, which are among the foremost important Artin–Tits monoids, can be 

seen as sub-monoids of braid groups. The braid group with n strands, for n ≥ 2, is the 
group Bn defined by the following presentation:

Bn =
〈
σ1, . . . , σn−1 | σiσj = σjσi if |i− j| > 1, σiσjσi = σiσjσi if i = j ± 1

〉
.

The associated braid monoid is just the sub-monoid positively generated by the family 
{σi

∣∣ 1 ≤ i ≤ n}.
The dual braid monoid is another sub-monoid of the braid group, strictly greater than 

the braid monoid when n ≥ 3. This monoid was introduced in [28]. It is the sub-monoid 
of Bn generated by the family {σi,j

∣∣ 1 ≤ i < j ≤ n}, where σi,j is defined by:

σi,j = σi , for 1 ≤ i < n and j = i + 1,

σi,j = σiσi+1 . . . σj−1σ
−1
j−2σ

−1
j−3 . . . σ

−1
i , for 1 ≤ i < n− 1 and i + 2 ≤ j ≤ n .

Alternatively, the dual braid monoid is the monoid generated by the elements σi,j for 
1 ≤ i < j ≤ n, and subject to the relations:⎧⎪⎪⎨⎪⎪⎩

σi,j · σj,k = σj,k · σi,k = σi,k · σi,j for 1 ≤ i < j < k ≤ n;
σi,j · σk,� = σk,� · σi,j for 1 ≤ i < j < k < � ≤ n;
σi,j · σk,� = σk,� · σi,j for 1 ≤ i < k < � < j ≤ n.

It is proved in [1] that dual braid monoids satisfy Properties (P1) to (P7), where the 
length of an element x of the monoid is the number of generators σi,j that appear in any 
word representing x, and where S is the smallest Garside subset of the monoid.

In fact, this construction can be generalized to all irreducible Artin–Tits monoids of 
spherical type. Indeed, for any such monoid A, Bessis also developed in [29] a notion of 
dual monoid, which subsumes the notion of dual braid monoid in case A is the braid 
monoid B+

n . In particular, Bessis proved that these dual monoids satisfy Properties (P1) 
to (P4), (P6) and (P7), with the same definitions of element length and of Garside set S.

However, Property (P5) was not investigated. Hence, we prove here the following 
result.
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Proposition 6.4. Let A be an irreducible Artin–Tits monoid of spherical type, with at least 
two generators. The dual monoid associated with A satisfies Properties (P1) to (P7).

Proof. Based on the above discussion, it only remains to prove that the dual monoid 
B satisfies Property (P5). It follows from the classification of finite Coxeter groups [9]
that A must fall into one of the following finitely many families. Three families consist 
of so-called monoids of type A, B and D, one is the family of dihedral monoids I2(m)
(with m � 3), and other families are finite (these are families of exceptional type).

Monoids of type A are braid monoids, which are already treated in [1]. Furthermore, 
using computer algebra (for instance the package CHEVIE of GAP [30]), it is easy to 
prove (P5) in the case of families of exceptional type. Hence, we focus on the three 
infinite families of monoids.

If A is of type I2(m), the monoid B has the following presentation (this presentation 
is the one given by [31], with reversed product order):

B =
〈
σ1, . . . , σm | σiσj = σmσ1 if j = i + 1

〉+
.

Then, its Garside set is S = {e, σ1, . . . , σm, Δ}, where Δ = σmσ1 is the only element of 
S with length 2. In particular, we have C = {σ1, . . . , σm}, and σi → σj for all j �= i + 1, 
which proves (P5) in this case.

In case A is of type B or D, combinatorial descriptions of B are provided in [32,33,31,
29,34,35]. They include descriptions of the generating family Σ, of the Garside set S, and 
of the multiplication relations in S. These descriptions lead, in all dual braid monoids, 
to the fact that (S, ≤l) is a lattice, and to the following property:

(†) For all σ, τ ∈ Σ such that σ · τ ∈ S, it holds that τ ≤l σ · τ and σ ≤r σ · τ.

Property (†) leads to Lemma 6.5 and Corollary 6.6. From there, and by following a 
proof that is very similar to the one in [1] for monoids of type A, we show Lemmas 6.8
and 6.9, thereby demonstrating Proposition 6.4. �
Lemma 6.5. The left and right divisibility relations coincide on B, i.e.:

∀x, y ∈ B x ≤l y ⇐⇒ x ≤r y. (6.1)

Proof. We proceed by induction on |y|. The statement is immediate if |x| = 0 or |x| = |y|, 
hence we assume that 0 < |x| < |y|.

If x ≤l y, let us factor x and y as products of the form x = x1 · x2 and y = x · y3 · y4, 
where x2 and y4 belong to Σ. Using the induction hypothesis and Property (†), there 
exist elements y′3, y′4 and y′′4 of B such that

y = x1 · x2 · y3 · y4 = y′3 · x1 · x2 · y4 = y′3 · x1 · y′4 · x2 = y′3 · y′′4 · x1 · x2,

which proves that x ≤r y. We prove similarly that, if x ≤r y, then x ≤l y. �
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Corollary 6.6. For all x ∈ S, let L(x) = {σ ∈ Σ 
∣∣ σ ≤l x}. Then, for all x and y in S:

(
∀τ ∈ L(y) ∃σ ∈ L(x) σ → τ

)
=⇒ (x → y).

Proof. Assume that the relation x → y does not hold. This means that we can factor y
as a product y = τ · y2 · y3, with τ ∈ Σ, such that the element z = x · τ · y2 belongs to S. 
Then, let σ ∈ L(x) be such that σ → τ .

By Lemma 6.5, we can also factor x as a product x = x1 ·σ. Hence, the element σ ·τ is 
a factor of z, and therefore σ · τ ≤r z. Since S is downward closed under ≤r, this means 
that σ · τ ∈ S, contradicting the fact that σ → τ . �
Remark 6.7. The above corollary indicates how to infer a relation x → y for x, y ∈ S
based on the knowledge of the restriction →

∣∣
Σ×Σ. In turn, the explicit presentations 

given in [31] for dual monoids of type B and D have the following property: for any two 
generators σ, τ ∈ Σ, the relation σ → τ holds if and only if the product σ · τ does not 
appear as a member of the presentation rules of the dual monoid. In particular, σ → σ

holds for all σ ∈ Σ.

Lemma 6.8. Let A be an irreducible Artin–Tits monoid of type B, with two generators 
or more. The dual monoid associated with A satisfies Property (P5).

Proof. Thanks to the combinatorial descriptions mentioned above, we identify elements 
of S with type B non-crossing partitions of size n, where n is the number of generators 
of A. These are the partitions T = {T 1, . . . , Tm} of Z/(2n)Z such that, for every set T i, 
the set n + T i is also in T, and the sets {exp(ikπ/n) 

∣∣ k ∈ T i} have pairwise disjoint 
convex hulls in the complex plane. Note that T is thus globally invariant by central 
symmetry. Both relations ≤l and ≤r then coincide with the partition refinement relation.

Thus, we respectively identify the extremal elements e and Δ of S with the partitions {
{1}, {2}, . . . , {2n}

}
and 

{
{1, 2, . . . , 2n}

}
, and Σ consists of those partitions

σi,j =
{
{i, j}, {i + n, j + n}

}
∪
{
{k} : k �= i, j, i + n, j + n

}
,

with 1 ≤ i ≤ n and i < j ≤ n + i. They are pictured in Fig. 2 for n = 3. The left divisors 
of a partition T, i.e., the elements of L(T), are then those partitions σi,j that refine T.

Finally, keep in mind the following observation. Let v be a maximal proper factor 
of Δ, i.e., a type B non-crossing partition of which Δ is the immediate successor in the 
partition refinement order. After application of a bijection of the form i ∈ Z/(2n)Z �→
i + j, for some integer j ∈ {0, 2n − 1}, v is of the form

vi =
{
{1, . . . , i}, {n + 1, . . . , n + i}, {i + 1, . . . , n, n + i + 1, . . . , 2n}

}
, (6.2)

for some integer i ∈ {1, . . . , n}.
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Fig. 2. Generators of the dual monoid of type B for n = 3.

Now, consider two elements y, z of S \ {e, Δ}, and let us prove that y →∗ z. Since 
z <l Δ, and since the map σi,j �→ σi+1,j+1 induces an automorphism of the monoid B, 
corresponding to the rotation of the complex plane of angle π/n, we assume without 
loss of generality that z is a refinement of some partition vi from (6.2), for an integer 
i ∈ {1, . . . , n}. Corollary 6.6 implies in particular that vi → z holds.

Based on Remark 6.7, one sees that:

σi,j → σu,v ⇐⇒
(
(u < i ≤ v < j) or (i ≤ u < j ≤ v) or (i ≤ u + n < j ≤ v + n)

)
.

Using Corollary 6.6, it implies: vj → vj+1 when 1 ≤ j ≤ n − 1, and vn → w → v1 with 
w =

{
{1, n + 2, . . . , 2n}, {2, . . . , n + 1}

}
. It follows that holds: vn →∗ vi → z.

Finally, let σa,b be some generator in L(y). It comes that y → σ1,a → σ1,n+1 if 
1 < a, or y → σ1,n+1 if a = 1. We then observe that σ1,n+1 → x → vn, where x ={
{j, n + 1 − j} : 1 ≤ j ≤ n

}
, and therefore that y →∗ z. �

Lemma 6.9. Let A be an irreducible Artin–Tits monoid of type D, with two generators 
or more. The dual monoid associated with A satisfies Property (P5).

Proof. Let n + 1 be the number of generators of A. If n ≤ 2, A is also a braid monoid. 
Hence, we assume that n ≥ 3.

We identify elements of S with type D non-crossing partitions of size n + 1. Here, we 
associate every element k of Z/(2n)Z with the complex point pk = exp(ikπ/n). We also 
consider a two-element set {•, • +n}, with the convention that • +2n = •, and associate 
both • and • + n with the complex point p• = p•+n = 0.

Then, type D non-crossing partitions of size n are the partitions T = {T 1, . . . , Tm}
of Z/(2n)Z ∪ {•, • + n} such that (i) T does not contain the set {•, • +n}, (ii) for every 
set T i, the set n + T i is also in T, and (iii) the sets {pk

∣∣ k ∈ T i} have pairwise disjoint 
convex hulls in the complex plane, with the exception that they may share the point 
p• = p•+n = 0.
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Again, both relations ≤l and ≤r coincide with the partition refinement relation, ex-
tremal elements e and Δ of S are identified with the respective partitions

{
{1}, {2}, . . . , {2n}, {•}, {• + n}

}
and

{
{1, 2, . . . , 2n, •, • + n}

}
,

and Σ consists of those partitions

σi,j =
{
{k} : k �= i, j, i + n, j + n

}
∪
{
{•}, {• + n}, {i, j}, {i + n, j + n}

}
τ� =

{
{k} : k �= �, � + n

}
∪
{
{�, •}, {� + n, • + n}

}
,

with 1 ≤ i ≤ n, i < j < n + i, and 1 ≤ � ≤ 2n.
Moreover, proceeding as in Remark 6.7, one finds that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σi,j → τw if w ∈ {i, . . . , j − 1} or w + n ∈ {i, . . . , j − 1};
σi,j → σu,v if u < i ≤ v < j, i ≤ u < j ≤ v or i ≤ u + n < j ≤ v + n;
τ� → τw if w ∈ {�, . . . , � + n− 1};
τ� → σu,v if {�, � + n} ∩ {u + 1, . . . , v} �= ∅.

Now, consider two elements y, z of S \ {e, Δ}, and let us prove that y →∗ z. Since 
z <l Δ, and since the map σi,j �→ σi+1,j+1, τ� �→ τ�+1 induces an automorphism of 
the monoid B, we assume without loss of generality that z is refinement of a partition v
that is either equal to τ−1

2n Δ = {{1, . . . , n, •}, {n + 1, . . . , 2n, • + n}} or to

σ−1
n,n+iΔ = {{1, . . . , i},{n + 1, . . . , n + i},

{i + 1, . . . , n, n + i + 1, . . . , 2n, •, • + n}}

for some integer i ∈ {1, . . . , n − 1}.
Using Corollary 6.6, one checks that σ−1

n,n+jΔ → σ−1
n,n+j+1Δ when 1 ≤ j ≤ n − 1, and 

that σ−1
n,2nΔ → τ−1

2n Δ → τ−1
1 Δ → σ−1

n,n+1Δ, where

τ−1
1 Δ =

{
{2, . . . , n + 1, •}, {n + 2, . . . , 1, • + n}

}
.

It follows that τ−1
2n Δ →∗ v → z. Finally, let λ be some generator in L(y). It comes that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y → σ1,a → σ1,n if λ = σa,b with 2 ≤ a;
y → σ1,n if λ = σa,b with a = 1;
y → σ1,� → σ1,n if λ = τ� with � ≤ n;
y → σ1,�+n → σ1,n if λ = τ� with n + 1 ≤ �.

We then observe that σ1,n+1 → w → τ−1
2n Δ, where
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w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
{j, 2n + 1 − j} : 1 ≤ j ≤ n and j �= m

}
∪
{
{m,m + n, •, • + n}

}
if n is odd and m = (n + 1)/2;{
{j, 2n + 1 − j} : 1 ≤ j ≤ n

}
∪
{
{•}, {• + n}

}
if n is even.

It follows that y →∗ z. �
6.3.2. Free products of Garside monoids

Garside monoids are extensively studied structures [36–38,8]. Their definition is as 
follows [37]. First recall that an atom of a monoid M is an element x ∈ M, different 
from the unit element e, and such that x = yz =⇒ (y = e ∨ z = e). A monoid 
is atomic if it is generated by its atoms. A Garside monoid is an atomic monoid M, 
left and right cancellative, such that (M, ≤l) and (M, ≤r) are two lattices, and such 
that M contains a Garside element. A Garside element is an element Δ ∈ M such that 
{x ∈ M 

∣∣ x ≤l Δ} = {x ∈ M 
∣∣ x ≤r Δ}, and such that this set is finite and generates M. 

By [37, Prop. 1.12], this set is then necessarily a Garside subset of M.
Garside monoids do not necessarily have a length function as in (P1). Hence, in the 

following result, we have to assume its existence as an additional assumption in order to 
fit with our previous setting.

Proposition 6.10. Let A1 and A2 be non-trivial Garside monoids satisfying Prop-
erty (P1). Then the monoid A0 defined as the free product A0 = A1 ∗ A2 satisfies 
Properties (P1) to (P7).

Proof. This is a consequence of the properties of Garside monoids recalled above, to-
gether with the following elementary lemma. �
Lemma 6.11. Let A1 and A2 be two non-trivial monoids satisfying Properties (P1)–(P4). 
Then the free product monoid A0 = A1 ∗ A2 satisfies Properties (P1) to (P7).

Proof. Let u = x1y1 . . . xpyp, with x1, . . . , xp ∈ A1 and y1, . . . , yp ∈ A2, denote a generic 
element of A0. The length of u is defined by |u|0 = |x1|1 + · · ·+ |xp|1 + |y1|2 + · · ·+ |yp|2, 
and the length function thus defined on A0 satisfies (P1). The free product of cancellative 
monoids is itself cancellative, hence A0 satisfies (P2). Let u′ = x′

1y
′
1 . . . x

′
qy

′
q ∈ A0. Put 

k = max{j ≤ p, q
∣∣ x1y1 . . . xjyj = x′

1y
′
1 . . . x

′
jy

′
j}. If k = p then u ∧ u′ = u and if k = q

then u ∧ u′ = u′. Otherwise, it is readily seen that:

u ∧ u′ =
{
x1y1 . . . xkyk(xk+1 ∧ x′

k+1), if xk+1 �= x′
k+1 ,

x1y1 . . . xkykxk+1(yk+1 ∧ y′k+1), if xk+1 = x′
k+1 .

Hence u ∧ u′ exists in all cases, and A0 satisfies (P3).
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Identify the two monoids A1 and A2 with their images in A0 through the canonical 
injections A1 → A0 and A2 → A0. Then the (disjoint) union S1 ∪ S2 is a finite Garside 
subset of A0, which satisfies thus (P4).

Consider the augmented Charney graph (C ′
1, →) of A1, where C ′

1 = S1 \ {eA1}, i.e., 
C ′

1 = C1 ∪ {Δ1} if S1 has a maximum Δ1, and C ′
1 = C1 otherwise. We define the 

augmented Charney graph (C ′
2, →) of A2 similarly. Then, the Charney graph (C0, →)

of A0 is the bipartite complete graph with parts (C ′
1, →) and (C ′

2, →). Therefore A0
satisfies necessarily (P5). And since the two monoids A1 and A2 are assumed to be 
non-trivial, both parts contain edges. Hence A0 satisfies (P7).

Up to rescaling the length function |·|0 by a multiplicative factor, we assume that 
the integers in the set {|x|0

∣∣ x ∈ A0} are setwise coprime. We show below that A0
satisfies (P6) by proving that, for all prime numbers p, there exists a cycle in (C0, →)
whose total length is not divisible by p.

We pick an element a ∈ S1 \ {e1} such that p does not divide |a|1. Such an element 
exists; otherwise, since S1 generates A1, it would contradict our assumption that the 
integers in {|x|0

∣∣ x ∈ A0} are setwise coprime. We also pick a cycle x1 → x2 → . . . →
xk → x1 in (C0, →), such that x1 and xk belong to S2. Then, both x1 → x2 → . . . →
xk → x1 and x1 → x2 → . . . → xk → a → x1 are cycles in the Charney graph (C0, →). 
Their total lengths differ by |a|1, hence p does not divide both of them. This completes 
the proof. �
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