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Solutions to the NSE

1) Incompressible 3D Navier-Stokes Equations (NSE)

Q = [0,T ]× Ω or Q = [0,∞[×Ω, Ω ⊂ IR3, Γ = ∂Ω,

with the no slip boundary condition and v0 as initial data:
∂tv + (v · ∇) v −∇ · (2νDv) +∇p = f in Q, (i)

∇ · v = 0 in Q, (ii)
v = 0 on Γ, (iii)
v = v0 at t = 0, (iv)

where ν > 0 is the kinematic viscosity, f is any external force,

Dv =
1

2
(∇v +∇vt), ((v · ∇) v)i = vj

∂vi
∂xj

, ∇ · v =
∂vi
∂xi

.

Remark

∇ · v = 0⇒ (v · ∇) v = ∇ · (v ⊗ v), v ⊗ v = (vivj)1≤i ,j≤3.
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Solutions to the 3D NSE

2) Two types of solutions to the 3D NSE

1 Strong solutions over a small time interval [0,Tmax [ ”à la”
Fujita-Kato,

2 Weak solutions (also turbulent), global in time, ”à la”
Leray-Hopf.

Strong solutions are C 1,α over [0,Tmax[×Ω for smooth data,

Tmax = Tmax(||v0||, ||f||, ν),

the corresponding solution is unique, yielding the writing

v = v(t, x, v0), p = p(t, x, v0).

Remark

Strong solutions are defined over [0,∞[ when v0 and/or ||f|| are
“small enough”, ν is ”large enough”, which means that the flow is
rather laminar.
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Solutions to the 3D NSE

Weak solutions are defined through an appropriate variational
formulation set in the sequence of function spaces

{v ∈ H1
0 (Ω)3,∇·v = 0} ↪→ V = {v ∈ L2(Ω)3, v ·n|Γ = 0,∇·v = 0}

such that the trajectory

v = v(t) ∈ V

is weakly continuous from [0,T ]→ V, T ∈]0,∞] (∀η ∈ V,
t → 〈v(t),η〉 is a continuous function of t, where 〈·, ·〉 denotes the
scalar product in V).

Remark

For v0 ∈ V and f ∈ L2(Ω)3, there exists a global weak solution
v = v(t), t ∈ IR+. Because of lack of uniqueness result, we can’t
write

v = v(t, x, v0).
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Probabilistic framework

1) Long Time Average

Let B(IR+) denotes the Borel σ-algebra on IR+, λ the Lebesgue
measure, and let µ denotes the probability measure

∀A ∈ B(IR+), µ(A) = lim
t→∞

1

t
λ(A ∩ [0, t]),

Let v ∈ L1(IR+ → V;µ),

E (v) = v =

∫
IR+

v(t)dµ(t) = lim
t→∞

1

t

∫ t

0
v(t)dt.

Let v be a Leray-Hopf solution to the NSE. It is not known wether
for a given x ∈ Ω, v(t, x) ∈ L1(IR+ → V;µ). However, it can be
proved that in some sense when f is steady 1,

E (v) = v = v(x) ∈W 2,5/4(Ω)3

1Chacon-Lewandowski (Springer 2014), Lewandowski (Chin.An.Maths,
2015)
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Probabilistic framework

2) Ensemble Average

The source term f and the viscosity ν are fixed. Let K ⊂ V be a
compact,

TK = inf
v0∈K

Tmax(||v0||, ||f||, ν) > 0, Q = [0,TK]× Ω

Let {v(1)
0 , · · · , v(n)

0 , · · · } be a countable dense subset of K,

vn = vn(t, x) =
1

n

n∑
i=1

v(t, x, v
(i)
0 ) = Eµn(v(t, x, ·)),

where µn is the probability measure over K:

µn =
1

n

n∑
i=1

δ
v

(i)
0

.
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Probabilistic framework

Up to a subsequence

µn → µ weakly in the sense of the measures, ||µ|| = 1.

so that, ∀ (t, x) ∈ Q,

v(t, x) = Eµ(v(t, x, ·)) =

∫
K
v(t, x, v0)dµ(v0) = lim

n→∞
vn(t, x).

p(t, x) = Eµ(p(t, x, ·)) =

∫
K
p(t, x, v0)dµ(v0)

v(0, x) = v0(x) =

∫
K
v0(x)dµ(v0).

Remark

It is not known if the probability measure µ is unique or not
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Reynolds Stress

1) Reynolds decomposition We can decompose (v, p) as follows:

v = v + v′, p = p + p′,

which is the Reynolds decomposition, v′ and p′ are the
fluctuations. Either for long time or ensemble averages:

∂tv(t, x, v0) = ∂tv(t, x), (1)

∇v(t, x, v0) = ∇v(t, x), (2)

∇p(t, x, v0) = ∇p(t, x), (3)

called the Reynods rules. From v = v and p = p, one gets:

Lemma

∀ (t, x) ∈ Q, v′(t, x, v0) = 0, p′(t, x, v0) = 0.
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Reynolds Stress

2) Averaged NSE

Note that Eµ(f) = fEµ(1) = f. By the Reynolds rules and the
previous lemma:


∂tv + (v · ∇) v − ν∆v +∇p = −∇ · σ(r) + f in Q,

∇ · v = 0 in Q,
v = 0 on Γ,
v = v0 at t = 0,

where
σ(r) = v′ ⊗ v′

is the Reynolds stress.
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Standard correlation tensors

Standard correlation tensor Let M1, . . . ,Mn ∈ Q, Mk = (tk , xk),

IBn = IBn(M1, . . . ,Mn) = (Bi1...in(M1, . . . ,Mn))1≤i1...in≤3

at these points is defined by

Bi1...in(M1, . . . ,Mn) =
n∏

k=1

vik (tk , xk , v0) =∫
K

(
n∏

k=1

vik (tk , xk , v0)

)
dµ(v0) = Eµ

(
n∏

k=1

vik (tk , xk , v0)

)
,

where v = (v1, v2, v3).
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Discussion about Homogeneity

Extension of the test family

1 field family:

G =


v1, v2, v3, p, ∂jvi (1 ≤ i , j ≤ 3)}, ∂tvi (1 ≤ i ≤ 3),

∂ip (1 ≤ i ≤ 3), ∂2
ijvk (1 ≤ i , j , k ≤ 3)

 ,

2 fluctuations field family:

H =


v ′1, v

′
2, v
′
3, p
′, ∂jv

′
i (1 ≤ i , j ≤ 3)}, ∂tv ′i (1 ≤ i ≤ 3),

∂ip
′ (1 ≤ i ≤ 3), ∂2

ijv
′
k (1 ≤ i , j , k ≤ 3)

 ,

each element of
F = G ∪ H

is Hölder continuous with respect to (t, x) ∈ Q, and continuous
with respect to v0 ∈ K.
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Discussion about Homogeneity

Extension of the test family
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
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 ,
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is Hölder continuous with respect to (t, x) ∈ Q, and continuous
with respect to v0 ∈ K.

Roger LEWANDOWSKI The Kolmogorov Law of turbulence



Discussion about Homogeneity

Let D = I × ω ⊂ Q open and connected subset, such that
I ⊂]0,TK[ and ω ⊂ Ω̊.

Aim To introduce different concepts of homogeneity in D,
reflected in the local invariance under spatial translations of the
correlation tensors based on the families G and/or F = G ∪ H,
which is essential in the derivation of models such as k − E .

Let M = (t, x) ∈ D, and denote

(τt , rx) = sup{(t, r) / ]t − τ, t + τ [×B(x, r) ⊂ D}.

For simplicity, we also denote

(t + τ, x + r) = M + (τ, r), (t, x + r) = M + r.
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Discussion about Homogeneity

Definition

We say that the flow is 1) homogeneous (standard definition),
2) strongly homogeneous (extended definition, suitable for k − E )
in D, if ∀ n ∈ IN,

1) ∀M1, . . . ,Mn ∈ D, ∀ψ1, . . . , ψn ∈ G, ∀ r ∈ IR3

2) ∀M1, . . . ,Mn ∈ D, ∀ψ1, . . . , ψn ∈ F , ∀ r ∈ IR3

such that |r| ≤ inf
1≤i≤n

rxi , we have

B(ψ1, . . . , ψn)(M1 + r, . . . ,Mn + r) = B(ψ1, . . . , ψn)(M1, . . . ,Mn),

where

B(ψ1, . . . , ψn)(M1, . . . ,Mn) = ψ1(M1) · · ·ψn(Mn),
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Discussion about Homogeneity

Lemma

Assume that the flow is homogeneous (resp. strongly hom.). Let

ψ1, . . . , ψn ∈ G (resp ∈ F), M1, . . . ,Mn ∈ D, Mi = (ti , ri ),

such that
∀ i = 1, · · · , n, ti = t.

Let ri denotes the vector such that Mi = M1 + ri−1 (i ≥ 2). Then,
B(ψ1, . . . , ψn)(M1, . . . ,Mn) only depends on t and r1, · · · , rn−1.
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Discussion about Homogeneity

Theorem

Assume that f satisfies the compatibility condition ∇f = 0 in D,
and the flow is strongly homogeneous in D. Then

1 ∀ψ ∈ F , ∇ψ = 0 in D,

2 ∇σ(r) = 0 in D,

3 and we have ∀ t ∈ I ,

v = v(t) = v(t0) +

∫ t

t0

f(s) ds in D,

by noting t0 = inf I .
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Discussion about Homogeneity

Definition

We say that a flow is mildly homogneous in D = I × ω, if
∀ψ,ϕ ∈ H (fluctuations family), we have

∀M = (t, x) ∈ D, ψ(t, x)∂iϕ(t, x) = −∂iψ(t, x)ϕ(t, x).

This definition is motivated by:

Lemma

Any strongly homogeneous flow is mildly homogeneous.
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Equations for the TKE and the turbulent dissipation

The turbulent kinetic energy k (TKE) and the turbulent
dissipation E are defined by:

k =
1

2
trσ(r) =

1

2
|v′|2, E = 2ν|Dv′|2.

Question: What equation can we find out for k and E ?

Roger LEWANDOWSKI The Kolmogorov Law of turbulence



Equations for the TKE and the turbulent dissipation

The turbulent kinetic energy k (TKE) and the turbulent
dissipation E are defined by:

k =
1

2
trσ(r) =

1

2
|v′|2, E = 2ν|Dv′|2.

Question: What equation can we find out for k and E ?

Roger LEWANDOWSKI The Kolmogorov Law of turbulence



Equations for the TKE and the turbulent dissipation

Theorem

Assume that the flow is mildly homogeneous in D

1 The TKE k satisfies in D:

∂tk + v · ∇k +∇ · e ′v′ = −σ(r) : ∇v − E

2 The turbulent dissipation E satisfies in D:

∂tE + v · ∇E +∇ · νh′v′ = 2ν(ω′ ⊗ ω′ : ∇v + (ω′ ⊗ ω′)′ : ∇v′)
−2ν2|∇ω′|2,

where

e = 1
2 |v
′|2, decomposed as e = e + e ′ = k + e ′,

ω = ∇× v, decomposed as ω = ω + ω′,

h = |ω′|2, decomposed as h = h + h′.
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Discussion about isotropy

1) Basics

Throughout what follows, we assume that the flow is homogeneous
(standard definition), and for simplicity stationnary (“homogeneity
in time”). Let Bn denotes all correlation tensors of the form:

IBn = IBn(M1, . . . ,Mn) = (Bi1...in(M1, . . . ,Mn))1≤i1...in≤3,
ψi1 , . . . , ψin ∈ G,
Bi1···in(ψ1, . . . , ψn)(r1, . . . , rn−1) = ψi1(x)ψi2(x + r1) · · ·ψin(x + rn−1).

Let a1, · · · , an ∈ IR3, ai = (ai1, ai2, ai3). We set

[IBn(r1, · · · , rn−1), (a1, · · · , an)] = a1i1 · · · aninBi1···in(r1, · · · , rn−1),

using the Einstein summation convention.
We denote by O3(IR) an orthogonal group, which means that
Q ∈ O3(IR) if and only if QQt = QtQ = I.
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Discussion about isotropy

Definition

We say that the flow is isotropic in D if and only if,

∀ n ≥ 1, ∀ IBn ∈ Bn,
∀Q ∈ O3(IR), ∀ a1, · · · , an ∈ IR3,

∀ x ∈ ω, ∀ (r1, · · · , rn−1) ∈ B(0, rx)n−1,

then we have

[IBn(Qr1, · · · ,Qrn−1), (Qa1, · · · ,Qan)] =
[IBn(r1, · · · , rn−1), (a1, · · · , an)].
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Discussion about isotropy

2) Two order tensor

We fix δ0 once and for all and x satisfies d(x, ∂ω) ≥ δ0 so that
IB2(r) is well defined for |r| ≤ δ0 and at least of class C 1 with
respect to r (and does not depend on x).

Theorem

Assume the flow isotropic in D. Then there exist two C 1 scalar
functions Bd = Bd(r) and Bn = Bn(r) on [0, δ0[ and such that

∀ r ∈ B(0, δ0), IB2(r) = (Bd(r)− Bn(r))
r ⊗ r

r2
+ Bn(r)I3,

where r = |r|, r ⊗ r = (ri rj)1≤i ,j≤3. Moreover, Bd and Bn are
linked through the following differential relation:

∀ r ∈ [0, δ0[, rB ′d(r) + 2(Bd(r)− Bn(r)) = 0,

where B ′d(r) is the derivative of Bd .
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Energy spectrum

Energy spectrum for isotropic flows Let

IE =
1

2
tr IB2|r=0 =

1

2
|v|2,

be the total mean kinetic energy

Theorem

There exists a measurable function E = E (k), defined over IR+,
the integral of which over IR+ is finite, and such that

IE =

∫ ∞
0

E (k)dk.

Remark

E (k) is the amount of kinetic energy in the sphere Sk = {|k| = k},
which physically means E ≥ 0 in IR+, and therefore E ∈ L1(IR+).
We cannot rigorously prove E ≥ 0 which remains an open problem.
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Energy spectrum

Lemma

The turbulent dissipation E is deduced from the energy spectrum
from the formula:

E = ν

∫ ∞
0

k2E (k)dk,

which also states that when E ≥ 0, then k2E (k) ∈ L1(IR+).

The issue is the determination of the profil of E
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Similarity

1) Dimensional bases

Only length and time are involved in this frame, heat being not
considered and the fluid being incompressible.

Definition

A length-time basis is a couple b = (λ, τ), where λ a given
constant length and τ a constant time.

Definition

Let ψ = ψ(t, x) (constant, scalar, vector, tensor...) be defined on
Q = [0,TK]× Ω. The couple (d`(ψ), dτ (ψ)) ∈ Q2 is such that

ψb(t ′, x′) = λ−d`(ψ)τ−dτ (ψ)ψ(τ t ′, λx′),

where (t ′, x′) ∈ Qb =
[
0, TK

τ

]
× 1

λΩ, is dimensionless. We say that

ψb = ψb(t ′, x′) is the b-dimensionless field deduced from ψ.

Roger LEWANDOWSKI The Kolmogorov Law of turbulence



Similarity

1) Dimensional bases

Only length and time are involved in this frame, heat being not
considered and the fluid being incompressible.

Definition

A length-time basis is a couple b = (λ, τ), where λ a given
constant length and τ a constant time.

Definition

Let ψ = ψ(t, x) (constant, scalar, vector, tensor...) be defined on
Q = [0,TK]× Ω. The couple (d`(ψ), dτ (ψ)) ∈ Q2 is such that

ψb(t ′, x′) = λ−d`(ψ)τ−dτ (ψ)ψ(τ t ′, λx′),

where (t ′, x′) ∈ Qb =
[
0, TK

τ

]
× 1

λΩ, is dimensionless. We say that

ψb = ψb(t ′, x′) is the b-dimensionless field deduced from ψ.

Roger LEWANDOWSKI The Kolmogorov Law of turbulence



Similarity

2) Kolmogorov scales

Let us consider the length-time basis b0 = (λ0, τ0), determined by

λ0 = ν
3
4 E −

1
4 , τ0 = ν

1
2 E −

1
2 .

We recall that λ0 is called the Kolmogorov scale. The important
point here is that

Eb0 = νb0 = 1.

Moreover, for all wave number k ,

E (k) = ν
5
4 E

1
4Eb0(λ0k),

We must find out the universal profil Eb0
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Similarity

3) Assumptions

Scale separation. Let ` be the Prandtl mixing length. Then

λ0 << `.

Similarity. There exists an interval

[k1, k2] ⊂
[

2π

`
,

2π

λ0

]
s.t. k1 << k2 and on [λ0k1, λ0k2],

∀ b1 = (λ1, τ1), b2 = (λ2, τ2) s.t. Eb1 = Eb2 , then Eb1 = Eb2
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Similarity

4) Law of the -5/3

Theorem

Scale separation and Similarity Assumptions yield the existence of
a constant C such that

∀ k ′ ∈ [λ0k1, λ0k2] = Jr , Eb0(k ′) = C (k ′)−
5
3 .

Corollary

The energy spectrum satisfies the −5/3 law

∀ k ∈ [k1, k2], E (k) = CE
2
3 k−

5
3 ,

where C is a dimensionless constant.
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Similarity

Idea of the proof Let

b(α) = (α3λ0, α
2τ0).

As
Eb(α) = 1 = Eb0 ,

The similarity assumption yields

∀ k ′ ∈ Jr , ∀α > 0, Eb(α)(k ′) = Eb0(k ′).

which leads to the functional equation,

∀ k ′ ∈ Jr , ∀α > 0,
1

α5
Eb0(k ′) = Eb0(α3k ′),

whose unique solution is given by

∀ k ′ ∈ Jr , Eb0(k ′) = C (k ′)−
5
3 , C =

(
k1

λ0

) 5
3

E0

(
k1

λ0

)
,

hence the result.
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Consequences

Theorem

Assume:

1 The Law of the -5/3 holds true,

2 The turbulent dissipation holds in the inertial range,

3 The Boussinesq assumption holds true, i.e

σ(r) = −νtDv + 2
3kI.

Then Smagorinsky’s postulate holds true, i.e

νt = Cδ2|Dv|.
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