
Communications in Mathematical Physics Manuscript-Nr.
(will be inserted by hand later)

Quantum monodromy in Integrable Systems
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Abstract. Let P1(h), . . . , Pn(h) be a set of commuting self-adjoint h-pseudo-
differential operators on an n-dimensional manifold. If the joint principal symbol
p is proper, it is known from the work of Colin de Verdière [6] and Charbon-
nel [3] that in a neighbourhood of any regular value of p, the joint spectrum
locally has the structure of an affine integral lattice. This leads to the construc-
tion of a natural invariant of the spectrum, called the quantum monodromy. We
present this construction here, and show that this invariant is given by the clas-
sical monodromy of the underlying Liouville integrable system, as introduced by
Duistermaat [9]. The most striking application of this result is that all two de-
gree of freedom quantum integrable systems with a focus-focus singularity have
the same non-trivial quantum monodromy. For instance, this proves a conjecture
of Cushman and Duistermaat [7] concerning the quantum spherical pendulum.

1. Introduction

Obstructions to the existence of global action-angle coordinates for completely
integrable systems are well known since Duistermaat’s article [9]. It was then
natural to raise the question about the impact of these obstructions on quantum
integrable systems, at least for the (semi)-classical pseudo-differential quanti-
sation on cotangent bundles. The first attempts in this direction were [7] and
[11], both of them concerning the monodromy invariant for the example of the
spherical pendulum. This system is indeed one of the simplest (along with the
Champagne bottle [1]) that exhibit a non-trivial monodromy. The first of these
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articles [7] proposed a particularly interesting way of detecting the monodromy
by observing a shift in the lattice structure of the joint spectrum. It is the pur-
pose of this article to state, prove and explain this idea.

Surprisingly enough, this idea of quantum monodromy has been sleeping
for ten years, before new interest resulted in its experimental discovery in the
spectrum of excited water molecules [4, 5].

Back to mathematics, it turns out that, in the framework of semi-classical
microlocal analysis (developed for integrable systems in [3]), there is a natural
way of defining an invariant of the joint spectrum away from singularities of the
principal symbols, that precisely describes the obstruction to the existence of a
global lattice structure for the spectrum. The organisation of this article is as
follows : we first extract the relevant properties of joint spectra, and define the
quantum monodromy invariant for any set that shares these properties (section
2). Then we prove in section 3 that, for spectra, the quantum monodromy is pre-
cisely given by the classical monodromy of the underlying classical Hamiltonian
system. The result is applied in section 4 to the particularly interesting case of
systems admitting a focus-focus singularity. The last section 5 finally shows how
to read off the monodromy from a picture of the spectrum. As an example, we
use the spectrum of the Champagne bottle computed by Child [4].
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2. Construction of the quantum monodromy

Let U be an open subset of R
n, let H be a set of positive real numbers accumu-

lating at 0, and for any h in H let Σ(h) be a discrete subset of U .

If B is an open subset of U , a family (f(h))h∈H of smooth functions on B
with values in R

n is called a symbol (of order zero) if it admits an asymptotic
expansion of the form

f(h) = f0 + hf1 + h2f2 + · · ·

for smooth functions fi : B → R
n. More precisely we require that for any ` ≥ 0,

for any N ≥ 0, and for any compact K ⊂ B, there is a constant C`,N,K such
that for all h ∈ H,

∥

∥

∥

∥

∥

f(h) −
N
∑

k=0

hkfk

∥

∥

∥

∥

∥

`

≤ C`,N,KhN+1,
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where ‖.‖` denotes the C` norm in K. The symbol f(h) is elliptic if its principal
part f0 is a local diffeomorphism of B into R

n. The value of f(h) at a point
c ∈ B will be denoted by f(h; c).

A family (r(h))h∈H of elements of a finite dimensional vector space is said to
be O(h∞) if for any N ≥ 0 there is a constant C > 0 such that ‖r(h)‖ ≤ ChN ,
uniformly for all h ∈ H. If S(h) is any family of sets depending on h, then
the notation f(h) ∈ S(h) + O(h∞) means that the function dist(f(h), S(h)) is
O(h∞).

We will say that Σ(h) has the structure of an “asymptotic affine lattice”
whenever it can be described with a locally finite set of “asymptotic affine inte-
gral charts”, in the following sense :

Definition 1. (Σ(h),U) is an “asymptotic affine lattice” if for any c ∈ U , there
exists a small open ball B ⊂ U around c, and an elliptic symbol f(h) : B → R

n

of order zero such that, for any family λ(h) ∈ B :

– λ(h) ∈ Σ(h) ∩ B + O(h∞) ⇐⇒ f(h;λ(h)) ∈ hZ
n + O(h∞)

– if λ(h) and λ′(h) are in Σ(h)∩B, then λ′(h)− λ(h) = O(h∞) if and only if
for small h, λ′(h) = λ(h).

U

f(h)

h

hZ
n

B

Fig. 1. An asymptotic affine lattice

Intuitively this means that zooming by a factor of 1
h inside B makes Σ(h)∩B

converge to the standard lattice as h tends to zero. The issue here is to see what
prevents Σ(h) from globally converging to a lattice. Of course, the reason for
this definition is that, under suitable hypothesis, the joint spectrum of a set of
n commuting h-pseudo-differential operators on an n-dimensional manifold is
indeed an “affine asymptotic lattice” (see the next section).

For short, a symbol f(h) satisfying definition 1 will be referred to as an
“affine chart” of Σ(h).

The main point is that the transition functions associated to these charts
are elements of the affine group GA(n, Z) (following Berger [2], we denote by
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GA(n, R) the group of invertible affine transformations of R
n, which is the semi-

direct product of the linear group GL(n, R) by the normal subgroup of transla-
tions. Some authors use the notation Affn(R) instead. The subgroup GA(n, Z)
consists then of elements A ∈ GA(n, R) such that A and A−1 leave Z

n globally
invariant).

Proposition 1. Let f(h) and g(h) be two affine charts of Σ(h), both defined
on a ball B. Then there is a unique A ∈ GA(n, Z) ⊂ GA(n, R) such that

(

g(h)

h

)

◦

(

f(h)

h

)−1

= A�f(h)(B)/h + O(h∞).

Suppose now that U is covered by a locally finite union of balls Bα on each
of which is defined an affine chart fα(h) of Σ(h). Proposition 1 yields a family
of affine linear maps Aαβ such that on non-empty intersections Bα ∩ Bβ

1

h
fα(h) = Aαβ

(

1

h
fβ(h)

)

.

This in turn defines a 1-cocycle M in the Čech cohomology of U with values in
the non-Abelian group GA(n, Z).

Definition 2. The class [M] ∈ Ȟ1(U , GA(n, Z)) of the cocycle defined by Aαβ

is called the quantum monodromy of (Σ(h),U).

Let L be the canonical homomorhism, whose kernel is the group of transla-
tions :

L : GA(n, R) → GL(n, R).

Let ι be the inclusion of GL(n, R) into GA(n, R) such that for any M ∈ GL(n, R),
ι(M) leaves the origin 0 ∈ R

n invariant. Then ι is an injective homomorphism
that depends on the choice of the origin 0, satisfying L ◦ ι = Id. Any A ∈
GA(n, R) can be written in a unique way

A = τ(k) ◦ ι(M),

(which is usually written A = M + k), where M = L(A) ∈ GL(n, Z) and τ(k) is
translation by the vector k ∈ Z

n.

The exact sequence of group homomorphisms

0 - Z
n

-
τ GA(n, Z) -

L GL(n, Z) - 1

gives rise to the following sequence of maps (which are not homomorphisms,
since cohomology sets with values in a non-abelian group have no natural group
structure – see [12, p.38])

Ȟ1(U , Zn) -
τ∗ Ȟ1(U , GA(n, Z)) -

L∗ Ȟ1(U , GL(n, Z)) - 1.

This sequence is “exact” in the sense that L∗ is surjective, and if L∗([M]) = 1,
then there is an integer cocycle [ω] ∈ Ȟ1(U , Zn) such that [M] = τ∗([ω]). The
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surjectivity of L∗ is due to the existence of the cross section ι, which gives rise
to the map

Ȟ1(U , GA(n, Z)) �
ι∗ Ȟ1(U , GL(n, Z))

such that L∗ι∗ = Id. For the second point, we remark that if the cocycle
L(Aαβ) is a coboundary, then it can be written MαM−1

β . Therefore the co-

cycle ι(M−1
α )Aαβι(Mβ) (which is equivalent to Aαβ) has a linear part equal to

the identity, hence is a translation.

Remark 1. The lack of injectivity for τ∗ is measured by Ȟ0(U , GL(n, Z)) : one
can check that two cocycles [k] and [k′] in Ȟ1(U , Zn) yield the same element
of Ȟ1(U , GA(n, Z)) if and only if there is an M ∈ Ȟ0(U , GL(n, Z)) such that
[k′] = [M · k].

Let us now give various interpretations of the quantum monodromy M.

The action of GA(n, Z) on Z
n being effective, it is a standard fact that

the cohomology set Ȟ1(U , GA(n, Z)) classifies the isomorphism classes of fibre
bundles over U with structure group GA(n, Z) and fibre Z

n (see for instance [12,
p.40–41]). Let L be such a lattice bundle associated to M. The elements Aαβ

just define the transition functions between two adjacent trivialisations of L.

Since these trivialisation functions are locally constant, there is a naturally
defined parallel transport γ.p of a point p ∈ Lc along a path γ in the base U .
This defines the holonomy of L, as a map from π1(U , c) into GA(Lc). We will
always identify the latter with GA(n, Z) by choosing an affine basis of Lc.

The choice of such a basis is equivalent to that of a trivialisation f of L above
c that sends this basis to the canonical basis of Z

n; the holonomy µf is then
defined by :

f(γ.p) = µf (γ)f(p). (1)

Finally, this is also equivalent to the choice of an affine chart f(h) of Σ(h) around
c. If M is any cocycle associated to this trivialisation, then

µf (γ) = A1,` ◦ · · · ◦ A3,2 ◦ A2,1, (2)

where Ai,j denotes the transition element corresponding to a pair of intersecting
open balls (Bi, Bj), and B1, . . . , B` enumerate elements of a cover of U encoun-
tered by γ(t) when t runs from 0 to 1.

We shall always assume that U is connected, so that µf does not depend on
the base point c. Note that since (γ ′γ).p = γ.(γ′.p), we have

µf (γ′γ) = µf (γ)µf (γ′).

It should be noticed that the bundles considered here have discrete fibres, so
that we could reduce the discussion to the theory of coverings. The fibre bundle
formulation seems however to be more natural when it comes to comparing them
with objects arising in Hamiltonian systems. Nevertheless, the covering approach
will be used in section 5.
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Other geometric interpretations of M will also be discussed in section 5. For
the moment just notice that the non-triviality of [M] is equivalent to the non-
triviality of the lattice bundle L and to the fact that there is no globally defined
symbol f(h) on U sending Σ(h) to the straight lattice hZ

n.

Proof ((of proposition 1)). There are no surprises in this quite elementary proof.
Let c ∈ U , and f(h), g(h) be two affine charts of Σ defined on a ball B around
c. Because of definition 1, any open ball around c contains, for h small enough,
at least one element of Σ(h). Therefore, there exists a family λ(h) ∈ Σ(h) ∩ B
such that

lim
h→0

λ(h) = c.

Let k ∈ Z
n and let λ′(h) be a family of elements of Σ(h) ∩ B such that

f(h;λ(h)) = f(h;λ′(h)) + hk + O(h∞).

Then, as h tends to zero, λ′(h)−λ(h)
h tends towards a limit v ∈ R

n satisfying

k = df0(c)v

(recall that f0 denotes the principal part of f(h)).

Since λ(h) and λ′(h) are in Σ(h), there is a family k′(h) ∈ Z
n such that

(

g(h;λ′(h)) − g(h;λ(h))

h

)

= k′(h) + O(h∞).

The left-hand side of the above equation has limit dg0(c)v as h → 0. Therefore
k′(h) is equal to a constant integer k′ for small h, and we have

k′ = dg0(c)(df0(c))
−1k,

which implies that dg0(c)(df0(c))
−1 ∈ GL(n, Z). Since GL(n, Z) is discrete, there

is a constant matrix M ∈ GL(n, Z) such that for all c ∈ B, dg0(c) = M ·(df0(c));
this in turn implies the existence of a constant k ∈ Z

n such that, on B,

g0 = M · f0 + k.

But k is necessarily zero : indeed, applying the above equality to λ(h) gives a
sequence k′(h) ∈ Z

n such that

hk′(h)
def
= g(h;λ(h)) − M · f(h;λ(h)) = k + O(h).

Therefore k′(h) must tend to zero, and hence must equal zero for small h, im-
plying that k = 0.

We have proved the existence of a smooth symbol F (h) such that

M · f(h) − g(h) = hF (h).

Because F (h;λ(h)) ∈ Z
n +O(h∞) and limh→0 F (h;λ(h)) = F0(c), we must have

F0(c) ∈ Z
n. So
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F0 = const ∈ Z
n in B.

This easily implies that all lower order terms in F (h) must vanish on B, so we
are left with

F (h) = k + O(h∞), for a k ∈ Z
n.

This gives g(h) = M · f(h) − hk + O(h∞), which reads

1

h
g(h) = A(

1

h
f(h)) + O(h∞),

with A ∈ GA(n, Z) defined by A(p) = M · p − k, p ∈ Z
n. �

Remark 2. Because of the discreteness of GA(n, Z), proposition 1 implies that
there is an h0 > 0 such that the transition element A is uniquely defined by
(g(h0)/h0)(f(h0)/h0)

−1 acting on a finite subset of Z
n. Therefore, when re-

stricted to any open subset of U with compact closure in U , the cocycle [M] is
really a quantum object, in the sense that “you don’t need to let h tend to zero”
to define it.

3. Link with the classical monodromy

Let P1(h), . . . , Pn(h) be a set of commuting self-adjoint h-pseudo-differential
operators on an n-dimensional manifold X. They will be assumed to be classical
and of order zero, in the sense that in any coordinate chart their Weyl symbols
pj(h) have an asymptotic expansion of the form

pj(h;x, ξ) = pj
0(x, ξ) + hpj

1(x, ξ) + h2pj
2(x, ξ) + · · ·

Because the principal symbols p1
0, . . . , p

n
0 commute with respect to the symplectic

Poisson bracket on T ∗X, the map

T ∗X 3 (x, ξ) -
p (p1

0(x, ξ), . . . , pn
0 (x, ξ)) ∈ R

n

is a momentum map for the local Hamiltonian action of R
n on T ∗X defined by

the Hamiltonian flows of the pj
0. We will always assume that p is proper, so that

the level sets
Λc = p−1(c)

are compact. Moreover, we ask that these level sets be connected. Conclusions for
non-connected Λc can be obtained by separately studying the different connected
components.

Let Ur be the open subset of regular values of the momentum map p, and
let U be an open subset of Ur with compact closure.

It follows from the Arnold-Liouville theorem that p�U is a smooth fibration
whose fibres are Lagrangian tori. The structure of this fibration is semi-globally
(i.e. in a neighbourhood of a fibre) described with the help of action-angle co-
ordinates. However, the flat fibre bundle H1(Λc, Z) → c ∈ U (with fibre Z

n)
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may have non-trivial monodromy, preventing the construction of global action
variables on p−1(U) (see Duistermaat [9]). We will denote by [Mcl] (classical
monodromy) the cocycle in Ȟ1(U , GL(n, Z)) associated to this lattice bundle.

On the other hand, let Σ(h) be the intersection with U of the joint spectrum
of the operators P1(h), . . . , Pn(h). It is known from [3] that this spectrum is dis-
crete and for small h is composed of simple eigenvalues. Moreover, the following
result holds :

Proposition 2 ([3]). Σ(h) is an asymptotic affine lattice on U .

We denote by [Mqu] ∈ Ȟ1(U , GA(n, Z)) the quantum monodromy of the spec-
trum on U , given by definition 2.

Recall that ι denotes the inclusion of GL(n, R) into GA(n, R) such that for
any M ∈ GL(n, R), ι(M) leaves the origin 0 ∈ R

n invariant.

The relation between [Mqu] and the classical monodromy [Mcl] is then given
by the following theorem :

Theorem 1. The quantum monodromy is “dual” to the classical monodromy in
the following sense :

[Mqu] = ι∗(t[Mcl]
−1).

In other words, for any c ∈ U there exists a choice of basis of H1(Λc, Z) and of
an affine chart of Σ(h) such that the monodromy representations

µ
cl : π1(U , c) → GL(n, Z)

and
µ

qu : π1(U , c) → GA(n, Z)

defined by [Mcl] and [Mqu] satisfy :

µ
qu = ι ◦ (tµ

cl)−1.

Proof. Let α be the Liouville 1-form on T ∗X. Let c0 ∈ U and for c near c0 let
(γ1(c), . . . , γn(c)) be a smooth family of loops on Λc whose homology classes
form a basis of H1(Λc, Z). It is known from [3, 6] (see also [14] for a viewpoint
closer to this article) that one can find an affine chart f(h) for Σ(h) around
c such that the principal part f0 is equal to the action integral associated to
γ1, . . . , γn :

f0(c) = (
1

2π

∫

γ1(c)

α, . . . ,
1

2π

∫

γn(c)

α).

Because of proposition 1, any other affine chart around c having the same
principal part must equal f(h) (modulo O(h∞)). In this way, the choice of a local
smooth basis of H1(Λc, Z) determines an affine chart of Σ(h). If (γ ′

1(c), . . . , γ
′
n(c))

is another basis of H1(Λc, Z) such that

(γ′(c)) = M(c) · (γ(c)), (3)
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for a matrix M(c) ∈ GL(n, Z) depending smoothly on c, then the corresponding
affine charts f(h) and f ′(h) of Σ(h) satisfy :

f ′(h; c) = M(c) · f(h; c) + O(h∞).

Recall that the notation “M ·” here means matrix multiplication by M , which is
of course the same as affine composition by ι(M).

But formula (3) says that if k and k′ are trivialisation functions of the bundle
H1(Λc, Z) → c associated to the basis γ and γ ′, then k′ = tM−1k. Therefore, if
tM−1

αβ are transition elements for the lattice bundle H1(Λc, Z) → c, then ι(Mαβ)
define a monodromy cocycle for Σ(h). �

Remark 3. The fact that the affine nature of quantum monodromy is here nat-
urally reduced to an action of the linear group GL(n, Z) is due the the global
existence of a primitive of the symplectic form on T ∗X, namely the Liouville
1-form α.

4. Monodromy of a focus-focus singularity

It is probably not worth discussing monodromy in arbitrary degrees of freedom,
for it is a typical phenomenon of 4-dimensional symplectic manifolds (see [13]).

More precisely, let X be a 2-dimensional manifold, and let P1(h), P2(h)
be two commuting self-adjoint h-pseudo-differential operators on X. As before,
suppose that the momentum map p = (p1

0, p
2
0) defined by the principal symbols

is proper with connected level sets.

We shall make the following hypothesis. There exists a critical point m ∈
T ∗X of p of maximal corank (i.e. both p1

0 and p2
0 are critical at m) such

that, in some local symplectic coordinates (x, y, ξ, η), the Hessians (p1
0)

′′(m) and
(p2

0)
′′(m) (thereafter denoted by H(p1

0) and H(p2
0)) generate a 2-dimensional

subalgebra of the algebra Q(4) of quadratic forms in (x, y, ξ, η) under Poisson
bracket that admits the following basis (q1, q2) :

q1 = xξ + yη,

q2 = xη − yξ.

Such a singularity m is called a focus-focus singularity. The point m is then
isolated amongst critical points of p. Therefore, we can choose U ⊂ Ur to be a
small punctured disc around o = p(m). Finally, we shall always assume that m
is the only critical point of the critical level set Λ0 = p−1(o).

It is known (probably since [15]; see for instance [14] or [8] for discussions and
more references on this topic) that the fibration p�U has non-trivial monodromy,
and can be described in the following way :

Near m, we know from [10] that the integrable Hamiltonian system (p1
0, p

2
0)

can be brought into a normal form given by (q1, q2). In other words there exists
a local diffeomorphism F : (R2, 0) → (R2, o) such that
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(p1
0, p

2
0) = F (q1, q2).

This allows one to define transversal vector fields X1 and X2 tangent to the fibres
Λc that are equal to the Hamiltonian vector fields Xq1

and Xq2
near m. Note

that X2 is periodic of period 2π.

Around each c ∈ U , we can now define the following smooth basis (γ1(c), γ2(c))
of H1(Λc, Z) ' π1(Λc) :

– γ2(c) is a simple integral loop of X2.

– Take a point on γ2(c); let it evolve under the flow of X1. After a finite time,
it goes back on γ2(c). Close it up on γ2(c). This defines γ1(c).

Λc

γ1(c)

γ2(c)

Fig. 2. the basis (γ1(c), γ2(c))

Proposition 3 ([15]). Let c ∈ U . With respect to the basis (γ1(c), γ2(c)), the
action of the classical monodromy map µ

cl on a simple loop δ ∈ π1(U , c) enclos-
ing o is given by the matrix

µ
cl(δ) =

(

1 0
ε 1

)

.

Here ε is the sign of det M , where M ∈ GL(2, R) is the unique matrix such that :

(H(p1
0),H(p2

0)) = M · (H(q1),H(q2)).

Note also that M = dF (0).

This, together with theorem 1, proves the following result :
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Theorem 2. Let P1(h), P2(h) be a quantum integrable system with a focus-focus
singularity. Then there exists a small punctured neighbourhood U of the critical
value o such that for any c ∈ U , if f(h) is an affine chart of the joint spectrum
Σ(h) around c having principal part

(

1

2π

∫

γ1(c)

α,
1

2π

∫

γ2(c)

α

)

,

then the value of the quantum monodromy map µ
qu
f ∈ GA(2, Z) at a simple loop

δ ∈ π1(U , c) enclosing o is given by the matrix

µ
qu
f (δ) = ι

(

1 −ε
0 1

)

.

Here ε is the sign of det M , where M ∈ GL(2, R) is the unique matrix such that :

(H(p1
0),H(p2

0)) = M · (H(q1),H(q2)).

5. How to detect quantum monodromy

5.1. Introduction

Theorem 1 wouldn’t be of much interest if one could not “read off” the quantum
monodromy from a picture of the joint spectrum.

This is actually easy to do, at least in a heuristic way. The rigorous mathe-
matical formulation may however look slightly awkward.

The first idea is the following. Given a straight lattice Z
n, and any two points

A and B in Z
n, there is a natural parallel translation from A to B acting on Z

n,

namely the translation by the integral vector
→

AB.

Now, the joint spectrum Σ(h) locally around any point c ∈ U looks like a
lattice. If the points A and B in Σ(h) are close enough to c and h is small enough,
one can still define a parallel translation from A to B, taking points of Σ(h) near
A to points in Σ(h) near B. This allows us to pass from one chart to another,
and hence to define the notion of parallel transport along any loop through c.
This yields a map from π1(U , c) to GL(n, Z) which is precisely the linear part
of the quantum monodromy µ

qu. This idea is made precise in section 5.2.

The problem can also be viewed the other way round. Roughly speaking,
(Σ(h),U) is an affine manifold, and hence can be defined by the data of a local
diffeomorphism f(h) from the universal cover Ũ of U to hR

n sending Σ(h) to
hZ

n, and of the holonomy ν associated to it :

f(h; γ.c̃) = νc̃(γ)f(h; c̃), ∀γ ∈ π1(U),∀c̃ ∈ Ũ .

Of course, ν should be related to the quantum monodromy µf . The diffeomor-
phism f(h) can be seen as an “unwinding” of Σ(h) onto R

n. This viewpoint is
developed in section 5.3.
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Fig. 3. parallel transport on Σ(h)

5.2. Parallel transport on Σ(h)

Let (Σ(h),U) be an asymptotic affine lattice.

1. First suppose that there exists an affine chart f(h) of Σ(h) defined globally
on U . Since f(h) is elliptic and sends elements of Σ(h) into hZ

n +O(h∞), there
is an h0 > 0 such that for any h < h0, there is an injective map f̃(h) sending
elements of Σ(h) exactly into hZ

n and such that f̃(h) − f(h) = O(h∞).

Because f(h) is of order zero, there is a fixed open ball B̃′ ⊂ f(h;U) such
that B̃′ ∩ (hZ

n) is contained in f̃(h;Σ(h)).

Then, one can find a smaller ball B̃ ⊂ B̃′ such that for any two points P̃ ,

Q̃ in B̃ ∩ (hZ
n), the translation by the vector

→

P̃ Q̃ takes any point of B̃ ∩ (hZ
n)

into B̃′ ∩ (hZ
n) (figure 4). Let us denote by B an open ball in R

n such that
f(h;B) ⊂ B̃. Pulling back by f̃(h), one thus defines the “parallel transport”
τ →

P Q
(A) of a point A ∈ Σ(h) ∩ B along the direction given by two points P and

Q in Σ(h) ∩ B. When the composition is defined, we have

τ →
QR

◦ τ →
P Q

= τ →
P R

. (4)

Moreover, because translation in Z
n is an isometry, there exists a constant C > 0,

independent of h, such that for any A ∈ Σ(h) ∩ B

||
→

Qτ →
P Q

(A)|| < C||
→

PA||. (5)

Because of proposition 1, any other choice of affine chart f(h) gives the same
parallel transport.

2. Now, let (Σ(h),U) be a general asymptotic affine lattice. If γ is any path in
U , one can cover its image by open balls Bi on which parallel transport is well
defined for h less than some hi > 0. If U is compact, as we shall always assume,
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h

hZ
n

B̃′

B̃P̃

Q̃

Ã

Ã′

Fig. 4. parallel translation

this can be done with a finite number of such balls B1, . . . , B`, ordered in a way
that for each 1 ≤ i < `, Bi ∩ Bi+1 6= ∅.

In the following, take h to be less than mini hi. Let P ∈ Σ(h) ∩ B0 and
Q ∈ Σ(h)∩B`. For each i = 1, . . . , `−1, pick up a point Pi ∈ Σ(h)∩(Bi∩Bi+1).
For h small enough, this set is not empty. Because of the estimate (5), the
mapping

τγ,P,Q
def
= τ →

P`−1
Q
◦ · · · ◦ τ →

P1P2

◦ τ →
P P1

is well-defined when restricted to a sufficiently small ball B0 around P (here
again, Σ(h)∩B0 won’t be empty if h is small enough). Equation (4) shows that
this map does not depend on the choice of the intermediate points Pi. Therefore
it depends only on P , Q, and on the homotopy class of γ (as a path from a point
in B1 to a point in B`).

If Q = P , and γ is a loop (B` ∩ B1 6= ∅ and B0 ⊂ B1) then τγ,P,P is a map
from Σ(h) ∩ B0 to Σ(h) ∩ B1 leaving P invariant. If f(h) is an affine chart for
Σ(h) on B1, then f̃(h) ◦ τγ,P,P ◦ f̃(h)−1 is a locally defined map τ̃γ,f(h),P from

hZ
n to itself leaving f̃(h;P ) invariant.

We know from section 2 (formula (1)) that the choice of such an affine chart
allows the quantum monodromy map µf to take its values in GA(n, Z). Remem-
ber that L denotes the natural homomorphism from GA(n, R) to GL(n, R).

Proposition 4. The map τ̃γ,f(h),P is equal to the linearisation at P̃ = f̃(h;P )
of the quantum monodromy along γ :

∀R̃ ∈ hZ
n,

→

P̃ τ̃γ,f(h),P (R̃) = L(µf (γ))
→

P̃ R̃,

whenever the left-hand side of the above is defined.
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Proof. If we choose affine charts fi(h) for Σ(h) on each of the Bi’s with f1 = f ,
and let Ai,i+1 be the transition elements of the monodromy cocycle

fi(h)/h = Ai,i+1(fi+1(h)/h) + O(h∞) (convention ` + 1 ≡ 1),

then it is easy to check that

→

P̃ τ̃γ,f(h),P (R̃) = L(A1,`) · · ·L(A3,2)L(A2,1) ·
→

P̃ R̃,

whenever the composition is defined. Using (2) finishes the proof. �

As an application, one can easily “read off” from the spectrum of the quan-
tum Champagne bottle (figure 5) that the linear part of the quantum mon-

odromy is conjugate to the matrix

(

1 −1
0 1

)

.

E1

E2 = hn

P

R
R′

γ

Fig. 5. Spectrum of the Champagne bottle. The gray disc encloses the focus-
focus critical value. R′ = τγ,P,P (R).

5.3. Unwinding the spectrum

We keep here the notation of the previous paragraph. In particular, Σ(h) is any
asymptotic affine lattice on U , γ is a path in U whose image is covered by balls Bi

on which local parallel translation is defined. We choose points P ∈ B1 ∩ Σ(h),
Q ∈ B` ∩ Σ(h) and P1, P2, . . . , P`−1, P` = Q such that for i = 1, . . . , ` − 1,
Pi ∈ Bi ∩ Bi+1 ∩ Σ(h).

Given an affine chart f(h) on B1, for h small there is a unique k1 ∈ Z
n such

that the map f̃(h) ◦ τ →
P P1

◦ f̃(h)−1 is just translation by hk1. If B1, . . . , B` are
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endowed with affine charts f1(h) = f(h), f2(h), . . . , f`(h), in the same way we
define ki ∈ Z

n such that

f̃i(h) ◦ τ →
Pi−1Pi

◦ f̃i(h)−1

is translation by the vector hki. We unwind the points P, P1, . . . , P` onto hZ
n

using the following procedure (see figure 6) :

h

P̃11

P̃5

P̃8

P̃7

P̃2

P̃1

Q̃

P̃

f(h)

P9

P10

P11

Q

P8

P7

P6

P5

P4

P3

P2

P1

P

E1

E2 = hn

Fig. 6. Unwinding of the points Pi. We deduce that yP̃ = 4, which allows us to
locate the horizontal line through the origin 0 ∈ hZ

2 (the dotted one).

– P̃ = f̃(h;P );

– P̃1 = P̃ + hk1 = f̃(h, P1);

– P̃2 = P̃1 + hL(A2,1) · k2;

– . . .

– Q̃ = P̃` = P̃`−1 + hL(A`,`−1) · · ·L(A2,1) · k`.

Then one easily checks that

P̃i = hA1,2 ◦ A2,3 ◦ · · · ◦ Ai−1,i(f̃i(h;Pi)/h).

In particular, applying this procedure to a loop γ (P = Q) proves the following :

Proposition 5. For h small enough, the quantum monodromy µf gives the end

point Q̃ of the unwinding of any loop γ on U through a point P ∈ Σ(h) around
which we are given an affine chart f(h) by the following formula :
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Q̃ = h(µf (γ))−1(f̃(h;P )/h).

Remark 4. There is a unique symbol g(h) defined on the universal cover Ũ of U
that is an affine chart for Σ(h) and that coincides with f(h) above B0. Then Q
can be seen as the lift γ.P ∈ Ũ . The point is now that

g(h;Q) = Q̃ + O(h∞).

For any P ∈ Ũ , and for any γ ∈ π1(U), there is a unique νP (γ) ∈ GA(n, Z) such
that

g(h; γ.P )/h = νP (γ)(g(h;P )/h) + O(h∞).

By definition, we have νP (γγ′) = νγ.P (γ′)νP (γ). But one can show that for any
loop γ such that γ.P = Q, then

νQ(γ′) = νP (γ)νP (γ′)νP (γ)−1.

Therefore, νP is actually a homomorphism. Proposition 5 just says that

νP = µ
−1
f .

Applying this proposition together with theorem 2 to a focus-focus singularity,
we see that if the principal part of f(h) is given by the action integrals 1

2π

∫

γ1

α

and 1
2π

∫

γ2

α then, for a small loop δ enclosing the critical value o,

ν(δ) = ι

(

1 ε
0 1

)

.

In particular, the whole horizontal line through the origin consists of fixed points.
Of course, locating the origin on a diagram like figure 6 may require the compu-
tation of the action at one point. However, given P̃ and its image Q̃, it is easy
to find the horizontal line through the origin, for

εyP̃ = xQ̃ − xP̃ .
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