
On a Continuous Deconvolution Equation for

Turbulence Models

Roger Lewandowski
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Abstract

We introduce in this paper the notion of ”Continuous Deconvolution Equation”
in a 3D periodic case. We first show how to derive this new equation from the Van
Cittert algorithm. Next we show many mathematical properties of the solution to this
equation. Finally, we show how to use it to introduce a new turbulence model for high
Reynolds numbers flows.

1 Introduction and main facts

1.1 General orientation

It is well known since Kolmogorov’s work [25], that to simulate an incompressible 3D
turbulent flow using the Navier-Stokes equations,

(1.1)


∂tu + (u · ∇) u− ν∆u +∇p = f ,

∇ · u = 0,
u(0,x) = u0,

requires about Nb = Re9/4 points in a numerical grid (details are available in [19] or [35]).
Here, Re = UL/ν denotes the Reynolds number (see a rigorous definition in [IV.i], below
in the text).

For realitic flows, such as those involved in mechanical engineering or in geophysics, Re is
of order 108− 1010, sometimes much more. Therefore, the number of points Nb necessary
for the simulation is hudge and yields computational algorithms, the memory they need
exceeding too much the memory size of the most powerfull modern computer. This is why
one needs ”turbulent models” to reduce the appropriate grid points number, to simulate
at least averages a turbulent flows.

There exists two main famillies of turbulent models : statistical models, such as the well
known k − ε model (see in [31] and [35]), and Large Eddy Simulations models (see in [9]
and [36]), known as ”LES models”. This paper deals with LES models familly. The idea
behind LES, is to simulate the ”large scale” of the flow, trying to keep energy informations
on ”small” scales. Eddy viscosities are mostly involved in those models.

Many models also emerged without eddy viscosity, such as Bardina’s models [3] or related
(see in [32], [28], [27] [26]), as well as the familly of α-models and related (see for instance
in [17], [21], [24], [13], [12]). All of them are still consider as LES models. They mainly
aim to regularize the nonlinear term (u · ∇) u in the Navier-Stokes Equations.

This idea takes inspiration in the work of Jean Leray in 1934 [30]. At this time, comput-
ers did not exist and people were not thinking at numerical simulations for flows around
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an aircraft wing or for wether forecasts. They mostly were trying to find analytical so-
lutions to the 3D Navier-Stokes equations in cases of laminar flows or when geometrical
symmetries occur as well as when special 2D approximations were legitimate, the general
case remaining out of reach. Such calculus are well explained in the famous book of G.
Batchelor [4]. Therefore, the question arises to know if the Navier-Stokes Equations have
a solution or not in the general case, even if it is not possible to give analytical formula
for these solutions.

Jean Leray shown the existence of what we call today ”a dissipative weak solution” to
the Navier-Stokes equation in the whole space R3 (see the definition 4.1 below in the
text). To do this, he first constructed approximated smooth solutions to the Navier-
Stokes Equations. Using secondly some compactness arguments, he considered the limit
of a subsequence, showing that this limit is a dissipative weak solution, called formerly
”Turbulent solution”. We mean by ”dissipative” solution, a distributional solution satis-
fying the energy inequality (see (4.6) below in the text).

We still do not know if there is a unique dissipative solution in the general case, and
also if it does or not develop singularities in finite time. The question of singularities
for particular dissipative solutions called ”suitable weak solutions”, is studied in the very
famous paper by Caffarelli-Kohn-Nirenberg [11].

1.2 Towards the models

To build approximated smooth solutions, J. Leray got the idea to replace the nonlinear
term (u · ∇) u by ((u ? ρε) · ∇) u, where (ρε)ε>0 is a sequence of mollifiers: doing like this,
he introduced the first LES models without knowing it, a long time before Smagorinsky
published his first paper in 1953 [37], Smagorinsky being often considered as a main pioneer
of LES. This idea of smoothing the nonlinear term can be generalized in many other cases,
such as the periodic case that we consider in this paper. In this case, one can regularize
the Navier-Stokes equations by using the so called ”Helmholtz equation”.

Let u be an incompressible periodic field u (∇·u = 0), the mean value of which, m(u) (see
(2.2) below in the text), being equal to zero. Notice that in the remainder, all fields we
consider will have a zero mean value for compatibility reasons. We do not shall mention
it every time so far no risk of confusion occurs. Such a field u being given, let us consider
the Stokes Problem

(1.2)

{
Au = −α2∆u + u +∇π = u,

∇ · u = 0.

The parameter α is the ”small parameter”. It is generally agreed that α must be taken
about the numerical grid size in numerical simulations, even if this claim is sometimes
subject to caution.

The Leray-α model is the one where the nonlinear term in the Navier-Stokes Equations
is regularized by taking (u · ∇) u in place of (u · ∇) u. The Bardina’s model of order
zero is the one where one replaces the nonlinear term by (u · ∇) u. The solutions of these
approximated Navier-Stokes Equations are supposed to compute approximations of mean
values of pressure and velocity fields. To see this, let us take the average of (1.1). We get
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the following ”true” equation for u,

(1.3)


∂tu + (u · ∇) u− ν∆u +∇p = f ,

∇ · u = 0,
u(0,x) = u0,

an equation that we can rephrase as

(1.4)


∂tu +Bα(u,u)− ν∆u +∇p = f +Bα(u,u)− (u · ∇) u,

∇ · u = 0,
u(0,x) = u0,

where Bα(u,u) is a nonlinear term depending on α and ”regular enough”. In the model,
Bα(u,u) must replace (u · ∇) u, and Rα = Bα(u,u) − (u · ∇) u is a residual stress that
we neglect for more or less good physical or numerical reasons. Then the principle of the
model consists in simulating flows by computing an approximation of u and p, denoted by
uα and pα, solution of

(1.5)


∂tuα +Bα(uα,uα)− ν∆uα +∇pα = f ,

∇ · uα = 0,
uα(0,x) = u0.

Such a model is relevant when

• Bα correctly filters high frequencies and describes with accuracy low frequencies,

• System (1.5) has a unique ”smooth enough” solution when u0 ∈ L2
loc (therefore u0 ∈

H2
loc). We mean by ”smooth enough”, u ∈ L∞([0, T ], (H1

loc)
3) ∩ L2([0, T ], (H2

loc)
3),

p ∈ L2([0, T ], H1
loc), on any time interval [0, T ],

• the unique solution (uα, pα) to (1.5) satisfies an energy balance like (4.15) (and not
only an energy inequality like (4.6), see below in the text), for α fixed,

• there is a subsequence of the sequence (uα, pα)α>0 which converges (in a certain
meaning) to a dissipative weak solution to (1.1) when α goes to zero.

We must say that there are many Bα such that the last three points of the previous
program are satisfied. But so far we want to use these equations to simulate realistic
flows, we must check the first point. Unfortunatly, it does not exist a rigorous definition
to make this notion precise, also linked to the notion of ”cut frequency”.

1.3 Approximate Deconvolution Models

In 1999 and later, Adams and Stolz ([1], [39], [38], [2] ) were considering ”the Bardina’s
model of order zero” where Bα(u,u) = ∇ · (u⊗ u) = (u · ∇)u. In order to improve
the rebuilding of the true field in numerical simulations, they got the idea to apply a
”deconvolution operator DN”. To do it, they introduced a parameter N of deconvolution,
using the discrete ”Van Cittert algorithm” (see in [10]),

(1.6)

{
w0 = u,

wN+1 = wN + (u−A−1wN ),

3



where the operator A is defined in (1.2). The deconvolution operator is defined byHN (u) =
wN = DN (u). It is fixed such that for a given incompressible field u, HN (u) = DN (u)
goes to u in a certain meaning (see section 3.1 below). Therefore, the model consists in
replacing the nonlinear term by

Bα,N (u,u) = ∇ · (DN (u)⊗DN (u)),

yielding the model

(1.7)


∂tuα,N +∇ · (DN (uα,N )⊗DN (uα,N ))− ν∆uα,N +∇pα,N = DN (f),
∇ · uα,N = 0,
uα,N (0,x) = DN (u0) = HN (u0).

This model is called an ”Approximate Deconvolution Model”. Existence, regularity and
uniqueness of a solution to this model for general deconvolution order N , were proved by
Dunca-Epshteyn in 2006 [16]. The case N = 0 was already studied before in details in [26],
[27], [32]. Questions of accuracy and error estimates were also studied in [28] for general
order of deconvolution N .

The exciting point in model (1.7), is that it formally ”converges” to the true averaged
Navier-Stokes Equations (1.3) when N goes to infinity and α is fixed. A suitable choice
of the deconvolution order N combined with a suitable choice of α, make hope that we
can approach with a good accuracy the true average of the real field, defined by the
Navier-Stokes Equations (expecting uniqueness of the dissipative solution).

Therefore, we had to investigate the problem of the convergence of (uα,N , pα,N )N∈N to a
solution of the mean Navier-Stokes Equations (1.3) when N goes to infinity. This problem
is very tough, and we got very recently ideas to solve it [8]. Earlier, we got the idea in [29]
to introduce a simplified deconvolution model, where the nonlinear term is (HN (u) · ∇) u,
yielding the model

(1.8)


∂tuα,N + (HN (uα,N ) · ∇) uα,N − ν∆uα,N +∇pα,N = HN (f),
∇ · uα,N = 0,
uα,N (0,x) = HN (u0).

We proved in [29] existence, uniqueness and regularity of a solution (uα,N , pα,N ) to (1.8),
and also that a subsequence of the sequence (uα,N , pα,N )N∈N converges in a certain mean-
ing, to a dissipative weak solution of the Navier-Stokes Equations for a fixed α, when N
goes to infinity.

1.4 The deconvolution equation and ouline of the remainder

All the models we displaid above have been well studied in the periodic case. This calls
for the question of adapting them in cases of realistic boundary conditions.

We have considered an ocean forced by the atmosphere, under the rigid lid hypothesis with
a mean flux condition at the surface (see in [31]). As we started working on this question, it
appears soon that we were not able to do the job for the Adams-Stolz deconvolution model
(1.7), often known as ADM model. Indeed, if we keep the natural boundary condition at
the surface, we cannot write an identity like∫

Ω
∇ · (DN (u)⊗DN (u)) · u = 0,
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though it is the key to get the L2([0, T ], (H2)3)∩L∞([0, T ], (H1)3) estimate in the periodic
case. Therefore, even the modelization of the boundary condition remains an open prob-
lem, to derive an ADM model which fits with the physics and having good mathematical
properties.

Facing the difficulty that infers the question of boundary conditions in model (1.7), we
turned to the other deconvolution model we have in hand, the model (1.8), although
we take ADM model (1.7) for the best one in this model’s class. Indeed, (1.7) really
approaches the averaged Navier-Stokes Equations for large deconvolution’s order making
it a real LES model, at least formally, when model (1.8) approaches the real Navier-Stokes
Equations, fading the role of α, a fact we cannot physically interpret, although it shows a
good numerical behavior (see in [5]).

We next thought that fixing the Van Cittert algorithm with realistic boundary conditions
would be easy. Unfortunatly, we had troubles when writting it under the form (1.6),
because precisely of the boundary conditions. This is why we decided to replace the Van
Cittert Algorithm by a continuous variational problem. Our key observation is that this
algorithm can be written under the form

(1.9) −α2

(
∆wN+1 −∆wN

δτ

)
+ wN+1 +∇πN+1 = u,

with δτ = 1. This is precisely the finite difference equation corresponding to the continuous
equation

(1.10)


−α2∆

(
∂w
∂τ

)
+ w +∇π = u,

∇ ·w = 0,
w(0,x) = u.

We set
Hτ (u) = w(τ,x).

The parameter τ is a non dimensional parameter. We call it ”deconvolution parameter”.
Equation (1.10) is called the ”deconvolution equation”. The corresponding LES model
becomes

(1.11)


∂tuα,τ + (Hτ (uα,τ ) · ∇) uα,τ − ν∆uα,τ +∇pα,τ = Hτ (f),
∇ · uα,τ = 0,
uα,τ (0,x) = Hτ (u0).

This model appears first in [7] and [6], in the case of the ocean. It also constitutes a part
of the PhD thesis of A. -C. Bennis [5], who made very good numerical tests in 2D cases
with the software FreeFem++ [23], showing that this model deserves constant numerical
investigations in realistic 3D situations, compared with in situ data, a work which remains
to be done.

The goal of the remainder of this paper is to study in details the deconvolution equation
and the related model (1.11) in the 3D periodic case. For pedagogical reasons and for the
simplicity, we study the deconvolution equation in the scalar case. Thanks we are in the
periodic case, we can express the solution of this equation in term of Fourier’s series. The
same analysis holds for incompressible 3D fields.
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We next show the existence and the uniqueness of a solution (uα,τ , pα,τ ) to problem (1.11)
for α and τ fixed, solution ”regular enough”. We finish this report by showing that there
exists a sequence τn which goes to infinity when n goes to infinity, and such that the
sequence (uα,τn , pα,τn)n∈N converges to a dissipative weak solution to the Navier-Stokes
Equations when n goes to infinity, always when α is fixed.

The rest of the paper is organized as follows. We start by giving some mathematical
tools such as the space functions we are working with, the Helmholtz equation. We next
turn to the study of the continuous deconvolution equation. As we already said, we show
facts in the scalar case for the sake of simplicity and clarity, so far the generalization to
incompressible fields is straightforward. In a last section, we study the model (1.11) and
prove the claimed results.
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2 Mathematical tools

2.1 General Background

Let L ∈ R?
+, Ω = [0, L]3 ⊂ R3. We denote by (e1, e2, e3) the orthonormal basis of

R3, x = (x1, x2, x3) ∈ R3 the standard point in R3. Let us first start with some basic
definitions.

[II.i] A function u : R3 → C is said to be Ω-periodic if and only if for all x ∈ R3, for
all (p, q, r) ∈ Z3 one has u(x + L(p e1 + q e2 + r e3)) = u(x).

[II.ii] Dper denotes all functions Ω-periodic of class C∞.

[II.iii] We put T3 = 2πZ3/L. Let T3 be the torus defined by T3 =
(
R3/T3

)
.

[II.iv] When p ∈ [1,∞[, we denote by Lp(T3) the space function defined by

Lp(T3) = {u : R3 → C, u ∈ Lploc(R
3), u is Ω− periodic},

equipped with the norm

||u||0,p =
(

1
L3

∫
T3

|u(x)|pdx
) 1
p

.

When p = 2, L2(T3) is an Hermitian space with the hermitian product

(2.1) (u, v) =
1
L3

∫
T3

u(x)v(x)dx.
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[II.v] Let u ∈ L1(T3). We put m(u) =
∫

Ω
u(x)dx.

[II.vi] Let s ∈ R+ We denote by Hs
per,0(R3), the space

(2.2) Hs
per,0(R3) = {u : R3 → C, u ∈ Hs

loc(R3), u is Ω− periodic, m(u) = 0}.

The space Hs
per,0(R3) is equipped by the induced topology of the classical space Hs(T3).

[II.vii] For k = (k1, k2, k3) ∈ T3, we put

(2.3) |k|2 = k2
1 + k2

2 + k2
3, |k|∞ = sup

i
|ki|,

In = {k ∈ T3; |k|∞ ≤ n}.

[II.viii] We say that a Ω-periodic function P is a trigonometric polynomial if there exists
n ∈ N and coefficients ak, k ∈ In, and such that P =

∑
k∈In ake

i k·x. The degree
of P is the greatest q such that there is a k with |k|∞ = q and ak 6= 0.

[II.ix] We denote by Vn the finite dimensional space of all trigonometric polynomial of
degree less than n with mean value equal to zero,

Vn = {u =
∑
k∈In

uke
i k·x, u0 = 0},

and IPn the orthogonal projection from L2(T3) onto his closed subspace Vn.

[II.x] Let us put I3 = T ?3 = (2πZ3/L) \ {0}.

A real number s being given, we consider the space function IHs defined by

(2.4) IHs =

u : R3 → C, u =
∑
k∈T3

uke
i k·x, u0 = 0,

∑
k∈T3

|k|2s|uk|2 <∞

 ,

We put

(2.5) ||u||s,2 =

∑
k∈I3

|k|2s|uk|2
 1

2

, (u, v)s =
∑
k∈I3

|k|2sukvk.

In the formula above, vk stands for the complex conjugate of vk. The following can be
proved (see in [33])

• For all s ≥ 0, the space IHs is an hermitian space, isomorphic to the space Hs
per,0(R3).

• One always has (IHs)′ = IH−s

[II.xi] Let s ≥ 0 and IHR
s be the closed subset of IHs made of all real valued functions

u ∈ IHs,

(2.6) IHR
s = {u ∈ IHs, ∀x ∈ T3, u(x) = u(x)}.
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2.2 Basic Helmholtz Filtration

Let α > 0, s ≥ 0, u ∈ IHs and let u ∈ IHs+2 be the unique solution to the equation

(2.7) −α2∆u+ u = u.

We are aware that u could be mixed up with the complex conjugate of u instead of the
solution of the Helmholtz equation (2.7). Unfortunatly, this is also the usual notation used
by many authors working on the topic. This is why we decided to keep the notations like
that, expecting that no confusion will occur. We also shall denote by A the operator

(2.8) A :

{
IHs+2 −→ IHs,

w −→ −α2∆w + w.

Therefore, one has

(2.9) u = A−1u.

It is easy checked that when u =
∑
k∈T3

uke
i k·x, then

(2.10) u =
∑
k∈T3

uk

1 + α2|k|2
ei k·x.

Formula (2.10) yields easely the estimates

(2.11) ||u||s+2,2 ≤
1
α2
||u||s,2, ||u− u||s,2 ≤ α||u||s+1,2.

We shall sometimes denote uα instead of u, when we need to recall the dependance on the
α parameter.

Theorem 2.1 Assume u ∈ IHs. Then the sequence (uα)α>0 converges strongly to u in the
space IHs.

Proof. By definition, one has

||u− u||2s,2 =
∑
k∈I3

(
α2|k|2

1 + α2|k|2

)2

|k|2s|uk|2.

Let ε > 0. As u ∈ IHs, there exists N be such that∑
k∈I3\IN

|k|2s|uk|2 ≤
ε

2
,

and since α2|k|2/(1 + α2|k|2) ≤ 1,

IN =
∑

k∈I3\IN

(
α2|k|2

1 + α2|k|2

)2

|k|2s|uk|2 ≤
ε

2
.

On the other hand, because the set IN is finite,

lim
α→0

∑
k∈I?N

(
α2|k|2

1 + α2|k|2

)2

|k|2s|uk|2 = 0.
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Therefore, there exists α0 > 0 be such that for each α ∈ ]0, α0[ one has

JN =
∑
k∈I?N

(
α2|k|2

1 + α2|k|2

)2

|k|2s|uk|2 ≤
ε

2
.

As ||u− u||2s,2 = IN + JN , then for all α ∈ ]0, α0[, one has ||u− u||2s,2 ≤ ε ending the proof
like that. �

3 From discrete to continuous deconvolution operator

3.1 The Van-Cittert Algorithm

Let us consider the operator

DN =
N∑
n=0

(I −A−1)n.

We introduce the operator

(3.1) HN (u) = DN (u).

A straightforward calculation yields

(3.2) HN

∑
k∈I3

uke
i k·x

 =
∑
k∈I3

(
1−

(
α2|k|2

1 + α2|k|2

)N+1
)
uke

i k·x.

One can prove the following (see in [29]):

• Let s ∈ R, u ∈ IHs. Then HN (u) ∈ IHs+2 and ||HN (u)||s+2,2 ≤ C(N,α)||u||s,2, where
C(N,α) blows up when α goes to zero and/or N goes to infinity. This is due to the
fact (

1−
(

α2|k|2

1 + α2|k|2

)N+1
)
≈ N + 1
α2|k|2

as |k|∞ →∞.

• The operator HN maps continuously IHs into IHs and ||HN ||L(IHs) = 1.

• Let u ∈ IHs. Then the sequence (HN (u))N∈N converges strongly to u in IHs when N
goes to infinity.

Let us put w0 = u, wN = HN (u). We now show how one can compute each wN thanks to
the Van-Cittert algorithm (see also in [10]), starting from the definition

(3.3) wN =
N∑
n=0

(I −A−1)nu.

When A−1 acts on both sides in (3.3), one gets

A−1wN =
N∑
n=0

A−1(I −A−1)nu

= −
N∑
n=0

(I −A−1)n+1u+
N∑
n=0

(I −A−1)nu

= − wN+1 + u+ wN .
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In summary, the Van-Cittert algorithm is the following:

(3.4)

{
w0 = u,

wN+1 = wN + (u−A−1wN ).

3.2 The continuous deconvolution equation

Performing A in both sides of (3.4) yields

AwN+1 −AwN + wN = Au = u.

Using the definition of A, Aw = −α2∆w + w, one deduces the equality

(3.5) −α2(∆wN+1 −∆wN ) + wN+1 = u.

Here is the analogy. Let δτ > 0 be a real number and consider the equation

(3.6) −α2

(
∆wN+1 −∆wN

δτ

)
+ wN+1 = u.

We notice the following facts

• Equation (3.5) is the special cas of equation (3.6) when δτ = 1,

• equation (3.6) is a finite difference scheme that corresponds to the equation satisfied
by the variable w = w(τ,x), τ > 0,

(3.7)

 −α2∆
(
∂w

∂τ

)
+ w = u,

w(0,x) = u(x),

with the zero mean condition m(w) = 0 so far u also satisfies m(u) = 0 as well as
m(u) = 0. We call equation (3.7) the continuous deconvolution equation. The parameter
τ is dimensionless. We call it the deconvolution parameter.

Before doing anything, we first perform the change of variable v(τ,x) = w(τ,x) − u(x).
The variable v is solution of the equation

(3.8)

 −α2∆
(
∂v

∂τ

)
+ v = 0,

v(0,x) = u(x)− u(x),

with periodic boundary conditions. We also keep in mind that we impose all variables to
have a zero mean value on a cell, a fact we shall not recall every time.

In the rest of this section, we shall study with accuracy the solution of problem (3.8) and
thus problem (3.7) that we shall solve completly. To do this, we shall express the solution
in terms of Fourier Series.

We search for a solution v(τ,x) as

(3.9) v(τ,x) =
∑
k∈I3

vk(τ)ei k·x,
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with initial condition, with obvious notations,

(3.10) vk(0) = − α2|k|2

1 + α2|k|2
uk = (u− u)k.

We deduce that each mode at frequency k satisfies the differential equation

(3.11)

{
α2|k|2dvk

dτ
+ vk = 0,

vk(0) = (u− u)k.

We deduce that

(3.12) vk(τ) = (u− u)ke
− τ
α2|k|2 .

Therefore, the general solution to problem (3.7) is

(3.13) w(τ,x) = u(x)−
∑
k∈I3

(
α2|k|2

1 + α2|k|2

)
uke

− τ
α2|k|2

+i k·x
,

where
u =

∑
k∈I3

uke
i k·x.

3.3 Various properties of the deconvolution equation

We now prove general properties satisfied by the solution of the deconvolution equation,
using either Equation (3.7) itself, either formula (3.13).

In the following, we put

(3.14) Hτ (u) = Hτ (u)(τ,x) = w(τ,x),

where v(τ,x) is the solution of Equation (3.7).

Lemma 3.1 Let s ∈ R, u ∈ IHs. Then for all τ ≥ 0, Hτ (u) ∈ IHs and

(3.15) ||Hτ (u)||s,2 ≤ 2||u||s,2.

Proof. Since one has for every τ ≥ 0 and every k ∈ I3

0 ≤
(

α2|k|2

1 + α2|k|2

)
e
− τ
α2|k|2 ≤ 1,

the claimed result is a direct consequence of (3.13). �

Lemma 3.2 Let α > 0 be fixed, s ∈ R and u ∈ IHs. Then (Hτ (u))τ>0 converges strongly
to u in IHs, when τ →∞.

Proof. One has

u−Hτ (u) =
∑
k∈I3

(
α2|k|2

1 + α2|k|2

)
uke

− τ
α2|k|2

+i k·x
,

which yields

||u−Hτ (u)||2s,2 =
∑
k∈I3

|k|2s
(

α2|k|2

1 + α2|k|2

)2

|uk|2e
− 2τ
α2|k|2 ≤ e−

2τ
α2 ||u||s,2.

Therefore, lim
τ→0
||u−Hτ (u)||s,2 = 0, and the proof is finished. �
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Lemma 3.3 Let α > 0 and τ ≥ 0 be fixed, s ∈ R and u ∈ IHs. Then Hτ (u) ∈ IHs+2 and
one has

(3.16) ||Hτ (u)||s+2,2 ≤
C(L)(1 + τ)

α2
||u||s,2,

where C(L) is a constant which only depends on the box size L.

Proof. Let us write Equation (3.7) under the form

−α2∆
∂Hτ (u)
∂τ

= u−Hτ (u).

Since we already know that u−Hτ (u) ∈ IHs, we deduce from standard elliptic theory that

(3.17)
∂Hτ (u)
∂τ

∈ IHs+2,

∣∣∣∣∣∣∣∣∂Hτ (u)
∂τ

∣∣∣∣∣∣∣∣
s+2,2

≤ C(L)
α2
||u−Hτ (u)||s,2 ≤

3C(L)
α2

||u||s,2

We now write
Hτ (u) = u+

∫ τ

0

∂Hτ ′(u)
∂τ ′

dτ ′,

The result is a consequence of (3.17) combined with (2.11).. �

3.4 An additional convergence result

We finish this section devoted to the Continuous deconvolution equation by a convergence
result. Indeed, when one studies existence result for some variational problem such as
the Navier-Stokes Equations and related, we usually must prove some compactness or
continuity result. In all cases, there is one moment when one faces the question of studying
a sequence (un)n∈N of approximated solutions which converges to some u in a certain
meaning, and one must identify the equation satisfied by u.

The problem we are working with uses the operator u→ Hτ (u). Among many compactness
results that we potentially can prove, we shall restric ourself to the one we shall use in the
next section.

As we are looking at evolutions problems. Therefore, the fonctions (and later the fields)
we consider are time dependent, that means u = u(t,x) for x ∈ T3 and t belonging to a
time interval [0, T ]. Let s ≥ 0; the space L2([0, T ], IHs) can easely be described to be the
set of all fonction u : T3 → C that can be decompose as Fourier series (see in [33])

u =
∑
k∈I3

uk(t)ei k·x be such that ||u||2L2([0,T ],IHs)
=
∑
k∈I3

|k|2s
∫ T

0
|uk(t)|2dt <∞.

Lemma 3.4 Let α > 0 and τ > 0 be fixed. Let (un)n∈N be a sequence in L2([0, T ], IHs)
which converges strongly to u in the space L2([0, T ], IHs). Therefore, (Hτ (un))n∈N con-
verges to Hτ (u) strongly in L2([0, T ], IHs) when n→∞.

Proof. We use formula (3.13) to estimate Hτ (un) −Hτ (u). Therefore one with obvious
notations

(3.18) Hτ (un)−Hτ (u) = un − u+
∑
k∈I3

(
α2|k|2

1 + α2|k|2

)
(uk,n − uk)e

− τ
α2|k|2

+i k·x
.
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This yields the estimate

(3.19) ||Hτ (un)−Hτ (u)||L2([0,T ],IHs) ≤ 2||un − u||L2([0,T ],IHs),

because (
α2|k|2

1 + α2|k|2

)
e
− τ
α2|k|2 ≤ 1.

The result is then a direct consequence of (3.19). �

4 Application to the Navier-Stokes Equations

4.1 Dissipative solutions to the Navier-Stokes Equations

Let us start by writting again the Navier-Stokes Equations:

(4.1)


∂tu + (u · ∇) u− ν∆u +∇p = f ,

∇ · u = 0,
m(u) = 0, m(p) = 0,
u(0,x) = u0

Here, u stands for the velocity and p for the pressure, and they are both the unknowns.
Since the field are real valued and periodic, one can consider them as fields from T3 towards
R3 for the velocity, from T3 to R for the pressure. The second hand side f is a data of the
problem as well as the kinematic viscosity ν > 0. Recall that

m(u) =
∫

Ω
u(t,x)dx, m(p) =

∫
Ω
p(t,x)dx.

Recall that for fields satisfying ∇ · u = 0, one always has (u · ∇)u = ∇ · (u⊗ u). We shall
use sometimes this identity when we need it, without special warnings. Let us recall some
facts and notations.
[IV.i] The Reynolds number Re is defined as Re = UL/ν, where L is the box size, U

is a typical velocity scale, for instance

U = lim
T→∞

1
T

∫ T

0

(
1
L3

∫
Ω
|u(t,x)|2dx

)1/2

dt,

where ”lim” stands for the generalized Banach Limit (see in [14], [15] and [18]).

[IV.ii] Let s ≥ 0. We set
IHs = {u ∈ (IHR

s )3, ∇ · u = 0}.

The space IHs is a close subset of (IHs)3 and is made of real valued vector fields, see
[II.xi]), equipped with the hermitian product, for u = (u1, u2, u3), v = (v1, v2, v3),
(u,v)s = (u1, v1)s + (u1, v1)s + (u1, v1)s (see (2.5)). We still denote ||u||s,2 =
(||u1||2s,2 + ||u2||2s,2 + ||u3||2s,2)1/2.

[IV.iii] We put W−1,p′(T3) = (W 1,p(T3))′ for 1/p + 1/p′ = 1, p ≥ 1. We also put
IH−s = (IHs)′ for s ≥ 0.

[IV.iv] The usual case we keep in mind for the data in the Navier-Stokes Equations, is the
case u0 ∈ IH0 and f ∈ L2([0, T ], (H1(T3)3)′), noting that (H1(T3)3)′ ⊂ IH−1.
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Definition 4.1 We say that (u, p) is a dissipative solution to the Navier-Stokes Equations
(4.1) on the time interval [0, T ] if:

1) The following holds:

u ∈ L2([0, T ], IH1) ∩ L∞([0, T ], IH0),(4.2)
p ∈ L5/3([0, T ]× T3),(4.3)
∂tu ∈ L5/3([0, T ], (W−1,5/3(T3))3)(4.4)

2) lim
t→0
||u(t, ·)− u0(·)||0,2 = 0,

3) ∀v ∈ L5/2([0, T ],W 1,5/2(T3)3) one has for all t ∈ [0, T ],

(4.5)


(∂tu,v)−

∫ t

0

∫
T3

u⊗ u : ∇v + ν

∫ t

0

∫
T3

∇u : ∇v dxdt′−∫ t

0

∫
T3

p (∇ · v) =
∫ t

0
(f ,v),

where (·, ·) stands here for the duality product between W 1,5/2(T3)3 and W−1,5/3(T3)3,
noting that (H1(T3)3)′ ⊂W−1,5/3(T3)3.

4) The energy inequality holds, for all t ∈ [0, T ],

(4.6)
1
2

∫
T3

|u(t,x)|2 + ν

∫ t

0

∫
T3

|∇u(t′,x)|2dxdt ≤ 1
2

∫
T3

|u0(x)|2dx +
∫ t

0
(f ,u)dt′,

where (·, ·) stands here for the duality product between IH1 and IH−1, noting that (H1(T3)3)′ ⊂
IH−1.

Remark 4.1 This definition makes sense as soon as u0 ∈ IH0 and f ∈ L2([0, T ], (H1(T3)3)′),
giving a sense to the integrals in the right hand sides of (4.5)and (4.6). Moreover, by in-
terpolation we see that the regularity conditions in point 1) in the definition above, make
sure that u ∈ L10/3([0, T ]×T3)3. When combining this fact with the regularity for ∂tu, we
see that all integrals in the right hand side of (4.5) are well defined.

Remark 4.2 The condition imposed on the pressure, p ∈ L5/3([0, T ] × T3), is directly
satisfied when we already have the estimate u ∈ L∞([0, T ], IH0) ∩ L2([0, T ], IH1). Indeed,
when one takes the divergence of the momentum equation formally using ∇·u = 0 (included
in the definition of the space functions IHs in [IV.ii]) said, we get the following equation
for the pressure

(4.7) −∆p = ∇ · (∇ · (u⊗ u)).

Now, by using Hölder’s inequality, it easy checked that u ∈ L∞([0, T ], IH0)∩L2([0, T ], IH1)
implies u ∈ L10/3([0, T ]× T3)3. Therefore,

∇ · (∇ · (u⊗ u)) ∈ L5/3([0, T ],W−2,5/3)

and by standard elliptic theory, p ∈ L5/3([0, T ]× T3).

Let us recall the result due to J. Leray [30].

Theorem 4.1 Assume that u0 ∈ IH0 and f ∈ L2([0, T ], (H1(T3)3)′). Then the Navier-
Stokes Equations (4.1) have a dissipative solution.

We still do not know if

• this solution is unique,

• if it develops singularities in finite time, even if u0 and f are smooth.
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4.2 The deconvolution model

The deconvolution equation for incompressible fields takes the form

(4.8)


−α2∆

(
∂w
∂τ

)
+ w +∇π = u,

∇ ·w = 0,
m(w) = 0, m(π) = 0,
w(0,x) = u,

where u is such that m(u) = ∇ · u = 0, and u is the solution of the Stokes problem

(4.9)


Au = −α2∆u + u +∇ξ = u,

∇ · u = 0,
m(u) = 0, m(ξ) = 0.

In the equations above, π and ξ are necessary Lagrange multipliers, involved because of
the zero divergence constraint. We set in the following

Hτ (u)(t,x) = w(τ, t,x),

where w(τ, t,x) is the solution at the deconvolution parameter τ for a fixed time t. Of
course H0(u) = u. A straightforward adaptation of the results of section 3.3 combined
with classical results related to the Stokes problem (see [22]) yield Lagrange multpliers π
and ξ are both equal to zero, and that the following facts are satisfied.

(iv.i) Let u ∈ L∞([0, T ], IH0). Then for all τ ≥ 0, Hτ (u) ∈ L∞([0, T ], IH2) and one has

(4.10) sup
t≥0
||Hτ (u)||2,2 ≤ C sup

t≥0
||u||0,2,

where the constant C depends on τ and blows up when τ goes to infinity. Thanks to
Sobolev injection Theorem, we deduce from (4.10) that in addition

(4.11) Hτ (u) ∈ L∞([0, T ]× T3)3, ||Hτ (u)||L∞([0,T ]×T3)3 ≤ C(τ, α, sup
t≥0
||u||0,2).

(iv.ii) Let u ∈ L2([0, T ], IH1). Then the following estimate holds:

(4.12)
∫ T

0
||u(t, ·)−Hτ (u)(t, ·)||21,2dt ≤ e

− 2τ
α2

∫ T

0
||u(t, ·)||21,2dt.

In particular, the sequence (Hτ (u))τ>0 goes strongly to u in the space L2([0, T ], IH1) when
τ goes to infinity and α > 0 is fixed.

Let us consider the problem

(4.13)


∂tuα,τ + (Hτ (uα,τ ) · ∇) uα,τ − ν∆uα,τ +∇pα,τ = Hτ (f),
∇ · uα,τ = 0,
m(uα,τ ) = 0, m(pα,τ ) = 0,
uα,τ (0,x) = Hτ (u0),

with periodic boundary conditions.
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Definition 4.2 We say that (uα,τ , pα,τ ) is a weak solution to Problem (4.13) if the fol-
lowing properties are satisfied:

1) uα,τ ∈ L∞([0, T ], IH1)∩L2([0, T ], IH1), ∂tuα,τ ∈ (L2([0, T ]×T3))3, p ∈ L2([0, T ], IH1),

2) lim
t→0
||uα,τ (t, ·)−Hτ (u0)||0,2 = 0,

3) ∀v ∈ L2([0, T ], (H1(T3)3)),

(4.14)


∫ T

0

∫
T3

∂tuα,τ · v +
∫ T

0

∫
T3

(Hτ (uα,τ ) · ∇) uα,τ · v + ν

∫ T

0

∫
T3

∇uα,τ : ∇v +∫ T

0

∫
T3

∇p · v =
∫ T

0

∫
T3

Hτ (f) · v.

4) The following energy balance holds for all t ∈ [0, T ],

(4.15)


1
2

∫
T3

|uα,τ (t,x)|2dx + ν

∫ t

0

∫
T3

|∇uα,τ (t′,x)|2dxdt′ =

1
2

∫
T3

|Hτ (u0)(x)|2dx +
∫ t

0

∫
T3

Hτ (f) · uα,τdxdt′.

We now prove the two following results.

Theorem 4.2 Assume that u0 ∈ IH0 and f ∈ L2([0, T ], (H1(T3)3)′). Then Problem (4.13)
admits a unique weak solution (uα,τ , pα,τ ).

Theorem 4.3 Assume that u0 ∈ IH0 and f ∈ L2([0, T ], (H1(T3)3)′). Then there exists a
sequence (τn)n∈N which goes to infinity when n goes to infinity and such that the sequence
(uα,τn , pα,τn)n∈N goes to a dissipative weak solution of the Navier-Stokes Equations.

Proof of Theorem 4.2. A complete proof of Theorem 4.2 would use the Galerkin
method. We construct approximations as solutions of variational problems set on the finite
dimensional space Vn, thanks to the Cauchy-Lipchitz Theorem. We next derive estimates
to finally pass to the limit. To make this report easy and not too heavy, we bypass the
construction of approximations on finite dimensional space, a procedure we often already
have done for close models (see for instance in [29]). The general Galerkin method is
well explained in the famous book of J. -L. Lions published in 1969 [34]. Therefore, we
concentrate our efforts on the two main points making the result true:

• A priori estimates,

• The compactness property and how to pass to the limit in the equations

• A priori estimates. For the simplicity, we write (u, p) instead of (uα,τ , pα,τ ). We perform
computations assuming that (u, p) has enough regularity to validate the integrations by
parts we do. We also keep in mind that the boundary terms compensate each other in
the integrations by parts, thanks to the periodicity. Therefore no boundary terms occur
in these computations.

As usual, we take u as test function in (4.13) and we integrate by parts on T3 and on the
time interval [0, t] for some t ∈ [0, T ], using ∇ · u = 0 as well as ∇ · (Hτ (u)) = 0. We get
in particular ∫

T3

(Hτ (u) · ∇) u · u = 0,
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and therefore

(4.16)
1
2

∫
{t}×T3

|u|2 + ν

∫
[0,t]×T3

|∇u|2 =
1
2

∫
T3

|Hτ (u0)|2 +
∫

[0,t]×T3

Hτ (f) · u.

As u0 ∈ IH0, Hτ (u0) ∈ IH2, and recall that ||Hτ (u0)||0,2 ≤ 2||u0||0,2. Similarly,∣∣∣∣∣
∫

[0,t]×T3

Hτ (f) · u

∣∣∣∣∣ ≤ C||f ||−1,2||u||1,2,

where again C do not depend on τ and α. Here and in the remainder, we still denote by
|| · ||−1,2 the norm on (H1(T3)3)′. Therefore, (4.16) yields

sup
t∈[0,T ]

∫
{t}×T3

|u|2 ≤ C(||u0||0,2, ||f ||−1,2),(4.17) ∫
[0,t]×T3

|∇u|2 ≤ C(||u0||0,2, ||f ||−1,2, ν).(4.18)

Next, we use fact (iv.i) (Hτ (u) ∈ L∞([0, T ] × T3)3) and estimate (4.11) together with
(4.17). This yields in particular

(4.19) A = (Hτ (u)·∇)u ∈ L2([0, T ]×T3)3, ||A||L2([0,T ]×T3)3 ≤ C(τ, α, ||u0||0,2, ||f ||−1,2).

Let us now take ∂tu as test function in equation (4.13) and we integrate on [0, t] × T3,
using ∇ · (∂tu) = 0. Therefore we get

(4.20)


∫

[0,t]×T3

|∂tu|2 +
1
2

∫
{t}×T3

|∇u|2 =

1
2

∫
T3

|∇Hτ (u0)|2 +
∫

[0,t]×T3

A · ∂tu +
∫

[0,t]×T3

Hτ (f) · ∂tu

Since Hτ (u0) ∈ IH2 and Hτ (f) ∈ L2([0, T ], H1(T3)3), using (4.19) combined with Cauchy-
Schwarz and Young inequalities, we deduce from (4.20)∫

[0,t]×T3

|∂tu|2 ≤ C(τ, α, ||u0||0,2, ||f ||−1,2),(4.21)

sup
t∈[0,T ]

∫
{t}×T3

|∇u|2 ≤ C(τ, α, ||u0||0,2, ||f ||−1,2).(4.22)

In other words ∂tu ∈ L2([0, T ]× T3)3 and u ∈ L∞([0, T ], IH1). In fact, one easely verifies
that ∂tu ∈ L2([0, T ], IH0).

We now get a bound for u in the space L2([0, T ], IH2). For it, let us consider a fixed
t ∈ [0, T ] and let us write the Navier-Stokes equations (4.13) under the form of a Stokes
Problem

(4.23)


− ν∆u +∇p = Hτ (f)− A− ∂tu,
∇ · u = 0,
m(u) = 0, m(p) = 0.

Classical facts on the Stokes Problem yield the estimate

(4.24)
||u||2IH2

+ ||p||2H1(T3) ≤ C1(ν)||Hτ (f)− A− ∂tu||2L2(T3) ≤
C2(ν)(||Hτ (f)||2L2(T3) + ||A||2L2(T3) + ||∂tu||2L2(T3))
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We now quietly integrate (4.24) with respect to time. We get

(4.25) ||u||L2([0,T ],IH2) + ||p||L2([0,T ],H1(T3)) ≤ C(ν, τ, α, ||u0||0,2, ||f ||−1,2),

where we have used the regularizing effect of Hτ and estimates (4.19) and (4.21).

In summary, we get

[IV.v] u is in L2([0, T ], IH1) ∩ L∞([0, T ], IH0) and therefore p ∈ L5/3([0, T ], IL5/3) and
∂tu ∈ L5/3([0, T ],W−1,5/3(T3)3). The bounds only depend on the data ν, ||u0||0,2
and ||f ||−1,2

[IV.vi] u ∈ L2([0, T ], IH2) ∩ L∞([0, T ], IH1) and p ∈ L2([0, T ], H1(T3)). The bounds
depend on the data ν, ||u0||0,2 and ||f ||−1,2 as well as the deconvolution parameter
τ and the filtration parameter α. In particular these bounds blow up when τ goes
to infinity and/or α goes to zero.

[IV.vii] ∂tu ∈ L2([0, T ], IH0). The bounds depend on the data ν, ||u0||0,2 and ||f ||−1,2 as
well as the deconvolution parameter τ and the filtration parameter α.

• Compactness property. Let us now consider a sequence (un, pn)n∈N of ”smooth” solutions
to problem (4.13). We aim to show that we can extract from this sequence a subsequence
which converges in a certain meaning to a solution of problem (4.13), when n goes to
infinity.

Fact [IV.vi] makes sure that we can extract a subsequence, still denoted (un, pn)n∈N, be
such that

(4.26)
un −→ u weakly in L2([0, T ], IH2),
un −→ u weakly-star in L∞([0, T ], IH1),
pn −→ p weakly in L2([0, T ], H1(T3)).

Let us now find a strong compactness property. We have the following

IH2 ⊂ IH1 ⊂ IH0,

the injections being continous, compact and dense. We know that (∂tun)n∈N is bounded
in L2([0, T ], IH0) while (un)n∈N is bounded in L2([0, T ], IH2) We deduce from Aubin-Lions
Lemma (see in [34]) that

(4.27) un −→ u strongly in L2([0, T ], IH1).

Finally, it is easy checked that we can extract an other subsequence such that

(4.28) ∂tun −→ ∂tu weakly in L2([0, T ]× T3)3.

Notice that the limit (u, p) satisfies facts [IV.v], [IV.vi] and [IV.vii].

It remains to show that (u, p) is a solution to problem (4.13). Let us start with the initial
data, writting

un(t) = Hτ (u0) +
∫ t

0
∂tundt′.

It is easy to pass to limit here in L2([0, T ]× T3)3, to get for free

u(t) = Hτ (u0) +
∫ t

0
∂tu dt′,
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also telling us that u ∈ C0([0, T ], IH0) and that u(0,x) = Hτ (u0(x)). We have in fact
much better, since u ∈ C0([0, T ], IH1). The proof is left to the reader.

Let us now pass to the limit in the momentum equation. Let v ∈ L2([0, T ], IH1) be given
as test vector field. One obvioulsy has when n goes to infinity,

(4.29)

∫ T

0

∫
T3

∂tun · v −→
∫ T

0

∫
T3

∂tu · v,∫ T

0

∫
T3

∇un : ∇v −→
∫ T

0

∫
T3

∇u : ∇v,∫ T

0

∫
T3

pn(∇ · u) −→
∫ T

0

∫
T3

p (∇ · u),

where we have use the identity∫
T3

p (∇ · u) = −
∫

T3

∇p · v.

It remains to treat the term (Hτ (un) · ∇)un which constitues the novelty. This is why
we focus our attention on it. Let us remark that (∇un)n∈N goes strongly to ∇u in the
space L2([0, T ]×T3)9. On the other hand, applying Lemma 3.4, we get that (Hτ (un))n∈N
converges to Hτ (u) in L2([0, T ] × T3)9 when n goes to infinity. Therefore the sequence
((Hτ (un) · ∇)un)n∈N goes strongly to (Hτ (u) · ∇)u in L1([0, T ]× T3)3. Finally, since the
sequence ((Hτ (un) · ∇)un)n∈N is bounded in L2([0, T ]×T3)3, it converges weakly, up to a
subsequence, to some g in L2([0, T ]× T3)3. The result above and uniqueness of the limit,
allows us to claim that g = (Hτ (u) · ∇)u. Consequently∫ T

0

∫
T3

(Hτ (un) · ∇)un · v −→
∫ T

0

∫
T3

(Hτ (u) · ∇)u · v.

In summary, (u, p) satisfies

(iv.iii) u ∈ L2([0, T ], IH2) ∩ L∞([0, T ], IH1), p ∈ L2([0, T ], H1(T3)),

(iv.iv) lim
t→0
||u(t, ·)−Hτ (u0)||0,2 = 0,

(iv.v) ∀v ∈ L2([0, T ], IH1),∫
[0,T ]×T3

[∂tu · v + (Hτ (u) · ∇)u · v + ν∇u · ∇v] +
∫

[0,T ]×T3

∇p · v =
∫

[0,T ]×T3

Hτ (f) · v.

Uniqueness is proven exactly like in [29], and we skip the details. Moreover, taking u
as test vector field, which is a legal operation, and integrating in space and time using
∇ · u = 0 yields the energy equality

1
2

∫
{t}×T3

|u|2 + ν

∫
[0,T ]×T3

|∇u|2 =
1
2

∫
T3

|u0|2 +
∫

[0,T ]×T3

f · u.

Therefore, (u, p) is a smooth weak solution to problem (4.13), which concludes the proof
of Theorem 4.2. �

Proof of Theorem 4.3. We finish this report by proving the convergence result when τ
goes to infinity. We note (uτ , pτ ) the corresponding solution so far the grid parameter α is
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fixed. In this case, we only can use estimates (4.17) and (4.18). We also will use estimate
(4.12). Let us first write the equation for the pressure:

(4.30) −∆pτ = ∇ · (∇ · (Hτ (uτ )⊗ uτ )).

This yields, by interpolation combining (4.17), (4.18) and (4.12), the existence of a constant
C = C(ν, ||u0||0,2, ||f ||−1,2) be such that

(4.31) ||pτ ||L5/3([0,T ]×T3) ≤ C.

When writting

(4.32) ∂tuτ = −∇ · (Hτ (uτ )⊗ uτ ) + ν∆uτ −∇pτ +Hτ (f),

we obtain the existence of a constant C = C(ν, ||u0||0,2, ||f ||−1,2) such that

(4.33) ||∂tuτ ||L5/3([0,T ],W−1,5/3(T3)3) ≤ C.

We are now well equiped to pass to the limit. Thanks to all these bounds, there exists
(τn)n∈N which goes to infinity when n goes to infinity and such that there exists u ∈
L2([0, T ], IH1) ∩ L∞([0, T ], IH0) and p ∈ L5/3([0, T ]× T3) be such that

(4.34)


uτn −→ u weakly in L2([0, T ], IH1),
uτn −→ u weakly star in L∞([0, T ], IH0),

pτn −→ p weakly in L5/3([0, T ]× T3),

when n goes to infinity. We must prove that (u, p) is a dissipative weak solution to the
Navier-Stokes equations.

Let us start with the compactness result issued from Aubin-Lions Lemma. We have

H1(T3) ⊂ L10/3(T3) ⊂W−1,5/3(T3),

the injections being dense and continous, the first one being compact (since 10/3 < 6,
6 being the critical exponent in the 3D case). Therefore, applying again Aubin-Lions
Lemma using the bound on (uτn)n∈N in L2([0, T ], IH1) ⊂ L2([0, T ], H1(T3)3) and the
bound of (∂tuτn)n∈N in L5/3([0, T ],W−1,5/3(T3)3), we see that (uτn)n∈N is compact in
L5/3([0, T ], L10/3(T3)3). Then we have in particular

(4.35) uτn −→ u strongly in L5/3([0, T ]× T3)3.

Using Egorov’s Theorem combined with Lebesgue inverse Theorem, we deduce from (4.35)
combined to the bound in L10/3 that

(4.36) ∀ q < 10/3, uτn −→ u strongly in Lq([0, T ]× T3)3.

Let us again consider (∂tuτn)n∈N. The bound (4.33) authorizes to extract a subsequence
(still using the same notation) and such that

(4.37) ∂tuτn −→ g weakly in L5/3([0, T ],W−1,5/3)3.

We must prove that g = ∂tu. Let ϕ be a C∞ field defined on [0, T ] × T3 and such that
ϕ(0,x) = ϕ(T,x) = 0. Then one has∫

[0,T ]×T3

∂tuτn · ϕ = −
∫

[0,T ]×T3

uτn · ∂tϕ.
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Passing to the limit in this equality using (4.37) yields∫
[0,T ]×T3

g · ϕ = −
∫

[0,T ]×T3

u · ∂tϕ,

which tells us that g = u in the distributional sense, and also in Lp sense by uniqueness
of the limit.

From now, v ∈ L5/2([0, T ],W 1,5/2(T3)3) is a fixed test vector field. We have the obvious
following convergences when n goes to infinity,

(4.38)


∫
Q
∂tuτn · v −→ (∂tu · v),

∫
Q
∇uτn : ∇v −→

∫
Q
∇u : ∇v,∫

Q
pτn(∇ · v) −→

∫
Q
p (∇ · v),

∫
Q
Hτn(f) · v −→

∫
Q

f · v,

where Q = [0, T ] × T3 for the simplicity, (·, ·) stands for the duality product between
L5/2([0, T ],W 1,5/2(T3)3) and L5/3([0, T ],W−1,5/3(T3)3), and where we also have used Lemma
3.4.

We now have to deal with the nonlinear term. We first notice that (Hτn(un) ⊗ uτn)n∈N
is bounded in L5/3(Q)9. Thus -up to a subsequence- it converges weakly in L5/3(Q)9 to a
guy named h for the time being. That means

(4.39)
∫
Q
Hτn(un)⊗ uτn : ∇v −→

∫
Q

h : ∇v.

The challenge is to prove that h = u ⊗ u. We already know that uτn converges to u
strongly in L10/3−ε(Q) (ε > 0 and as usual ”small”). Let us study the sequence Hτn(un).
It obviously converges to u but we must precise in which space and for which topology.
We shall work in a L2 space type (2 < 10/3...). We can write

Hτn(un)− u = Hτn(un − u) +Hτn(u)− u.

Thanks to (3.15), we have for any fixed time t,

||Hτn(un − u)(t, ·)||20,2 ≤ 2||(un − u)(t, ·)||20,2,

an inequality that we integrate on the time interval [0, T ]. This ensures that the sequence
(Hτn(un − u))n∈N converges to zero in L2(Q)3 when n goes to infinity. Applying Lemma
3.4, we deduce that the sequence (Hτn(u) − u)n∈N converges to zero in L2(Q)3 when n
goes to infinity.

In summary, we obtain the convergence of (Hτn(un)⊗uτn)n∈N to u⊗u in L1(Q)3, making
sure that h = u⊗ u and also thanks to (4.39),

(4.40)
∫
Q
Hτn(un)⊗ uτn : ∇v −→

∫
Q

u⊗ u : ∇v.

In conclusion, (u, p) satisfies (4.5). Point 1) in definition (4.1) is already checked. To
conclude our proof, it remains to prove points 2) (initial data) and 4) (energy inequality).
We start with the energy inequality.
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We already know that (uτn , pτn) satisfy the energy equality (4.15). Let 0 ≤ t1 < t2 ≤ T ,
and integrate (4.15) on the time interval [t1, t2]. We get

(4.41)


1
2

∫ t2

t1

∫
T3

|uτn(t,x)|2dxdt+ ν

∫ t2

t1

∫ t

0

∫
T3

|∇uτn(t′,x)|2dxdt′dt =

t2 − t1
2

∫
T3

|Hτn(u0)(x)|2dx +
∫ t2

t1

∫ t

0

∫
T3

Hτn(f) · uτndxdt′dt.

Because (Hτn(f))n∈N converges strongly to f in L2([0, T ], (H1(T3)3)′) while (uτn)n∈N con-
verges weakly to u in L2([0, T ], IH1), standard arguments yields

(4.42)
∫ t2

t1

∫ t

0

∫
T3

Hτn(f) · uτndxdt′dt −→
∫ t2

t1

(f ,u)dt.

Analogous arguments also tell

(4.43)
t2 − t1

2

∫
T3

|Hτn(u0)(x)|2dx −→ t2 − t1
2

∫
T3

|u0(x)|2dx.

As we know that (uτn)n∈N goes to u strongly in L2(Q)3, we have

(4.44)
1
2

∫ t2

t1

∫
T3

|uτn(t,x)|2dxdt −→ 1
2

∫ t2

t1

∫
T3

|u(t,x)|2dxdt.

Finally, standard arguments in analysis (see for instance in [31]), the weak convergence of
(uτn)n∈N to u in L2([0, T ], IH1) yields

(4.45)
∫ t2

t1

∫ t

0

∫
T3

|∇u(t′,x)|2dxdt′dt ≤ lim inf
n∈N

∫ t2

t1

∫ t

0

∫
T3

|∇uτn(t′,x)|2dxdt′dt.

When one combines (4.41) together with (4.42),(4.43), (4.44) and (4.44), we obtain

(4.46)


1
2

∫ t2

t1

∫
T3

|u(t,x)|2dxdt+ ν

∫ t2

t1

∫ t

0

∫
T3

|∇u(t′,x)|2dxdt′dt ≤

t2 − t1
2

∫
T3

|u0(x)|2dx +
∫ t2

t1

(f ,u)dt,

an inequality which holds for every t1, t2 such that 0 ≤ t1 < t2 ≤ T . We deduce that u
satisfies the energy inequality (4.15).

To finish the proof, we have to study the initial data. Let us first notice that u(t, ·)t>0 is
bounded in L2(T3)3. Therefore, we can find a sequence (tn)n∈N which converges to 0 and
a field k ∈ L2(T3)3 be such that u(tn, ·)n∈N converges weakly in L2(T3)3 to k. The first
task is to prove that k = u0. We start from the equality

(4.47) uτn(t, ·) = Hτn(u0) +
∫ t

0
∂tuτndt

′,

an equality that we consider in the space W−1,5/3(T3)3. Using a straightforward variant
of Lemma 3.4 and the convergence results proved above, we can pass to the limit in (4.47),
to get in W−1,5/3(T3)3,

(4.48) u(t, ·) = u0 +
∫ t

0
∂tu dt′.
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Because ∂tu ∈ L5/3([0, T ],W−1,5/3(T3)3) ⊂ L1([0, T ],W−1,5/3(T3)3), this last equality says
that u(0, ·) = u0 at least in W−1,5/3(T3)3, and consequently in L2(T3)3. Therefore we have
k = u0. The limit being unique, we deduce that the whole sequence u(t, ·)t>0 converges
weakly in IH0 to u0 when t goes to zero. Moreover, one has

(4.49) ||u||0,2 ≤ lim inf
t→0

||u(t, ·)||0,2.

On the other hand, when one let t go to zero in the energy inequality, we get

(4.50) lim sup
t→0

||u(t, ·)||0,2 ≤ ||u0||0,2.

We deduce that
lim
t→0
||u(t, ·)||0,2 = ||u0||0,2,

which combined with the weak convergence yields

(4.51) lim
t→0
||u0 − u(t, ·)||0,2 = 0.

This concludes the question of the initia data and also the proof of Theorem 4.3. �

Remark 4.3 With not too much sweat, one can prove that the approximated velocity in
model (4.13) is in the space C([0, T ], IH1). Concerning the Navier-Stokes equation, it is
well known that the trajectories are continuous in L2(T3)3 with respect to its weak topology.
Nevertheless, one may wonder about the strong continuity of the trajectory at t = 0 that
we have proved here. This approach seems indeed to be not usual in the folklore of the
Navier-Stokes Equations. However, it fits with the famous local regularity result due to
Fujita-Kato [20].
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