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Introduction

Framework : homogeneous and isotropic turbulent flows modeling.

Typical example : turbulence behind a grid

Initial problem : Find out an estimate of the decay of the
turbulence when moving away from the grid
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Introduction

Kolmogorov 1941 (K41), footnote:

“We may indicate here only certain general considerations speaking for
advanced hypothesis. For every large Reynolds number Re, the turbulent flow
may be thought in the following way: on the averaged flow (characterised by v)
are superposed the pulsation of the first order consisting in disorderly
displacements of separate fluid volumes, one respect to another, of diameter of
the order of magnitude `(1) (where `(1) is the Prandtl mixing path); the order of
magnitude of velocities of these relative velocities are denoted by v(1). The
pulsation of the first order are for very large Re in their turn unsteady, on
which are superposed the pulsation ofthe second order with mixing path
`(2) < `(1) and relative velocities v(2) such that |v(2)| < |v(1)|; such a process of
successive refinement of turbulent pulsation may be carried out until the
pulsation of some sufficiently large order n, the Reynolds number of which,

R(n) =
`(n)v(n)

ν
,

becomes small enough such that the effect of viscosity on the pulsation of the

order n prevents the pulsation of the order n + 1.”
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Introduction

Taylor 1933 → Kolmogorov 1941 (K41):

i) Statistical description of the tubulence → mean velocity and
pressure v, p, defined as expectations of v, p (Taylor),

ii) From global (Taylor) to local (K41) notions of homogeneity
and isotropy through correlation tensors,

iii) Stating the structure of the general 2 order correlation tensor
B(r), the trace of which is the mean energy (Taylor, K41),

iv) Finding out the behavior of B(r) for r = |r| small, and deriving
from a similarity principle the law of the 2/3 in the inertial
range [r1, r2], by introducing appropriate lenght and time
scales (K41).

Remark

The developments above are based on phenomenology and
experiments, without using the Navier-Stokes Equations (NSE),
and no rigorous mathematical proofs are carried out.
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Introduction

Aim of the talk:

1) To discuss on which solutions to the incompressible NSE are
most appropriate to set a rigorous probabilistic framework, in
order to define the expectations v and p,

2) To perform abstract algebraic definitions of homogeneous and
isotropic tensors and to fully characterize the 1 and 2 order
homogeneous tensors,

3) To recall the Reynolds decomposition, to introduce the
Reynolds stress σ(r), to define the notion of homogeneous and
isotropic turbulence from the correlation tensors, to deduce
from the NSE the equation for σ(r) in the homogeneous and
isotropic case,

4) To perform an expansion of B(r) near zero by using the NSE,
and to derive the law of the 2/3 in the inertial range, after
having rigously set the principle of similarity.
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Solutions to the NSE

1) Incompressible Navier-Stokes Equations (NSE):

Q = [0,T ]× Ω or Q = [0,∞[×Ω, Ω ⊂ IR3, Γ = ∂Ω,

with the no slip boundary condition and v0 as initial data:
∂tv + (v · ∇) v −∇ · (2νDv) +∇p = f in Q, (i)

∇ · v = 0 in Q, (ii)
v = 0 on Γ, (iii)
v = v0 at t = 0, (iv)

where ν > 0 is the kinematic viscosity, f is any external force,

Dv =
1

2
(∇v +∇vt), ((v · ∇) v)i = vj

∂vi
∂xj

, ∇ · v =
∂vi
∂xi

.

NB: ∇ · v = 0⇒ (v · ∇) v = ∇ · (v ⊗ v), v ⊗ v = (vivj)1≤i ,j≤3.
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Solutions to the NSE

2) Two types of solutions to the NSE:

i) Strong solutions over a small time interval [0,Tmax [ ”à la”
Fujita-Kato,

ii) Weak solutions (also turbulent) , global in time, ”à la”
Leray-Hopf

i) Strong solutions are C 1,α over [0,Tmax[×Ω for smooth data,

Tmax = Tmax(||v0||, ||f||, ν),

the corresponding solution is unique, yielding the writing

v = v(t, x, v0), p = p(t, x, v0).

NB. Strong solutions are defined over [0,∞[ when v0 is “small
enough”, ν and/or ||f|| are ”large enough”, which means that the
flow is rather laminar.
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Solutions to the NSE

ii) Weak solutions: defined through an appropriate variational
formulation set in the sequence of function spaces

{v ∈ H1
0 (Ω)3,∇·v = 0} ↪→ V = {v ∈ L2(Ω)3, v ·n|Γ = 0,∇·v = 0}

such that the trajectory

v = v(t) ∈ V

is weakly continuous from [0,T ]→ V, T ∈]0,∞] (∀η ∈ V,
t → 〈v(t),η〉 is a continous function of t, where 〈·, ·〉 denotes the
scalar product in V).

Remark

For v0 ∈ V and appropriate source terms f, the exists a global
weak solution v = v(t), t ∈ IR+, however uniqueness is not
known, so that at this point we can’t write

v = v(t, x, v0).
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Probabilistic framework

1) Long Time Average. Let B(IR+) denotes the Borel σ-algebra on
IR+, λ the Lebesgue measure, and let µ denotes the probability
measure

∀A ∈ B(IR+), µ(A) = lim
t→∞

1

t
λ(A ∩ [0, t]),

Let v ∈ L1(IR+ → V;µ),

E (v) = v =

∫
IR+

v(t)dµ(t) = lim
t→∞

1

t

∫ t

0
v(t)dt.

Let v be a Leray-Hopf solution to the NSE. It is not known wether
for a given x ∈ Ω, v(t, x) ∈ L1(IR+ → V;µ). However, it can be
proved that in some sense when f is steady 1,

E (v) = v = v(x) ∈W 2,5/4(Ω)

1Chacon-Lewandowski (Springer 2014), Lewandowski (Chin.An.Maths,
2015)
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Probabilistic framework

2) Ensemble Average. The source term f and the viscosity ν are
fixed. Let K ⊂ V be a compact,

TK = inf
v0∈K

Tmax(||v0||, ||f||, ν) > 0, Q = [0,TK]× Ω

Let {v(1)
0 , · · · , v(n)

0 , · · · } be a countable dense subset of K,

vn = vn(t, x) =
1

n

n∑
i=1

v(t, x, v
(i)
0 ) = Eµn(v(t, x, ·)),

where µn is the probability measure over K:

µn =
1

n

n∑
i=1

δ
v

(i)
0

.
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Probabilistic framework

Up to a subsequence

µn → µ weakly in the sense of the measures, ||µ|| = 1.

so that, ∀ (t, x) ∈ Q,

v(t, x) = Eµ(v(t, x, ·)) =

∫
K
v(t, x, v0)dµ(v0) = lim

n→∞
vn(t, x).

p(t, x) = Eµ(p(t, x, ·)) =

∫
K
p(t, x, v0)dµ(v0)

v(0, x) = v0(x) =

∫
K
v0(x)dµ(v0).

Remark

It is not known if the probability measure µ is unique or not
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Reynolds Stress

1) Reynolds decomposition. We can decompose (v, p) as follows:

v = v + v′, p = p + p′,

which is the Reynolds decomposition, v′ and p′ are the
fluctuations. Either for long time averaged or ensemble average:

∂tv(t, x, v0) = ∂tv(t, x), (1)

∇v(t, x, v0) = ∇v(t, x), (2)

∇p(t, x, v0) = ∇p(t, x). (3)

Moreover, by noting that v = v and p = p, it easily checked that:

Lemma

The fluctuation’s mean vanishes, i.e.

∀ (t, x) ∈ Q, v′(t, x, v0) = 0, p′(t, x, v0) = 0.
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Reynolds Stress

2) Averaged NSE. Note that Eµ(f) = fEµ(1) = f. By the Reynolds
rules and the previous lemma:


∂tv + (v · ∇) v − ν∆v +∇p = −∇ · σ(r) + f in Q,

∇ · v = 0 in Q,
v = 0 on Γ,
v = v0 at t = 0,

where
σ(r) = v′ ⊗ v′

is the Reynolds stress.
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Correlation tensors

Let x0, x ∈ Ω, r1, · · · , rn−1 s.t x0 + ri ∈ Ω,

w(t, x) = v(t, x)− v(t, x0), w = (w1,w2,w3).

Let B(n) = (B
(n)
i1···in)1≤i1···in the n-order correlation tensor:

B
(n)
i1···in(t, x0, r1, · · · , rn−1) = wi1(t, x0)wi2(t, x0 + r1) · · ·win(t, x0 + rn−1),

We assume that the turbulence is i) stationnary, ii) homogeneous:

i) The correlation tensors are invariant under time translation,
which yields they do not depend on t,

ii) The mean field w only depends on r = x− x0, and is steady,
so that w = w(r) and the correlation tensors are invariant
under spatial translations,

∀ r, B(n)(x0, r1 + r, · · · , rn−1 + r) = B(n)(x0, r1, · · · , rn−1).

so far the quantities above are well defined.
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Correlation tensors

Remark

For homogeneous turbulence, B(n)(x0, r1, · · · , rn−1) do not
depend on x0, so that it will be denoted by B(n)(r1, · · · , rn−1) .

In the following, we will focus on

1 a proper definition of isotropic turbulence, which expresses
some invariance of the turbulence under isometries,

2 analyse the structure of the 2-order correlation tensor

B
(2)
ij (r) = Bij(r) = wi (x)wj(x + r),

that contains the main informations about the mean energy,
hence the intensity of the turbulence. In particular, we seek
for an asymptotic expansion of B when

r→ 0

.
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Basic algebra

1) Dual action. Let Rn = (r1, · · · , rn−1),
Hn = (h1,h2, · · · ,hn) ∈ IR3n = IR3 × · · · × IR3, hi = (hi1, hi2, hi3).

The dual action of B(n) at Rn is defined by

[B(n)(Rn),Hn] = B
(n)
i1···in(Rn)hi11 · · · hipp,

or equivalently

[B(n)(Rn),Hn] = B(n)(Rn) : h1 ⊗ h2 ⊗ .....⊗ hn,

where “ : ” stands for the contracted tensor product, “⊗” the
tensor product.

Example. In the case of B2(r) = (B
(2)
ij (r))1≤ij≤3, then

[B(2)(r), (h, k)] = B
(2)
ij (r)hikj = (B(2)(r) · k,h),

where B(2)(r) · h denotes the product of the matrix B(2)(r) with
the vector k.
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Basic algebra

2) Isotropic fields. The mean field w = w(r) is said isotropic if

∀Q ∈ O3(IR),∀ r,u ∈ IR3, (w(Qr),Qu) = (w(r),u).

We set r = |r|.

Theorem

Let w = w(r) be isotropic. Then there exists a function a = a(r)
such that

∀ r 6= 0, w(r) = a(r)
r

r
.

If w is differentiable over IR3 \ B(0, r0) (r0 > 0), is incompressible
with respect to r, then the function a is constant over
IR3 \ B(0, r0).
The unique differentiable isotropic incompressible vector field over
IR3 is equal to zero.
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Basic algebra

3) Isotropic fields. We say that B(n) is isotropic if

∀Rn ∈ IR3(n−1), ∀Un ∈ IR3n, ∀Q ∈ O3(IR),[
B(n)(QRn),QUn

]
=
[
B(n)(Rn),Un

]
Theorem

Let B(r) = (Bij(r))1≤i ,j≤3 be a 2-order isotropic tensor field. Then
there exists two functions Bd = Bd(r),Bn = Bn(r) such that,

∀ r 6= 0, B(r) = (Bd(r)− Bn(r))
r ⊗ r

r2
+ Bn(r)I3.
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Homogeneous and isotropic turbulence

Definition

Homogeneous turbulence is already defined. It is said said to be
isotropic, if w is isotropic and for all n, B(n) is isotropic

Consequence: The mean field vanishes in Ω, and the NSE reduces
to

∇ · σ(r) +∇p = f.

Lemma

The following relations hold:

Bd(r) = |w1(r , 0, 0)|2, (4)

Bn(r) = |w2(r , 0, 0)|2 = |w3(r , 0, 0)|2, (5)

∀ i 6= j , wi (r , 0, 0)wj(r , 0, 0) = 0. (6)

,
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Homogeneous and isotropic turbulence

Corollary

We deduce

Bd(0) = Bn(0) = 0, (7)

B ′d(0) = B ′n(0) = 0, (8)

Theorem

Assume that the mean pressure gradient is constant inside Ω.
Then there exists a C 1 scalar function E = E (r) such that
E (0) = E ′(0) = 0 and such that

B(r) = E (r)
r ⊗ r

r2
− 3

2
E (r)I3 + o(r3).
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Similarity

1) Dimensional bases. Only length and time are involved in this
frame, heat being not considered and fluids being incompressible.

Definition

A length-time basis is a couple b = (λ, τ), where λ a given
constant length and τ a constant time.

Definition

Let ψ = ψ(t, x) (constant, scalar, vector, tensor...) be defined on
Q = [0,TK]× Ω. The couple (d`(ψ), dτ (ψ)) is such that

ψb(t ′, x′) = λ−d`(ψ)τ−dτ (ψ)ψ(τ t ′, λx′),

where (t ′, x′) ∈ Qb =
[
0, TK

τ

]
× 1

λΩ, is dimensionless. We say that

ψb = ψb(t ′, x′) is the b-dimensionless field deduced from ψ.
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Similarity

2) Kolmogorov scales. The question is the behavior of E (r) when r
differs from 0.
Following Kolmogorov, we assume that E is entirely driven in [0, `],
` being the Mixing Prandtl Length, by the kinematic viscosity ν
and the mean dissipation at x0, specified by

E = 2ν|Dv(x0)|2.

Let b0 = (λ0, τ0), where

λ0 = ν
3
4 E −

1
4 , τ0 = ν

1
2 E −

1
2 .

Therefore,

∀ r ′ ∈ [0,
`

λ0
[, E (λ0r

′) = (νE )
1
2Eb0(r ′),

where Eb0 is a universal profil.
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Similarity

3) Similarity assumption and the law of the 2/3. We assume the
following

1 λ0 << `

2 there exists r1, r2, s.t. λ0 << r1 << r2 << `, and for all
lenght-times bases b1 = (λ1, τ1) and b2 = (λ2, τ2),

Eb1 = Eb2 ⇒ ∀ r
′ ∈
[
r1
λ1
,
r2
λ1

]
∩
[
r1
λ2
,
r2
λ2

]
, Eb1(r ′) = Eb2(r ′).

In the following, we set

r ′1,0 =
r1
λ0
, r ′2,0 =

r2
λ0
.
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Similarity

Theorem

If the similarity assumption holds, then there exists a constant C
such that

∀ r ′ ∈ [r ′1,0, r
′
2,0], Eb0(r ′) = C (r ′)

2
3 ,

which yields

∀r ∈ [r1, r2], E (r) = C (E r)
2
3 .
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