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1 Introduction

In the study of completely integrable Hamiltonian systems, and more generally
for any dynamical system, finding normal forms is often the easiest way of un-
derstanding the behaviour of the trajectories. Normal forms generally deal with
a local issue. But the locality here depends on one’s viewpoint: one can be lo-
cal near a point, an orbit, or any invariant submanifold. IfF = (H1, . . . ,Hn) is
a completely integrable system on a 2n-symplectic manifoldM (meaning that
{H j ,Hi}= 0), several normal forms hold:

• near a pointm wheredHj(m), j = 1, . . . ,n are linearly independent, one
can constructDarboux-Carathéodorycoordinates: a neighbourhood ofm is
symplectomorphic to a neighbourhood of the origin inR2n with its canoni-
cal coordinates(x,ξ ), in such a way thatH j −H j(m) = ξ j .

• if c is a regular value ofF , one has near any compact connected component
Λc of F−1(c) the Liouville-Arnold theorem which states that the system
is symplectomorphic to a neighbourhood of the zero section ofT∗(Tn) in
such a way that there is a change of coordinatesΦ in Rn such thatF ◦Φ =
(ξ1, . . . ,ξn). HereTn is the torusRn/2πZ

n and the cotangent bundleT∗(Tn)
is equipped with canonical coordinates(x,ξ ).

The first one is typically a local normal form, while I would refer to the Liouville-
Arnold theorem as asemi-globalresult, for it classifies a neighbourhood of a
whole invariant Lagrangian leafΛc. These two statements above are now fairly
standard. They can be extended in different directions: a) trying to globalise: what
can be said at the level of the whole fibration of regular fibresΛc ? This of course
involves more topological invariants, as described in Duistermaat’s paper [4]; b)
including critical points, which is the main incentive for this article.

A Morse-Bott like theoretical study of critical point of completely integrable
Hamiltonian systems exists, which yields a local symplectic classification of non-
degenerate singularities (see Eliasson [5]). These results have been used by Nguyên
Tiên Zung [8] (extending previous results by Fomenko) to obtain a topological
semi-global classification of the singular foliation. This work does not give the
corresponding smooth symplectic classification, where new semi-global invari-
ants show up, as demonstrated in the “1-D” (one degree of freedom, i.e.n = 1)
case by [3]. The point of our present article is to extend the results of [3] to the
2-D case offocus-focussingularities. Note that our arguments could easily be
applied in the 1-D case, thus supplying for the lack of proofs in [3].

Between the pure topological classification of the singular foliation and the
“exact” symplectic classification, some other interesting notions of equivalence
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have been introduced (see eg. [1]), which are all weaker that what we shall present
here.

The semi-global viewpoint seems to be able to shed some new light in semi-
classical mechanics, where a quantum state is associated to a Lagrangian subman-
ifold. Quantum states associated to singular manifolds have a particularly rich
structure, strongly linked to the local (for this, see [11]) and semi-global symplec-
tic invariants of the foliation. We expect to return on this in a future paper.

2 Statement of the result

In this article,(M,ω) is a 4-dimensional symplectic manifold, equipped with the
symplectic Poisson bracket{·, ·}. Any smooth functionH on M gives rise to a
Hamiltonian vector field denoted byXH .

The word smooth always means ofC∞ category and a functionf is saidflat at
a pointm if f and all its derivatives vanish atm.

Definition 2.1 A map F= (H1,H2) defined on some open subset U of M with
values inR2 is called amomentum mapif dF is surjective almost everywhere in
U and{H1,H2}= 0.

Definition 2.2 A singular Liouville foliation F is a disjoint union of connected
subsets of M called leaves for which there exists a momentum map F defined
in some neighbourhoodΩ of F such that the leaves ofF are the connected
components of the level sets F−1(c), for c in some open subset ofR2.

The total space of the foliation is also denoted byF . The above definition
implies thatF is an open subset ofM.

Definition 2.3 Let m∈F . The maximum of the set{rank(dF(m)),F definingF}
is called the rank of m. m is calledregular if its rank is maximal (= 2). Otherwise
it is calledsingular.

If m is a regular point, then there is an open neighbourhood ofm in which all
points are regular, and ifF1 F2 are associated momentum maps nearm, one has
F1 = ϕ ◦F2, for some local diffeomorphismϕ of R2 (these facts come from the
local submersion theorem).

Note that the condition{H1,H2} = 0 implies that the leaves are local La-
grangian manifolds near any regular point. However, the foliation near a regu-
lar leaf (=a leaf without any singular point) is not the most general Lagrangian
foliation (which would be defined as a foliation admittinglocally associated mo-
mentum maps), since the latter does not necessarily admit a global momentum
map (see [12]).
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In what follows, the word “Liouville” is often omitted. Ifm∈F , we denote
by Fm the leaf containingm.

Definition 2.4 A singular Liouville foliationF is called ofsimple focus-focus
typewhenever the following conditions are satisfied:

1. F has a unique singular point m;

2. the singularity at m is offocus-focustype;

3. the leafFm is compact.

The leafFm is called thefocus-focusleaf.

Recall that the second condition means that there exists a momentum map
F = (H1,H2) for the foliation atmsuch that the Hessians ofH1 andH2 span a sub-
algebra of quadratic forms that admits, in some symplectic coordinates(x,y,ξ ,η),
the following basis:

q1 = xξ +yη , q2 = xη−yξ . (1)

This implies thatfocus-focuspoints are isolated, which ensures that the above
definition is non-void. Note thatfocus-focussingularities are one of the four types
of singularities of Morse-Bott type in dimension 4, in the sense of Eliasson [6].

Definition 2.5 Two singular foliationsF and F̃ in the symplectic manifolds
(M,ω) and(M̃, ω̃) are equivalentis there exists a symplectomorphismϕ : F →
F̃ that sends leaves to leaves.

Definition 2.6 Let F andF̃ be singular foliations in M, and m∈F ∩ F̃ such
thatFm = F̃m. Thegermsof F andF̃ at Fm are equal if and only if there exists
a saturated neighbourhoodΩ of Fm in F such thatF ∩Ω = F̃ ∩Ω.

The classification of germs of Liouville foliations near a compact regular leaf
is given by the Liouville-Arnold theorem that asserts that they are all equivalent
to the horizontal fibration by tori ofT∗Tn. The presence of singularities imposes
more rigidity, and we have the following theorem (which is natural in view of [3]):

Theorem 2.1 The set of equivalence classes of germs of singular Liouville fo-
liations of focus-focustype at thefocus-focusleaf is in natural bijection with
R[[X,Y]]0, whereR[[X,Y]] is the algebra of real formal power series in two vari-
ables, andR[[X,Y]]0 is the subspace of such series with vanishing constant term.
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This formal statement does not contain the most interesting part of the result,
which is the geometric description of the power series involved (it is essentially
the Taylor series of a regularisation of some action integral). The rest of the paper
is devoted to this description – which is the “⇒” sense of the theorem, and to the
proof of the “⇐” sense, for which we provide a normal form corresponding to any
given power series inR[[X,Y]]0.

The articles ends up with a sketchy argument as to how the result can be ex-
tended to handle the case of severalfocus-focuspoints in the singular leaf.

3 The regularised action

Let F be a singular foliation of simplefocus-focustype. Then in some neigh-
bourhoodU of the focus-focuspoint m, the following linearisation result holds
(Eliasson [5]): there exist symplectic coordinates inU in which the map(q1,q2)
(defined in (1)) is a momentum map for the foliation. Notice therefore that, con-
trary to what the picture of Figure 1 may suggest,Fm is diffeomorphic nearm to
the union of two 2-dimensional planes transversally intersecting atm. Let A be
a point inFm∩U \ {m}, andΣ be a small 2-dimensional surface transversal to
the foliation atA, andΩ be the open neighbourhood ofFm consisting of leaves
intersectingΣ. In what follows, we restrict the foliation toΩ.

Let F̃ be a momentum map for the whole foliationF satisfying the hypothesis
of Definition 2.4. In a neighbourhood ofΣ, F̃ andq = (q1,q2) are regular local
momentum maps, henceq = ϕ ◦ F̃ , for some local diffeomorphismϕ of R2. Now
let F = ϕ ◦ F̃ . It is a global momentum map forF that extendsq. We denote
F = (H1,H2) andΛc = F−1(c).

Nearm, the Hamiltonian flow ofq2 is 2π-periodic, and – assumingU to be
invariant with respect to this flow – the associatedS1-action is free inU \ {m}.
Since this action commutes with the flow ofH1, theH2-orbits must be periodic of
primitive period 2π for any point in a (non-trivial) trajectory ofXH1

. On the leaf
Fm = Λ0, these trajectories are homoclinic orbits for the pointm, which implies
that the flow ofH2 generates anS1-action on a whole neighbourhood ofFm (see
[10] for details).

For any pointA∈ Λc, c a regular value ofF , let τ1(c) > 0 be the time of first
return for theXH1

-flow to theXH2
-orbit throughA, andτ2(c) ∈ R/2πZ the time

it takes to close up this trajectory under the flow ofXH2
(see Fig. 1). These times

are independent of the initial pointA on Λc.
For any regular valuec of F , the set of points(a,b) ∈ R2 such thataXH1

+
bXH2

has a 1-periodic flow onΛc is a sublattice ofR2 called theperiod lattice[4].
The vector fieldsτ1XH1

+τ2XH2
and 2πXH2

both define 1-periodic flows, hence
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Figure 1: Construction of the “periods”τ j(c)

(τ1,τ2) and(0,2π) form aZ-basis of the period lattice (see Remark 3.3). As we
shall see, the classification we are looking for relies on the behaviour of this basis
asc tends to 0. One immediate fact is that the cycle associated toXH2

shrinks to a
point (vanishing cycle). On the other hand, the coefficients of the first vector field
display a logarithmic divergence, as stated in the following proposition.

Proposition 3.1 Let lnc be the some determination of the complex logarithm,
where c= (c1,c2) is identified with c1 + ic2. Then the following quantities{

σ1(c) = τ1(c)+ ℜ(lnc)
σ2(c) = τ2(c)−ℑ(lnc)

extend to smooth and single-valued functions in a neighbourhood of0. The differ-
ential 1-form

σ := σ1dc1 + σ2dc2

is closed.

Proof. As before, letU be the neighbourhood ofm found using Eliasson’s result,
with canonical coordinates(x,y,ξ ,η). In U , we use the complex coordinates
z = (z1,z2) with z1 = x+ iy andz2 = ξ + iη , so thatq1(z) + iq2(z) = z̄1z2. The
flow of q1 is

(z1(t),z2(t)) = (etz1(0)),e−tz2(0), (2)

while the flow ofq2 is theS1-action given by

(z1(t),z2(t)) = eit (z1(0),z2(0)). (3)

Fix some smallε > 0. Then the local submanifoldsΣu = {z1 = ε, |z2| small}
andΣs = {|z1| small,z2 = ε,} are transversal to the foliationΛc = {(z1,z2), z̄1z2 =

6



c}; therefore, the intersectionsA(c) := Σu∩Λc andB(c) := Σs∩Λc are smooth
families of points.

TheS1-orbits ofΣu/s form two small hypersurfaces transversal to the flow of

q1; therefore one can uniquely defineτ
A,B
1

(c) as the time of first hit onΣs for the
XH1

-flow starting atA(c) (and hence flowing outside ofU), andτ
A,B
2

(c) as the

time it takes to finally reachB(c) under theXH2
-flow. τ

A,B
1

(c) andτ
A,B
2

(c) are
smooth functions ofc in a neighbourhood of 0.

Interchanging the roles ofA andB – and thus ofΣu andΣs, the timesτB,A
j

(c)
for j = 1,2 are defined in the same way. But since the corresponding flows now
take place insideU , where a singular point occur,τ

B,A
j

(c) is not defined forc = 0.
On the other hand, equations (2) and (3) yield the following explicit formula:

τ
B,A
1 (c)+ iτB,A

2 (c) = ln
z1(A)
z1(B)

= lnz1(A)z̄2(B)− ln c̄ = lnε
2− ln c̄ (4)

Writing now

τ1(c)+ iτ2(c) =
(

τ
A,B
1 (c)+ τ

B,A
1 (c)

)
+ i
(

τ
A,B
2 (c)+ τ

B,A
2 (c)

)
,

using (4), and the fact that ln ¯c = ln |c|− i argc, we obtain that

σ1(c)+ iσ2(c) = τ
A,B
1 (c)+ iτA,B

2 (c)+ lnε
2,

which proves the first statement of the proposition.
Let us show now that for regular values ofc the 1-formτ1(c)dc1 + τ2(c)dc2

is closed. For this we fix a regular valuec0 and introduce the following action
integral, forc in a small ball of regular values aroundc0:

A (c) :=
∫

γc

α, (5)

whereα is any 1-form on some neighbourhood ofΛc in M such thatdα = ω

(which always exists sinceΛc is Lagrangian), andc→ γc is a smooth family of
loops on the torusΛc with the same homology class as the trajectory of the joint
flow of (H1,H2) during the time(τ1(c),τ2(c)). A simple argument (see for in-

stance [10, Lemma 3.6]) shows that∂A (c)
∂c j

=
∫

γc
κ j , whereκ j is the closed 1-form

onΛc defined byιXHi

κ = δi, j . In other words, the integral ofκ j along a trajectory

of the flow ofH j measures the increase of the timet j along this trajectory. This
means that

dA (c) = τ1(c)dc1 + τ2(c)dc2, (6)

and thus proves the closedness of the right-hand side.
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Another way of proving this fact would be to apply the Liouville-Arnold the-
orem, which ensures that any 1-formadc1 + bdc2, wherea, b depend smoothly
on c near a regular value, such that(a,b) is in theperiod lattice, is closed (see
remark 3.3).

Adding the fact that ln(c)dc is closed as a holomorphic 1-form, we obtain the
closedness ofσ at any regular value ofc, and hence atc = 0 as well. �

Remark 3.1. From this proposition, one easily recovers the result of [9] stat-
ing that the monodromy of the Lagrangian fibration around afocus-focusfibre is

generated by the matrix

(
1 1
0 1

)
. 4

Notice that the functionc→ σ2(c) is defined modulo the addition of a fixed
constant in 2πZ. We shall from now on assume thatσ2(0)∈ [0,2π[. This amounts
to choosing the determination of the complex logarithm in accordance with the
determination ofτ2.

Definition 3.1 Let S be the unique smooth function defined in some neighbour-
hood of0∈R2 such that dS= σ and S(0) = 0. The Taylor expansion of S at c= 0
is called thesymplectic invariantof Theorem 2.1. It is denoted by(S)∞.

Remark 3.2. Using equation (6), one can interpretS as aregularised action
integral:

S(c) = A (c)−A (0)+R(clnc−c).

4

Remark 3.3. The formula (6) defines the 1-formτ = τ1dc1 + τ2dc2 indepen-
dently of the choice of the coordinate system(c1,c2). Another (standard) way of
viewing this is the following. First letB be the set of regular leaves ofF , and
π be the projection (which is a Lagrangian fibration)F -π B. The choice of a
particular semi-global momentum mapF := (H1,H2) for the system (near a La-
grangian leafΛc := π

−1(c), for somec∈B) is equivalent to the choice of alocal
chart φ for B nearc: F = φ ◦π.

Then for eachc ∈ B, T∗c B acts naturally onΛc by the time-1 flows of the
vector fields symplectically dual to the pull backs byπ of the 1-forms inT∗c B.
This action extends to a Hamiltonian action in a neighbourhood ofΛc if and only
if we restrict to closed 1-forms onB. (In the local coordinates(c1,c2) of B given
by the choice of a momentum mapF = (H1,H2), the constant 1-formsdc1, dc2
act by the flows ofXH1

, XH2
, respectively).

The stabiliser of this action form a particularly interesting lattice inT∗c B,
which is another representation of the “period lattice” [4]. It is the main point of
the Liouville-Arnold theorem to show that, asc varies, the points of this lattice
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are associated toclosed1-forms, calledperiod 1-forms. (Indeed, in action-angle
coordinates, the period 1-forms have constant coefficients). In our case, the period
lattice is computed using a local chart given by Eliasson’s theorem. First we see
that this lattice has a privileged direction given by theS1-action ofq2. Then we
construct a “minimal” basis of this lattice by choosing the generator of thisS1-
action (ie 2πdc2) together with the smallest transversal vectorτ that has positive
coefficients ondc1 anddc2. This is what we have done in this section. 4

4 Uniqueness

In order to show that the above invariant(S)∞ is indeed symplectic and uniquely
defined by the foliation, we need to prove that it does not depend on any choice
made to define them. A priori,(S)∞ = (S)∞(F ,χ) depends on the foliationF and
on the choice of the chartχ that puts a neighbourhood of thefocus-focuspoint m
into normal form. It follows from the definition that ifϕ is a symplectomorphism
sendingF to F̃ , then(S)∞(F̃ , χ̃) = (S)∞(F , χ̃ ◦ϕ). So(S)∞ is well-defined as
a symplectic invariant ofF if and only if, for any choice of two chartχ andχ

′

putting a neighbourhood ofm into normal form,(S)∞(F ,χ) = (S)∞(F ,χ ′). This
is guaranteed by the following lemma:

Lemma 4.1 If ϕ is a local symplectomorphism of(R4,0) preserving the standard
focus-focusfoliation {q := (q1,q2) = const} near the origin, then there exists a
unique germ of diffeomorphism G: R2→ R2 such that

q◦ϕ = G◦q, (7)

and G is of the form G= (G1,G2), where G2(c1,c2) = ε2c2 and G1(c1,c2)− ε1c1
is flat at the origin, withε j =±1.

Remark 4.1. This uniqueness statement about Eliasson’s normal form does not
appear in [5]. 4
Proof of the lemma. The existence of some uniqueG satisfying (7) is standard
(because the leaves of thefocus-focusfoliation are locally connected around the
origin). What interests us here are the last properties. As before, we use the
complex coordinates(z1,z2) ∈ C2 = R

4, andc = z̄1z2 ∈ C = R
2. Let δ > 0 be

such thatϕ is defined in the boxB = {|z1|6 2δ , |z2|6 2δ}.
Since the flow ofq2 is 2π-periodic, (7) implies that the Hamiltonian vector

field ∂1G2Xq1
+ ∂2G2Xq2

is also 2π-periodic (with 2π as a primitive period).
But onΛ0 the only linear combinations ofXq1

andXq2
that are periodic are the

integer multiples ofXq2
. Hence∂1G2(0) = 0 and∂2G2(0) =±1.
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The flow of q1 on Λ0 is radial: any line segment]0,A[ for someA∈ Λ0 is a
trajectory. Then by (7) it image byϕ must be a trajectory ofG1 ◦q. Sinceϕ is
smooth at the origin, the image of]0,A[ for A∈B close enough to 0 lies in some
proper sector of the planeΠ⊂ Λ0 containingϕ(A) (Π is either{z1 = 0} or {z2 =
0}). But the only linear combinations ofXq1

andXq2
which yield trajectories that

are confined in a proper sector ofΠ are the multiples ofXq1
. Hence∂2G1(0) = 0.

It follows now from the previous paragraph that∂1G1(0) 6= 0 (sinceG is a local
diffeomorphism).

ϕ preserves the critical set ofq; since left composition ofϕ by the symplec-
tomorphism(z1,z2)→ (−z2,z1) leaves (7) unchanged (except for the sign ofG1),
we may assume that each “axis” ({z2 = 0} and{z1 = 0} respectively) is preserved
by ϕ. But then{z2 = 0} is the local unstable manifold for bothq1 andG1(q1,q2),
which says that∂1G1(0)> 0.

Using (2) and (3), it is immediate to check that the joint flow of(q1,q2) taken
at the joint time(− ln |c/δ |,argc) sends the point(c̄,δ ) to the point(δ ,c), and
hence extends to a smooth and single-valued mapΦ from a neighbourhood of
(0,δ ) to a neighbourhood of(δ ,0).

ϕ
−1◦Φ◦ϕ sends a neighbourhood ofϕ

−1(0,δ ) = (0,a) to a neighbourhood
of ϕ

−1(δ ,0) = (b,0) and, because of (7), it is equal – in the complement of the
singular leafΛ0 – to the joint flow ofG◦ q at the joint time(− ln |c/δ |,argc),
which is equal to the joint flow ofq at the joint time

(−∂1G1 ln |c/δ |+ ∂1G2argc,−∂2G1 ln |c/δ |+ ∂2G2argc).

Sinceϕ
−1 ◦Φ ◦ϕ is smooth at the origin, we obtain by restricting the first com-

ponent of this map to the “Poincaré” surface{(c̄,a) with c near 0 inC} that the
map:

c→ exp
(
(1−∂1G1) ln |c|+ ∂1G2argc+ i

(
(∂2G2−1)argc−∂2G1 ln |c|

))
(8)

is single-valued and smooth at the origin. (We have factored out the terms exp(∂ jG1 lnδ ),
j = 1,2, which are obviously smooth.)

The single-valuedness of (8) implies that∂1G2 ≡ 0 and∂2G2 ∈ Z. Hence
∂2G2 =±1.

Now the smoothness of (8) says that the following two functions:

c→ (1−∂1G1) ln |c| and c→−∂2G1 ln |c|

are smooth at the origin, which easily implies that(1−∂1G1) and∂2G1 are flat at
the origin, yielding the result. �

Suppose we define two semi-global invariants(S)∞(F ,χ) and (S)∞(F , χ̃) by
choosing two different chartsχ and χ̃ which put a neighbourhood of thefocus-
focuspoint into normal form. As before, one defines the momentum mapsF and
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F̃ , which are the extensions toF of q◦χ andq◦ χ̃, and computes the correspond-
ing period 1-formsτ andτ̃. Then we can invoke the lemma toϕ = χ̃ ◦ χ

−1, and
the conclusions apply toG = F̃F−1.

Suppose thatε j = 1, j = 1,2, i.e. G is infinitely tangent to the identity. Then
the same type of arguments as above (a logarithm cannot compete against a flat
term) shows that, since the vector fieldsXH j

andX
H̃ j

are infinitely tangent to

each other,τ andτ̃ must differ by a flat term. Actually, since by remark 3.3G∗τ̃
is also a period 1-form associated with the momentum mapF , one hasτ = G∗τ̃.
This implies thatσ(c) = τ(c)+ℜ(lncdc) andσ̃ = (G−1)∗σ differ by a flat form,
hence(S)∞(F ,χ) = (S)∞(F , χ̃).

If ε2 = −1, it suffices to compose with the symplectomorphism(x,ξ ) →
(−x,−ξ ), which sends(q1,q2) to (q1,−q2) and leavesσ invariant (bothσ2 and
dc2 change sign). An analogous remark holds with the symplectomorphism(z1,z2)→
(−z2,z1), which sends(q1,q2) to (−q1,q2) and leavesσ invariant, while changing
the sign ofε1.

5 Injectivity

Let F andF̃ are two singular foliations of simplefocus-focustype on the sym-
plectic manifolds(M,ω) and(M̃, ω̃). Assume that they have the same invariant
(S)∞(F ) = (S)∞(F̃ ) ∈ R[[X,Y]]0. We shall prove here thatF andF̃ are semi-
globally equivalent, ie. there exists a foliation preserving symplectomorphism
between some neighbourhoods of thefocus-focusleaves.

For each of the foliationsF and F̃ , we choose a chart of Eliasson’s type
around thefocus-focuspoint, and thus define the period 1-formsτ andτ̃ on (R2\
{0},0). The hypothesis implies that there is a smooth closed 1-formπ = π1dc1 +
π2dc2 on (R2,0) whose coefficients are flat functions ofc at the origin such that

τ̃ = τ + π.

Lemma 5.1 One can chose symplectic charts of Eliasson’s type at thefocus-focus
points in such a way thatπ = 0, ie:

τ̃ = τ.

Proof . 1. We first prove that there exists a local diffeomorphismG of (R2,0)
isotopic to the identity such that(G−1)∗τ = τ̃. We wish to realiseG asG1 where
Gt is a flow satisfying

G∗t (τ + tπ) = τ.

This amounts to finding the associated vector fieldYt which must satisfy

d(ιYt
(τ + tπ)) =−π.

11



We can writeπ = dP for some smooth functionP which is flat at 0. Assume we
look for a fieldYt of the formYt = ft(c) ∂

∂c1
. We obtain the following equation:

ft(c) =
−P(c)

τ1(c)+ tπ1
=

−P(c)
ln |c|−σ1(c)+ tπ1

.

SinceP is flat at 0, the right-hand-side is indeed a (flat) smooth function depending
smoothly ont, and the result is proved.

2. Notice also thatG is infinitely tangent to the identity, and moreover leaves
the second variablec2 unchanged. Now we show that for any diffeomorphismG
of (R2,0) sharing these properties (which are those of Lemma 4.1) there exists a
symplectomorphismχ near thefocus-focuspointm such that

G(q1,q2)◦χ = (q1,q2).

Here again we seekχ as the time-1 map of the flow of some vector fieldXt . Of
course we shall look now for a Hamiltonian vector fieldXt = X ft

to ensure the
symplecticity ofχt . Then the requirement

χ
∗
t qt = q0,

whereqt = (qt,1,qt,2) def= tG(q1,q2)+(1−t)(q1,q2), leads to the following system

{ ft ,qt,1} = g1
{ ft ,qt,2} = 0,

with (g1,0) = (q1,q2)−G(q1,q2). By hypothesisg1 is a flat function at the origin,
and the fact that{qt,1,qt,2}≡ 0 implies that{g1,qt,2}= 0. Moreover the quadratic
part ofqt is q0, so we know (see [5]) that such a system admits a solutionft .

It remains to put all our remarks together: Point 2) shows that left composition
by χ of the Eliasson chart we have chosen atm is again an admissible chart of
Eliasson’s type, yielding the new momentum mapG(q1,q2). Using theG obtained
at Point 1) and in view of the naturality property (remark 3.3), the new period 1-
form (denoted byτ again) satisfiesτ = τ̃. �

We are now is position to construct the required equivalence. Applying the
lemma we get a local symplectomorphism that allows us to identify some neigh-
bourhoodsU andŨ of thefocus-focuspointsm andm̃, and two momentum maps
F and F̃ (both equal to(q1,q2) inside their respective neighbourhoods of the
focus-focuspoints) which define the same closed 1-formσ on (R2,0). We de-
noteΛc = F−1(c) andΛ̃c = F̃−1(c).

Let U be an open ball strictly contained inU , let Σu⊂ U be a transversal sec-
tion as defined in the proof of Proposition 3.1, and construct in the same way
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Σ̃u for the foliationF̃ (so thatΣu andΣ̃u are identified by the above symplecto-
morphism). ReduceF (andF̃ ) to the neighbourhoods of thefocus-focusleaves
composed of the leaves intersectingΣu (or Σ̃u). We construct our equivalence by
extending the identity outsideU. Let x ∈ Λc \U, and definet(x) ∈]0,τ1(c)[ to
be the smallest time it takes for the pointΣu∩Λc to reach theXH2

-orbit of x.

(Recall thatH2 generates anS1 action.) Now defines(x) ∈ R/2πZ as the remain-
ing time to finally reachx under theXH2

-flow. To thisx we associate the point

x̃ ∈ F̃ obtained from the point̃Σu∩ Λ̃c by letting the joint flow ofF̃ act during
the times(t(x),s(x)). This map — let’s call itΨ — is well defined because of the
equalityτ = τ̃. It is a bijection since the inverse is equally well-defined just by
interchanging the roles ofF andF̃ . BetweenU andŨ , Ψ is a symplectomor-
phism since through Eliasson’s charts, it is just the identity. Concerning now the
symplecticity ofΨ in the complement of the singular points, one can prove it for
c 6= 0 (which is sufficient by continuity) by invoking the Liouville-Arnold theo-
rem, which shows thatΨ is symplectically conjugate to a translation in the fibres.
Then the symplectic property near the singular points implies that this translation
must be symplectic everywhere. A similar argument using the less sophisticated
Darboux-Carathéodory theorem could also do. But the simplest is maybe the fol-
lowing. It is clear from the construction thatΨ is equivariant with respect to the
joint flows of our Hamiltonian dynamics:

∀(t1, t2), Ψ◦ϕt1,t2
= ϕ̃t1,t2

◦Ψ, (9)

whereϕt1,t2
andϕ̃t1,t2

are the joint flows ofF andF̃ at the joint time(t1, t2). Us-
ing (9) together with the fact that̃ϕt1,t2

is symplectic, we see thatϕ
∗
t1,t2

(Ψ∗ω̃) =
Ψ∗ω̃; in other words,Ψ∗ω̃ is invariant under the joint flowϕt1,t2

. Sinceω has the
same property, so hasΨ∗ω̃ −ω. SinceΨ∗ω̃ −ω = 0 nearm, it must vanish as
well on the wholeF .

6 Surjectivity

We prove here that any formal power series(S)∞ ∈ R[[X,Y]]0 is the symplectic
invariant — in the sense of Definition 3.1 — of some Liouville foliation of simple
focus-focustype. More precisely, we construct a foliationF together with a local
chartχ that puts a neighbourhood of thefocus-focuspoint into normal form such
that (using the notation of Section 4)(S)∞ = (S)∞(F ,χ). Another proof of this
result has been proposed by Castano-Bernard [2].

Using the same notations as before, we let(q1,q2) = z̄1z2 be the standard
focus-focusfibrationR4 ' C2→ C ' R2 defined in (1). The joint flow will be
denoted byϕt1,t2

.
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Invoking Borel’s construction, letS∈C∞(R2) be a function vanishing at the
origin and whose Taylor series is(S)∞. We shall denote byS1, S2 the partial
derivatives∂XSand∂YS, respectively.

Let us define two “Poincaré” surfaces inC2 by means of the following em-
beddings of the ballD

ε
= B(0,ε)⊂ C, for someε ∈]0,1[:

Π1(c) = (c̄,1)
Π2(c) = (eS1(c)+iS2(c),ce−S1(c)+iS2(c)).

Notice that for eachc, the pointsΠ j(c), j = 1,2 belong to the (non-compact) La-
grangian submanifoldΛc := {z̄1z2 = c}. Π j(Dε

), j = 1,2 are smooth 2-dimensional
manifolds constructed in such a way that for anyc 6= 0, Π2(c) is the image of
Π1(c) by the joint flow of(q1,q2) at the time(S1(c)− ln |c|,S2(c)+arg(c)).

Let Φ be this diffeomorphism, defined on allΠ j(Dε
) by the embeddings:

Π1(D
ε
) Φ // Π2(D

ε
)

D
ε

Π1

ccGGGGGGGGG Π2

;;wwwwwwwww

Π1(D
ε
) andΠ2(D

ε
) are transversal to the Lagrangian foliation, andΦ can be

extended uniquely to a diffeomorphism between small neighbourhoods ofΠ1(D
ε
)

andΠ2(D
ε
) by requiring that it commute with the joint flow:

Φ
(

ϕt1,t2
(m)
)

= ϕt1,t2
(Φ(m)) . (10)

Lemma 6.1 Φ is a symplectomorphism.

Proof. One can writeΦ in terms ofΠ1 andΠ2 and check the result by explicit
calculation. However, the reason why it works is the following:

Since we already know thatΦ is smooth, it is enough to prove the lemma
outside of the singular LagrangianΛ0. So fixc0 6= 0; we can construct a Darboux-
Carathéodory chart(x,ξ ) ∈R4 in a connected open subset ofΛc0

containing both
Π1(c0) andΠ2(c0). In these coordinates, the momentum map is(ξ1,ξ2) and the
flow is linear:ϕt1,t2

is the translation by(t1, t2) in thex variables.
Through this chart,Φ is by construction a “fibre translation”:

Φ(x,ξ ) = (x+ f (ξ ),ξ ), (11)

where
f (ξ ) = (S1(ξ ),S2(ξ ))+(ln |ξ |,−arg(ξ )). (12)
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Now, it is easy to check that (11) defines a symplectomorphism if and only if
the 1-form

f1(ξ )dξ1 + f2(ξ )dξ2

is closed. In our case the closedness is automatic sinceS1dX+S2dY = dS. �

Let Σ j , j = 1,2 be theS1-orbit of Π j(Dε
). Construct a 4-dimensional cylinderC

by letting theq2-flow takeΣ1 to Σ2, namely:

C :=
⊔

c∈D
ε
\{0}

Cc

whereCc⊂Λc is the 2-dimensional cylinder spanned byϕt1,t2
(Π1(c)), for (t1, t2)∈

[0,S1(c) + ln |c|]× [0,2π]. Finally, letM be the symplectic manifold obtained by

Φ

Cc

z2

z1

U(1)

U(1)0

C

Xq1

Σ1

Σ2

Figure 2: Construction of the symplectic manifoldM

gluing the two endsΣ j of the cylinderC using the symplectomorphismΦ. Since
Φ preserves the momentum map(q1,q2), the latter yields a valid momentum map
F on M. The corresponding Lagrangian foliationF−1(c) is given byCc with its
two ends identified byΦ. In particular all leaves are compact and the foliation is
of simplefocus-focustype.

The S1 action is unchanged, while the transversal period(τ1(c),τ2(c)) on
F−1(c) is by construction the time it takes for the joint flow to reachΠ2(c) from
Π1(c), ie

(τ1(c),τ2(c)) = (S1(c)− ln |c|,S2(c)+arg(c)).

Then by definition 3.1 the symplectic invariant of the foliation is given by the
Taylor expansion of the primitive of the 1-formS1dc1 + S2dc2 vanishing at 0, ie.
(S)∞.
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7 Further remarks

Multiple focus-focus. Assume now that the singular fibreΛ0 carriesk focus-
focuspointsm0, . . . ,mk−1. ThenΛ0 is ak-times pinched torus, and Theorem 2.1
can be generalised. In this case, the regularisation of the action integralS must
take into account all the singular points. In order to do this, one has to consider
k−1 local invariants, which are also formal power series inR[[X,Y]], and which
measure the obstruction to construct a semi-global momentum map that is in Elias-
son normal form simultaneously at two different singular points. Here follows a
sketch of the argument.

Let F be a semi-global momentum map. At each pointmj one has a local
normal formF ◦ϕ j = G j(q1,q2). Because of Lemma 4.1, one can extendq2 to
a periodic Hamiltonian on a whole neighbourhood ofΛ0, and one can always
assume thatϕ j is orientation preserving — that means we fix once and for all the
sign of theε j . If now F if of the form(H1,q2) thenG j takes the formG j(q1,q2) =
(F j(q1,q2),q2). By the implicit function theorem,F j is locally invertible with
respect to the variableq1. Let (F j)−1 be this inverse, and defineGi, j = (F i)−1F j .
Again by Lemma 4.1, the Taylor expansions ofGi, j are invariants of the foliation.

Assume the pointsmi are ordered according to the flow ofH1, with indices
i ∈ Z/kZ. Similarly to the casek = 1, one can define a regularised period 1-form
σ by the following formula:

σ :=
k−1

∑
i=0

(G−1
0 Gi)

∗ (
σ

i,i+1
1 (c)dc1 + σ

i,i+1
2 (c)dc2

)
, (13)

with {
σ

i,i+1
1

(c) = τ
i,i+1
1

(c)+ ℜ(lnc)
σ

i,i+1
2

(c) = τ
i,i+1
2

(c)−ℑ(lnc)
, (14)

where(τ
i,i+1
1

(c),τ i,i+1
2

(c)) are the smallest positive times needed to reachAi+1(c)
from Ai(c) under the flow of(Gi)−1◦F — which is the momentum map(q1,q2)
in the normal form coordinates near pointAi . Here we have chosen a pointAi(c)
in a Poincaré section of each local stable manifold nearmi . Of courseσ

i,i+1
j

(c)
depends heavily on the choice ofAi andAi+1, but the sums appearing in (13) does
not, and the resulting 1-formσ is closed. Notice that the definition ofσ depends
on the choice of a start pointm0. Thus we are here classifying a singular foliation
with a distinguishedfocus-focuspointm0.

Let (S)∞ be the Taylor series of the primitive ofσ vanishing at the origin.
Then(S)∞ and thek−1 ordered invariants(Gi,i+1)∞ are independent and entirely
classify a neighbourhood of the critical fibreΛ0 with distinguished pointm0. The
arguments of the proof are similar to the ones of the casek = 1. An abstract con-
struction of a foliation admitting a given set of invariants is proposed in Figure 4.
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A2

A3

Xq2

A1
XH1

Λc

Λ0

Figure 3: The multi-pinched torus

There the local pictures are described by canonical coordinates respectively given
by (q1,q2), (G1,2(q1,q2),q2), (G1,2(G2,3(q1,q2),q2),q2), etc. and the gluing dif-
feomorphismsΦi,i+1 are constructed as in section 6 using the following functions,
respectively:S0,1 = S1,2 = · · ·= Sk−2,k−1 = 0 andS0,k−1 is a resummation of(S)∞.

z2

z10

Σ1

z2

z10

z2

z10

z2

z10

Σ2

Φ1,2Φ0,1 Φk−2,k−1

Φ0,k−1

Figure 4: multiple gluing

Remark 7.1. We can regard the reduced spaceΛ0/S
1 as a cyclic graphG whose

vertices are thefocus-focuspointsmi , and which is oriented by the flow ofH1. For
each edge[i, i +1] one can define a 1-form

σ
i,i+1 := (G−1

0 Gi)
∗ (

σ
i,i+1
1 dc1 + σ

i,i+1
2 dc2

)
∈Ω1(D)

(for some fixed small discD around the origin inR2). This defines a 1-cocycle on
G with values in the vector spaceΩ1(D). If one varies the pointsA j , this cocycle is

easily seen to change by a coboundary; hence the set of{σ i,i+1} naturally defines
a well-defined cohomology class onG . Be the same argument as in the casek = 1
(ie. essentially Arnold-Liouville’s theorem) this class isclosed, in the sense that
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the cochain{σ i,i+1}, modulo some coboundary, can be chosen to consist only of
closed 1-forms. Hence we end up with a class[σ ] ∈ H1(G ,H1(D)). SinceG is
homeomorphic to a circle,H1(G ,H1(D))' H1(D) and[σ ] is represented by the
de Rham cohomology class of the closed 1-formσ = ∑σ

i,i+1 defined in (13).
Now, the functor that produces Taylor series of 1-forms can be applied to the

coefficients of this cochain, yielding a cocycle with values in formal closed 1-
forms and whose class is represented by the differential of our invariant(S)∞. 4

“Exact” version. If one intends to extend the results to a semiclassical setting,
general symplectomorphism do not suffice: one needs to control the action inte-
grals (in the standard semiclassical pseudo-differential theory, a potentialα for
the symplectic form:dα = ω is part of the data). In view of Remark 3.2, this is
naturally done by including the constant term in the Taylor series ofSas being the
integral

S0 :=
∫

γ0

α,

whereγ0 is the generator ofH1(Λ0).
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