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Abstract

We show the existence of long time averages to turbulent solu-
tions of the Navier-Stokes equations and we determine the equa-
tions satisfied by them, involving a Reynolds stress that is shown
to be dissipative.

1 Introduction

This paper aims to report results that have been exposed during a
talk given at the “International Conference on Nonlinear and Multiscale
Partial Differential Equations: Theory, Numerics and Applications, Fu-
dan University, Shanghai”, China September 16 – September 20, 2013
in honor of Luc Tartar. These results were first obtained in Chacón-
Lewandowski [5].

Turbulent flows are chaotic systems, highly sensitive to small changes
in data [15], which means that any tiny change in body forces, any
external action and/or initial data, might give rise almost instantly to
significant changes in the flow features.

To be more specific, let us consider an experiment which measures
the velocity (or one of its components) of a turbulent flow N times at
a given point. Each measurement is carried out under the same condi-
tions (same initial data, constant temperature, same source). Although
advanced technologies allow measurements to be made to high precision,
the experiment will yield N different results, because in reality infinites-
imal changes occur during each measurement that cannot be controlled.

∗The author is partly supported by ISFMA, Fudan University, China, and by
CNRS, France.
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Moreover, because of the structure of the turbulence, any code using
the Navier Stokes Equations (NSE),{

∂tv + (v · ∇)v − ν∆v +∇p = f ,
∇ · v = 0,

(1.1)

that specify flow motions (Cf. Batchelor [2], Chacón-Lewandowski [5]),
would be very complex and would require too much computational re-
sources in order to run the simulation. In the equations above, v =
(v1, v2, v3) = v(t,x) denotes the eulerian velocity of the fluid, p = p(t,x)
denotes its pressure, (t,x) ∈ IR+×Ω, for some bounded domain Ω ⊂ IR3,
ν > 0 is the kinematic viscosity and f a given external force. Throughout
the paper, we will assume that v satisfies the no slip boundary condition,
i.e. v|Γ = 0, and that v0 = v0(x) = v(0,x) is a given initial data.

A long time ago, Reynolds [14], but also Stokes [17], Boussinesq [3]
and Prandtl [13], have suggested to decompose the flow field as the sum
of a mean field and a fluctuation,

v = v + v′, p = p+ p′. (1.2)

In those works, the means v and p were formally expressed by long time
averages

v(x) = lim
T→∞

1

T

∫ T

0

v(t,x)dt, p(x) = lim
T→∞

1

T

∫ T

0

p(t,x)dt. (1.3)

A few times later, Taylor [20] then Kolmogorov [7] have considered statis-
cal means instead of long-time averages (see also details in [5]).

We focus in this paper on the long-time average (1.3), and in partic-
ular:

i) We show that the long-time average (v, p) is well defined in some
Sobolev spaces for global turbulent solutions of the NSE (1.1), when
the domain Ω is smooth enough, and under appropriate assumptions
on the source term f and the initial data v0.

ii) We show that (v, p) satisfy the steady-state NSE, with an additional
source term of the form −∇ · σ(r), where σ(r) is a Reynolds stress.
Finally, We show that σ(r) is dissipative.

We mention that recently Layton [10], has shown that for smooth solu-
tions of the NSE that satisfy the energy equality, the Reynolds stress is
also dissipative when considering ensemble averages.

The paper is organised as follows. Section 2 is devoted to outline the
functional framework we shall use , to recall the basic Leray-Hopf result
[11, 6] that states the existence of turbulent solutions to the NSE and to
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derive from the energy inequality long time estimates. We then proceed
with the programme set out above in Section 3.

Aknowledgments. I am very grateful to Professor Li Tatsien and the
ISFMA in Fudan University, Shanghai, China, for the hospitality over
the summer 2013.

2 Framework and basic results

2.1 Functional spaces

We assume in this section that Γ is of class C1 for simplicity1 For given
q, p, s.., we set

Lq(Ω) = {w = (w1, w2, w3); wi ∈ Lq(Ω), i = 1, 2, 3}, (2.1)

Ws,p(Ω) = {w = (w1, w2, w3); wi ∈W s,p(Ω), i = 1, 2, 3}. (2.2)

We denote by || · ||q,p,Ω the standard Ws,p(Ω) norm. For any s > 1/2,
we consider the spaces

Hs(Ω) = {w = (w1, w2, w3); wi ∈ Hs(Ω), i = 1, 2, 3} (2.3)

Hs
0(Ω) = {w ∈ Hs(Ω); γ0w = 0 on Γ}. (2.4)

In the definition above, γ0 is the trace operator, which is defined by

∀ϕ ∈ C∞(Ω), γ0ϕ = ϕ|Γ,

that can be extended to Hs(Ω), when s > 1/2, in a continuous operator
with values in the space Hs−1/2(Γ). When no risk of confusion occurs,
we also denote γ0w = w. The space H1

0(Ω) is equipped with its standard
norm

||w||H1
0 (Ω) = ||∇w||0,2,Ω,

which is a norm equivalent to the || · ||1,2,Ω norm, due to the Poincaré’s
inequality. Details about Sobolev spaces can be found in Tartar [19].
We also shall make use of the following spaces,

Vdiv(Ω) = {ϕ = (ϕ1, ϕ2, ϕ3), ϕi ∈ D(Ω), ∇ ·ϕ = 0}, (2.5)

Vdiv(Ω) = {w ∈ H1
0(Ω), ∇ ·w = 0}, (2.6)

L2
div,0(Ω) = {w ∈ L2(Ω), γnw = 0 on Γ, ∇ ·w = 0}. (2.7)

In the definition above, γn is the normal trace operator, which is defined
by

∀ϕ ∈ C∞(Ω)3, γnϕ = ϕ · n|Γ,
1many results reported in this section also hold for Lipchitz domains, see for

instance Tartar [18].
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the vector n being the outward-pointing unit normal vector to Γ. We
know that this operator can be extended to L2

div(Ω), in a continuous
operator with values in the space H−1/2(Γ) (see in [8]), where

L2
div(Ω) = {w ∈ L2(Ω); ∇ ·w ∈ L2(Ω)}.

2.2 Variational formulation of the NSE

For simplicity, we denote by (u, v) the duality pairing 〈Lp′(Ω), Lp(Ω)〉,

(u, v)Ω =

∫
Ω

u(x)v(x)dx.

and we define the diffusion and transport operators by

a(v,w) = ν(∇v,∇w)Ω, b(z;v,w) = ((z · ∇)v,w)Ω. (2.8)

We know that these multilinear forms are continuous over H1(Ω) (Cf.
[5]). Moreover, we also know that ∀ z,v ∈ Vdiv(Ω) and ∀ p ∈ L2(Ω),

b(z;v,v) = 0, 〈∇p,v〉 = −(p,∇ · v) = 0. (2.9)

We assume from now that

v0 ∈ L2
div,0(Ω), f ∈ L2

loc(IR+,Vdiv(Ω)′). (2.10)

Following Leray [11] and Hopf [6], we will say that v is a turbulent
solution to the NSE (1.1) if and only if ∀T > 0,{

v ∈ L2([0, T ],Vdiv(Ω)) ∩ Cw([0, T ],L2
div,0(Ω)),

∂tv ∈ L4/3([0, T ],Vdiv(Ω)′),
(2.11)

and
lim
t→0
||v(t, ·)− v0(·)||0,2,Ω = 0, (2.12)

and ∀w ∈ Vdiv(Ω),

d

dt
(v,w)Ω + b(z;v,w) + a(v,w) = 〈f ,w〉 in D′([0, T ]). (2.13)

Remark 2.1. According to the definition of the space Lp([0, T ], E) through
the Bochner integral, where E is any given Banach space (Cf. Sobolev
[16]), formulation (2.12) can be replaced by: for all w ∈ L4([0, T ],Vdiv(Ω)),∫ T

0

〈∂tv,w〉dt+

∫ T

0

∫
Ω

((v · ∇)v)(t,x) ·w(t,x) dxdt

+ν

∫ T

0

∫
Ω

∇v(t,x) : ∇w(t,x) dxdt =

∫ T

0

〈f ,w〉dt.

(2.14)
See in [5] for instance.



Long Time average turbulence model 5

The following existence result is standard (see [6, 11]).

Theorem 2.1. The NSE (1.1) have a turbulent solution which satisfies
the energy inequality at every t ∈ [0, T ],

d

2dt
||v(t, ·)||20,2,Ω + ν||∇v(t, ·)||20,2,Ω ≤ 〈f ,v〉 in D′([0, T ]). (2.15)

The uniqueness of this solution is still an open problem at the time
of writing. Similarly, we do not know if the energy inequality (2.15) is
an equality. The energy inequality (2.15) also yields

1

2
||v(t, ·)||20,2,Ω + ν

∫ t

0

||∇v||20,2,Ω ≤
1

2
||v0||20,2,Ω +

∫ t

0

〈f ,v〉, (2.16)

for all t > 0. The pressure is recovered from the De Rham Theorem,
leading to the following statement (see for instance in [9, 12, 18, 21]):

Lemma 2.1. There exists p ∈ D′([0, T ], L2
0(Ω)), such that (v, p) is a

solution of the NSE (1.1) in the sense of distributions.

In the statement above,

L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω

q(x) dx = 0}.

The pressure p is considered as a constraint in this kind of formula-
tion. Therefore, p is called a Lagrange multiplier. It also can be proved
that p ∈ L5/4(Q), Q = [0, T ] × Ω (see for instance in Caffarelli-Kohn-
Nirenberg [4]).

2.3 Long time estimate

From now and until the end of the report, we assume that the source
term f ∈ H−1(Ω) ⊂ Vdiv(Ω)′ does not depend on t, and we set F =
||f ||−1,2,Ω.

The real number µ denotes the best constant in the Poincaré’s in-
equality, written as

∀v ∈ H1
0 (Ω) C||v||0,2,Ω ≤ ||∇v||0,2,Ω.

The energy inequality (2.16) yields ||v(t, ·)||0,2,Ω is bounded uniformly
in t. To be more specific, we prove the following.

Proposition 2.1. Let v be any turbulent solution to the NSE. Then we
have

||v(t, ·)||20,2,Ω ≤ ||v0||20,2,Ω e−νµt +
F 2

ν2µ
(1− e−νµt), (2.17)

for all t > 0.
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Proof. Set:

W (t) = ||v(t, ·)||20,2,Ω, W (0) = ||v0||20,2,Ω. (2.18)

Energy inequality (2.15) yields

1

2
W ′(t) + ν

∫
Ω

|∇v|2 ≤ 〈f ,v〉 ≤ F 2

2ν
+
ν

2

∫
Ω

|∇v|2. (2.19)

We apply Poincaré’s inequality in the second term of the l.h.s of (2.19),
leading to

W ′(t) + νµW (t) ≤ F 2

ν
. (2.20)

Therefore, W is a subsolution of the ordinary differential equationλ′(t) + νµλ(t) =
F 2

ν
,

λ(0) = W (0),
(2.21)

the solution of which is

λ(t) = W (0)e−νµt +
F 2

ν2µ
(1− e−νµt), (2.22)

hence inequality (2.17).

As a consequence, we deduce that the turbulent solution is well de-
fined all over IR+, hence can be extended to L∞(IR+,L

2
div(Ω)) as a global

time solution. In particular, we have

sup
t≥0
||v(t, ·)||20,2,Ω ≤ max

t≥0
K(t) = E∞, (2.23)

where

K(t) = ||v0||20,2,Ω e−νµt +
F 2

ν2µ
(1− e−νµt). (2.24)

We also deduce from (2.19) combined with (2.23), the following inequal-
ity:

∀ t > 0,
1

t

∫ ∫
Qt

|∇v(s,x)|2dxds ≤ F 2

ν2
+
||v0||20,2,Ω

νt
. (2.25)

Moreover, we infer from standard interpolation inequalites (Cf. [5]),
∀ t > 0,

v ∈ L10/3(Qt), ||v||0,10/3,Qt
≤ C1E

1/5
∞ ||∇v||

3/5
0,2,Qt

, (2.26)

leading to

(v · ∇)v ∈ L5/4(Qt), ||(v · ∇)v||0,5/4,Qt
≤ C1E

1/5
∞ ||∇v||

8/5
0,2,Qt

, (2.27)
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3 Main results

3.1 Long time average operator

We start with the study of the mean operator Mt over [0, t], for a given
fixed time t > 0, expressed by

Mt(ψ) =
1

t

∫ t

0

ψ(s,x) ds, (3.1)

ψ = ψ(t,x) being any given field.

Lemma 3.1. Let t > 0, Qt = [0, t] × Ω. Assume ψ ∈ Lp(Qt). Then
Mt(ψ) ∈ Lp(Ω) and one has

||Mt(ψ)||0,p,Ω ≤
1

t1/p
||ψ||0,p,Qt

. (3.2)

Proof. By the Hölder inequality, we have∣∣∣∣1t
∫ t

0

ψ(s,x) ds

∣∣∣∣ ≤ 1

t

∫ t

0

|ψ(s,x)|p ds (3.3)

Thus (3.2) follows by Fubini’s Theorem.

We study the effect of Mt on (v, p), in defining

Vt(x) = Mt(v)(x), Pt(x) = Mt(p)(x). (3.4)

We deduce from the NSE, that (Vt, Pt) is solution of the following Stokes
problem, at least in the sense of distributions,−ν∆Vt +∇Pt = −Mt((v · ∇)v) + f + εt in Q,

∇ ·Vt = 0 in Q,
Vt = 0 on Γ.

(3.5)

In system (3.5),

εt(x) =
v0(x)− v(t,x)

t
, (3.6)

which goes to zero in L2(Ω) when t→ +∞, according to (2.23).

3.2 Existence of velocity-pressure long time averages

In addition to the previous assumptions, we assume now that the domain
Ω is of class C9/4,1, f ∈ L5/4(Ω) ∩H−1(Ω) does not depend on t, v0 ∈
L2
div,0(Ω).

Theorem 3.1. There exists:
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i) a sequence (tn)n∈IN that goes to +∞ when n→ +∞,

ii) (v, p) ∈W2,5/4(Ω)×W1,5/4(Ω)/IR,

iii) F ∈ L5/4(Ω),

such that (Vtn , Ptn)n∈IN converges to (v, p), weakly in W2,5/4(Ω) ×
W1,5/4(Ω)/IR, that satisfies. (v · ∇)v − ν∆v +∇p = −F + f in Ω,

∇ · v = 0 in Ω,
v = 0 on Γ,

(3.7)

in the sense of distributions.

Proof. The proof is divided in 3 steps. We first find estimates and extract
convergent subsequences. We then take the limit in the equations, firstly
in the conservation equation, then in the momentum equation.

Step 1. We first show that the nonlinear term −Mt((v · ∇)v) is
bounded in L5/4(Ω). By inequality (3.2) we have

||Mt((v · ∇)v)||0,5/4,Ω ≤
1

t4/5
||(v · ∇)v||0,5/4,Qt

, (3.8)

where Qt = [0, t]×Ω. Combining this inequality with (2.27) and (2.23),
we find

||Mt((v · ∇)v)||5/40,5/4,Ω ≤ C
5/4
1 E1/4

∞

(
1

t

∫ t

0

∫
Ω

|∇v(s,x)|2dxds
)
, (3.9)

hence (Mt((v · ∇)v))t>0 is bounded in L5/4(Ω), uniformly in t due to
(2.25). Since Ω is of class C1+5/4,1 = C9/4,1. Since f ∈ L5/4(Ω) and

(Mt((v · ∇)v))t>0 and (εt)t>0 are bounded in L5/4(Ω), (3.10)

the results in [1] apply: there exists a unique solution (Vt, Pt) to system
(3.5) that satisfies

||Vt||2,5/4,Ω + ||Pt||W 1,5/4(Ω)/IR ≤
||Mt((v · ∇)v)||0,5/4,Ω + ||f ||0,5/4,Ω + ||εt||0,5/4,Ω.

(3.11)

Because of uniqueness, this solution (Vt, Pt) is indeed that defined by
(3.4). Statement (3.10) combined with estimate (3.11), ensures that{

(Vt)t>0 is bounded in W2,5/4(Ω),

(Pt)t>0 is bounded in W 1,5/4(Ω)/IR.
(3.12)

Therefore, there exist

v ∈W2,5/4(Ω), p ∈W 1,5/4(Ω)/IR, B ∈ L5/4(Ω),
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a sequence (tn)n∈IN which goes to ∞ as n→∞, such that

lim
n→∞

Vtn = v weakly in W2,5/4(Ω), (3.13)

lim
n→∞

Ptn = p weakly in W 1,5/4(Ω)/IR, (3.14)

lim
n→∞

Mtn((v · ∇)v) = B weakly in L5/4(Ω)9. (3.15)

Moreover, W 2,5/4(Ω) ↪→W 1,15/7(Ω), the injection being compact. Then,

(Vtn)n∈IN converges to v strongly in W1,15/7(Ω). (3.16)

Step 2. We check that ∇ · v = 0 in an appropriate Lebesgue space.
To do so, we first prove that ∇ · Vt = 0 in D′(QT ) regardless of T > 0.
For any given ϕ ∈ D(QT ), we have

〈∇ ·Vt, ϕ〉 =

∫ ∫
Q

∇ ·
(

1

t

∫ t

0

v(s,x)ds

)
ϕ(t,x) dxdt

= −
∫ ∫

Q

(∫ t

0

v(s,x)ds

)
· 1

t
∇ϕ(t,x) dxdt

=

∫ ∫
Q

∫ t

0

v(t,x) ·
(∫ t

0

1

s
∇ϕ(s,x)ds

)
dxdt,

(3.17)

which holds because ϕ ∈ D(QT ). Moreover, since ϕ ∈ D(QT ), ∀ t ∈
[0, T ], ∫ t

0

1

s
∇ϕ(s,x)ds = ∇

∫ t

0

ϕ(s,x)

s
ds = ∇ψ(t,x). (3.18)

Therefore, we deduce from (3.17), (3.18) that

〈∇ ·Vt, ϕ〉 = 〈v,∇ψ〉 = −〈∇ · v, ψ〉 = 0, (3.19)

and because ∇ · v = 0 that 〈∇ ·Vt, ϕ〉 = 0. Then,

∀T > 0, ∇ ·Vt = 0 in D′(QT ). (3.20)

Furthermore, by setting V0 = v0, we get Vt ∈ C([0, T ],L2(Ω)), so that
(3.20) becomes

∀ t ∈ [0, T ], ∇ ·Vt = 0 in H−1(Ω),

and in reality in L15/7(Ω) by (3.16), and regardless of T > 0, which
allows us to take the limit as tn →∞, leading to ∇ · v = 0 in L15/7(Ω).

Step 3. We now take the limit in the momentum equation. Let
ϕ ∈ D(Ω). Since ϕ,∇ϕ,∆ϕ ∈ L5(Ω), we deduce from (3.13), (3.14),
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(3.15) and the convergence to zero of (εtn)n∈IN in all Lp(Ω), p ≤ 2, on
the one hand

lim
n→∞

〈Mtn((v·∇)v),ϕ〉 = lim
n→∞

(Mtn((v·∇)v),ϕ)Ω = (B,ϕ)Ω,= 〈B,ϕ〉,
(3.21)

and on the other hand

lim
n→∞

〈εtn ,ϕ〉 = lim
n→∞

(εtn ,ϕ)Ω = 0,

lim
n→∞

〈−∆Vtn ,ϕ〉 = lim
n→∞

(Vtn ,−∆ϕ)Ω = (v,−∆ϕ)Ω = (−∆v,ϕ)Ω,

lim
n→∞

〈∇Ptn ,ϕ〉 = − lim
n→∞

(Ptn ,∇ ·ϕ)Ω = −(p,∇ ·ϕ)Ω = 〈∇p,ϕ〉,

which shows by (3.5) that (v, p) satisfies in D′(Ω),−ν∆v +∇p = −B + f in Ω,
∇ · v = 0 in Ω,

v = 0 on Γ.
(3.22)

Let F denote the tensor defined by

F = B− (v · ∇)v = B−∇ · (v ⊗ v). (3.23)

As W 2,5/4(Ω) ↪→ L15/2(Ω) and W 2,5/4(Ω) ↪→W 1,15/7(Ω), we get

∇v ∈ L15/7(Ω)3 and v ∈ L15/2(Ω) then (v·∇)v ∈ L15/9(Ω) ↪→ L5/4(Ω),

we deduce that F ∈ L5/4(Ω). Hence (v, p) satisfies (3.7) in the sense of
distributions.

Corollary 3.1. The long time velocity v is a solution to the variational
problem:

For all w ∈W1,5
div(Ω),

b(v;v,w) + a(v,w) = −(F,w)Ω + (f ,w)Ω, (3.24)

the operators a and b being defined by (2.8).

Remark 3.1. The proof of Theorem 3.1 contains the proof of the general
identity, ∀ p ≥ 1, ∀T > 0, ∀ t ∈ [0, T ],

∀ϕ ∈ L1([0, T ],W1,p(Ω)), ∇ ·Mt(ϕ) = Mt(∇ ·ϕ). (3.25)

Furthermore, the same reasonning also yields,

∇Mt(ϕ) = Mt(∇ϕ), (3.26)

which is called the Reynolds rule.
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3.3 Reynolds decomposition

We aim to identify the source term F that appears in system (3.7), to
link the results of Theorem 3.1 with the usual approach to modelling tur-
bulence, by introducing the Reynolds decomposition and the Reynolds
stress.

Let v be a given turbulent solution to the NSE, p its associated
pressure. We respect the conditions for the application of the Theorem
3.1, which ensures that we can split (v, p)

v(t,x) = v(x) + v′(t,x), (3.27)

p(t,x) = p(x) + p′(t,x), (3.28)

where (v′, p′) stands for the fluctuations around the mean field (v, p).
We call the decomposition (3.27)-(3.28) a Reynolds decomposition.

To identify the source term F in system (3.7), we start from the
system (3.5) and notice that, according to the Reynolds rule (3.26),

Mt((v · ∇)v) = Mt(∇ · (v ⊗ v)) = ∇ ·Mt(v ⊗ v).

We shall find out from the Reynolds decomposition, that it suffises to
study the convergence of:

Mt(v
′ ⊗ v′)(x) =

1

t

∫ t

0

v′(s,x)⊗ v′(s,x) ds. (3.29)

as t→∞, which yields what we call a Reynolds stress, denoted by σ(r).

Remark 3.2. The definition of (v, p), and hence the Reynolds decompo-
sition (3.27)-(3.28) and the Reynolds stress that we shall find, depend on
the sequence (tn)n∈IN that appears 3.1, and we do not know if the limit
of (Vt, Pt)t>0 is solely defined when t→∞. As a result, we do not know
if F is solely defined too, and even if it were, it is not known if the system
(3.7) has a unique solution. All of this implies that without any further
information, this analysis will not provide means and decompostion that
are intrinsically defined.

3.4 Reynolds Stress

Theorem 3.2. Let (tn)n∈IN be as in Theorem 3.1 and F as in equations
(3.7). Then there exists σ(r) ∈ L5/3(Ω)3 such that:

i) We can extract from (Mtn(v′ ⊗ v′))n∈IN a subsequence, that we
denote by (Mtn(v′ ⊗ v′))n∈IN, which converges to σ(r) weakly in
L5/3(Ω),
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ii) F = ∇ · σ(r) in D′(Ω),

iii) the following energy balance holds,

ν||∇v||20,2,Ω + 〈F,v〉 = (f ,v)Ω, (3.30)

iv) F is dissipative, in the sense

〈F,v〉 ≥ 0. (3.31)

Proof. Remember that Mt is defined by (3.1). We derive from (3.27)
and (3.28) that

Vtn = v +Mtn(v′), Ptn = p+Mtn(p′). (3.32)

Therefore we deduce

v′ = lim
n→∞

Mtn(v′) = 0, p′ = lim
n→∞

Mtn(p′) = 0, (3.33)

the limit being weak in W2,5/4(Ω) and W1,5/4(Ω)/IR respectively. In ad-
dition (tn)n∈IN can be choosen such that the convergence of (Mtn(v′))n∈IN

toward 0 is strong in L15/2(Ω) because the injection

W 2,5/4(Ω) ↪→ L15/2(Ω)

is compact. We now demonstrate each item of the above statement.

Proof of i). By using decomposition (3.27), we write

v ⊗ v = v ⊗ v + v′ ⊗ v + v ⊗ v′ + v′ ⊗ v′, (3.34)

leading to

Mt(v ⊗ v) = v ⊗ v +Mt(v
′)⊗ v + v ⊗Mt(v

′) +Mt(v
′ ⊗ v′), (3.35)

for each t > 0. As both v and Mt(v
′) ∈ L15/2(Ω), we obtain from the

Hölder inequality,

Mt(v
′)⊗ v and v ⊗Mt(v

′) ∈ L15/4(Ω)9 ↪→ L5/3(Ω)9.

In particular, (3.33) yields

lim
n→∞

Mtn(v′)⊗ v = lim
n→∞

v ⊗Mtn(v′) = 0, (3.36)

strongly in L5/3(Ω)9. Moreover, we infer from (3.2), combined with
(2.26) and (2.23),

||Mt(v ⊗ v)||0,5/3,Ω ≤ C
10/3
1 E2/3

∞

(
1

t

∫ t

0

∫
Ω

|∇v|2dxds
)
. (3.37)
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We are led to rewrite the formula (3.35) in the form of the asymptotic
expansion, that holds in L5/3(Ω)9,

Mtn(v ⊗ v) = v ⊗ v +Mtn(v′ ⊗ v′) + o(1), (3.38)

We deduce from the estimate (3.37) that (Mtn(v ⊗ v))n∈IN is bounded
in L5/3(Ω). Therefore, we can extract a subsequence (written likewise),
which converges weakly in L5/3(Ω) to some ϑ ∈ L5/3(Ω)9. The expansion
(3.38) shows that the sequence (Mtn(v′ ⊗ v′))n∈IN weakly converges to
σ(r) ∈ L5/3(Ω)9, linked to ϑ by the relation

σ(r) = ϑ− v ⊗ v, (3.39)

which proves item i).

Proof of ii). According to (3.15), and the Reynolds rule (3.26), we
note that ∇ · ϑ = B ∈ L5/4(Ω)9, therefore (3.23) combined with (3.39)
yields F = ∇ · σ(r),

Proof of iii). As already quoted, v ∈ W2,5/4(Ω) ↪→ W1,15/7(Ω) ↪→
H1(Ω). Moreover, since v = 0 on Γ, and ∇ · v = 0, then v ∈ Vdiv(Ω).
Consequently, we can take v as test in formulation (2.13), which yields,

d

dt
(v,v)Ω + b(v;v,v) + a(v,v) = (f ,v)Ω. (3.40)

We integrate (3.40) over [0, t] and divide the result by t, leading to

1

t
(v(t, ·)− v0(·),v(·))Ω + (Mt((v · ∇)v),v)Ω + ν(∇Vt,∇v)Ω = (f ,v)Ω.

(3.41)
We take the limit of each term in (3.41). Firstly

1

t
|(v(t, ·)− v0(·),v(·))Ω| ≤

1

t
||v(t, ·)− v0(·)||0,2,Ω||v||0,2,Ω, (3.42)

which goes to zero when t→∞, due to the L2 uniform bound (2.23). We
also have v ∈ L15/2(Ω), and Mtn((v · ∇)v) converges to B in L5/4(Ω)9.
Fortunately, we observe that 2/15 + 4/5 = 14/15 < 1, thus, according to
(3.23),

lim
n→∞

(Mtn((v·∇)v),v)Ω = (B,v)Ω = (F,v)Ω+((v·∇)v,v)Ω = (F,v)Ω,

(3.43)
since it is easily verified from ∇ · v = 0, that ((v · ∇)v,v)Ω = 0.

Finally, we deduce from Theorem 3.1 and Sobolev embeddings, that
(∇Vtn)n∈IN converges strongly to ∇v in Lq(Ω) for all q < 15/2, in
particular for q = 2, leading to

lim
n→∞

(∇Vtn ,∇v)Ω = (∇v,∇v)Ω = ||∇v||20,2,Ω, (3.44)
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hence the energy balance (3.30) follows from (3.41), (3.42), (3.43) and
(3.44).

Proof of iv). We start from the energy inequality (2.16), that we
divide by tn, and we let n go to infinity. Using again the strong con-
vergence of (∇Vtn)n∈IN to ∇v in L2(Ω) and the L2 uniform bound as
above, we obtain

ν||∇v||0,2,Ω ≤ (f ,v)Ω, (3.45)

which combined with (3.30) yields (3.31) and concludes the proof.

In summary, (v, p) ∈W2,5/4(Ω)×W1,5/4(Ω)/IR satisfies (v · ∇)v − ν∆v +∇p = −∇ · σ(r) + f in Ω,
∇ · v = 0 in Ω,

v = 0 on Γ.
(3.46)

in the sense of distributions, where in addition (∇ · σ(r),v)Ω ≥ 0.
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