The Kolmogorov Law of turbulence What can rigorously be proved ?

Roger LEWANDOWSKI

$\begin{array}{c} {\sf IRMAR} - {\sf UMR} \; {\sf CNRS} \; 6625 - {\sf University} \; {\sf of} \; {\sf RENNES} \; 1, \\ {\sf FRANCE} \end{array}$

ヘロン 人間 とくほ とくほ とう

<u>Framework</u> : homogeneous and isotropic turbulent flows modeling.

Typical example : turbulence behind a grid

Initial problem : Find out an estimate of the decay of the turbulence when moving away from the grid

(日) (周) (日) (日) (日)

Kolmogorov 1941 (K41), footnote:

"We may indicate here only certain general considerations speaking for advanced hypothesis. For every large Reynolds number Re, the turbulent flow may be thought in the following way: on the averaged flow (characterised by $\overline{\mathbf{v}}$) are superposed the pulsation of the first order consisting in disorderly displacements of separate fluid volumes, one respect to another, of diameter of the order of magnitude $\ell^{(1)}$ (where $\ell^{(1)}$ is the Prandtl mixing path); the order of magnitude of velocities of these relative velocities are denoted by $\mathbf{v}^{(1)}$. The pulsation of the first order are for very large Re in their turn unsteady, on which are superposed the pulsation of the second order with mixing path $\ell^{(2)} < \ell^{(1)}$ and relative velocities $\mathbf{v}^{(2)}$ such that $|\mathbf{v}^{(2)}| < |\mathbf{v}^{(1)}|$; such a process of successive refinement of turbulent pulsation may be carried out until the pulsation of some sufficiently large order n, the Reynolds number of which,

$$R^{(n)} = \frac{\ell^{(n)} \mathbf{v}^{(n)}}{\nu},$$

becomes small enough such that the effect of viscosity on the pulsation of the order n prevents the pulsation of the order n + 1."

- i) Statistical description of the tubulence \rightarrow mean velocity and pressure $\overline{\mathbf{v}}, \overline{p}$, defined as expectations of \mathbf{v}, p (Taylor),
- ii) From global (Taylor) to local (K41) notions of homogeneity and isotropy through correlation tensors,
- iii) Stating the structure of the general 2 order correlation tensor B(r), the trace of which is the mean energy (Taylor, K41),
 iv) Finding out the behavior of B(r) for r = |r| small, and deriving from a similarity principle the law of the 2/3 in the inertial range [r₁, r₂], by introducing appropriate lenght and time scales (K41).

Remark

- i) Statistical description of the tubulence \rightarrow mean velocity and pressure $\overline{\mathbf{v}}, \overline{p}$, defined as expectations of \mathbf{v}, p (Taylor),
- ii) From global (Taylor) to local (K41) notions of homogeneity and isotropy through correlation tensors,
- iii) Stating the structure of the general 2 order correlation tensor B(r), the trace of which is the mean energy (Taylor, K41),
 iv) Finding out the behavior of B(r) for r = |r| small, and deriving from a similarity principle the law of the 2/3 in the inertial range [r₁, r₂], by introducing appropriate lenght and time scales (K41).

Remark

- i) Statistical description of the tubulence \rightarrow mean velocity and pressure $\overline{\mathbf{v}}, \overline{p}$, defined as expectations of \mathbf{v}, p (Taylor),
- ii) From global (Taylor) to local (K41) notions of homogeneity and isotropy through correlation tensors,
- iii) Stating the structure of the general 2 order correlation tensor $B(\mathbf{r})$, the trace of which is the mean energy (Taylor, K41),
- iv) Finding out the behavior of $B(\mathbf{r})$ for $r = |\mathbf{r}|$ small, and deriving from a similarity principle the law of the 2/3 in the inertial range $[r_1, r_2]$, by introducing appropriate lenght and time scales (K41).

Remark

- i) Statistical description of the tubulence \rightarrow mean velocity and pressure $\overline{\mathbf{v}}, \overline{p}$, defined as expectations of \mathbf{v}, p (Taylor),
- ii) From global (Taylor) to local (K41) notions of homogeneity and isotropy through correlation tensors,
- iii) Stating the structure of the general 2 order correlation tensor $B(\mathbf{r})$, the trace of which is the mean energy (Taylor, K41),
- iv) Finding out the behavior of $B(\mathbf{r})$ for $r = |\mathbf{r}|$ small, and deriving from a similarity principle the law of the 2/3 in the inertial range $[r_1, r_2]$, by introducing appropriate lenght and time scales (K41).

Remark

- i) Statistical description of the tubulence \rightarrow mean velocity and pressure $\overline{\mathbf{v}}, \overline{p}$, defined as expectations of \mathbf{v}, p (Taylor),
- ii) From global (Taylor) to local (K41) notions of homogeneity and isotropy through correlation tensors,
- iii) Stating the structure of the general 2 order correlation tensor $B(\mathbf{r})$, the trace of which is the mean energy (Taylor, K41),
- iv) Finding out the behavior of $B(\mathbf{r})$ for $r = |\mathbf{r}|$ small, and deriving from a similarity principle the law of the 2/3 in the inertial range $[r_1, r_2]$, by introducing appropriate lenght and time scales (K41).

Remark

- 1) To discuss on which solutions to the incompressible NSE are most appropriate to set a rigorous probabilistic framework, in order to define the expectations $\overline{\mathbf{v}}$ and \overline{p} ,
- To perform abstract algebraic definitions of homogeneous and isotropic tensors and to fully characterize the 1 and 2 order homogeneous tensors,
- 3) To recall the Reynolds decomposition, to introduce the Reynolds stress $\sigma^{(R)}$, to define the notion of homogeneous and isotropic turbulence from the correlation tensors, to deduce from the NSE the equation for $\sigma^{(R)}$ in the homogeneous and isotropic case,
- To perform an expansion of $B(\mathbf{r})$ near zero by using the NSE, and to derive the law of the 2/3 in the inertial range, after having rigously set the principle of similarity.

- 1) To discuss on which solutions to the incompressible NSE are most appropriate to set a rigorous probabilistic framework, in order to define the expectations $\overline{\mathbf{v}}$ and \overline{p} ,
- 2) To perform abstract algebraic definitions of homogeneous and isotropic tensors and to fully characterize the 1 and 2 order homogeneous tensors,
- 3) To recall the Reynolds decomposition, to introduce the Reynolds stress $\sigma^{(R)}$, to define the notion of homogeneous and isotropic turbulence from the correlation tensors, to deduce from the NSE the equation for $\sigma^{(R)}$ in the homogeneous and isotropic case,
- 4) To perform an expansion of $B(\mathbf{r})$ near zero by using the NSE, and to derive the law of the 2/3 in the inertial range, after having rigously set the principle of similarity.

- 1) To discuss on which solutions to the incompressible NSE are most appropriate to set a rigorous probabilistic framework, in order to define the expectations $\overline{\mathbf{v}}$ and \overline{p} ,
- To perform abstract algebraic definitions of homogeneous and isotropic tensors and to fully characterize the 1 and 2 order homogeneous tensors,
- 3) To recall the Reynolds decomposition, to introduce the Reynolds stress $\sigma^{(R)}$, to define the notion of homogeneous and isotropic turbulence from the correlation tensors, to deduce from the NSE the equation for $\sigma^{(R)}$ in the homogeneous and isotropic case,
- 4) To perform an expansion of $B(\mathbf{r})$ near zero by using the NSE, and to derive the law of the 2/3 in the inertial range, after having rigously set the principle of similarity.

- 1) To discuss on which solutions to the incompressible NSE are most appropriate to set a rigorous probabilistic framework, in order to define the expectations $\overline{\mathbf{v}}$ and \overline{p} ,
- To perform abstract algebraic definitions of homogeneous and isotropic tensors and to fully characterize the 1 and 2 order homogeneous tensors,
- 3) To recall the Reynolds decomposition, to introduce the Reynolds stress $\sigma^{(R)}$, to define the notion of homogeneous and isotropic turbulence from the correlation tensors, to deduce from the NSE the equation for $\sigma^{(R)}$ in the homogeneous and isotropic case,
- 4) To perform an expansion of $B(\mathbf{r})$ near zero by using the NSE, and to derive the law of the 2/3 in the inertial range, after having rigously set the principle of similarity.

1) Incompressible Navier-Stokes Equations (NSE):

 $Q = [0, T] imes \Omega$ or $Q = [0, \infty[imes \Omega, \quad \Omega \subset {\rm I\!R}^3, \quad \Gamma = \partial \Omega,$

with the no slip boundary condition and \mathbf{v}_0 as initial data:

$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla \cdot (2\nu D \mathbf{v}) + \nabla p = \mathbf{f} \quad \text{in } Q,$$

$$\nabla \cdot \mathbf{v} = 0 \quad \text{in } Q,$$

$$\mathbf{v} = 0 \quad \text{on } \Gamma,$$

$$\mathbf{v} = \mathbf{v}_0 \quad \text{at } t = 0,$$

where u > 0 is the kinematic viscosity, **f** is any external force,

 $D\mathbf{v} = \frac{1}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^{c}), \quad ((\mathbf{v} \cdot \nabla) \mathbf{v})_{i} = v_{j} \frac{\partial v_{i}}{\partial x_{j}}, \quad \nabla \cdot \mathbf{v} = \frac{\partial v_{i}}{\partial x_{i}}.$ **NB:** $\nabla \cdot \mathbf{v} = 0$, $(\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot (\mathbf{v} \cdot \mathbf{v})$, $\mathbf{v} = \mathbf{v} \cdot (v_{i} v_{j})_{1 \le i,j}$

1) Incompressible Navier-Stokes Equations (NSE):

 $Q = [0, T] imes \Omega$ or $Q = [0, \infty[imes \Omega, \quad \Omega \subset {\rm I\!R}^3, \quad \Gamma = \partial \Omega,$

with the no slip boundary condition and \mathbf{v}_0 as initial data:

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \, \mathbf{v} - \nabla \cdot (2\nu D \mathbf{v}) + \nabla p &= \mathbf{f} & \text{in } Q, \\ \nabla \cdot \mathbf{v} &= 0 & \text{in } Q, \\ \mathbf{v} &= 0 & \text{on } \Gamma, \\ \mathbf{v} &= \mathbf{v}_0 & \text{at } t = 0, \end{cases}$$

where u > 0 is the kinematic viscosity, **f** is any external force,

$$D\mathbf{v} = \frac{1}{2}(\nabla\mathbf{v} + \nabla\mathbf{v}^t), \quad ((\mathbf{v}\cdot\nabla)\mathbf{v})_i = v_j \frac{\partial v_i}{\partial x_j}, \quad \nabla\cdot\mathbf{v} = \frac{\partial v_i}{\partial x_i}$$

 $\mathsf{NB} \colon \nabla \cdot \mathbf{v} = 0 \Rightarrow (\mathbf{v} \cdot \nabla) \, \mathbf{v} = \nabla \cdot (\mathbf{v} \otimes \mathbf{v}), \quad \mathbf{v} \otimes \mathbf{v} = (v_i v_i)_{1 \le i, i \le 3}$

1) Incompressible Navier-Stokes Equations (NSE):

 $Q = [0, T] imes \Omega$ or $Q = [0, \infty[imes \Omega, \quad \Omega \subset {\rm I\!R}^3, \quad \Gamma = \partial \Omega,$

with the no slip boundary condition and \mathbf{v}_0 as initial data:

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \, \mathbf{v} - \nabla \cdot (2\nu D \mathbf{v}) + \nabla p &= \mathbf{f} & \text{in } Q, \\ \nabla \cdot \mathbf{v} &= 0 & \text{in } Q, \\ \mathbf{v} &= 0 & \text{on } \Gamma, \\ \mathbf{v} &= \mathbf{v}_0 & \text{at } t = 0, \end{cases}$$

where $\nu > 0$ is the kinematic viscosity, **f** is any external force,

$$D\mathbf{v} = \frac{1}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^t), \quad ((\mathbf{v} \cdot \nabla) \mathbf{v})_i = v_j \frac{\partial v_i}{\partial x_j}, \quad \nabla \cdot \mathbf{v} = \frac{\partial v_i}{\partial x_i}.$$

NB: $\nabla \cdot \mathbf{v} = 0 \Rightarrow (\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot (\mathbf{v} \otimes \mathbf{v}), \quad \mathbf{v} \otimes \mathbf{v} = (v_i v_j)_{1 \le i, j \le 3}$

イロト 不同下 イヨト イヨト

1) Incompressible Navier-Stokes Equations (NSE):

 $Q = [0, T] imes \Omega$ or $Q = [0, \infty[imes \Omega, \quad \Omega \subset \mathbb{R}^3, \quad \Gamma = \partial \Omega,$

with the no slip boundary condition and \mathbf{v}_0 as initial data:

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \, \mathbf{v} - \nabla \cdot (2\nu D \mathbf{v}) + \nabla p &= \mathbf{f} & \text{in } Q, \\ \nabla \cdot \mathbf{v} &= 0 & \text{in } Q, \\ \mathbf{v} &= 0 & \text{on } \Gamma, \\ \mathbf{v} &= \mathbf{v}_0 & \text{at } t = 0, \end{cases}$$

where $\nu > 0$ is the kinematic viscosity, **f** is any external force,

$$D\mathbf{v} = \frac{1}{2}(\nabla\mathbf{v} + \nabla\mathbf{v}^t), \quad ((\mathbf{v}\cdot\nabla)\mathbf{v})_i = v_j \frac{\partial v_i}{\partial x_j}, \quad \nabla\cdot\mathbf{v} = \frac{\partial v_i}{\partial x_i}.$$

NB: $\nabla \cdot \mathbf{v} = 0 \Rightarrow (\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot (\mathbf{v} \otimes \mathbf{v}), \quad \mathbf{v} \otimes \mathbf{v} = (v_i v_j)_{1 \le i, j \le 3}$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

1) Incompressible Navier-Stokes Equations (NSE):

 $Q = [0, T] \times \Omega$ or $Q = [0, \infty[\times \Omega, \Omega \subset \mathbb{R}^3, \Gamma = \partial \Omega,$

with the no slip boundary condition and \mathbf{v}_0 as initial data:

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \, \mathbf{v} - \nabla \cdot (2\nu D \mathbf{v}) + \nabla p &= \mathbf{f} & \text{in } Q, \\ \nabla \cdot \mathbf{v} &= 0 & \text{in } Q, \\ \mathbf{v} &= 0 & \text{on } \Gamma, \\ \mathbf{v} &= \mathbf{v}_0 & \text{at } t = 0, \end{cases}$$

where $\nu > 0$ is the kinematic viscosity, **f** is any external force,

$$D\mathbf{v} = \frac{1}{2}(\nabla\mathbf{v} + \nabla\mathbf{v}^t), \quad ((\mathbf{v}\cdot\nabla)\mathbf{v})_i = v_j \frac{\partial v_i}{\partial x_j}, \quad \nabla\cdot\mathbf{v} = \frac{\partial v_i}{\partial x_i}.$$

NB: $\nabla \cdot \mathbf{v} = 0 \Rightarrow (\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot (\mathbf{v} \otimes \mathbf{v}), \quad \mathbf{v} \otimes \mathbf{v} = (v_i v_j)_{1 \le i, j \le 3}.$

- ▲ 同 ▶ - ▲ 臣 ▶ - ▲ 臣 ▶ - ■ 臣

- 2) Two types of solutions to the NSE:
 - i) Strong solutions over a small time interval [0, T_{max} ["à la" Fujita-Kato,
 - Weak solutions (also turbulent), global in time, "à la" Leray-Hopf
- i) Strong solutions are $C^{1,\alpha}$ over $[0, \mathcal{T}_{\max}] \times \Omega$ for smooth data,

 $T_{\max} = T_{\max}(||\mathbf{v}_0||, ||\mathbf{f}||, \nu),$

the corresponding solution is unique, yielding the writing

$$\mathbf{v}=\mathbf{v}(t,\mathbf{x},\mathbf{v}_0),\quad p=p(t,\mathbf{x},\mathbf{v}_0).$$

NB. Strong solutions are defined over $[0,\infty[$ when \mathbf{v}_0 is "small enough", ν and/or $||\mathbf{f}||$ are "large enough", which means that the flow is rather laminar.

ヘロン 人間 とうほう 人間 とう

- 2) Two types of solutions to the NSE:
 - i) Strong solutions over a small time interval $[0, T_{max}[$ "à la" Fujita-Kato,
 - ii) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf
- i) Strong solutions are $C^{1,lpha}$ over $[0, \mathcal{T}_{\max}] \times \Omega$ for smooth data,

 $T_{\max} = T_{\max}(||\mathbf{v}_0||, ||\mathbf{f}||, \nu),$

the corresponding solution is unique, yielding the writing

$$\mathbf{v} = \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0), \quad p = p(t, \mathbf{x}, \mathbf{v}_0).$$

NB. Strong solutions are defined over $[0, \infty]$ when \mathbf{v}_0 is "small enough", ν and/or $||\mathbf{f}||$ are "large enough", which means that the flow is rather laminar.

- 2) Two types of solutions to the NSE:
 - i) Strong solutions over a small time interval $[0, T_{max}[$ "à la" Fujita-Kato,
 - ii) Weak solutions (also turbulent), global in time, "à la" Leray-Hopf
- i) Strong solutions are $C^{1,\alpha}$ over $[0, T_{\max}] \times \Omega$ for smooth data,

 $T_{\max} = T_{\max}(||\mathbf{v}_0||, ||\mathbf{f}||, \nu),$

the corresponding solution is unique, yielding the writing

$$\mathbf{v} = \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0), \quad p = p(t, \mathbf{x}, \mathbf{v}_0).$$

NB. Strong solutions are defined over $[0, \infty[$ when \mathbf{v}_0 is "small enough", ν and/or $||\mathbf{f}||$ are "large enough", which means that the flow is rather laminar.

イロト イポト イヨト イヨト

ii) Weak solutions: defined through an appropriate variational formulation set in the sequence of function spaces

 $\{\mathbf{v}\in H^1_0(\Omega)^3, \nabla\cdot\mathbf{v}=0\} \hookrightarrow \mathbf{V} = \{\mathbf{v}\in L^2(\Omega)^3, \,\mathbf{v}\cdot\mathbf{n}|_{\Gamma}=0, \nabla\cdot\mathbf{v}=0\}$

such that the trajectory

 $\mathbf{v} = \mathbf{v}(t) \in \mathbf{V}$

is weakly continuous from $[0, T] \rightarrow V$, $T \in]0, \infty]$ ($\forall \eta \in V$, $t \rightarrow \langle \mathbf{v}(t), \eta \rangle$ is a continous function of t, where $\langle \cdot, \cdot \rangle$ denotes the scalar product in V).

Remark

For $\mathbf{v}_0 \in \mathbf{V}$ and appropriate source terms \mathbf{f} , the exists a global weak solution $\mathbf{v} = \mathbf{v}(t)$, $t \in \mathbb{R}^+$, however uniqueness is not known, so that at this point we can't write

$$\mathbf{v}=\mathbf{v}(t,\mathbf{x},\mathbf{v}_0).$$

ii) Weak solutions: defined through an appropriate variational formulation set in the sequence of function spaces

 $\{\mathbf{v}\in H^1_0(\Omega)^3, \nabla\cdot\mathbf{v}=0\} \hookrightarrow \mathbf{V} = \{\mathbf{v}\in L^2(\Omega)^3, \,\mathbf{v}\cdot\mathbf{n}|_{\Gamma}=0, \nabla\cdot\mathbf{v}=0\}$

such that the trajectory

 $\mathbf{v} = \mathbf{v}(t) \in \mathbf{V}$

is weakly continuous from $[0, T] \rightarrow V$, $T \in]0, \infty]$ ($\forall \eta \in V$, $t \rightarrow \langle \mathbf{v}(t), \eta \rangle$ is a continuus function of t, where $\langle \cdot, \cdot \rangle$ denotes the scalar product in V).

Remark

For $\mathbf{v}_0 \in \mathbf{V}$ and appropriate source terms \mathbf{f} , the exists a global weak solution $\mathbf{v} = \mathbf{v}(t)$, $t \in \mathbb{R}^+$, however uniqueness is not known, so that at this point we can't write

$$\mathbf{v}=\mathbf{v}(t,\mathbf{x},\mathbf{v}_0).$$

ii) Weak solutions: defined through an appropriate variational formulation set in the sequence of function spaces

 $\{\mathbf{v}\in H^1_0(\Omega)^3, \nabla\cdot\mathbf{v}=0\} \hookrightarrow \mathbf{V} = \{\mathbf{v}\in L^2(\Omega)^3, \,\mathbf{v}\cdot\mathbf{n}|_{\Gamma}=0, \nabla\cdot\mathbf{v}=0\}$

such that the trajectory

 $\mathbf{v} = \mathbf{v}(t) \in \mathbf{V}$

is weakly continuous from $[0, T] \rightarrow V$, $T \in]0, \infty]$ ($\forall \eta \in V$, $t \rightarrow \langle \mathbf{v}(t), \eta \rangle$ is a continuus function of t, where $\langle \cdot, \cdot \rangle$ denotes the scalar product in V).

Remark

For $\mathbf{v}_0 \in \mathbf{V}$ and appropriate source terms \mathbf{f} , the exists a global weak solution $\mathbf{v} = \mathbf{v}(t)$, $t \in \mathbb{R}^+$, however uniqueness is not known, so that at this point we can't write

$$\mathbf{v}=\mathbf{v}(t,\mathbf{x},\mathbf{v}_0).$$

1) Long Time Average. Let $\mathcal{B}(\mathbb{R}_+)$ denotes the Borel σ -algebra on \mathbb{R}_+ , λ the Lebesgue measure, and let μ denotes the probability measure

$$\forall A \in \mathcal{B}(\mathbb{R}_+), \quad \mu(A) = \lim_{t \to \infty} \frac{1}{t} \lambda(A \cap [0, t]),$$

Let $\mathbf{v} \in L^1(\mathbb{R}^+ o \mathbf{V}; \mu)$,

$$E(\mathbf{v}) = \overline{\mathbf{v}} = \int_{\mathbf{R}^+} \mathbf{v}(t) d\mu(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbf{v}(t) dt.$$

Let **v** be a Leray-Hopf solution to the NSE. It is not known wether for a given $\mathbf{x} \in \Omega$, $\mathbf{v}(t, \mathbf{x}) \in L^1(\mathbb{R}^+ \to \mathbf{V}; \mu)$. However, it can be proved that in some sense when **f** is steady ¹,

$$E(\mathbf{v}) = \overline{\mathbf{v}} = \overline{\mathbf{v}}(\mathbf{x}) \in W^{2,5/4}(\Omega)$$

1) Long Time Average. Let $\mathcal{B}(\mathbb{R}_+)$ denotes the Borel σ -algebra on \mathbb{R}_+ , λ the Lebesgue measure, and let μ denotes the probability measure

$$\forall A \in \mathcal{B}(\mathbb{R}_+), \quad \mu(A) = \lim_{t \to \infty} \frac{1}{t} \lambda(A \cap [0, t]),$$

Let $\mathbf{v} \in L^1(\mathbb{R}^+ \to \mathbf{V}; \mu)$,

$$E(\mathbf{v}) = \overline{\mathbf{v}} = \int_{\mathbf{R}^+} \mathbf{v}(t) d\mu(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbf{v}(t) dt.$$

Let **v** be a Leray-Hopf solution to the NSE. It is not known wether for a given $\mathbf{x} \in \Omega$, $\mathbf{v}(t, \mathbf{x}) \in L^1(\mathbb{R}^+ \to \mathbf{V}; \mu)$. However, it can be proved that in some sense when **f** is steady ¹,

 $E(\mathbf{v}) = \overline{\mathbf{v}} = \overline{\mathbf{v}}(\mathbf{x}) \in W^{2,5/4}(\Omega)$

1) Long Time Average. Let $\mathcal{B}(\mathbb{R}_+)$ denotes the Borel σ -algebra on \mathbb{R}_+ , λ the Lebesgue measure, and let μ denotes the probability measure

$$orall A \in \mathcal{B}(\mathbb{R}_+), \quad \mu(A) = \lim_{t \to \infty} rac{1}{t} \lambda(A \cap [0, t]),$$

Let $\mathbf{v} \in L^1(\mathbb{R}^+ \to \mathbf{V}; \mu)$,

$$E(\mathbf{v}) = \overline{\mathbf{v}} = \int_{\mathbf{R}^+} \mathbf{v}(t) d\mu(t) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbf{v}(t) dt.$$

Let **v** be a Leray-Hopf solution to the NSE. It is not known wether for a given $\mathbf{x} \in \Omega$, $\mathbf{v}(t, \mathbf{x}) \in L^1(\mathbb{R}^+ \to \mathbf{V}; \mu)$. However, it can be proved that in some sense when **f** is steady ¹,

$$E(\mathbf{v}) = \overline{\mathbf{v}} = \overline{\mathbf{v}}(\mathbf{x}) \in W^{2,5/4}(\Omega)$$

¹Chacon-Lewandowski (Springer 2014), Lewandowski (Chin.An.Maths, 2015)

2) Ensemble Average. The source term **f** and the viscosity ν are fixed. Let $\mathbb{K} \subset \mathbf{V}$ be a compact,

 $T_{\mathbb{K}} = \inf_{\mathbf{v}_0 \in \mathbb{K}} T_{\max}(||\mathbf{v}_0||, ||\mathbf{f}||, \nu) > 0, \quad Q = [0, T_{\mathbb{K}}] \times \Omega$

Let $\{\mathbf{v}_0^{(1)}, \cdots, \mathbf{v}_0^{(n)}, \cdots\}$ be a countable <u>dense</u> subset of \mathbb{K} ,

$$\overline{\mathbf{v}}_n = \overline{\mathbf{v}}_n(t, \mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0^{(i)}) = E_{\mu_n}(\mathbf{v}(t, \mathbf{x}, \cdot)),$$

where μ_n is the probability measure over \mathbb{K} :

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{v}_0^{(i)}}.$$

2) Ensemble Average. The source term **f** and the viscosity ν are fixed. Let $\mathbb{K} \subset \mathbf{V}$ be a compact,

$$T_{\mathbb{K}} = \inf_{\mathbf{v}_0 \in \mathbb{K}} T_{\max}(||\mathbf{v}_0||, ||\mathbf{f}||, \nu) > 0, \quad Q = [0, T_{\mathbb{K}}] \times \Omega$$

Let $\{\mathbf{v}_0^{(1)}, \cdots, \mathbf{v}_0^{(n)}, \cdots\}$ be a countable <u>dense</u> subset of \mathbb{K} ,

$$\overline{\mathbf{v}}_n = \overline{\mathbf{v}}_n(t, \mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0^{(i)}) = E_{\mu_n}(\mathbf{v}(t, \mathbf{x}, \cdot)),$$

where μ_n is the probability measure over \mathbb{K} :

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{v}_0^{(i)}}.$$

Up to a subsequence

 $\mu_n
ightarrow \mu$ weakly in the sense of the measures, $||\mu|| = 1$.

so that, $\forall (t, \mathbf{x}) \in Q$,

$$\overline{\mathbf{v}}(t,\mathbf{x}) = E_{\mu}(\mathbf{v}(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} \mathbf{v}(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0) = \lim_{n \to \infty} \overline{\mathbf{v}}_n(t,\mathbf{x}).$$

$$ar{p}(t, \mathbf{x}) = E_{\mu}(p(t, \mathbf{x}, \cdot)) = \int_{\mathbb{K}} p(t, \mathbf{x}, \mathbf{v}_0) d\mu(\mathbf{v}_0)$$
 $ar{\mathbf{v}}(0, \mathbf{x}) = ar{\mathbf{v}}_0(\mathbf{x}) = \int \mathbf{v}_0(\mathbf{x}) d\mu(\mathbf{v}_0).$

Remark It is not known if the probability measure μ is unique or not -

Up to a subsequence

 $\mu_n o \mu$ weakly in the sense of the measures, $||\mu||=1.$ so that, $orall (t,{f x})\in Q$,

$$\overline{\mathbf{v}}(t,\mathbf{x}) = E_{\mu}(\mathbf{v}(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} \mathbf{v}(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0) = \lim_{n \to \infty} \overline{\mathbf{v}}_n(t,\mathbf{x}).$$

$$\overline{p}(t, \mathbf{x}) = E_{\mu}(p(t, \mathbf{x}, \cdot)) = \int_{\mathbb{K}} p(t, \mathbf{x}, \mathbf{v}_0) d\mu(\mathbf{v}_0)$$
$$\overline{\mathbf{v}}(0, \mathbf{x}) = \overline{\mathbf{v}}_0(\mathbf{x}) = \int_{\mathbb{K}} v_0(\mathbf{x}) d\mu(\mathbf{v}_0)$$

Remark It is not known if the probability measure μ is unique or not

Up to a subsequence

 $\mu_n o \mu$ weakly in the sense of the measures, $||\mu||=1.$ so that, $orall (t,{f x})\in Q$,

$$\overline{\mathbf{v}}(t,\mathbf{x}) = E_{\mu}(\mathbf{v}(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} \mathbf{v}(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0) = \lim_{n \to \infty} \overline{\mathbf{v}}_n(t,\mathbf{x}).$$

$$\overline{p}(t,\mathbf{x}) = E_{\mu}(p(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} p(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0)$$

$$\overline{\mathbf{v}}(0,\mathbf{x})=\overline{\mathbf{v}_0}(\mathbf{x})=\int_{\mathbb{K}}\mathbf{v}_0(\mathbf{x})d\mu(\mathbf{v}_0).$$

Remark

It is not known if the probability measure μ is unique or not

Up to a subsequence

 $\mu_n o \mu$ weakly in the sense of the measures, $||\mu||=1.$ so that, $orall (t,{f x})\in Q$,

$$\overline{\mathbf{v}}(t,\mathbf{x}) = E_{\mu}(\mathbf{v}(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} \mathbf{v}(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0) = \lim_{n \to \infty} \overline{\mathbf{v}}_n(t,\mathbf{x}).$$

$$\overline{p}(t,\mathbf{x}) = E_{\mu}(p(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} p(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0)$$

$$\overline{\mathbf{v}}(0,\mathbf{x}) = \overline{\mathbf{v}_0}(\mathbf{x}) = \int_{\mathbb{K}} \mathbf{v}_0(\mathbf{x}) d\mu(\mathbf{v}_0).$$

Remark

It is not known if the probability measure μ is unique or not

Up to a subsequence

 $\mu_n o \mu$ weakly in the sense of the measures, $||\mu||=1.$ so that, $orall (t,{f x})\in Q$,

$$\overline{\mathbf{v}}(t,\mathbf{x}) = E_{\mu}(\mathbf{v}(t,\mathbf{x},\cdot)) = \int_{\mathbb{K}} \mathbf{v}(t,\mathbf{x},\mathbf{v}_0) d\mu(\mathbf{v}_0) = \lim_{n \to \infty} \overline{\mathbf{v}}_n(t,\mathbf{x}).$$

$$\overline{p}(t, \mathbf{x}) = E_{\mu}(p(t, \mathbf{x}, \cdot)) = \int_{\mathbb{K}} p(t, \mathbf{x}, \mathbf{v}_0) d\mu(\mathbf{v}_0)$$

$$\overline{\mathbf{v}}(0,\mathbf{x}) = \overline{\mathbf{v}_0}(\mathbf{x}) = \int_{\mathbb{K}} \mathbf{v}_0(\mathbf{x}) d\mu(\mathbf{v}_0).$$

Remark

It is not known if the probability measure μ is unique or not

Roger LEWANDOWSKI The Kolmogorov Law of turbulence

1) Reynolds decomposition. We can decompose (\mathbf{v}, p) as follows:

 $\mathbf{v} = \overline{\mathbf{v}} + \mathbf{v}', \quad p = \overline{p} + p',$

which is the Reynolds decomposition, \mathbf{v}' and p' are the fluctuations. Either for long time averaged or ensemble average:

$$\begin{array}{lll} \partial_t \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0) &=& \partial_t \overline{\mathbf{v}}(t, \mathbf{x}), \qquad (1) \\ \nabla \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0) &=& \nabla \overline{\mathbf{v}}(t, \mathbf{x}), \qquad (2) \\ \overline{\nabla p}(t, \mathbf{x}, \mathbf{v}_0) &=& \nabla \overline{p}(t, \mathbf{x}). \qquad (3) \end{array}$$

Moreover, by noting that $\overline{\overline{\mathbf{v}}} = \overline{\mathbf{v}}$ and $\overline{\overline{p}} = \overline{p}$, it easily checked that:

_emma

The fluctuation's mean vanishes, i.e.

 $orall (t, {f x}) \in Q, \quad \overline{{f v}'(t, {f x}, {f v}_0)} = 0, \quad \overline{p'(t, {f x}, {f v}_0)} = 0.$

1) Reynolds decomposition. We can decompose (\mathbf{v}, p) as follows:

$$\mathbf{v} = \overline{\mathbf{v}} + \mathbf{v}', \quad p = \overline{p} + p',$$

which is the Reynolds decomposition, \mathbf{v}' and p' are the fluctuations. Either for long time averaged or ensemble average:

$$\frac{\partial_t \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0)}{\nabla \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0)} = \partial_t \overline{\mathbf{v}}(t, \mathbf{x}),$$
(1)
$$\frac{\nabla \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0)}{\nabla \overline{\mathbf{v}}(t, \mathbf{x}, \mathbf{v}_0)} = \nabla \overline{\mathbf{v}}(t, \mathbf{x}),$$
(2)

$$\overline{\nabla p(t, \mathbf{x}, \mathbf{v}_0)} = \nabla \overline{p}(t, \mathbf{x}). \tag{3}$$

Moreover, by noting that $\overline{\overline{\mathbf{v}}} = \overline{\mathbf{v}}$ and $\overline{\overline{p}} = \overline{p}$, it easily checked that:

Lemma

The fluctuation's mean vanishes, i.e.

$$orall (t, \mathbf{x}) \in Q, \quad \overline{\mathbf{v}'(t, \mathbf{x}, \mathbf{v}_0)} = 0, \quad \overline{p'(t, \mathbf{x}, \mathbf{v}_0)} = 0.$$

1) Reynolds decomposition. We can decompose (\mathbf{v}, p) as follows:

$$\mathbf{v} = \overline{\mathbf{v}} + \mathbf{v}', \quad p = \overline{p} + p',$$

which is the Reynolds decomposition, \mathbf{v}' and p' are the fluctuations. Either for long time averaged or ensemble average:

$$\overline{\partial_t \mathbf{v}(t, \mathbf{x}, \mathbf{v}_0)} = \partial_t \overline{\mathbf{v}}(t, \mathbf{x}),$$
 (1)

$$\overline{\nabla \mathbf{v}(t,\mathbf{x},\mathbf{v}_0)} = \nabla \overline{\mathbf{v}}(t,\mathbf{x}), \qquad (2)$$

$$\overline{\nabla p(t,\mathbf{x},\mathbf{v}_0)} = \overline{\nabla p}(t,\mathbf{x}). \tag{3}$$

Moreover, by noting that $\overline{\overline{v}} = \overline{v}$ and $\overline{\overline{p}} = \overline{p}$, it easily checked that:

Lemma

The fluctuation's mean vanishes, i.e.

$$orall (t, \mathbf{x}) \in Q, \quad \overline{\mathbf{v}'(t, \mathbf{x}, \mathbf{v}_0)} = 0, \quad \overline{p'(t, \mathbf{x}, \mathbf{v}_0)} = 0.$$

2) Averaged NSE. Note that $E_{\mu}(\mathbf{f}) = \mathbf{f}E_{\mu}(1) = \mathbf{f}$. By the Reynolds rules and the previous lemma:

$$\begin{cases} \partial_t \overline{\mathbf{v}} + (\overline{\mathbf{v}} \cdot \nabla) \overline{\mathbf{v}} - \nu \Delta \overline{\mathbf{v}} + \nabla \overline{p} &= -\nabla \cdot \boldsymbol{\sigma}^{(\mathbf{R})} + \mathbf{f} & \text{in } Q, \\ \nabla \cdot \overline{\mathbf{v}} &= 0 & \text{in } Q, \\ \overline{\mathbf{v}} &= 0 & \text{on } \Gamma, \\ \overline{\mathbf{v}} &= \overline{\mathbf{v}_0} & \text{at } t = 0, \end{cases}$$

where

$$\sigma^{(\mathrm{R})} = \overline{\mathbf{v}' \otimes \mathbf{v}'}$$

is the Reynolds stress.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Let $\mathbf{x}_0, \mathbf{x} \in \Omega$, $\mathbf{r}_1, \dots, \mathbf{r}_{n-1}$ s.t $\mathbf{x}_0 + \mathbf{r}_i \in \Omega$, $\mathbf{w}(t, \mathbf{x}) = \mathbf{v}(t, \mathbf{x}) - \mathbf{v}(t, \mathbf{x}_0)$, $\mathbf{w} = (w_1, w_2, w_3)$. Let $B^{(n)} = (B^{(n)}_{i_1 \dots i_n})_{1 \le i_1 \dots i_n}$ the n-order correlation tensor: $B^{(n)}_{i_1 \dots i_n}(t, \mathbf{x}_0, \mathbf{r}_1, \dots, \mathbf{r}_{n-1}) = \overline{w_{i_1}(t, \mathbf{x}_0)w_{i_2}(t, \mathbf{x}_0 + \mathbf{r}_1) \dots w_{i_n}(t, \mathbf{x}_0 + \mathbf{r}_{n-1})}$, We assume that the turbulence is i) stationnary, ii) homogeneous:

- i) The correlation tensors are invariant under time translation, which yields they do not depend on t,
- ii) The mean field $\overline{\mathbf{w}}$ only depends on $\mathbf{r} = \mathbf{x} \mathbf{x}_0$, and is steady, so that $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ and the correlation tensors are invariant under spatial translations,

 $\forall \mathbf{r}, -B^{(n)}(\mathbf{x}_0, \mathbf{r}_1 + \mathbf{r}, \cdots, \mathbf{r}_{n-1} + \mathbf{r}) = B^{(n)}(\mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1}).$

so far the quantities above are well defined; $a_{B}, a_{B}, a_{$

Let $\mathbf{x}_0, \mathbf{x} \in \Omega$, $\mathbf{r}_1, \cdots, \mathbf{r}_{n-1}$ s.t $\mathbf{x}_0 + \mathbf{r}_i \in \Omega$, $\mathbf{w}(t, \mathbf{x}) = \mathbf{v}(t, \mathbf{x}) - \mathbf{v}(t, \mathbf{x}_0)$, $\mathbf{w} = (w_1, w_2, w_3)$. Let $B^{(n)} = (B^{(n)}_{i_1 \cdots i_n})_{1 \le i_1 \cdots i_n}$ the n-order correlation tensor: $B^{(n)}_{i_1 \cdots i_n}(t, \mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1}) = \overline{w_{i_1}(t, \mathbf{x}_0)w_{i_2}(t, \mathbf{x}_0 + \mathbf{r}_1) \cdots w_{i_n}(t, \mathbf{x}_0 + \mathbf{r}_{n-1})}$, We assume that the turbulence is i) stationnary, ii) homogeneous:

- i) The correlation tensors are invariant under time translation, which yields they do not depend on t,
- ii) The mean field $\overline{\mathbf{w}}$ only depends on $\mathbf{r} = \mathbf{x} \mathbf{x}_0$, and is steady, so that $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ and the correlation tensors are invariant under spatial translations,

 $\forall \mathbf{r}, B^{(n)}(\mathbf{x}_0, \mathbf{r}_1 + \mathbf{r}, \cdots, \mathbf{r}_{n-1} + \mathbf{r}) = B^{(n)}(\mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1}).$

so far the quantities above are well defined, $a_{B}, a_{B}, a_{$

Let $\mathbf{x}_0, \mathbf{x} \in \Omega$, $\mathbf{r}_1, \dots, \mathbf{r}_{n-1}$ s.t $\mathbf{x}_0 + \mathbf{r}_i \in \Omega$, $\mathbf{w}(t, \mathbf{x}) = \mathbf{v}(t, \mathbf{x}) - \mathbf{v}(t, \mathbf{x}_0)$, $\mathbf{w} = (w_1, w_2, w_3)$. Let $B^{(n)} = (B^{(n)}_{i_1 \dots i_n})_{1 \le i_1 \dots i_n}$ the n-order correlation tensor: $B^{(n)}_{i_1 \dots i_n}(t, \mathbf{x}_0, \mathbf{r}_1, \dots, \mathbf{r}_{n-1}) = \overline{w_{i_1}(t, \mathbf{x}_0)w_{i_2}(t, \mathbf{x}_0 + \mathbf{r}_1) \cdots w_{i_n}(t, \mathbf{x}_0 + \mathbf{r}_{n-1})}$, We assume that the turbulence is i) stationnary, ii) homogeneous:

- i) The correlation tensors are invariant under time translation, which yields they do not depend on t,
- ii) The mean field $\overline{\mathbf{w}}$ only depends on $\mathbf{r} = \mathbf{x} \mathbf{x}_0$, and is steady, so that $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ and the correlation tensors are invariant under spatial translations,

$$\forall \mathbf{r}, \quad B^{(n)}(\mathbf{x}_0, \mathbf{r}_1 + \mathbf{r}, \cdots, \mathbf{r}_{n-1} + \mathbf{r}) = B^{(n)}(\mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1}).$$

so far the quantities above are well defined.

Remark

For homogeneous turbulence, $B^{(n)}(\mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$ do not depend on \mathbf{x}_0 , so that it will be denoted by $B^{(n)}(\mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$.

In the following, we will focus on

- a proper definition of isotropic turbulence, which expresses some invariance of the turbulence under isometries,
- analyse the structure of the 2-order correlation tensor

$$B_{ij}^{(2)}(\mathbf{r}) = B_{ij}(\mathbf{r}) = \overline{w_i(\mathbf{x})w_j(\mathbf{x}+\mathbf{r})},$$

that contains the main informations about the mean energy, hence the intensity of the turbulence. In particular, we seek for an asymptotic expansion of B when

$\textbf{r} \rightarrow 0$

・ロン ・回 と ・ ヨン ・ ヨン

Remark

For homogeneous turbulence, $B^{(n)}(\mathbf{x}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$ do not depend on \mathbf{x}_0 , so that it will be denoted by $B^{(n)}(\mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$.

In the following, we will focus on

- a proper definition of isotropic turbulence, which expresses some invariance of the turbulence under isometries,
- ② analyse the structure of the 2-order correlation tensor

$$B_{ij}^{(2)}(\mathbf{r}) = B_{ij}(\mathbf{r}) = \overline{w_i(\mathbf{x})w_j(\mathbf{x}+\mathbf{r})},$$

that contains the main informations about the mean energy, hence the intensity of the turbulence. In particular, we seek for an asymptotic expansion of B when

$\bm{r} \to 0$

ヘロン 人間 とくほ とく キャー

1) Dual action. Let $R_n = (\mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$, $H_n = (\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_n) \in \mathbb{R}^{3n} = \mathbb{R}^3 \times \cdots \times \mathbb{R}^3$, $\mathbf{h}_i = (h_{i1}, h_{i2}, h_{i3})$.

The dual action of $B^{(n)}$ at R_n is defined by

$$[B^{(n)}(R_n), H_n] = B^{(n)}_{i_1 \cdots i_n}(R_n) h_{i_1 1} \cdots h_{i_p p},$$

or equivalently

 $[B^{(n)}(R_n),H_n]=B^{(n)}(R_n):\mathbf{h}_1\otimes\mathbf{h}_2\otimes\ldots\ldots\otimes\mathbf{h}_n,$

where " : " stands for the contracted tensor product, " \otimes " the tensor product.

Example. In the case of $B^2(\mathbf{r}) = (B_{ij}^{(2)}(\mathbf{r}))_{1 \le ij \le 3}$, then

 $[B^{(2)}(\mathbf{r}), (\mathbf{h}, \mathbf{k})] = B^{(2)}_{ij}(\mathbf{r})h_ik_j = (B^{(2)}(\mathbf{r}) \cdot \mathbf{k}, \mathbf{h}),$

where $B^{(2)}(\mathbf{r}) \cdot \mathbf{h}$ denotes the product of the matrix $B^{(2)}(\mathbf{r})$ with the vector \mathbf{k} .

1) Dual action. Let $R_n = (\mathbf{r}_1, \cdots, \mathbf{r}_{n-1})$, $H_n = (\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_n) \in \mathbb{R}^{3n} = \mathbb{R}^3 \times \cdots \times \mathbb{R}^3$, $\mathbf{h}_i = (h_{i1}, h_{i2}, h_{i3})$.

The dual action of $B^{(n)}$ at R_n is defined by

$$[B^{(n)}(R_n), H_n] = B^{(n)}_{i_1 \cdots i_n}(R_n) h_{i_1 1} \cdots h_{i_p p},$$

or equivalently

 $[B^{(n)}(R_n),H_n]=B^{(n)}(R_n):\mathbf{h}_1\otimes\mathbf{h}_2\otimes\ldots\ldots\otimes\mathbf{h}_n,$

where " : " stands for the contracted tensor product, " \otimes " the tensor product.

Example. In the case of $B^2(\mathbf{r}) = (B^{(2)}_{ij}(\mathbf{r}))_{1 \le ij \le 3}$, then

$$[B^{(2)}(\mathbf{r}), (\mathbf{h}, \mathbf{k})] = B^{(2)}_{ij}(\mathbf{r})h_ik_j = (B^{(2)}(\mathbf{r}) \cdot \mathbf{k}, \mathbf{h}),$$

where $B^{(2)}(\mathbf{r}) \cdot \mathbf{h}$ denotes the product of the matrix $B^{(2)}(\mathbf{r})$ with the vector \mathbf{k} .

2) Isotropic fields. The mean field $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ is said isotropic if $\forall Q \in O_3(\mathbb{R}), \forall \mathbf{r}, \mathbf{u} \in \mathbb{R}^3, \quad (\overline{\mathbf{w}}(Q\mathbf{r}), Q\mathbf{u}) = (\overline{\mathbf{w}}(\mathbf{r}), \mathbf{u}).$ We set $r = |\mathbf{r}|.$

Theorem

Let $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ be isotropic. Then there exists a function $\mathbf{a} = \mathbf{a}(\mathbf{r})$ such that

 $\forall \mathbf{r} \neq \mathbf{0}, \quad \overline{\mathbf{w}}(\mathbf{r}) = a(r) \frac{\mathbf{r}}{r}.$

If $\overline{\mathbf{w}}$ is differentiable over $\mathbb{R}^3 \setminus B(0, r_0)$ $(r_0 > 0)$, is incompressible with respect to \mathbf{r} , then the function \mathbf{a} is constant over $\mathbb{R}^3 \setminus B(0, r_0)$. The unique differentiable isotropic incompressible vector field over \mathbb{R}^3 is equal to zero.

ヘロン 人間 とくほう 人 ヨン

2) Isotropic fields. The mean field $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ is said isotropic if $\forall Q \in O_3(\mathbb{R}), \forall \mathbf{r}, \mathbf{u} \in \mathbb{R}^3, \quad (\overline{\mathbf{w}}(Q\mathbf{r}), Q\mathbf{u}) = (\overline{\mathbf{w}}(\mathbf{r}), \mathbf{u}).$ We set $\mathbf{r} = |\mathbf{r}|.$

Theorem

Let $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ be isotropic. Then there exists a function $\mathbf{a} = \mathbf{a}(\mathbf{r})$ such that

$$\forall \mathbf{r} \neq 0, \quad \overline{\mathbf{w}}(\mathbf{r}) = a(r) \frac{\mathbf{r}}{r}.$$

If \overline{w} is differentiable over $\mathbb{R}^3 \setminus B(0, r_0)$ ($r_0 > 0$), is incompressible with respect to \mathbf{r} , then the function \mathbf{a} is constant over $\mathbb{R}^3 \setminus B(0, r_0)$. The unique differentiable isotropic incompressible vector field over \mathbb{R}^3 is equal to zero.

・ロン ・回 と ・ ヨン ・ ヨン

2) Isotropic fields. The mean field $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ is said isotropic if $\forall Q \in O_3(\mathbb{R}), \forall \mathbf{r}, \mathbf{u} \in \mathbb{R}^3, \quad (\overline{\mathbf{w}}(Q\mathbf{r}), Q\mathbf{u}) = (\overline{\mathbf{w}}(\mathbf{r}), \mathbf{u}).$ We set $\mathbf{r} = |\mathbf{r}|.$

Theorem

Let $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ be isotropic. Then there exists a function $\mathbf{a} = \mathbf{a}(\mathbf{r})$ such that

 $\forall \mathbf{r} \neq 0, \quad \overline{\mathbf{w}}(\mathbf{r}) = a(r) \frac{\mathbf{r}}{r}.$

If $\overline{\mathbf{w}}$ is differentiable over $\mathbb{R}^3 \setminus B(0, r_0)$ $(r_0 > 0)$, is incompressible with respect to \mathbf{r} , then the function \mathbf{a} is constant over $\mathbb{R}^3 \setminus B(0, r_0)$. The unique differentiable isotropic incompressible vector field over \mathbb{R}^3 is equal to zero.

・ロン ・回 と ・ ヨン ・ ヨン

2) Isotropic fields. The mean field $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ is said isotropic if $\forall Q \in O_3(\mathbb{R}), \forall \mathbf{r}, \mathbf{u} \in \mathbb{R}^3, \quad (\overline{\mathbf{w}}(Q\mathbf{r}), Q\mathbf{u}) = (\overline{\mathbf{w}}(\mathbf{r}), \mathbf{u}).$ We set $\mathbf{r} = |\mathbf{r}|.$

Theorem

Let $\overline{\mathbf{w}} = \overline{\mathbf{w}}(\mathbf{r})$ be isotropic. Then there exists a function $\mathbf{a} = \mathbf{a}(\mathbf{r})$ such that

 $\forall \mathbf{r} \neq 0, \quad \overline{\mathbf{w}}(\mathbf{r}) = a(r) \frac{\mathbf{r}}{r}.$

If $\overline{\mathbf{w}}$ is differentiable over $\mathbb{R}^3 \setminus B(0, r_0)$ ($r_0 > 0$), is incompressible with respect to \mathbf{r} , then the function \mathbf{a} is constant over $\mathbb{R}^3 \setminus B(0, r_0)$. The unique differentiable isotropic incompressible vector field over \mathbb{R}^3 is equal to zero.

イロト イポト イラト イラト

3) Isotropic fields. We say that $B^{(n)}$ is isotropic if

$$orall R_n \in \mathbb{R}^{3(n-1)}, \quad orall U_n \in \mathbb{R}^{3n}, \quad orall Q \in O_3(\mathbb{R}), \ \left[B^{(n)}(QR_n), QU_n
ight] = \left[B^{(n)}(R_n), U_n
ight]$$

Theorem

Let $B(\mathbf{r}) = (B_{ij}(\mathbf{r}))_{1 \le i,j \le 3}$ be a 2-order isotropic tensor field. Then there exists two functions $B_d = B_d(r), B_n = B_n(r)$ such that,

$$orall \mathbf{r}
eq 0, \quad B(\mathbf{r}) = (B_d(r) - B_n(r)) rac{\mathbf{r} \otimes \mathbf{r}}{r^2} + B_n(r) \mathrm{I}_3.$$

3) Isotropic fields. We say that $B^{(n)}$ is isotropic if

$$orall R_n \in {\rm I\!R}^{3(n-1)}, \quad orall U_n \in {\rm I\!R}^{3n}, \quad orall Q \in O_3({\rm I\!R}), \ \left[B^{(n)}(QR_n), QU_n
ight] = \left[B^{(n)}(R_n), U_n
ight]$$

Theorem

Let $B(\mathbf{r}) = (B_{ij}(\mathbf{r}))_{1 \le i,j \le 3}$ be a 2-order isotropic tensor field. Then there exists two functions $B_d = B_d(r), B_n = B_n(r)$ such that,

$$\forall \mathbf{r} \neq 0, \quad B(\mathbf{r}) = (B_d(r) - B_n(r)) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2} + B_n(r) \mathbf{I}_3.$$

・ロン ・回 と ・ ヨン ・ ヨン

Definition

Homogeneous turbulence is already defined. It is said said to be isotropic, if \overline{w} is isotropic and for all n, $B^{(n)}$ is isotropic

Consequence: The mean field vanishes in Ω , and the NSE reduces to

_emma

The following relations hold:

$$B_d(r) = \overline{|w_1(r, 0, 0)|^2},$$

$$B_n(r) = \overline{|w_2(r, 0, 0)|^2} = \overline{|w_3(r, 0, 0)|^2},$$

$$\forall i \neq j, \quad \overline{w_i(r, 0, 0)w_j(r, 0, 0)} = 0.$$

Definition

Homogeneous turbulence is already defined. It is said said to be isotropic, if $\overline{\mathbf{w}}$ is isotropic and for all n, $B^{(n)}$ is isotropic

Consequence: The mean field vanishes in Ω , and the NSE reduces to

 $\nabla \cdot \boldsymbol{\sigma}^{(\mathrm{R})} + \nabla \overline{\boldsymbol{p}} = \mathbf{f}.$

Lemma

The following relations hold:

$$B_d(r) = \overline{|w_1(r, 0, 0)|^2},$$

$$B_n(r) = \overline{|w_2(r, 0, 0)|^2} = \overline{|w_3(r, 0, 0)|^2},$$

$$\forall i \neq j, \quad w_i(r, 0, 0)w_j(r, 0, 0) = 0.$$

Definition

Homogeneous turbulence is already defined. It is said said to be isotropic, if $\overline{\mathbf{w}}$ is isotropic and for all n, $B^{(n)}$ is isotropic

Consequence: The mean field vanishes in Ω , and the NSE reduces to

 $\nabla \cdot \boldsymbol{\sigma}^{(\mathrm{R})} + \nabla \overline{p} = \mathbf{f}.$

Lemma

The following relations hold:

$$B_{d}(r) = \overline{|w_{1}(r,0,0)|^{2}},$$

$$B_{n}(r) = \overline{|w_{2}(r,0,0)|^{2}} = \overline{|w_{3}(r,0,0)|^{2}},$$

$$\forall i \neq j, \quad \overline{w_{i}(r,0,0)w_{j}(r,0,0)} = 0.$$
(4)
(5)
(6)

Corollary

We deduce

$$B_d(0) = B_n(0) = 0,$$

$$B'_d(0) = B'_n(0) = 0,$$
(7)
(8)

Theorem

Assume that the mean pressure gradient is constant inside Ω . Then there exists a C^1 scalar function E = E(r) such that E(0) = E'(0) = 0 and such that

$$B(\mathbf{r}) = E(r)\frac{\mathbf{r}\otimes\mathbf{r}}{r^2} - \frac{3}{2}E(r)\mathbf{I}_3 + o(r^3).$$

Corollary

We deduce

$$B_d(0) = B_n(0) = 0,$$

$$B'_d(0) = B'_n(0) = 0,$$
(7)
(8)

Theorem

Assume that the mean pressure gradient is constant inside Ω . Then there exists a C^1 scalar function E = E(r) such that E(0) = E'(0) = 0 and such that

$$B(\mathbf{r}) = E(r)\frac{\mathbf{r}\otimes\mathbf{r}}{r^2} - \frac{3}{2}E(r)\mathbf{I}_3 + o(r^3).$$

Similarity

1) Dimensional bases. Only length and time are involved in this frame, heat being not considered and fluids being incompressible.

Definition

A length-time basis is a couple $b = (\lambda, \tau)$, where λ a given constant length and τ a constant time.

Definition

Let $\psi = \psi(t, \mathbf{x})$ (constant, scalar, vector, tensor...) be defined on $Q = [0, T_{\mathbb{K}}] \times \Omega$. The couple $(d_{\ell}(\psi), d_{\tau}(\psi))$ is such that

$$\boldsymbol{\psi}_{b}(t',\mathbf{x}') = \lambda^{-d_{\ell}(\boldsymbol{\psi})} \tau^{-d_{\tau}(\boldsymbol{\psi})} \boldsymbol{\psi}(\tau t',\lambda \mathbf{x}'),$$

where $(t', \mathbf{x}') \in Q_b = \left[0, \frac{T_K}{\tau}\right] \times \frac{1}{\lambda}\Omega$, is dimensionless. We say that $\psi_b = \psi_b(t', \mathbf{x}')$ is the *b*-dimensionless field deduced from ψ .

소리가 소문가 소문가 소문가

Similarity

1) Dimensional bases. Only length and time are involved in this frame, heat being not considered and fluids being incompressible.

Definition

A length-time basis is a couple $b = (\lambda, \tau)$, where λ a given constant length and τ a constant time.

Definition

Let $\psi = \psi(t, \mathbf{x})$ (constant, scalar, vector, tensor...) be defined on $Q = [0, T_{\mathbb{K}}] \times \Omega$. The couple $(d_{\ell}(\psi), d_{\tau}(\psi))$ is such that

$$\psi_b(t', \mathbf{x}') = \lambda^{-d_\ell(\psi)} \tau^{-d_\tau(\psi)} \psi(\tau t', \lambda \mathbf{x}'),$$

where $(t', \mathbf{x}') \in Q_b = \left[0, \frac{T_{\mathbb{K}}}{\tau}\right] \times \frac{1}{\lambda}\Omega$, is dimensionless. We say that $\psi_b = \psi_b(t', \mathbf{x}')$ is the *b*-dimensionless field deduced from ψ .

(日) (周) (王) (王)

2) Kolmogorov scales. The question is the behavior of E(r) when r differs from 0.

Following Kolmogorov, we assume that E is entirely driven in $[0, \ell]$, ℓ being the Mixing Prandtl Length, by the kinematic viscosity ν and the mean dissipation at \mathbf{x}_0 , specified by

 $\mathscr{E} = \overline{2\nu |D\mathbf{v}(\mathbf{x}_0)|^2}.$

Let $b_0 = (\lambda_0, \tau_0)$, where

$$\lambda_0 = \nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_0 = \nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}}.$$

Therefore,

$\forall r' \in [0, \frac{\ell}{\lambda_0}[, \quad E(\lambda_0 r') = (\nu \mathscr{E})^{\frac{1}{2}} E_{b_0}(r'),$

where E_{b_0} is a universal profil

ヘロン 人間 とくほど くほとう

Similarity

2) Kolmogorov scales. The question is the behavior of E(r) when r differs from 0.

Following Kolmogorov, we assume that E is entirely driven in $[0, \ell]$, ℓ being the Mixing Prandtl Length, by the kinematic viscosity ν and the mean dissipation at \mathbf{x}_0 , specified by

 $\mathscr{E} = \overline{2\nu |D\mathbf{v}(\mathbf{x}_0)|^2}.$

Let $b_0 = (\lambda_0, \tau_0)$, where

$$\lambda_0 = \nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_0 = \nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}}.$$

Therefore,

$\forall r' \in [0, rac{\ell}{\lambda_0}[, \quad E(\lambda_0 r') = (\nu \mathscr{E})^{rac{1}{2}}E_{b_0}(r'),$

where E_{b_0} is a universal profil

2) Kolmogorov scales. The question is the behavior of E(r) when r differs from 0.

Following Kolmogorov, we assume that E is entirely driven in $[0, \ell]$, ℓ being the Mixing Prandtl Length, by the kinematic viscosity ν and the mean dissipation at \mathbf{x}_0 , specified by

 $\mathscr{E} = \overline{2\nu |D\mathbf{v}(\mathbf{x}_0)|^2}.$

Let $b_0 = (\lambda_0, \tau_0)$, where

$$\lambda_0 = \nu^{\frac{3}{4}} \mathscr{E}^{-\frac{1}{4}}, \quad \tau_0 = \nu^{\frac{1}{2}} \mathscr{E}^{-\frac{1}{2}}.$$

Therefore,

$$\forall r' \in [0, rac{\ell}{\lambda_0}[, \quad E(\lambda_0 r') = (\nu \mathscr{E})^{rac{1}{2}} E_{b_0}(r'),$$

where E_{b_0} is a universal profil.

소리가 소문가 소문가 소문가

3) Similarity assumption and the law of the 2/3. We assume the following

 $\bullet \ \lambda_0 << \ell$

2 there exists r_1, r_2 , s.t. $\lambda_0 \ll r_1 \ll r_2 \ll \ell$, and for all lenght-times bases $b_1 = (\lambda_1, \tau_1)$ and $b_2 = (\lambda_2, \tau_2)$,

$$\mathscr{E}_{b_1} = \mathscr{E}_{b_2} \Rightarrow \forall r' \in \left[\frac{r_1}{\lambda_1}, \frac{r_2}{\lambda_1}\right] \cap \left[\frac{r_1}{\lambda_2}, \frac{r_2}{\lambda_2}\right], E_{b_1}(r') = E_{b_2}(r').$$

In the following, we set

$$r_{1,0}' = rac{r_1}{\lambda_0}, \quad r_{2,0}' = rac{r_2}{\lambda_0}.$$

(日) (周) (王) (王)

3) Similarity assumption and the law of the 2/3. We assume the following

 $\bullet \ \lambda_0 << \ell$

2 there exists r_1, r_2 , s.t. $\lambda_0 << r_1 << r_2 << \ell$, and for all lenght-times bases $b_1 = (\lambda_1, \tau_1)$ and $b_2 = (\lambda_2, \tau_2)$,

$$\mathscr{E}_{b_1} = \mathscr{E}_{b_2} \Rightarrow \forall r' \in \left[\frac{r_1}{\lambda_1}, \frac{r_2}{\lambda_1}\right] \cap \left[\frac{r_1}{\lambda_2}, \frac{r_2}{\lambda_2}\right], E_{b_1}(r') = E_{b_2}(r').$$

In the following, we set

$$r'_{1,0} = \frac{r_1}{\lambda_0}, \quad r'_{2,0} = \frac{r_2}{\lambda_0}.$$

(日) (周) (王) (王)

Theorem

If the similarity assumption holds, then there exists a constant C such that

$$\forall r' \in [r'_{1,0}, r'_{2,0}], \quad E_{b_0}(r') = C(r')^{\frac{2}{3}},$$

which yields

$$\forall r \in [r_1, r_2], \quad E(r) = C(\mathscr{E}r)^{\frac{2}{3}}.$$

・ロン ・回 と ・ ヨン ・ ヨン