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Abstract3

In this note we show that the monodromy of a two degree of freedom integrable
Hamiltonian system has a universal sign in the case of a focus-focus singularity.
We also show how to extend the monodromy index to several focus-focus fibers
when the integrable system has an S1 symmetry.

1 Introduction

The Hamiltonian monodromy of integrable systems has a surprisingly re-
cent history dating back to Duistermaat’s 1980 article [8]. Its application to
quantum spectra was suggested in 1988 [5]. But it was not before 1998 –
with the rigorous quantum formulation [17] and several examples [3], [7],
[14], [10] (and others) – that it became a common tool for the analysis of
spectra of many mathematically and physically relevant models (eg. [19]).

(Quantum) Hamiltonian monodromy is usually used to demonstrate
the non-existence of global action variables (or good quantum numbers).
This can be detected by a sort of “point defect” in the lattice of joint eigen-
values. The goal of our note is to sharpen this analysis by showing that this
point defect can be attributed a sign, and in the generic case this sign is al-
ways positive (theorem 1). Moreover, as a first step in the study of systems
with several isolated singularities, in theorem 3 we show how to compute
the global monodromy in case of an S1 symmetry (ie. one global action).
A consequence of this sign for general systems without S1 symmetry is
that the global monodromy can cancel only for systems with complicated
topology (proposition 5).

We apply our results to a simple example with two points of mon-
odromy: the quadratic spherical pendulum, for which we have also numer-
ically computed the joint spectrum.
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2 General Setup

Let M be a 4-dimensional connected symplectic manifold with symplectic
formω, let B be a 2-dimensional manifold, and let F : M → B be a smooth
proper surjective Lagrangian fibration with singularities which has con-
nected fibers. We assume that the set of critical values ci of F is discrete and
that each critical point of F in F−1(ci) is a focus-focus singularity.

Recall that a point m ∈ M with dF(m) = 0 is called a focus-focus sin-
gularity if there exist local canonical coordinates (x, y,ξ , η) ∈ (T∗R2,ω =
dξ ∧ dx + dη∧ dy) near m and a local chart of B at F(m) such that the vector
space spanned by the Hessians D2F1(m) and D2F2(m) (where (F1, F2) are
the components of F) is generated by the standard focus-focus quadratic
forms (q1, q2):

q1 = xξ + yη q2 = xη− yξ .

Recall that any critical point of F of Morse-Bott type (=“non-degenerate” in
the sense of [9]) whose critical value is isolated in B is of focus-focus type.

We are mainly interested in the case where F comes from a Liouville in-
tegrable system. Here B is a connected subset of R2 and F = (H1, H2),
where Hi are Poisson commuting Hamiltonians. Typically, M is a con-
nected open subset of a symplectic manifold M̃ where F may have non
focus-focus critical points, see [9].

3 Monodromy

Let Br = B \ {ci} be the set of regular values of F and denote by Fr the
restriction of F to Mr = F−1(Br). Then Fr is a regular Lagrangian fibration
over Br with compact connected fibers. In a local chart of Br the fibration
Fr = (H1, H2) is a Liouville integrable system. By the Arnol’d-Liouville
theorem, the fibers of F are affine 2-torii on which the flows of the Hamil-
tonian vector fields XH1 and XH2 define a linear action of T2. The 2-torus
bundle Fr : Mr → Br obtained this way is locally trivial. In fact it is locally
a principal 2-torus bundle. The obstruction for it to be globally a principal
bundle is the monodromy µ. More precisely, monodromy is the holonomy
of a Z2-bundle over Br whose fiber is the lattice of 2π-periodic vector fields,
which in a local chart on Br about c are given by linear combinations of XH1

and XH2 whose flow on F−1(c) is 2π-periodic. For more details, see [8],
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[4, Appendix D]. Let P → Br be this bundle of period lattices. Then the
monodromy µ ∈ Hom(π1(Br), Aut(P)).

Given a point c ∈ Br, a period lattice Pc with basis {X1, X2} and a loop
γ in Br passing through c, the monodromy µc(γ) is a matrix in Gl(2,Z),
whose conjugacy class in Gl(2,Z) is invariant under a change of basis. If γ
encircles a single critical value c̃ of Fr, then there is a basis B such that the
monodromy is the unipotent matrix(

1 0
k 1

)
, (1)

see [20], [6]. Here k is a nonzero integer called the monodromy index of γ
relative to the basis B. The absolute value |k| is invariant under conjugation
by elements of Gl(2,Z) and hence is independent of the choice of basis B.
We call |k| the absolute monodromy index. In [2], [12] and [20] it was shown
that this latter index is precisely the number of focus-focus critical points
in F−1(c̃). Moreover, F−1(c̃) is homeomorphic to a |k|-pinched 2-torus.

4 Oriented monodromy

Suppose now that Br is oriented, which is indeed the case when Br is an
open subset of R2. Then there is a induced orientation on the Liouville torii
and hence on the bundle of period lattices P . This induced orientation is
determined as follows. Let {α1,α2} be a positively oriented ordered ba-
sis of T∗c Br, which is dual to a positively oriented basis of TcBr. Then the
ordered basis of tangent vectors to F−1(c) given by the set of vector fields
{ω](F∗(α1),ω](F∗(α2)} is said to be positively oriented. In the case of our
two degree of freedom Liouville integrable system, if we use the standard
orientation onR2, then {XH1 �F−1(c),XH2 �F−1(c)} gives the induced positive
orientation for the 2-torus F−1(c).

We define the oriented monodromy index of the oriented loop γ in Br
around the focus-focus critical value c̃ to be the integer k in (1) when the
basis chosen to compute it is positively oriented. The number k is invariant
under conjugation by orientation preserving automorphisms. When refer-
ring to the oriented monodromy index of a focus-focus critical value c̃ we assume
that γ is positively oriented.

Remark In this article we use the convention of (1) to write the monodromy
matrix as a lower triangular matrix (instead of an upper triangular one), which
amounts to a sign convention for k.
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Theorem 1 The oriented monodromy index of a focus-focus critical value is pos-
itive and hence is equal to the number of focus-focus critical points in the critical
fiber.

Proof. Using Eliasson’s theorem [9] one can find a chart near a focus-
focus critical point (which corresponds to the critical value 0) so that F =
g(q1, q2), where g is a local diffeomorphism of R2, and q1 = xξ + yη,
q2 = xη− yξ , where (x,ξ , y, η) are coordinates forR4 with symplectic form
dx ∧ dξ + dy ∧ dη. Using the symplectomorphism

(x,ξ , y, η)→ (−x,−ξ , y, η)

one may change the sign of q2, if necessary, to ensure that the ordered basis
{Xq1 ,Xq2} is positively oriented. In other words, we can ensure that the
local diffeomorphism g is orientation preserving, that is, det Dg(0) > 0.
Following [18] we can choose a point c near the critical value 0 and an
ordered basis B of the form {αXq1 +βXq2 ,Xq2}, whereα, β > 0, for which

the monodromy matrix is
(

1 0
1 1

)
. Since B has the same orientation as

the ordered basis {Xq1 ,Xq2} and hence as the ordered basis {XH1 ,XH2}, we
see that the monodromy index is positive. �

Note that theorem 1 is purely local, since a small enough neighborhood
of a focus-focus critical value is always orientable.

Making no orientability assumptions on Br, theorem 1 can be phrased
as follows.

Theorem 1 (bis) The monodromy index k of a loop in Br around a single focus-
focus critical value is positive if and only if the loop and the basis chosen to compute
k have the same orientation.

5 Parallel transport

The fibration Fr : Mr → Br endows Br with an integral affine structure,
whose charts are the action coordinates. This affine structure induces a par-
allel transport on TBr, whose holonomy is the contragredient of the holon-
omy of the 2-torus bundle P → Br, that is, the monodromy. For more
details see [1].
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Suppose that c̃1 and c̃2 are two critical values of F that can be joined by a
path Γ : [0, 1]→ B such that Γ : (0, 1)→ Br. Assume that a neighborhood of
Γ in B is orientable and fix a small loop γi which encircles c̃i in the positive
sense. We obtain

Corollary 2 The monodromy index of γ1 with respect to some basis B has the
same sign as the monodromy index of γ2 computed with respect to a basis obtained
by parallel transport of B.

Proof. The holonomy of the affine manifold B being dual to the mon-
odromy, has determinant 1. Hence parallel transport is orientation pre-
serving. �

6 Case of S1 symmetry

Locally, a focus-focus singularity always admits an S1 symmetry. How-
ever this symmetry does not in general extend globally, in particular when
several critical fibers are present. This issue will be discussed in section 7.

We show in this section how to extend the oriented monodromy index
to several focus-focus points when the fibration F has a global S1 symmetry.

Here B is oriented an connected. Let G be the monodromy group of the
regular fibration (= the image under µ of the fundamental group π1(Br)).
For any c ∈ Br, G acts on the lattice H1(F−1(c),Z) ' Z2.

Theorem 3 Suppose that B is oriented, connected and simply connected. Then
the following properties are equivalent

1. each element of G has a non-trivial fixed point in H1(F−1(c),Z);

2. there is a non-trivial X ∈ H1(F−1(c),Z) that is fixed by G;

3. G is Abelian;

4. there is a symplectic S1 action on (M,ω) that preserves the fibration F;

5. there is a Hamiltonian S1 action on (M,ω) that preserves the fibration F;

6. there is a unique group homomorphism µ̄ : π1(Br) → Z such that for any
γ ∈ π1(Br) the monodromy µ(γ) with respect to a positively oriented basis

is conjugate in Sl(2,Z) to
(

1 0
k 1

)
with k = µ̄(γ).
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Proof. First note that properties 1 and 2 are of course independent of the
choice of the base point c. We choose an oriented basis of H1(F−1(c),Z),
which allows us to identify G with a subgroup of Sl(2,Z) acting on Z2. In

this proof we shall denote byMk the matrix
(

1 0
k 1

)
.

The first three assertions are simple properties of Sl(2,Z).

Proof of 1=⇒2. Let g0 be a non-trivial element of G, and g be any element
of G. Since g0, g and g0g have all 1 in their spectrum, they all have trace
equal to 2. Because we can find an integral eigenvector of g0, there is an

integral basis of Z2 in which g0 = Mk (k 6= 0) and g =
(

a b
c d

)
. But

Tr(g0g) = a + kb + d = 2 + kb which implies b = 0. Then g must have the
formMc. In other words the second element of our basis is necessarily a
common eigenvector for all g ∈ G.

Proof of 2=⇒3. Complete X into an integral basis of Z2. Then all g ∈ G
have the form Mk(g) in this basis. Hence they commute, by virtue of the
formula

MkMk′ =Mk+k′ . (2)

Proof of 3=⇒1. The fundamental group π1(Br) is generated by the set
γ1, . . . ,γn, where γi is a small loop around a single focus-focus critical
value. Since Br is connected these loops can be deformed in Br to pass
through the point c. Hence the corresponding monodromy transformations
µi = µ(γi) generate G. Since they are all trigonalizable (they are conjugate
toMk for some k) and G is Abelian, they are simultaneously trigonalizable.
Now the product law (2) implies property 1.

Proof of 2=⇒4. Recall that H1(F−1(c),Z) is isomorphic to the period lat-
tice Pc: in a local chart of Br where F = (H1, H2), the periodic vector fields
on the torus F−1(c) of the form xXH1 + yXH2 for constant x and y are de-
termined uniquely by the homology class of any of their orbits.

Thus we identify X with its representant in Pc. By parallel transport
it locally extends to a flat local section of P , that is, a 2π-periodic vector
field X on F−1(U), where U is a small neighborhood of c ∈ Br. The 1-form
iXω is invariant under the joint flow of F, and hence is of the form F∗β,
for a 1-form β on U. By Liouville-Arnold theorem, dβ = 0, hence X is
symplectic.

Since by hypothesis the action of the monodromy group G on X is triv-
ial, X can be extended to a global section of the bundle of period lattices P
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over Br. The 2π-flow of this vector field defines a symplectic S1 action on
F−1(Br) preserving the fibration.

At the focus-focus singularity m, the period lattice no longer exists.
However near m there is a unique 2π-periodic Hamiltonian vector field
(with prescribed orientation) that is tangent to the Lagrangian foliation (see
for instance [17]). Hence the above S1 action extends uniquely to a global
S1 action on M preserving the fibration F. Note that this shows that the
1-form iXω is the pull-back by F of a global closed 1-form β on B.

Proof of 4=⇒5. LetΦ be the symplectic S1 action and let X be the infinites-
imal generator of Φ. Since Φ is symplectic, X is locally Hamiltonian. Since
F is preserved by Φ, X is locally constant on the leaves in any action-angle
coordinates. Hence X is actually a section of P above Br. Hence we are in
the situation of the proof above, and there is a closed 1-form β on B such
that iXω = F∗β.

Since H1(B) = 0, β is exact, namely β = dL. Hence X = XF∗L is a
Hamiltonian vector field on (M,ω). Thus the S1 action Φ is Hamiltonian
on (M,ω) with momentum map L ◦ F.

Proof of 5=⇒6. As in the proof above, we let L be a smooth function on B
such that X = XL◦F, where X is the generator of the S1 action. Since L is
a global action, the 1-form dL is invariant under parallel transport on T∗Br
defined by the integral affine structure on Br. Thus X is fixed by the mon-
odromy group G: hence the hypotheses of assertion 2 are satisfied. Recall
the choice of generators γi in the proof of 3=⇒1. Then X can be completed
to an integral basis of Pc in which for all i, µ(γi) =Mki for some ki ∈ Z. We
define µ̄ to be the homomorphism that assigns to a loop γ = γi1 · · ·γip the
integer k = ki1 + · · ·+ kip . Note that µ̄ realizes an isomorphism between G
and dZwhere d is the gcd of (k1, . . . , kn).

Proof of 6=⇒1. Obvious, since any matrix of the form Mk has a fixed
point. �

Corollary 4 Suppose that there is a global Hamiltonian S1 action on (M,ω) pre-
serving F. Then the monodromy index along an embedded, positively oriented
loop γ in Br increases with the number of focus-focus critical values inside γ. In
particular it can never cancel out.

Proof. Each each focus-focus critical value adds a positive integer to the
global monodromy index. �

7



7 Vanishing of the monodromy

Some integrable systems do not have an S1 action. For instance if B is a
sphere this would contradict corollary 4, since a loop around all focus-focus
critical values would be contractible. However, even without an S1 action,
it is not easy to have the monodromy cancel along an embedded loop, as
shown in the following proposition.

Proposition 5 Assume that B is oriented, connected and simply connected. Let
γ be an embedded loop in Br such that the monodromy along γ is trivial. Let n
be the number of focus-focus critical values inside γ, and suppose that they are all
simple: their index is 1. Then n is a multiple of 12.

Proof. This is a consequence of the following lemma. See also Moishezon
[13, p.179]. �

Lemma 6 Suppose that there are matrices A1, A2, . . . , An in Sl(2,Z) such that

n

∏
i=1

(AiFA−1
i ) = id, (3)

where F =
(

1 0
1 1

)
. Then n is a multiple of 12.

Proof. (In order to stick to the usual conventions for the modular group, we shall
use T = tF instead of F. The result follows by transposing (3).) It is well known
(see [15]) that the modular group G = Sl(2,Z)/{±I} admits the following
presentation

G = 〈S, T; S2 = (ST)3 = I〉,

where S =
(

0 −1
1 0

)
. From this it easily follows that Sl(2,Z) admits the

following presentation

Sl(2,Z) = 〈S, T; S4 = I, S2 = (ST)3〉.

Therefore the abelianization K of Sl(2,Z) is the group

K = 〈S, T; S4 = I, S2 = (ST)3, ST = TS〉,

which yields K = 〈S, T; T12 = I, S = T−3〉. Hence K ' Z/12Z and T is
a generator of K. The image of the formula (3) in K gives Tn = I, which
implies that n is a multiple of 12. �
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As pointed to us by V. Matveev and O. Khomenko [11], from the data in
the hypothesis of lemma 6, one can construct an integrable system with 12k
focus-focus fibers and whose local monodromy around each critical value
ci is equal in some fixed basis to AiFA−1

i . Hence the monodromy around
all critical values is the identity. This is done by pasting together a chain of
fibrations with one focus-focus fiber, where the gluing maps between two
tori are given by the Ai’s. We therefore obtain a singular torus fibration over
an open disc in R2 that cannot admit any S1 symmetry, due to corollary 4.

To have an example of a sequence of matrices in Sl(2,Z) satisfying the
hypotheses of lemma 6, take A2 j = I and A2 j+1 = S. Then the product

TSTS−1 =
(

0 1
−1 1

)
is of order 6 in Sl(2,Z).

If one constructs a singular Lagrangian fibration over the open disc in
R

2 using these gluing matrices A j, with 12 focus-focus critical values, we
see that we can obtain as monodromy matrices of oriented loops the fol-
lowing ones: T (loop around one critical value), T−1 (because of (3)), S−1

(which is obtained by looping around the first three critical values, since
TSTS−1T = S−1), and finally S (again because of (3)). Therefore by arbi-
trarily composing the corresponding loops together, we obtain any matrix
of Sl(2,Z).

When B is a Riemann surface, one can show further that the number
of focus-focus points (if they are all simple) is equal to 12k, where k is the
Euler characteristic of B. See [16] for more details. For example in [21]
Tien Zung constructs an integrable system on a K3 surface which yields a
singular Lagrangian fibration over S2 with 24 simple focus-focus points.

8 Example with S1 symmetry.

Consider the quadratic spherical pendulum. This is a Hamiltonian system
on TS2 ⊆ TR3 (with coordinates (x,ξ)) defined by

〈x, x〉 = 1 and 〈x,ξ〉 = 0,

where 〈 , 〉 is the usual Euclidean inner product. The symplectic form on
TS2 is the restriction of ∑3

i=1 dxi ∧ dξi to TS2. The Hamiltonian is

H(x,ξ) = 1
2 〈ξ ,ξ〉+ V(x3),

where V(x3) = 2(x3 −α)2 with α ∈ (0, 1). H is invariant under the lift
of rotation around the x3 axis to TS2. Hence H Poisson commutes with
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the angular momentum K(x,ξ) = 〈ξ × x, e3〉. Thus the quadratic spherical
pendulum is Liouville integrable with energy momentum mapping

F : TS2 → R
2 : (x,ξ) 7→ (H(x,ξ), K(x,ξ)),

that is, F = (H, K). The set of critical values of F (see figure 1) is composed
of two points A = (2(1 −α)2, 0) and B = (2(1 +α)2, 0) and a smooth
parabola-like curve parametrized by

{
h = 2z−1(α − z)(1 + zα − 2z2)

k = ±2(1− z2)
√
α/z− 1

for z ∈ (0,α].

It is straightforward to check that each point on the above curve cor-

–2

–1

0

1

2

1 2 3 4

z→ 0

BA

K

z→ 0

Hz = 1
4

Figure 1: critical values of the momentum map F. Hereα = 1/4.

responds to a relative equilibrium of the quadratic spherical pendulum,
whose image under the tangent bundle projection is a horizontal circle on
S2 with x3 = ±z. The isolated points are unstable equilibria namely, the
poles of S2, which are of focus-focus type. Since the fibers F−1(A) and
F−1(B) contain each a single critical point, both A and B have oriented
monodromy index 1. Hence the global index around both points is 2.
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9 Semiclassical quantization

The constancy of the sign of the monodromy is easily seen on a semiclas-
sical joint spectrum. The latter has a local lattice structure admitting a dis-
crete parallel transport, which is an asymptotic version of the integral affine
structure on Br. For more details see [17]. This shows

Theorem 7 Let a positively oriented basis B of the quantum lattice around a
focus-focus point evolve in the positive sense. Then we obtain a final basis by

applying to B a 2 × 2 matrix which is conjugate in Sl(2,Z) to
(

1 0
k 1

)
with

k ≥ 0.

We illustrate theorem 7 with the quantum quadratic spherical pendu-
lum. Let Ĥ and K̂ be the self-adjoint operators acting on L2(S2) defined as
follows:

Ĥ = h̄2

2 ∆S2 + V(x3)

K̂ = − h̄
i

∂
∂θ ,

where ∆S2 is the Laplace-Beltrami operator on S2 (with positive eigenval-
ues), V = 2(x3−α)2 andθ is the polar angle around the vertical axis (Ox3).
Ĥ et K̂ are h̄-differential operators that commute: [Ĥ, K̂] = 0 and hence de-
fine a quantum integrable system. Their classical limit is given by the prin-
cipal symbols H and K in C∞(T∗S2), which are of course the Hamiltonians
of section 8.

Figure 2 shows the joint spectrum of Ĥ and K̂ forα = 1/4 and h̄ = 0.1.
For such “large” values of h̄ the easiest way to compute the spectrum glob-
ally is to express the matrix associated to Ĥ in the basis of standard spheri-
cal harmonics (they are also eigenfunctions of K̂). The action of the poten-
tial V is obtained from the recurrence relation of the Legendre polynomials.
This matrix can be cut to a finite size without any important loss in the ac-
curacy of the computation, due to the fact that the modes we are looking
at are microlocalized in a region of bounded energy H ≤ Hmax, which is
compact. We have used this method of calculation to produce figure 2.

The best way to have precise results near critical values for small h̄
would be to use the singular Bohr-Sommerfeld rules of [18].
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