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1 Introduction

In the study of completely integrable Hamiltonian systems, and more generally
for any dynamical system, finding normal forms is often the easiest way of un-
derstanding the behaviour of the trajectories. Normal forms generally deal with
alocal issue. But the locality here depends on one’s viewpoint: one can be lo-
cal near a point, an orbit, or any invariant submanifoldF I&= (Hy,...,Hp) is

a completely integrable system on a-2ymplectic manifoldM (meaning that
{H;,H;} = 0), several normal forms hold:

e near a poinim wherede(m), j =1,...,n are linearly independent, one
can construcDarboux-Carathéodorgoordinates: a neighbourhoodrofis
symplectomorphic to a neighbourhood of the origifRiff! with its canoni-
cal coordinatesx, ), in such a way thatl; —H;(m) = ¢;.

e if cis aregular value dF, one has near any compact connected component
A¢ of F~1(c) the Liouville-Arnold theorem which states that the system
is symplectomorphic to a neighbourhood of the zero sectioh*“¢f™") in
such a way that there is a change of coordindtés R" such thatr o ® =
(&15---,&n). HereT" is the torusR" /27 Z" and the cotangent bundle (T")
is equipped with canonical coordinatesé).

The first one is typically a local normal form, while | would refer to the Liouville-
Arnold theorem as @&emi-globalresult, for it classifies a neighbourhood of a
whole invariant Lagrangian ledf.. These two statements above are now fairly
standard. They can be extended in different directions: a) trying to globalise: what
can be said at the level of the whole fibration of regular fils&xg® This of course
involves more topological invariants, as described in Duistermaat’s paper [4]; b)
including critical points, which is the main incentive for this article.

A Morse-Bott like theoretical study of critical point of completely integrable
Hamiltonian systems exists, which yields a local symplectic classification of non-
degenerate singularities (see Eliasson [5]). These results have been used by Nguyén
Tién Zung [8] (extending previous results by Fomenko) to obtain a topological
semi-global classification of the singular foliation. This work does not give the
corresponding smooth symplectic classification, where new semi-global invari-
ants show up, as demonstrated in the “1-D” (one degree of freedonm +€1)
case by [3]. The point of our present article is to extend the results of [3] to the
2-D case offocus-focussingularities. Note that our arguments could easily be
applied in the 1-D case, thus supplying for the lack of proofs in [3].

Between the pure topological classification of the singular foliation and the
“exact” symplectic classification, some other interesting notions of equivalence



have been introduced (see eg. [1]), which are all weaker that what we shall present
here.

The semi-global viewpoint seems to be able to shed some new light in semi-
classical mechanics, where a quantum state is associated to a Lagrangian subman-
ifold. Quantum states associated to singular manifolds have a particularly rich
structure, strongly linked to the local (for this, see [11]) and semi-global symplec-
tic invariants of the foliation. We expect to return on this in a future paper.

2 Statement of the result

In this article,(M, o) is a 4-dimensional symplectic manifold, equipped with the
symplectic Poisson brackét,-}. Any smooth functiorH on M gives rise to a
Hamiltonian vector field denoted by, .

The word smooth always means@f category and a functioh is saidflat at
a pointmif f and all its derivatives vanish at

Definition 2.1 A map F= (H,,H,) defined on some open subset U of M with
values inR? is called amomentum magf dF is surjective almost everywhere in
U and{H;,H,} =0.

Definition 2.2 A singular Liouville foliation .# is a disjoint union of connected
subsets of M called leaves for which there exists a momentum map F defined
in some neighbourhoof® of . such that the leaves o¥ are the connected
components of the level setsHc), for ¢ in some open subset®f.

The total space of the foliation is also denoted.fsy The above definition
implies that% is an open subset oA.

Definition 2.3 Let me .%#. The maximum of the sftank(dF(m)), F defining.# }
is called the rank of m. m is calleegular if its rank is maximal € 2). Otherwise
itis calledsingular.

If mis a regular point, then there is an open neighbourhood iofwhich all
points are regular, and F, F, are associated momentum maps n@aone has
F, = ¢ oF,, for some local diffeomorphisnp of R? (these facts come from the
local submersion theorem).

Note that the conditio{H;,H,} = 0 implies that the leaves are local La-
grangian manifolds near any regular point. However, the foliation near a regu-
lar leaf (=a leaf without any singular point) is not the most general Lagrangian
foliation (which would be defined as a foliation admittilagally associated mo-
mentum maps), since the latter does not necessarily admit a global momentum
map (see [12]).



In what follows, the word “Liouville” is often omitted. I € .%#, we denote
by .#m the leaf containingn.

Definition 2.4 A singular Liouville foliation.# is called ofsimple focus-focus
typewhenever the following conditions are satisfied:

1. .# has a unigue singular point m;
2. the singularity at m is ofocus-focugype;
3. the leat%, is compact.

The leaf%y, is called thefocus-focudeaf.

Recall that the second condition means that there exists a momentum map
F = (H,,H,) for the foliation atm such that the Hessians ldf andH, span a sub-
algebra of quadratic forms that admits, in some symplectic coordifvates, n),
the following basis:

0, =x& +yn, 0, =xn—y&. (1)

This implies thatfocus-focuspoints are isolated, which ensures that the above
definition is non-void. Note thdbcus-focusingularities are one of the four types
of singularities of Morse-Bott type in dimension 4, in the sense of Eliasson [6].

Definition 2.5 Two singular foliations.# and Z in the symplectic manifolds
(M, ) and (M, @) are equivalentis there exists a symplectomorphigm .7 —
Z that sends leaves to leaves.

Definition 2.6 Let.7 and.Z be singular foliations in M, and ra FN.Z such
that. 7 = % Thegermsof.# and.# at %, are equal if and only if there exists
a saturated neighbourhodd of ., in .% such that# NQ =.% NQ.

The classification of germs of Liouville foliations near a compact regular leaf
is given by the Liouville-Arnold theorem that asserts that they are all equivalent
to the horizontal fibration by tori of *T". The presence of singularities imposes
more rigidity, and we have the following theorem (which is natural in view of [3]):

Theorem 2.1 The set of equivalence classes of germs of singular Liouville fo-
liations of focus-focustype at thefocus-focusleaf is in natural bijection with
R[X,Y], whereR[X,Y] is the algebra of real formal power series in two vari-
ables, andR[[X, Y]}, is the subspace of such series with vanishing constant term.



This formal statement does not contain the most interesting part of the result,
which is the geometric description of the power series involved (it is essentially
the Taylor series of a regularisation of some action integral). The rest of the paper
is devoted to this description — which is the-" sense of the theorem, and to the
proof of the “=" sense, for which we provide a normal form corresponding to any
given power series iiR[X,Y],.

The articles ends up with a sketchy argument as to how the result can be ex-
tended to handle the case of sevdéoals-focugoints in the singular leaf.

3 The regularised action

Let .# be a singular foliation of simplécus-focugype. Then in some neigh-
bourhoodU of the focus-focugoint m, the following linearisation result holds
(Eliasson [5]): there exist symplectic coordinatesiin which the map(q;,q,)
(defined in (1)) is a momentum map for the foliation. Notice therefore that, con-
trary to what the picture of Figure 1 may suggest, is diffeomorphic neamto
the union of two 2-dimensional planes transversally intersectimg dtet A be
a point inZnNU \ {m}, andZ be a small 2-dimensional surface transversal to
the foliation atA, andQ be the open neighbourhood &%, consisting of leaves
intersectingz. In what follows, we restrict the foliation Q.

Let F be amomentum map for the whole foliatioh satisfying the hypothesis
of Definition 2.4. In a neighbourhood &, F andq = (0;,0,) are regular local
momentum maps, hence= @ o F, for some local diffeomorphismp of R2. Now
let F = @ oF. Itis a global momentum map fo# that extends). We denote
F = (Hy,H,) andAc = F1(c).

Nearm, the Hamiltonian flow ofq, is 2r-periodic, and — assumirlg to be
invariant with respect to this flow — the associafeaction is free inJ \ {m}.
Since this action commutes with the flowtdf, theH,-orbits must be periodic of
primitive period z for any point in a (non-trivial) trajectory of%”Hl. On the leaf
Fm =\, these trajectories are homoclinic orbits for the pamtvhich implies
that the flow ofH, generates aBl-action on a whole neighbourhood &, (see
[10] for details).

For any pointA € A, ¢ a regular value oF, let 7;(c) > 0 be the time of first
return forthe% -flow to the% -orbit throughA, andt,(c) € R/2xZ the time
it takes to close up this trajectory under the fIOV\Efj,tI (see Fig. 1). These times
are independent of the initial poiAton Ac.

For any regular value of F, the set of pointa, b) € R? such tharaﬁi”Hl +

b%HZ has a 1-periodic flow on is a sublattice oR? called theperiod lattice[4].
The vector fieldg, 2 + 1,2y and 2.2}, both define 1-periodic flows, hence



Ac

Figure 1: Construction of the “periodsj(c)

(7,7,) and(0,2x) form aZ-basis of the period lattice (see Remark 3.3). As we

shall see, the classification we are looking for relies on the behaviour of this basis

asc tends to 0. One immediate fact is that the cycle assomatéqitcshrlnks toa
point (vanishing cycle). On the other hand, the coefficients of the first vector field
display a logarithmic divergence, as stated in the following proposition.

Proposition 3.1 Let Inc be the some determination of the complex logarithm,
where c= (c,,¢,) is identified with ¢ +ic,. Then the following quantities

{ol(c) = 1,(c)+0(Inc)

0,(c) = 1,(c)—0(Inc)

extend to smooth and single-valued functions in a neighbourhoddTdfe differ-
ential 1-form
o = o0,dc; + 0,dc,

is closed.
Proof. As before, letJ be the neighbourhood ofi found using Eliasson’s result,

with canonical coordinategx,y,&,n). In U, we use the complex coordinates
Z=(4,zy) with z; = x+iy andz, = § +in, so thatq,(2) +i0,(z) = 2,z,. The

flow of g, is
(Zl(t>7z2<t)) = (etzi(o))7e_t22(o>7 (2)
while the flow ofq, is theSt-action given by
(21(1),2,(t)) = €' (z,(0),2,(0)). (3)

Fix some smalk > 0. Then the local submanifolds, = {z; = ¢, |z,| small}
andXs= {|z;| small z, = ¢, } are transversal to the foliatio\, = {(z;,2,), zz,=
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c}; therefore, the intersectiom§c) := %, N /Ac andB(c) := ZsN /¢ are smooth
families of points.

The St-orbits ofZ, /s form two small hypersurfaces transversal to the flow of
qy; therefore one can uniquely definf-®(c) as the time of first hit oiZs for the
%Hl-flow starting atA(c) (and hence flowing outside &f), and TZA’B(C) as the
time it takes to finally reaciB(c) under the2;, -flow. 7+8(c) and 75-B(c) are

smooth functions o€ in a neighbourhood of 0.
Interchanging the roles & andB — and thus o, andZ, the timeservA(c)

for j = 1,2 are defined in the same way. But since the corresponding flows now
take place insid®&J, where a singular point occuzer*A(c) is not defined forc = 0.
On the other hand, equations (2) and (3) yield the following explicit formula:

i A _ _ _
TE’A(C) + ITZB’A(C) =In % =1Inz,(A)z,(B)—InC=Ing*~IncC 4)

Writing now

7,(0) +ity(0) = (28(0) + TPA(©) ) +i (5B(0) + TBA(C) )
using (4), and the fact that tn=In|c| —i argc, we obtain that

6,(C) +ioy(c) = 7*B(c) +ithB(c) +Ine?,

which proves the first statement of the proposition.

Let us show now that for regular values othe 1-formt, (c)dc, + 7,(c)dc,
is closed. For this we fix a regular valeg and introduce the following action
integral, forc in a small ball of regular values arouogt

(C) ::/y «, (5)

wherea is any 1-form on some neighbourhood & in M such thatda = @
(which always exists sincA. is Lagrangian), angd — 7 is a smooth family of
loops on the torué\; with the same homology class as the trajectory of the joint
flow of (H;,H,) during the time(t,(c),7,(c)). A simple argument (see for in-

stance [10, Lemma 3.6]) shows tﬁgagg(j—c) = fyc K, WhereKj Is the closed 1-form
on/\¢ defined byL%H K= 5”-. In other words, the integral o:fj along a trajectory

of the flow oij measures the increase of the titrjualong this trajectory. This
means that

de7 (c) = 1y(0)dc; + 1,(C)d,, (6)
and thus proves the closedness of the right-hand side.

v



Another way of proving this fact would be to apply the Liouville-Arnold the-
orem, which ensures that any 1-foadc, + bdc,, wherea, b depend smoothly
on c near a regular value, such th@t b) is in the period lattice is closed (see
remark 3.3).

Adding the fact that Ifc)dcis closed as a holomorphic 1-form, we obtain the
closedness of at any regular value af, and hence at = 0 as well. O

Remark 3.1. From this proposition, one easily recovers the result of [9] stat-
ing that the monodromy of the Lagrangian fibration arouridcais-focudibre is

generated by the matrié (1) i ) A

Notice that the functiom — o,(c) is defined modulo the addition of a fixed
constant in 2Z. We shall from now on assume th@j(0) € [0, 2z[. This amounts
to choosing the determination of the complex logarithm in accordance with the
determination ofr,.

Definition 3.1 Let S be the unique smooth function defined in some neighbour-
hood of0 € R? such that dS= ¢ and S0) = 0. The Taylor expansion of S at€0
is called thesymplectic invariantof Theorem 2.1. It is denoted bg)*.

Remark 3.2. Using equation (6), one can interpi@tas aregularised action
integral:
S(c) = #/(c) — «/(0) +Mm(cIinc—c).

A

Remark 3.3. The formula (6) defines the 1-form= 7,dc; + 7,dc, indepen-
dently of the choice of the coordinate systém,c,). Another (standard) way of
viewing this is the following. First letZ be the set of regular leaves &, and
7 be the projection (which is a Lagrangian fibratio”R)—"—2. The choice of a
particular semi-global momentum mé&p:= (H;,H,) for the system (near a La-
grangian leaf\. := 7—(c), for somec € %) is equivalent to the choice oflacal
chart ¢ for Z nearc. F = ¢ o .

Then for eaclt € 4, TS % acts naturally om\¢ by the time-1 flows of the
vector fields symplectically dual to the pull backs byof the 1-forms inT. %.
This action extends to a Hamiltonian action in a neighbourhoati.af and only
if we restrict to closed 1-forms of. (In the local coordinate&,, c,) of % given
by the choice of a momentum m&p= (H,,H,), the constant 1-formdc,, dc,
act by the flows of%Hl, %Hz, respectively).

The stabiliser of this action form a particularly interesting lattice Ty %,
which is another representation of the “period lattice” [4]. It is the main point of
the Liouville-Arnold theorem to show that, asvaries, the points of this lattice

8



are associated tdosedl-forms, calledperiod 1-forms (Indeed, in action-angle
coordinates, the period 1-forms have constant coefficients). In our case, the period
lattice is computed using a local chart given by Eliasson’s theorem. First we see
that this lattice has a privileged direction given by Bleaction ofg,. Then we
construct a “minimal” basis of this lattice by choosing the generator ofShis
action (ie Zrdc,) together with the smallest transversal veatdhat has positive
coefficients ordc;, anddc,. This is what we have done in this section. A

4 Uniqueness

In order to show that the above invarig®® is indeed symplectic and uniquely
defined by the foliation, we need to prove that it does not depend on any choice
made to define them. A prioriS)® = (§®(.#, x ) depends on the foliatioF and

on the choice of the chagt that puts a neighbourhood of tiecus-focugpointm

into normal form. It follows from the definition that @ is a symplectomorphism
sendingZ to .#, then(§)*(#,x) = (9*(F,x o). So(S) is well-defined as

a symplectic invariant of# if and only if, for any choice of two chart and '
putting a neighbourhood afiinto normal form,(S)*(.%, x) = (S®(#,x’). This

is guaranteed by the following lemma:

Lemma 4.1 If ¢ is a local symplectomorphism @R*,0) preserving the standard
focus-focusfoliation {q := (g;,d,) = cons§ near the origin, then there exists a
unique germ of diffeomorphism:@®? — R? such that

o =Goq, (7)

and G is of the form G= (G;,G,), where G(c;,C,) = &,¢, and G (¢;,C,) — &,C;
is flat at the origin, with<3j =+1.

Remark 4.1. This uniqueness statement about Eliasson’s normal form does not
appear in [5]. A

Proof of the lemma. The existence of some uniq@satisfying (7) is standard
(because the leaves of thecus-focudoliation are locally connected around the
origin). What interests us here are the last properties. As before, we use the
complex coordinateéz;, z,) € C> = R* andc =7z, € C =R Let§ >0 be
such thatp is defined in the boxZ = {|z,| < 26,|z,| < 26}.

Since the flow ofq, is 2z-periodic, (7) implies that the Hamiltonian vector
field 0,G, Zq, + 9,G, 24, is also Z-periodic (with 2r as a primitive period).
But on/\, the only linear combinations o, and Zq, that are periodic are the
integer multiples of2q,. Henced, G,(0) = 0 andd,G,(0) = +1.
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The flow ofqg; on A is radial: any line segmen0, Al for someA c A\ is a
trajectory. Then by (7) it image by must be a trajectory oB, 0. Sinceg is
smooth at the origin, the image [8f A| for A € & close enough to 0 lies in some
proper sector of the plarié C A, containingp(A) (M is either{z, = 0} or {z, =
0}). Butthe only linear combinations ot and.Zq, which yield trajectories that
are confined in a proper sectorldfare the multiples of?q . Henced,G, (0) = 0.

It follows now from the previous paragraph thgiG, (0) # 0 (sinceG is a local
diffeomorphism).

¢ preserves the critical set gf since left composition op by the symplec-
tomorphism(z,,z,) — (—z,,z,) leaves (7) unchanged (except for the sigief,
we may assume that each “axig’zf = 0} and{z, = 0} respectively) is preserved
by ¢. But then{z, = 0} is the local unstable manifold for both andG,(q,,d,),
which says thad, G, (0) > 0.

Using (2) and (3), it is immediate to check that the joint flow(@f, g,) taken
at the joint time(—In|c/48|,argc) sends the poingc, ) to the point(d,c), and
hence extends to a smooth and single-valued mdpom a neighbourhood of
(0,8) to a neighbourhood dfs, 0).

¢~ 1o do ¢ sends a neighbourhood ¢f%(0,8) = (0,a) to a neighbourhood
of ¢=1(8,0) = (b,0) and, because of (7), it is equal — in the complement of the
singular leafA, — to the joint flow ofGo g at the joint time(—In|c/é|,argc),
which is equal to the joint flow od| at the joint time

(=0,G;In|c/6]+ 9,G,arge, —d,G; In|c/d| 4 d,G, arge).

Sincep 1o ®o ¢ is smooth at the origin, we obtain by restricting the first com-
ponent of this map to the “Poincaré” surfaffe, a) with ¢ near 0 inC} that the
map:

c— exp((1—9,G,)In|c|[+ 9,G,argc+i ((d,G, — 1) argc — 9,G, In|c[))  (8)

is single-valued and smooth at the origin. (We have factored out the tern@ exin o),
j = 1,2, which are obviously smooth.)

The single-valuedness of (8) implies thgiG, = 0 andd,G, € Z. Hence
2,G, = £1.

Now the smoothness of (8) says that the following two functions:

c— (1-0,G;)In|c]| and ¢ — —d,G;In|c|

are smooth at the origin, which easily implies tlat- d,G,) andd,G, are flat at
the origin, yielding the result. OJ

Suppose we define two semi-global invaria(®”(.%,x) and (9*(.#,}%) by
choosing two different chartg and ¥ which put a neighbourhood of tHecus-
focuspoint into normal form. As before, one defines the momentum riraasd
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F, which are the extensions # of go ¥ andqo ¥, and computes the correspond-
ing period 1-formst and7. Then we can invoke the lemma ¢o= j o x 1, and
the conclusions apply 6 = FF 1.
Suppose thatj =1, ] =12, ie.Gis infinitely tangent to the identity. Then
the same type of arguments as above (a logarithm cannot compete against a flat
term) shows that, since the vector fleI%rI and 5&”~ are infinitely tangent to

each otherz and7 must differ by a flat term Actually, since by remark %37
is also a period 1-form associated with the momentum Fhapne hast = G*7.
This implies thas(c) = t(c) + O(Incdc) andé = (G 1)* o differ by a flat form,
hence(S)™(F,7) = (9°(Z. 7).

If &, = —1, it suffices to compose with the symplectomorphigxg) —
(—x,—&), which send<q,,q,) to (d,,—0,) and leavess invariant (botho, and
dc, change sign). An analogous remark holds with the symplectomorghisms) —
(—=2,,7;), which sendgq,,q,) to (—0,,d,) and leaves invariant, while changing
the sign ofe;.

5 Injectivity

Let.Z and.Z are two singular foliations of simplecus-focusype on the sym-
plectic manifolds(M, o) and (M, ®). Assume that they have the same invariant
(9%(F) = (97(F) € R[X,Y],. We shall prove here tha¥# and.Z are semi-
globally equivalent, ie. there exists a foliation preserving symplectomorphism
between some neighbourhoods of tbeus-focudeaves.

For each of the foliations# and.#, we choose a chart of Eliasson’s type
around thefocus-focugoint, and thus define the period 1-formand? on (R?\
{0},0). The hypothesis implies that there is a smooth closed 1-foraw,dc, +
m,dc, on (R?,0) whose coefficients are flat functionsoét the origin such that

T=7T+T.

Lemma 5.1 One can chose symplectic charts of Eliasson’s type dbites-focus
points in such a way that = 0, ie:

T=T1.

Proof. 1. We first prove that there exists a local diffeomorphignof (R?,0)
isotopic to the identity such thg6—1)*z = 7. We wish to realis& asG, where
G; is a flow satisfying

G (t+trm) =1.

This amounts to finding the associated vector figlebhich must satisfy

d(ty (7 +tm)) = —.
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We can writer = dP for some smooth functioR which is flat at 0. Assume we
look for a fieldY; of the formY; = ft(c)aicl. We obtain the following equation:

—Pl©)  _ —P(0)
7,(c)+tm;  In|c|—oy(c)+tm;

fi(c) =

SinceP s flat at 0, the right-hand-side is indeed a (flat) smooth function depending
smoothly ort, and the result is proved.

2. Notice also thaG is infinitely tangent to the identity, and moreover leaves
the second variable, unchanged. Now we show that for any diffeomorphiGm
of (R?,0) sharing these properties (which are those of Lemma 4.1) there exists a
symplectomorphisny near thefocus-focugpoint m such that

G(0y,9,) 0 x = (g, ).

Here again we seek as the time-1 map of the flow of some vector fiéld Of
course we shall look now for a Hamiltonian vector fiedd= 2; to ensure the
symplecticity ofy;. Then the requirement

% % = o,

whereg; = (0 5, ,) O':eftG(ql, 0,)+(1—t)(0,,0,), leads to the following system

{foaqt = 9
{ftuq[72} = 07

with (g,,0) = (9;,0,) —G(q;,0,). By hypothesig, is a flat function at the origin,
and the factthafq, ,,q, ,} = 0implies that{g,,q, ,} = 0. Moreover the quadratic
part ofq, is gy, SO we know (see [5]) that such a system admits a soluion

It remains to put all our remarks together: Point 2) shows that left composition
by x of the Eliasson chart we have chosenrais again an admissible chart of
Eliasson’s type, yielding the new momentum n@a(oj;, g,). Using theG obtained
at Point 1) and in view of the naturality property (remark 3.3), the new period 1-
form (denoted byr again) satisfies = 7. O

We are now is position to construct the required equivalence. Applying the
lemma we get a local symplectomorphism that allows us to identify some neigh-
bourhoodsJ andU of thefocus-focugpointsm andri, and two momentum maps
F andF (both equal to(q,,q,) inside their respective neighbourhoods of the
focus-focugpoints) which define the same closed 1-foorron (R?,0). We de-
noteAc = F1(c) andAc = F1(c).

Let 4 be an open ball strictly containedlh, let 2, C 4 be a transversal sec-
tion as defined in the proof of Proposition 3.1, and construct in the same way
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5, for the foliation.# (so thatz, and%,, are identified by the above symplecto-
morphism). Reduce” (and.#) to the neighbourhoods of tHecus-focudeaves
composed of the leaves intersectlg(or ). We construct our equivalence by
extending the identity outsidg. Letx € Ac\ U, and define(x) €]0, 7;(c)| to
be the smallest time it takes for the poiitN /¢ to reach the%”Hz-orbit of x.

(Recall thatH, generates a8 action.) Now defines(x) € R/27Z as the remain-
ing time to finally reachx under the%Hz-flow. To thisx we associate the point

% € .7 obtained from the poink, N Ac by letting the joint flow ofF act during

the times(t(x),s(x)). This map — let’s call it — is well defined because of the
equalityr = 7. It is a bijection since the inverse is equally well-defined just by
interchanging the roles o7 and.#. BetweenU andU, ¥ is a symplectomor-
phism since through Eliasson’s charts, it is just the identity. Concerning now the
symplecticity ofW¥ in the complement of the singular points, one can prove it for

¢ # 0 (which is sufficient by continuity) by invoking the Liouville-Arnold theo-
rem, which shows tha¥ is symplectically conjugate to a translation in the fibres.
Then the symplectic property near the singular points implies that this translation
must be symplectic everywhere. A similar argument using the less sophisticated
Darboux-Carathéodory theorem could also do. But the simplest is maybe the fol-
lowing. It is clear from the construction th&t is equivariant with respect to the
joint flows of our Hamiltonian dynamics:

MURE Voo 1, = (btl,tz oW, 9)

whereg ¢ and (Ip’tlth are the joint flows of andF at the joint time(t,,t,). Us-
ing (9) together with the fact thaﬁtl,t2 is symplectic, we see thaﬁiytz(w*(b) =
W*@®; in other wordsW* @ is invariant under the joint flowp, t,. Sincew has the
same property, so haB*® — w. SinceW*® — w = 0 nearm, it must vanish as
well on the whole% .

6 Surjectivity

We prove here that any formal power ser{&” € R[[X,Y], is the symplectic
invariant — in the sense of Definition 3.1 — of some Liouville foliation of simple
focus-focusype. More precisely, we construct a foliatiofi together with a local
charty that puts a neighbourhood of tfecus-focugpoint into normal form such
that (using the notation of Section &3)* = (S)*(.#,x). Another proof of this
result has been proposed by Castano-Bernard [2].

Using the same notations as before, we(lgt 0,) = z,z, be the standard
focus-focudibration R* ~ C? — C ~ R? defined in (1). The joint flow will be
denoted b)‘Ptl,tz-
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Invoking Borel's construction, les € C*(R?) be a function vanishing at the
origin and whose Taylor series (§)”. We shall denote bys,, S, the partial
derivativesd, Sandd, S, respectively.

Let us define two “Poincaré” surfaces @ by means of the following em-
beddings of the balD, = B(0, e) C C, for somee €]0,1][:

M=l _
M,(c) = ((45:(0) ceSi(OHiS(0)),

Notice that for eacle, the pointsl'lj(c), j = 1,2 belong to the (non-compact) La-
grangian submanifolflc := {z,z, = c}. M (D), j = 1,2 are smooth 2-dimensional
manifolds constructed in such a way that for an 0, N,(c) is the image of
M, (c) by the joint flow of(q;, q,) at the time(S;(c) —In|c|,S,(c) +arg(c)).

Let ® be this diffeomorphism, defined on &ll, (D) by the embeddings:

M,(D,) andl,(D,) are transversal to the Lagrangian foliation, andan be
extended uniquely to a diffeomorphism between small neighbourhoddig BY; )
andr,(D,) by requiring that it commute with the joint flow:

® (91,1,(m)) = @1, (®()) . (10)
Lemma 6.1 ® is a symplectomorphism.

Proof. One can writeP in terms off1, andll, and check the result by explicit
calculation. However, the reason why it works is the following:

Since we already know tha@ is smooth, it is enough to prove the lemma
outside of the singular Lagrangi#g. So fixc, # 0; we can construct a Darboux-
Carathéodory chark, &) € R* in a connected open subset/gf containing both
M,(cy) andl,(cy). In these coordinates, the momentum mafEis&,) and the
flow is linear: ¢ ; is the translation byt,,t,) in thex variables.

Through this chartqb Is by construction a “fibre translation”:

®(x,§) = (x+(5),5), (11)

where

F(&) = (S1(8),S,(6)) + (In|G|, —arg(£))- (12)
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Now, it is easy to check that (11) defines a symplectomorphism if and only if

the 1-form
f1(6)dE, + f(8)de;
is closed. In our case the closedness is automatic §fibe+S,dY =dS [

LetX;, j=1,2be theSt-orbit of M;(Dg). Construct a 4-dimensional cylindet
by letting theq,-flow takeZ, to Z,, namely:

(g = |_| (gc
ceD:\{0}

where?; C /\c is the 2-dimensional cylinder spanneddyy; (M, (c)), for (t;,t,) €
[0,S;(c) +In|c|] x [0,2x]. Finally, letM be the symplectic manifold obtained by

Figure 2: Construction of the symplectic maniféitl

gluing the two end§j of the cylinder# using the symplectomorphisf. Since

® preserves the momentum m@g, d,), the latter yields a valid momentum map
F on M. The corresponding Lagrangian foliatii(c) is given by%; with its
two ends identified byd. In particular all leaves are compact and the foliation is
of simplefocus-focusype.

The St action is unchanged, while the transversal perieg(c),,(c)) on
F~1(c) is by construction the time it takes for the joint flow to redtj(c) from
M,(c), ie

(71(¢), 7p(¢)) = (S1(€) —In|c]|, Sy(c) +arg(c)).
Then by definition 3.1 the symplectic invariant of the foliation is given by the
Taylor expansion of the primitive of the 1-fordc, + S,dc, vanishing at 0, ie.
(9.
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7 Further remarks

Multiple focus-focus Assume now that the singular fibrg, carriesk focus-
focuspointsmy,...,m_,. ThenA is ak-times pinched torus, and Theorem 2.1
can be generalised. In this case, the regularisation of the action infgrast
take into account all the singular points. In order to do this, one has to consider
k— 1 local invariants, which are also formal power serieR|iX, Y], and which
measure the obstruction to construct a semi-global momentum map that is in Elias-
son normal form simultaneously at two different singular points. Here follows a
sketch of the argument.

Let F be a semi-global momentum map. At each me'ertone has a local

normal formF o ¢; = Gl/(q;,0,). Because of Lemma 4.1, one can extepdo
a periodic Hamiltonian on a whole neighbourhood/gf, and one can always
assume thapj is orientation preserving — that means we fix once and for all the

sign of thee; . If now F if of the form (H,, g,) thenG! takes the fornG!(qy, q,) =

(Fj(ql,qz),qz). By the implicit function theoremE! is locally invertible with
respect to the variablg,. Let (F/)~1 be this inverse, and defir@l = (F')~1F].
Again by Lemma 4.1, the Taylor expansiong®f are invariants of the foliation.

Assume the pointsn are ordered according to the flow Bif, with indices
i € Z/KZ. Similarly to the cas& = 1, one can define a regularised period 1-form
o by the following formula:

k—1
o= %(GolGi)* (or' " (c)de, + o' (c)dcy) (13)
1=
with . .
cr'lv'“(c) = 1'1“1(0) +0O(Inc)
{ 0-'2”1(0) = r'z’i“(c) —0O(Ing)
where(z}'*1(c), 77%(c)) are the smallest positive times needed to refch(c)
from A (c) under the flow of G')~ o F — which is the momentum ma(ay,,d,)
in the normal form coordinates near poMyt Here we have chosen a po#i(c)
in a Poincaré section of each local stable manifold mgarOf coursec’'*+2(c)
depends heavily on the choiceAfandA, , ;, but the sums appearing in (13) does
not, and the resulting 1-formx is closed. Notice that the definition of depends
on the choice of a start point,. Thus we are here classifying a singular foliation
with a distinguishedocus-focugpoint m,.

Let (S)® be the Taylor series of the primitive @f vanishing at the origin.
Then(S)® and thek — 1 ordered invariantéG"'+1)® are independent and entirely
classify a neighbourhood of the critical fibfg with distinguished poinin,. The
arguments of the proof are similar to the ones of the &se.. An abstract con-
struction of a foliation admitting a given set of invariants is proposed in Figure 4.

(14)
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Figure 3: The multi-pinched torus

There the local pictures are described by canonical coordinates respectively given

by (ay,0p), (G+%(0ly, 8p). Gp), (GH2(G*3(ay, Gp), Gp). Gp), etc. and the gluing dif-
feomorphismsp; ; ; are constructed as in section 6 using the following functions,

respectively§,; =S, ,=---=8§_,,_; =0andS,, _, is aresummation ofS)*.

Poy-1

Figure 4: multiple gluing

Remark 7.1. We can regard the reduced spa‘q)dsl as a cyclic graply whose
vertices are théocus-focugpointsm, and which is oriented by the flow &f,. For
each edgd,i + 1] one can define a 1-form

Gl,i+l — (Galel)* (Gl7i+ldcl+ Giz’i+ld02) € Ql(D)

(for some fixed small disB around the origin ifR?). This defines a 1-cocycle on
¢ with values in the vector spa€®' (D). If one varies the pointAJ- , this cocycle is

easily seen to change by a coboundary; hence the 9{6’(‘6\‘1} naturally defines
a well-defined cohomology class &h Be the same argument as in the clasel
(ie. essentially Arnold-Liouville’s theorem) this classclesed in the sense that
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the cochain{c"'*11, modulo some coboundary, can be chosen to consist only of
closed 1-forms. Hence we end up with a classe H(¥4,H!(D)). Since¥ is
homeomorphic to a circled(¥4,H(D)) ~ H(D) and[o] is represented by the
de Rham cohomology class of the closed 1-farm 5 ¢''+1 defined in (13).

Now, the functor that produces Taylor series of 1-forms can be applied to the
coefficients of this cochain, yielding a cocycle with values in formal closed 1-
forms and whose class is represented by the differential of our invdBght A

“Exact” version. If one intends to extend the results to a semiclassical setting,
general symplectomorphism do not suffice: one needs to control the action inte-
grals (in the standard semiclassical pseudo-differential theory, a potentaal

the symplectic formda =  is part of the data). In view of Remark 3.2, this is
naturally done by including the constant term in the Taylor seri&asfbeing the
integral

S=1/

)
wherey, is the generator dfi; (A,).

Acknowledgements. This article answers a question that J.J. Duistermaat asked
me when | was in Utrecht in 1998. | wrote then a short — and incomplete — dratft,
and that was it. Two years after | finally read the note by Toulet and al. [3], and
a fruitful discussion with Richard Cushman made me realise that | had the result
at hand. | wish to thank him for this. | would also like to thank Ricardo Castano-
Bernard for interesting discussions, and for showing me an alternative proof of
the “surjectivity” part using general arguments developed for mirror symmetry
via special Lagrangian fibrations.

After | wrote this article, P. Molino informed me of an unpublished work of
his (in collaboration with one of his students [7]) concerning the same problem.
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