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ON EVOLUTIONARY NAVIER-STOKES-FOURIER TYPE

SYSTEMS IN THREE SPATIAL DIMENSIONS

MIROSLAV BULÍČEK, ROGER LEWANDOWSKI, AND JOSEF MÁLEK

Abstract. In this paper, we establish the large-data and long-time existence
of a suitable weak solution to an initial and boundary value problem driven

by a system of partial differential equations consisting of the Navier-Stokes
equations with the viscosity ν increasing with a scalar quantity k that evolves
according to an evolutionary convection diffusion equation with the right hand
side ν(k)|DDD(v)|2 that is merely L1-integrable over space and time. We also

formulate a conjecture concerning regularity of such a solution.

1. Introduction

Let Ω ⊂ R
3 be an open bounded set and T ∈ (0,∞). Our goal is to prove the

existence of a triple (v, k, p) : (0, T )×Ω → R
3 ×R+ ×R which solves, in (0, T )×Ω,

the following nonlinear system of five partial differential equations

div v = 0,(1.1)

v,t + div(v ⊗ v) − div (ν(k)DDD(v)) = −∇p,(1.2)

k,t + div(kv) − div (µ(k)∇k) + ε(k) = ν(k)|DDD(v)|2.(1.3)

We complete the system (1.1)–(1.3) by the following initial and boundary condi-
tions:

v(0, x) = v0(x)

k(0, x) = k0(x) and k0(x) ≥ 0
a.e. in Ω.(1.4)

v · n = 0

λvτ + (1 − λ) (ν(k)DDD(v)n)τ = 0,
on (0, T ) × ∂Ω,(1.5)

k = 0 on (0, T ) × ∂ΩD,(1.6)

∇k · n = 0 on (0, T ) × ∂ΩN .(1.7)

Here, DDD(v) denotes the symmetric part of the gradient of the vector field v, i.e.,
2DDD(v) = ∇v + (∇v)T , n = n(x) is the outer normal to the boundary located
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at x ∈ ∂Ω, wτ := w − (w · n)n denotes the projection of a vector w = w(x)
to the tangent plane of the boundary at x, ∂ΩD and ∂ΩN are smooth subset of
∂Ω satisfying ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. The parameter λ ∈ [0, 1]
homotopically connects a homogeneous Neumann type boundary condition for λ =
0 with the homogeneous Dirichlet boundary condition for λ = 1. If 0 < λ < 1, then
(1.5)2 is called Navier’s slip boundary conditions. In this paper we assume that λ
is any number from [0, 1).

Concerning the functions µ, ν, ε : R+ → R+, we require that they are continuous
and that for certain α, β, γ ∈ [0,∞) and two positive constants C1, C2 the following
inequalities hold for all k ∈ R+:

C1(1 + k)α ≤ ν(k) ≤ C2(1 + k)α,

C1(1 + k)β ≤ µ(k) ≤ C2(1 + k)β ,

C1k
1+γ ≤ ε(k) ≤ C2k

1+γ .

(1.8)

Within the framework of weak solutions the term on the right hand side of (1.3)
is not easy to handle. Thus, it is more appropriate to “equivalently” reformulate
the system (1.1)–(1.3) in the following way. Defining the scalar quantity E as

(1.9) E :=
1

2
|v|2 + k,

we deduce the equation for E by taking the scalar product of (1.2) and v and by
adding the result to (1.3). Doing so, we arrive at the equation

(1.10) E,t + div (v(E + p)) − div (µ(k)∇k) − div (ν(k)DDD(v)v) + ε(k) = 0.

Of course, assuming that the multiplication of (1.2) by v is meaningful (or in other
words, assuming that v is a possible test function in the weak formulation of (1.2))
the identities (1.3) and (1.10) are equivalent. However, in three spatial dimensions
we usually do not know that v is an admissible test function and we cannot conclude
the equivalence of (1.3) and (1.10). The main reason why we prefer (1.10) to (1.3)
is the fact that in (1.10) all nonlinear terms are in divergence form and belong
to a better space than L1 while in (1.3) the term on the right hand side belongs
usually to L1 only. Consequently, it is easier to identify weak limits of all nonlinear
quantities in (1.10) than in (1.3). On the other hand, considering (1.10) we see
that we have to deal with p, that can be usually omitted in the system (1.1)–(1.3)
by using divergence-free test functions in (1.2). Moreover, assuming that we have
a weak solution to (1.1)–(1.2) and (1.10) that in addition satisfies

(1.11) k,t + div(kv) − div (µ(k)∇k) + ε(k) ≥ ν(k)|DDD(v)|2,
in a weak sense, then it is natural to call such a solution a suitable weak solution
in sense of Caffarelli, Kohn, Nirenberg, see [10]. Indeed, subtracting (1.11) from
(1.10), one deduces

(1.12) |v|2,t + div
(
v(|v|2 + 2p)

)
− div (2ν(k)DDD(v)v) ≤ 0,

that is the form of local energy inequality as appeared in the definition of suitable
weak solution to Navier-Stokes system, see [10].

In this study we establish the following result.

Theorem 1.1. Assume that µ, ν and ε satisfy (1.8) with

(1.13) 0 ≤ α <
2β

5
+

2

3
, 0 ≤ γ < β +

2

3
.
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Then for any Ω ∈ C1,1, T > 0, v0 ∈ L2
n,div and k0 ∈ L1(Ω), k0 ≥ 0 a.e. in Ω, there

exists a suitable weak solution (v, p, k) to Problem (1.1)–(1.7), that in particular

fulfils (1.1)–(1.2) and (1.9)–(1.11) in the sense of distributions.

The precise definition of the solution and formulation of the result is given in
Theorem 2.1 below, see Sect. 2.

The system (1.4)-(1.7) with ν, µ and ε of the form (1.8) is interesting from the
point of view of mathematical analysis of PDEs, in particular, from the point of
view of regularity theory. We shall address this point next.

To simplify discussion below, we assume that ν, µ and ε are of the form

(1.14) ν(k) := ν0k
α, µ(k) := µ0k

α and ε(k) = ε0k
2−α,

where µ0 and ν0 are positive constants and ε0 ≥ 0.
We formulate the following conjecture.

Conjecture 1.1. Let α ∈ R, ν, µ and ε be of the form (1.14). Then there exist

δ > 0 and C∗ > 0 such that for any triple (v, p, k) solving (1.1)-(1.2) and (1.10)–
(1.11) in the sense of distribution the following implication holds:

If

(1.15)

∫ 0

−1

∫

B1(0)

ν(k)|DDD(v)|2 dx dt ≤ δ

then

(1.16) |v(t, x)| ≤ C∗ in (−1

2
, 0) × B 1

2
(0).

This conjecture certainly holds for α ≡ 0 since then the system (1.1)-(1.2) reduces
to Navier-Stokes equation for which Conjecture 1.15 was proved in [10], see also
[28]. To our best knowledge, Conjecture 1.15 is open for general values of positive
α’s. In what follows, we will show how Conjecture 1.1 implies that, for certain α’s,
any suitable weak solution has bounded velocity.

Indeed, assume that a triple (v, k, p) solve (1.1)–(1.2) and (1.10)-(1.11) on some
neighborhood of (0, 0) that contains for some ℓ0 > 0 a set (−ℓA

0 , 0) × Bℓ0(0) with
some A > 0 specified below. Then we rescale the triple in the following way. For
any ℓ ≤ ℓ0 we define for some B > 0

vℓ(t, x) := ℓB
v(ℓAt, ℓx),

pℓ(t, x) := ℓ2Bp(ℓAt, ℓx),

kℓ(t, x) := ℓ2Bk(ℓAt, ℓx).

It is easy to show that if we choose A,B such that

A :=
2 − 2α

1 − 2α
, B :=

1

1 − 2α

and assume that α 6= 1
2 then the triple (vℓ, pℓ, kℓ) solves (1.1)–(1.2) and (1.10)–

(1.11) in the sense of distribution in (−1, 0)×B1(0). Next, we apply Conjecture 1.1
on the rescaled velocity vℓ. Hence, using the standard substitution theorem we see
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4 M. BULÍČEK, R. LEWANDOWSKI, AND J. MÁLEK

that we need to show that

δ ≥
∫ 0

−1

∫

B1(0)

ν(kℓ)|DDD(vℓ)|2 dx dt

=

∫ 1

−1

∫

B1(0)

ℓ2Bα+2B+2(k(ℓAt, ℓx))α|DDD(v(ℓAt, ℓx))|2 dx dt

=

∫ 0

−ℓA

∫

Bℓ(0)

ℓ2Bα+2B+2−A−3(k(t, x))α|DDD(v(t, x))|2 dx dt

= ℓ
6α−1
1−2α

∫ 0

−ℓA

∫

Bℓ(0)

kα|DDD(v)|2 dx dt.

(1.17)

Interestingly, we see that for 1
6 ≤ α < 1

2 we can choose ℓ so small that the premise
of Conjecture 1.1 is fulfilled. As its consequence, we conclude that vℓ is bounded
in (−1/2, 0) × B1/2(0) and v is bounded in (−(ℓ/2)α, 0) × Bℓ/2(0). Evenmore, it
follows from (1.17), Conjecture 1.1 and the standard covering argument procedure
that, for α < 1

6 , the Hausdorff dimension of the set S of possible singularities of v

(here, the point of singularity is defined such (t, x) that v is not bounded in any
neighborhood of (t, x)) is bounded by

(1.18) d(S) <
1 − 6α

1 − 2α
,

which is consistent with the standard estimate of possible singular set for the Navier-
Stokes equations.

To summarize the system (1.4)-(1.7) with ν, µ and ε of the form (1.14) is an
interesting system from the point of view of regularity theory. Before however
one starts to study regularity property of any solution one needs to establish its
existence, and this is the subject of this paper. While the statement of Theorem
1.1 for α = 0 was investigated in [8], the case α > 0 is analyzed in this study. Note
that for ε ≡ 0 and β = α, Theorem 1.1 guarantees the existence of solution for
0 ≤ α < 10

9 .
There are two main reasons motivating us to analyze the problem (1.1)–(1.3).

The first one comes from the large-data analysis of turbulent kinetic models. The
second reason is connected with the question of qualitative mathematical properties
of flows of incompressible Newtonian fluid models. We shall discuss the both issues
in what follows.

(1) The problem in consideration (1.1)–(1.3) is closely related to the so-called
turbulent kinetic energy model; v represents the statistical mean velocity of the
fluid, k denotes the turbulent kinetic energy, p is the statistical mean normal stress
- the pressure, ν stands for the sum of molecular and eddy viscosities and µ is the
eddy diffusion. The term on the right hand side of (1.3) represents the energy that
the large scales transmit onto the small scales, and the last term of the left hand side
of (1.3) measures the energy rate returned by the small scales to the large scales.
Usually, the quantities ν, µ and ε are depending on the mixing Prandtl length scale
ℓ that is a positive given function or it is driven by another evolutionary equation.
In latter case, one obtains the so-called (k − ε) model.

Although the model (1.1)–(1.3) describes complicated turbulent behavior in a
simplified manner, it is quite popular and efficient in various applications. It is used
for instance in oceanography ([5], [29], [18]), in marine engineering ([20], [26]), etc.,
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and surprisingly gives very accurate numerical results in comparison with experi-
mental data. In certain applications, this model thus ”prevents” the computational
analysts from dealing with the (k− ε) model (see the original work due to Launder
and Spalding [15], and also [24] for more details) that is from the computational
point of view very costly.

The derivation of models such as (1.1)–(1.3) is mainly based on dimensional
analysis and physical assumptions on the turbulence (see [24] and [18]) that lead
to the following forms for ν and µ

(1.19) ν(k) = ν0 + ν1

√
k and µ(k) = µ0 + µ1

√
k ,

where ν0, ν1, µ0 and µ1 are positive constants. Note that the case (1.19) is covered
by Theorem 1.1. There are also works towards the mathematical justification of the
k-equation (1.3) from the Navier-Stokes equations ([11, 23, 12]), but a transparent
and consistent derivation of these models is, to our best knowledge, missing. The
limitations and applicability of the model in consideration are one of the topics
studied in our forthcoming paper.

From the point of view of analysis of turbulent kinetic energy models the result
presented in this paper can be considered as a natural continuation of Theorem 4
in [19] since it solves the problem formulated in [19] that has been left open. Also,
Theorem 4 in [19] that concerns the case when both ν and µ are bounded func-
tion of k proves that in three spatial dimension the limit equation for k deduced
from approximated solutions satisfies a variational inequality. This paper gives two
essential novel contributions to the analysis of (1.1)–(1.3). First, the unknown k
is shown to fulfill the equation for E (see (1.10) below) rather than the equation
(1.3), and second, it investigates three-dimensional flows with ν and k that are
unbounded functions of k. The price we pay for dealing with (1.10) rather than
with (1.3) is that we need to introduce globally integrable pressure and this is the
reason why we are not able to extend, at the current state, the theory to Dirichlet
boundary condition for the velocity (the case λ = 1 in (1.5)2).

We finish this part by recalling several related results and approaches. The sys-
tem (1.1)–(1.3) was first studied in [17] and [19]. Assuming that the eddy viscosity
is a bounded function of k, the author establishes the existence of weak (distribu-
tional) solutions in the steady-state case and in the evolutionary 2D case if both
k and v satisfy homogeneous Dirichlet boundary conditions. These results have
been generalized in many ways and for other boundary conditions, as for instance
to flows of two interacting fluids such as the Ocean and the Atmosphere ([3, 4, 1]).
There are very few uniqueness results that are mainly obtained under smallness as-
sumptions on the total variation of the eddy viscosity or the source term, and they
concern steady-state flows ([2, 6]). In order to analyze models with unbounded eddy
viscosities (that are important, see (1.19)) several different tools were developed,
mostly for some simplified models (such as steady-state models, models without
convective terms, and even without the pressure). We refer the interested reader to
Lewandowski and Murat [18, Ch. 5] for details concerning renormalized solutions,
or to [14] (energy solutions in special function spaces) or to [16] (energy solutions
with periodic boundary conditions).

(2) Associating k with the internal energy (or temperature) and setting ε ≡ 0,
the system (1.1)–(1.3) describes unsteady flows of incompressible fluids in which
the Cauchy stress TTT and the heat flux q are given by the constitutive equations of
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the form

(1.20) TTT := −pIII + ν(k)DDD(v) and q := µ(k)∇k.

The system of equations (1.1)–(1.3) together with (1.20) is called the incompressible
Navier-Stokes-Fourier system, where ν denotes the kinematical viscosity of the fluid
and µ is the heat conductivity. In most liquids, that are well approximated as
incompressible materials, the internal energy is proportional to the temperature and
the viscosity decreases with increasing temperature. This is just opposite scenario
than that described by the assumptions (1.8). Although the Navier-Stokes-Fourier
system with the viscosity satisfying (1.8) is not reflecting experimental observations
it would be definitely of interest to know that there are unsteady flows of a class of
Newtonian fluids that exist for large data and the velocity is bounded.

Large data existence result presented here can be viewed as the extension of the
approach (that is based on the appropriate form of the balance of energy) orig-
inally developed in in [13] and [8] where the Navier-Stokes-Fourier system with
the bounded viscosity and the heat conductivity is treated; the spatially-periodic
problem is analyzed in [13] while flows in bounded domains satisfying the Navier’s
slip boundary conditions are studied in [8]. Naumann [25] studied the model with
the temperature dependent viscosity and the heat conductivity, he however uses
Eq. (1.3) instead of (1.10); due to difficulties to identify the limit the dissipative
term at the right-hand side of (1.3) his concept of solution is weaker than that
introduced in [13], [8] and used in this paper as well. For the sake of complete-
ness, we remark that Lions [21, Section 3.4] studies the case where the viscosity
and the heat conductivity are positive constants (temperature independent) and
provides two approaches (different from that presented here) how the problem can
be investigated in order to establish long-time and large-data existence theory.

The paper is organized as follows. After introducing relevant function spaces,
we establish, in Section 2, the main result that includes the precise definition of
suitable weak solutions to (1.1)–(1.3). Then, in Sect. 3, we introduce two-level
approximations depending on parameters n and m and prove the main result. Since
the existence of solutions to the (m,n)-approximation, for a fixed n and m, is given
in [8, Appendix] we concentrate on the analysis of the limit behavior of the solutions
(vm,n, pm,n, km,n) first as n → ∞ and then as m → ∞.

2. Main result

In order to state the main result with all details we need to clarify the notation
of relevant function spaces. For the velocity field, we define

W 1,p
n

:=
{
v ∈ W 1,p(Ω)3 : v · n = 0 on ∂Ω

}
,

W 1,p
n,div :=

{
v ∈ W 1,p

n
: div v = 0 in Ω

}
,

W−1,p′

n
:=
(
W 1,p

n

)∗
, W−1,p′

n,div :=
(

W 1,p
n,div

)∗

,

L2
n,div := W 1,2

n,div

‖ ‖2

.
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We also introduce the natural space for k; for some fixed β ∈ R+ we set

Eβ :=
{

k ∈ L∞(0, T ;L1(Ω)) : k ≥ 0 a.e.,

((1 + k)s − 1) ∈ L2(0, T ;W 1,2
D (Ω)) for all s <

β + 1

2

}

,

where W 1,2
D (Ω) := {k ∈ W 1,2(Ω); k = 0 on ∂ΩD}.

Note that by using standard interpolation technique the following continuous
embedding holds (we show it in the proof of the main theorem) for β ∈ [0, 1]

Eβ →֒ Lr(0, T ;Lr(Ω)3) ∩ Lq(0, T ;W 1,q
D (Ω)3) for all r <

3β + 5

3
and q <

3β + 5

4
.

If β > 1 then q = 2 in the above embedding.
Moreover, in what follows we use the abbreviation (a, b)A :=

∫

A
ab whenever

ab ∈ L1(A). In case that A = Ω we also omit writing the subscript Ω. The same
notation is used for vector- and tensor-valued functions as well.

We formulate the main result of this paper.

Theorem 2.1. Let Ω ∈ C1,1, T > 0, v0 ∈ L2
n,div and k0 ∈ L1(Ω), k0 ≥ 0 a.e. in Ω,

be given arbitrarily. Assume that ν, µ and ε satisfy (1.8) with α, β and γ fulfilling

(2.1) 0 ≤ α <
2β

5
+

2

3
, 0 ≤ γ < β +

2

3
.

Then there exist a triple (v, p, k) and E given as

E =
1

2
|v|2 + k,

satisfying

v ∈ Cweak(0, T ;L2
n,div) ∩ L2(0, T ;W 1,2

n,div),(2.2)

v,t ∈ Lq′

(0, T ;W−1,q′

n
) for all q < min

{
5

3
, 2 − 2α

α + β + 5
3

}

,(2.3)

k ∈ Eβ ,(2.4)

k,t ∈ M(0, T ;W−1,1+δ) for certain δ > 0 small, ,(2.5)

p ∈ Lq(0, T ;Lq(Ω)) for all q < min

{
5

3
, 2 − 2α

α + β + 5
3

}

,(2.6)

√

ν(k)DDD(v) ∈ L2(0, T ;L2(Ω)3×3)(2.7)

E,t ∈ L1+δ(0, T ;W−1,1+δ
D (Ω)) for certain δ > 0 small,(2.8)

and fulfilling
∫ T

0

〈v,t,w〉 − (v ⊗ v,∇w) +
λ

1 − λ
(v,w)∂Ω + (ν(k)DDD(v),DDD(w)) dt

=

∫ T

0

(p,div w) dt for all w ∈ L∞(0, T ;W 1,∞
n

),

(2.9)

∫ T

0

〈E,t, w〉 − (v(E + p),∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

= −
∫ T

0

(ν(k)DDD(v)v,∇w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)),

(2.10)
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and
∫ T

0

〈k,t, w〉 − (kv,∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

≥
∫ T

0

(ν(k)|DDD(v)|2, w) dt for all w ∈ C(0, T ;W 1,∞
D (Ω)).

(2.11)

Moreover, the initial conditions are attained in the following sense

(2.12) lim
t→0+

(
‖v(t) − v0‖2

2 + ‖k(t) − k0‖1

)
= 0.

It is worth of noticing that Theorem 2.1 covers the interesting case α = β = γ
for 0 ≤ α < 10/9. In particular, the case (1.19) is included.

We also remark that all terms in (2.9)–(2.11) are meaningful; the most crit-
ical term is the third term in (2.10) and the L1-integrability of this term leads

to the restriction (2.1)1. Indeed, noticing that ν(k)DDD(v)v =
√

ν(k)DDD(v)v
√

ν(k)

and
√

ν(k)DDD(v) ∈ L2(0, T ;L2(Ω)3×3), v ∈ L10/3(0, T ;L10/3(Ω)3) and
√

ν(k) ∈
L

3β+5
3 −s(0, T ;L

3β+5
3 −s(Ω)) we observe, by applying the Hölder inequality that

ν(k)DDD(v)v ∈ L1(0, T ;L1(Ω)) ⇐⇒ 0 ≤ α <
2β

5
+

2

3
,

which is the first condition in (2.1). The second condition (2.1)2 is required in order
to know that ε(k) belongs to a better space than L1(0, T ;L1(Ω)), which is needed
to establish the compactness of the terms involving ε(k).

3. Proof of Theorem 2.1

First we introduce a notation of various truncated functions. For any m ∈ R+,
we define the function Tm through

(3.1) Tm(y) :=

{

y if |y| ≤ m,

m sgn (y) if |y| > m,

and we use the symbol Θm to denote the primitive function to Tm, i.e.,

(3.2) Θm(y) :=

∫ y

0

Tm(τ) dτ.

For β introduced in (1.8)2 and for arbitrary s ≥ 0, we also introduce the function
Φs by the formula

(3.3) Φs(y) :=

∫ y

0

(1 + τ)
β−s−1

2 dτ =
2

β − s + 1

[

(1 + y)
β−s+1

2 − 1
]

.

Finally, we consider a smooth non-increasing function G such that G(y) = 1 when
y ∈ [0, 1] and G(y) = 0 for y ≥ 2, define Gm as

(3.4) Gm(y) := G
( y

m

)

.

The primitive function to Gm is then defined through

(3.5) Γm(y) :=

∫ y

0

Gm(τ) dτ.

The first part of the proof takes inspiration in the method developed in [8]. We

start with a “semi”-Galerkin approximation. Let {wk}∞k=1 be a basis of W 1,2
n,div ∩
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W 2,4(Ω)d, which exists due to the separability of this space. We look for (vn,m, kn,m),
where

v
n,m :=

n∑

i=1

cn,m
i (t)wi(x), and kn,m ≥ 0 a.e.

fulfill the equations

(vn,m
,t ,wi) −

(
Gm(|vn,m|2)vn,m ⊗ v

n,m,∇wi

)
+

λ

1 − λ
(vn,m,wi)∂Ω

+ (ν(Tm(kn,m))DDD(vn,m),DDD(wi)) = 0 for all i = 1, . . . , n,
(3.6)

∫ T

0

〈kn,m
,t , w〉 − (vn,mkn,m,∇w) + (µ(kn,m)∇kn,m,∇w) + (ε(kn,m), w) dt

= −
∫ T

0

(ν(Tm(kn,m))|DDD(vn,m)|2, w) dt for all w ∈ L2(0, T ;W 1,2
D (Ω)),

(3.7)

as well as the initial conditions of the form

v
n,m(0, x) := v

n
0 (x) :=

n∑

i=1

c0
i wi with c0

i := (v0,wi),

lim
t→0

‖kn,m(t) − kn
0 ‖2

2 = 0 with kn
0 := k0 ∗ η 1

n
,

(3.8)

where η 1
n

is the standard regularizing kernel of radii 1
n and k0 is extended by 0

outside of Ω. Note that v
n
0 → v0 strongly in L2(Ω) and that kn

0 → k0 strongly in
L1(Ω).

The existence of the solution to (3.6)–(3.8) is established in [8, Appendix] and
here we merely state the result concerning large-data and long-time existence proved
therein.

Theorem 3.1. Let arbitrary n,m ∈ N be fixed. Assume that all assumptions of

Theorem 2.1 hold. Then there exist (cn,m, kn,m) solving (3.6)–(3.8) such that

c
n,m ∈ W 1,2(0, T )n,(3.9)

kn,m ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;W 1,2
D (Ω)),(3.10)

kn,m
,t ∈ L2(0, T ;W−1,2

0 (Ω)).(3.11)

3.1. Limit n → ∞. Since m ∈ N is fixed in this subsection, we write (vn, kn)
instead of (vn,m, kn,m), where (vn,m, kn,m) denotes a solution to (3.6)–(3.8). Our
goal is to study the convergence in the equations (3.6)–(3.7) if n → ∞. We will
follow the procedure developed in [8] that we have to modify in order to treat
unbounded coefficients ν and µ. This is why we investigate this limiting process
here rigorously and in detail.

3.1.1. Uniform estimates on v
n. Multiplying the i-th equation in (3.6) by cn

i and
then summing over i = 1, . . . n we get

1

2

d

dt
‖vn‖2

2 −
1

2
(Gm(|vn|2)vn,∇|vn|2) +

λ

1 − λ
‖vn‖2

∂Ω,2

+

∫

Ω

ν(Tm(kn))|DDD(vn)|2 dx = 0.
(3.12)

Next, using the fact that v
n · n = 0 on ∂Ω and div v

n = 0 in Ω we deduce that

1

2
(Gm(|vn|2)vn,∇|vn|2) =

1

2
(vn,∇Γm(|vn|2)) = −1

2
(div v

n,Γm(|vn|2)) = 0.
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Thus, we conclude from (3.12) that

(3.13) sup
t∈(0,T )

‖vn(t)‖2
2+2

∫ T

0

∫

Ω

ν(Tm(kn))|DDD(vn)|2 dx dt ≤ ‖vn
0‖2

2 ≤ C(v0) < ∞.

It then follows from (1.8)1 and the Korn inequality that

(3.14)

∫ T

0

‖vn(t)‖2
1,2 dt ≤ C(C−1

1 ,v0) < ∞.

Moreover, using the standard interpolation inequality, (3.13)-(3.14) implies that

(3.15)

∫ T

0

‖vn‖
10
3
10
3

dt ≤ C.

Note finally that it follows from (3.6) and (3.13)-(3.14) that

(3.16)

∫ T

0

‖vn
,t‖2

W−1,2
n,div

≤ C(m).

3.1.2. Estimates on kn uniform w.r.t. both m and n. Setting w := T1(k
n) in (3.7)

(note that T1(k
n) is a possible test function) we obtain the identity

d

dt

∫

Ω

Θ1(k
n) dx − (vn,∇Θ1(k

n)) + (µ(kn)∇kn, T ′
1(k

n)∇kn)

+(ε(kn), T1(k
n)) = (ν(Tm(kn))|DDD(vn)|2, T1(k

n)).

(3.17)

Since div v
n = 0 in Ω and v

n · n = 0 on ∂Ω, the second term on the left hand side
vanishes. Moreover, using (1.8), we see that the third term on the left hand side is
nonnegative. Thus, integrating (3.17) over time, using (1.8)3 to estimate the last
term on the left hand side from below and using (3.13) to bound the right hand
side of (3.17), we conclude that

(3.18) sup
t∈(0,T )

‖Θ1(k
n(t))‖1 + C

∫ T

0

‖kn‖γ+1
γ+1 dt ≤ C + ‖Θ1(k

n
0 )‖1.

Finally, using the simple estimate for the growth of Θ1 we get that

(3.19) sup
t∈(0,T )

‖kn(t)‖1 + C

∫ T

0

‖kn‖γ+1
γ+1 dt ≤ C + ‖k0‖1 < ∞.

Next, recalling that kn ≥ 0 a.e. in Ω we consider w = (1+kn)−s−1 with s small and
observe that such w is an admissible test function in (3.7), in particular ‖w‖∞ ≤ 2

and w ∈ L2(0, T ;W 1,2
D (Ω)) for each n ∈ N. Inserting such w into (3.7), using the

fact that div v
n = 0 and the estimates established in (3.13) and (3.19), we get
∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt ≤ C(s−1).(3.20)

Consequently, using the assumption (1.8)2 and recalling the definition of Φs, see
(3.3), we conclude that (using the fact that Φs has zero trace on ΩD)

∫ T

0

‖Φs(k
n)‖2

1,2 dt ≤ C

∫ T

0

‖∇Φs(k
n)‖2

2 dt

≤ C

∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt ≤ C(s−1).

(3.21)
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Using the first inequality in

(3.22) c−1((1 + x)
β−s+1

2 − 1) ≤ Φs(x) ≤ c(1 + x)
β−s+1

2 , (x ≥ 0)

the embedding W 1,2
D (Ω) →֒ L6(Ω) and (3.21)1 we observe that

(3.23)
∫ T

0

‖kn‖β−s+1
3(β−s+1) dt ≤ C(1 +

∫ T

0

‖Φs(k
n)‖2

1,2 dt) ≤ C(s−1) for all s > 0 small.

Then, referring to the standard interpolation inequality

(3.24) ‖u‖β−s+ 5
3
≤ ‖u‖1−a

1 ‖u‖a
3(β−s+1) with a :=

β − s + 1

β − s + 5
3

,

applied onto kn we conclude from (3.19) and (3.23) that

∫ T

0

‖kn‖β−s+ 5
3

β−s+ 5
3

dt ≤
∫ T

0

‖kn‖
2
3
1 ‖kn‖β−s+1

3(β−s+1) dt
(3.20)

≤
(3.23)

C(s−1) for all s > 0 small.

(3.25)

Notice that the estimate (3.25) is better than the second estimate in (3.19) since we
assume that γ < β + 2

3 , see (2.1)2. Moreover, using the Hölder inequality and the
estimates (3.15) and (3.25), it is easy to deduce that (note that the specific value
of a small parameter s differs from s in (3.25))

(3.26)

∫ T

0

‖vnkn‖
10
9

3β+5
β+5 −s

10
9

3β+5
β+5 −s

dt ≤ C(s−1) for all s > 0 small.

Concerning the estimate on the gradient of kn, we consider first the case β ∈ [0, 1]

and we set q := 3β−3s+5
4 . Combining the estimates stated in (3.20) and (3.25), we

conclude that
∫ T

0

‖∇kn‖q
q ≤ C

∫ T

0

∫

Ω

(
µ(kn)(1 + kn)−s−1|∇kn|2

) q
2 (1 + kn)

q(s+1−β)
2 dx dt

≤ C

(
∫ T

0

∫

Ω

µ(kn)(1 + kn)−s−1|∇kn|2 dx dt

) q
2
(
∫ T

0

‖1 + kn‖β+ 5
3−s

β+ 5
3−s

dt

) 2−q
2

≤ C(s−1).

If β > 1 we can always find s > 0 small enough so that β−s−1 > 0. Consequently1,

∫ T

0

‖∇kn‖
3β+5−s

4
3β+5−s

4

≤ C(s−1) for all s small for β ∈ [0, 1],

∫ T

0

‖∇kn‖2
2 ≤ C for β > 1.

(3.27)

Similarly, the estimates (3.21)–(3.25) together with (1.8)2 imply that

(3.28)

∫ T

0

‖µ(kn)∇kn‖
3β+5
3β+4−s
3β+5
3β+4−s

≤ C(s−1) for all s > 0 small.

1Note that the estimates (3.27) and (3.25) are better than those derived in [14] and [19].
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Finally, using the above established estimates it is not difficult to observe (see [7]
for details) that

(3.29)

∫ T

0

‖kn
,t‖−1,r−s dt ≤ C(s−1) for all s > 0 small

with r given by

(3.30) r := min

{
3β + 5

3β + 4
,
10

9

3β + 5

β + 5

}

.

3.1.3. Limit n → ∞. Letting n → ∞ and using (3.13), (3.15), (3.16), (3.25) and
(3.27), and using the convention that a selected sequence is denoted again as the
original one, we can find a subsequence such that2

v
n ⇀∗

v weakly∗ in L∞(0, T ;L2
n,div),(3.31)

v
n ⇀ v weakly in L2(0, T ;W 1,2

n,div) ∩ L
10
3 (0, T ;L

10
3 (Ω)3),(3.32)

v
n
,t ⇀ v,t weakly in L2(0, T ;W−1,2

n,div),(3.33)

kn ⇀ k weakly in Lq(0, T ;W 1,q
D (Ω)) for all q < min

{
3β + 5

4
, 2

}

,(3.34)

kn ⇀ k weakly in Lω(0, T ;Lω(Ω)) for all 1 ≤ ω <
3β + 5

3
,(3.35)

v
n ⇀ v weakly in L

8
3 (0, T ;L

8
3 (∂Ω)3).(3.36)

In addition, using the generalized version of the Aubin-Lions compactness lemma
(see [27]) together with (3.33) and (3.29) leads to the conclusions that

v
n → v strongly in Lq(0, T ;Lq(Ω)3) for all q <

10

3
,(3.37)

v
n → v strongly in Lq(0, T ;Lq(∂Ω)3) for all q <

8

3
,(3.38)

kn → k strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3
,(3.39)

and consequently we show that (at least for a suitable subsequence)

v
n → v a.e. in (0, T ) × Ω,(3.40)

kn → k a.e. in (0, T ) × Ω,(3.41)

Φs(k
n) ⇀ Φs(k) weakly in L2(0, T ;W 1,2

D (Ω)) for all s small.

(3.42)

Moreover, using the Fatou lemma, (3.19) and (3.41) we can conclude that

(3.43) sup
t∈(0,T )

‖k(t)‖1 ≤ C.

Concerning limits in the nonlinear terms in (3.6) and (3.7) we first easily observe
(recall that ν(Tm(kn)) is a bounded a.e. convergent sequence as n → ∞) that

√

ν(Tm(kn))DDD(vn) ⇀
√

ν(Tm(k))DDD(v) weakly in L2(0, T ;L2(Ω)3×3),(3.44)

ν(Tm(kn))DDD(vn) ⇀ ν(Tm(k))DDD(v) weakly in L2(0, T ;L2(Ω)3×3).(3.45)

2For the proof of (3.36) and (3.38) see [7].
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Next, having the assumption on γ, see (1.8)3, one can also obtain by using (3.34),
(3.39) and the Vitali theorem that

ε(kn) → ε(k) strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3(γ + 1)
.(3.46)

Also, it is a consequence of (3.28) that there is some q such that

µ(kn)∇kn ⇀ q weakly in Lq(0, T ;Lq(Ω)3) for all q <
3β + 5

3β + 4
.(3.47)

In order to identify q, we first remark that it is enough to show that

lim
n→∞

∫ T

0

(µ(kn)∇kn,ϕ) dt =

∫ T

0

(µ(k)∇k,ϕ) dt for all ϕ ∈ D((0, T ) × Ω) .

However, using the assumption (1.8)2 concerning µ and the convergence results
(3.39) and (3.42) we observe that

∫ T

0

(µ(kn)∇kn,ϕ) dt =

∫ T

0

(µ(kn)(1 + kn)−
β−s−1

2

︸ ︷︷ ︸

strongly in L2

∇Φs(k
n)

︸ ︷︷ ︸

weakly in L2

,ϕ) dt

n→∞→
∫ T

0

(µ(k)(1 + k)−
β−s−1

2 ∇Φs(k),ϕ) dt =

∫ T

0

(µ(k)∇k,ϕ) dt .

Consequently, q = µ(k)∇k.
All above established convergence results are not sufficient to take the limit in

the nonlinear term at the right hand side of (3.7). However, since m is fixed and
v = v

m is an admissible test function in (3.6) we can use energy equality method
here. First, we notice that it follows from (3.31)–(3.33), (3.37) and (3.45) that

∫ T

0

〈v,t,w〉 −
(
Gm(|v|2)v ⊗ v,∇w

)
dt +

∫ T

0

(ν(Tm(k))DDD(v),DDD(w)) dt

+
λ

1 − λ

∫ T

0

(v,w)∂Ω dt = 0 for all w ∈ L2(0, T ;W 1,2
n,div).

(3.48)

Moreover, using (3.31)–(3.33) and (3.44) it is standard to deduce (see for example
[22]) that

v ∈ C([0, T ];L2
n,div) and v(0) = v0 .

Next, we shall show that we can replace the weak convergence in (3.45) by the
strong one. For this purpose, we first integrate (3.12) w.r.t. time t ∈ (0, T ) and
obtain
∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖2
2 dt = −1

2
‖vn(T )‖2

2 +
1

2
‖vn

0‖2
2 −

∫ T

0

λ

1 − λ
‖vn‖2

2,∂Ω dt

= −1

2
‖vn(T ) − v(T )‖2

2 +
1

2
‖vn

0 − v0‖2
2 −

∫ T

0

〈v,t,v
n − v〉 + 〈vn

,t,v〉 dt

−
∫ T

0

λ

1 − λ
‖vn‖2

2,∂Ω dt.
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Therefore, letting n → ∞ we deduce from (3.32), (3.33), (3.38) and (3.8) that

lim sup
n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖2
2 dt ≤ −

∫ T

0

〈v,t,v〉 dt

−
∫ T

0

λ

1 − λ
‖v‖2

2,∂Ω dt.

(3.49)

Next, setting w := v in (3.48) and using (3.49) we obtain

lim sup
n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖2
2 dt ≤

∫ T

0

‖
√

ν(Tm(k))DDD(v)‖2
2 dt.(3.50)

Consequently, as (3.44) implies that
∫ T

0

‖
√

ν(Tm(k))DDD(v)‖2
2 dt ≤ lim inf

n→∞

∫ T

0

‖
√

ν(Tm(kn))DDD(vn)‖2
2 dt(3.51)

we finally conclude that
√

ν(Tm(kn))DDD(vn) →
√

ν(Tm(k))DDD(v) strongly in L2(0, T ;L2(Ω)3×3),(3.52)

or saying differently

ν(Tm(kn))|DDD(vn)|2 → ν(Tm(k))|DDD(v)|2 strongly in L1(0, T ;L1(Ω)).(3.53)

Finally, using (3.7), (3.29) and (3.53) we observe that

kn
,t ⇀ k,t weakly in L1(0, T ;W−1,r−s

D (Ω)) for all s > 0 small,(3.54)

with r given by (3.30). At this point, it is easy to take the limit in (3.7) and arrive
at

∫ T

0

〈k,t, w〉 − (vk,∇w) + (µ(k)∇k,∇w) + (ε(k), w) dt

=

∫ T

0

(ν(Tm(k))|DDD(v)|2, w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)).

(3.55)

3.1.4. Attainment of initial data k0. We first integrate (3.17) w.r.t. time over (0, t)
and obtain (note that the second term vanishes and the third and fourth terms are
nonnegative)

‖Θ1(k
n(t))‖1 ≤

∫ t

0

ν(Tm(kn))|DDD(vn)|2 dx dτ + ‖Θ1(k
n
0 )‖1.

Next, we let n → ∞. Using the nonnegativity of Θ1, the point-wise convergence of
kn, see (3.41), and the Fatou lemma we are able to take limit in the term at the
left hand side with corresponding inequality sign. On the other hand, using (3.53)
we are able to identify limit of the first term on the right hand side and therefore
we obtain for almost all time t ∈ (0, T )

(3.56) ‖Θ1(k(t))‖1 ≤
∫ t

0

ν(Tm(k))|DDD(v)|2 dx dτ + ‖Θ1(k0)‖1,

which implies that

(3.57) lim sup
t→0+

‖Θ1(k(t))‖1 ≤ ‖Θ1(k0)‖1.
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Next, setting in (3.55) w := T1(k
n)(Θ1(k

n))−
1
2 ϕχ[0,t] where ϕ ∈ D(Ω), ϕ ≥ 0, we

obtain (note that w is an admissible test function)

2(
√

Θ1(kn(t)), ϕ) − 2

∫ t

0

(vn
√

Θ1(kn),∇ϕ) dτ

+

∫ t

0

∫

Ω

µ(kn)

(

T ′
1(k

n)(Θ1(k
n))−

1
2 − 1

2
(T1(k

n))2(Θ1(k
n))−

3
2

)

|∇kn|2ϕ dx dτ

+

∫ t

0

(µ(kn)T1(k
n)(Θ1(k

n))−
1
2∇kn,∇ϕ) dτ

+

∫ t

0

(ε(kn), T1(k
n)(Θ1(k

n))−
1
2 ϕ) dτ

=

∫ t

0

(ν(Tm(kn))|DDD(vn)|2, T1(k
n)(Θ1(k

n))−
1
2 ϕ) dτ + 2(

√

Θ1(kn
0 ), ϕ) .

Observing that the integrand in the third integral is non-positive and the first
integral on the right hand side is nonnegative, we can neglect both of them by
replacing the equality sign by the inequality3. Then we let n → ∞. Applying all
convergence results established above, it is standard to conclude that for almost all
time t ∈ (0, T )

(
√

Θ1(k(t)), ϕ) −
∫ t

0

(v
√

Θ1(k),∇ϕ) dτ +
1

2

∫ t

0

(µ(k)T1(k)(Θ1(k))−
1
2∇k,∇ϕ) dτ

+
1

2

∫ t

0

(ε(k), T1(k)(Θ1(k))−
1
2 ϕ) dτ ≥ 2(

√

Θ1(k0), ϕ).

Finally, letting t → 0+ we observe that

lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ D(Ω), ϕ ≥ 0.

Thus, using the density argument, (3.43) and the fact that Θ1(k) has at most linear
growth in k, we finally deduce that
(3.58)

lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ L2(Ω), ϕ ≥ 0 a.e. in Ω.

Consequently, it is then easy to observe that

lim
t→0+

‖
√

Θ1(k(t)) −
√

Θ1(k0)‖2
2

= lim
t→0+

(

‖Θ1(k(t))‖1 + ‖Θ1(k0)‖1 − 2(
√

Θ1(k(t)),
√

Θ1(k0))
)

(3.57),(3.58)

≤ ‖Θ1(k0)‖1 + ‖Θ1(k0)‖1 − 2(
√

Θ1(k0),
√

Θ1(k0)) = 0 ,

which finally leads to

(3.59) lim
t→0+

‖k(t) − k0‖1 = 0.

3At this level of approximation, we even do not need this simplification because we are able to
identify the limit of corresponding quantities. However, it will not be the case in the final passage
to the limit and we will be forced to use such procedure.
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3.2. Limit m → ∞. In the previous subsection, we established the existence of
(vm, km) fulfilling, for every m ∈ N fixed, the weak formulations (3.48) and (3.55).
Before summarizing the estimates for (vm, km) that are uniform with respect to m,
we take the advantage of considered slip boundary conditions (0 ≤ λ < 1 in (1.5))
and introduce the integrable pressure.

For any w ∈ W 1,2
n

we observe that the Helmholtz decomposition w = wdiv +∇ϕ
with ϕ having zero mean over Ω and solving −∆ϕ = div w in Ω and homogeneous
Neumann problem on ∂Ω is compatible with (1.5) for 0 ≤ λ < 1. Indeed, noticing
that

(3.60)

∫ T

0

〈vm
,t ,w〉 dt =

∫ T

0

〈vm
,t ,div 〉 dt ,

we can extend the definition domain for v
m
,t and observe that v

m
,t ∈ L2(0, T ;W−1,2

n
).

Let us introduce pm as the solution of the following problem

(pm,△ϕ) = (ν(Tm(km))DDD(vm),∇(2)ϕ) +
λ

1 − λ
(vm,∇ϕ)∂Ω

− (Gm(|v|2)vm ⊗ v
m,∇2ϕ) for all ϕ ∈ W 2,2(Ω), ∇ϕ ∈ W 1,2

n
.

(3.61)

Taking arbitrarily w ∈ L2(0, T,W 1,2
n

), applying the Helmholtz decomposition on
such w, taking the sum of (3.48) with the test function wdiv and (3.61) and using
(3.60) we obtain the following identity

∫ T

0

〈vm
,t ,w〉 −

(
Gm(|vm|2)vm ⊗ v

m,∇w
)

+ (ν(Tm(km))DDD(vm),DDD(w)) dt

+
λ

1 − λ

∫ T

0

(vm,w)∂Ω dt =

∫ T

0

(pm,div w) dt for all w ∈ L2(0, T ;W 1,2
n

).

(3.62)

It is easy to check from (3.62) that such normalized pm is uniquely determined by
a given solution (vn, kn).

We also recall that the m-approximation satisfies (3.55) that we repeat for
brevity. It reads as

∫ T

0

〈km
,t , w〉 − (vmkm,∇w) + (µ(km)∇km,∇w) + (ε(km), w) dt

=

∫ T

0

(ν(Tm(km))|DDD(vm)|2, w) dt for all w ∈ L∞(0, T ;W 1,∞
D (Ω)).

(3.63)

Next, we recall the uniform bound on (vm, pm) and derive the uniform bound
on the pressure pm that will be needed in what follows. First, referring to lower
semicontinuity of the norms and the Fatou lemma we get from (3.13) and (3.19)

sup
t∈(0,T )

(
‖vm(t)‖2

2 + ‖km(t)‖1

)
+

∫ T

0

∫

Ω

ν(Tm(km))|DDD(vm)|2 dx dt

+

∫ T

0

‖km‖γ+1
γ+1 dt ≤ C.

(3.64)

Moreover, using (3.64) and the standard embedding of Sobolev functions to the
space of traces together with the standard interpolation inequalities one can deduce,
see [9], Lemma 1.12, for details, that

(3.65)

∫ T

0

∫

∂Ω

|vm| 83 dS dt +

∫ T

0

‖vm‖
10
3
10
3

dt ≤ C.
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In addition, referring again to the lower semicontinuity of the norms we obtain from
(3.21) and (3.25)–(3.28)

∫ T

0

‖Φs(k
m)‖2

1,2 + ‖vmkm‖
10
9

3β+5
β+5 −s

10
9

3β+5
β+5 −s

+ ‖km‖β+ 5
3−s

β+ 5
3−s

+ ‖∇km‖min(2, 3β+5
4 )−s

min(2, 3β+5
4 )−s

dt

+

∫ T

0

‖µ(km)∇km‖
3β+5
3β+4−s
3β+5
3β+4−s

dt ≤ C(s−1) for all s small.

(3.66)

Next, observing that

ν(Tm(km))DDD(vm) =
√

ν(Tm(km))DDD(vm)
√

ν(Tm(km)) ,

and recalling that according to (3.64)
√

ν(Tm(km))DDD(vm) is uniformly bounded in

L2(0, T ;L2(Ω)3×3 and according to (3.66)
√

ν(Tm(km)), which grows as (1+km)α/2,

is bounded uniformly in L
2
α

(β+ 5
3−s)(0, T ;L

2
α

(β+ 5
3−s)(Ω)), we conclude that

∫ T

0

‖ν(Tm(km))DDD(vm)‖q0−s
q0−s dt ≤ C(s−1) for all s > 0 small,

with q0 :=
2(3β + 5)

3α + 3β + 5
.

(3.67)

Similarly, incorporating also the second estimate in (3.65), we observe that
∫ T

0

‖ν(Tm(km))DDD(vm)vm‖w0−s
w0−s dt ≤ C(s−1) for all s > 0 small,

with w0 :=
10(3β + 5)

15α + 24β + 40
.

(3.68)

Note that the assumption (2.1)1 guarantees that w0 > 1.
At this point, we can deduce from (3.61) the estimates for {pm} that will be

uniform with respect to m. We consider ϕ with zero mean over Ω solving the
homogeneous Neumann problem −△ϕ = |pm|q−2pm − 1

|Ω|

∫

Ω
|pm|q−2pm dx and in-

serting it into (3.61). Using the estimates on {vm} and the Hölder inequality we
obtain

∫ T

0

‖pm‖z0−s
z0−s dt ≤ C(s−1) for all s > 0 small,

with z0 := min

(
5

3
,

2(3β + 5)

3α + 3β + 5

)

.

(3.69)

Finally, using the equation (3.62) and the above estimates we conclude that

(3.70)

∫ T

0

‖vm
,t ‖z0−s

W
−1,z0−s
n

dt ≤ C(s−1) for all s > 0 small.

Similarly as in the previous subsection, using (3.55), (3.64) and (3.66) we deduce
that

(3.71)

∫ T

0

‖km
,t ‖W−1,r−s

D
dt ≤ C(s−1) for all s > 0 small and r defined in (3.30) .

Having all uniform estimates (3.64), (3.65), (3.66), (3.69), (3.70) and (3.71), and
using the generalized version of the Aubin-Lions compactness lemma we find sub-
sequences that we again label in the same way as the original sequences such that
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(we use the convention that s > 0 is small but arbitrary)

v
m ⇀∗

v weakly∗ in L∞(0, T ;L2
n,div),(3.72)

v
m ⇀ v weakly in L2(0, T ;W 1,2

n,div) ∩ L
10
3 (0, T ;L

10
3 (Ω)3),(3.73)

v
m
,t ⇀ v,t weakly in Lz0−s(0, T ;W−1,z0−s

n
) for z0 from (3.69),(3.74)

pm ⇀ p weakly in Lz0−s(0, T ;Lz0−s(Ω)) for z0 from (3.69),(3.75)

km ⇀ k weakly in Lq(0, T ;W 1,q
D (Ω)) for all q < min(2,

3β + 5

4
),(3.76)

km
,t ⇀∗ k,t weakly∗ in M(0, T ;W−1,r−s

D (Ω)) for r from (3.30),(3.77)

v
m ⇀ v weakly in L

8
3 (0, T ;L

8
3 (∂Ω)3).(3.78)

v
m → v strongly in Lq(0, T ;Lq(Ω)3) for all q <

10

3
,(3.79)

v
m → v strongly in Lq(0, T ;Lq(∂Ω)3) for all q <

8

3
,(3.80)

km → k strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3
,(3.81)

v
m → v a.e. in Ω × (0, T ),(3.82)

km → k a.e. in Ω × (0, T ),(3.83)

Φs(k
m) ⇀ Φs(k) weakly in L2(0, T ;W 1,2

D (Ω)).(3.84)

Moreover, using the same procedure as in the previous subsection we can conclude
that

(3.85) sup
t∈(0,T )

‖k(t)‖1 ≤ C.

Similarly, as in the previous subsection, see (3.47), we can verify that

µ(km)∇km ⇀ µ(k)∇k weakly in Lq(0, T ;Lq(Ω)3) for all q <
3β + 5

3β + 4
.(3.86)

Moreover, it follows from (3.64) that there is an SSS ∈ L2(0, T ;L2(Ω)3×3) such that
√

ν(Tm(km))DDD(vm) ⇀ SSS weakly in L2(0, T ;L2(Ω)3×3).(3.87)

To identify SSS we first observe that (3.83), the growth assumption (1.8)1, (3.66) and
Vitali’s theorem imply that

ν(Tm(km)) → ν(k) strongly in Lq(0, T ;Lq(Ω)) for all q <
3β + 5

3α
(3.88)

Since the assumption (2.1) guarantees that 3β+5
3α > 2, it follows from (3.73) and

(3.88) that

(3.89) SSS =
√

ν(k)DDD(v) a.e. in (0, T ) × Ω.

Similarly, using (3.67), we can deduce that

(3.90) ν(Tm(km))DDD(vm) ⇀ SSS2 weakly in Lq(0, T ;Lq(Ω)3×3) for all q < q0 .

To identify SSS2 it is then enough to combine (3.87), (3.89) and (3.88) to obtain that

SSS2 = ν(k)DDD(v) a.e. in (0, T ) × Ω.
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At this point, we can complete the proof of Theorem 2.1. First note that (3.72)–
(3.88) implies that the triple (v, k, p) satisfies (2.2)–(2.7). Next, the above estab-
lished convergences (3.72)–(3.90) suffice to prove (2.9) by letting m → ∞ in (3.62).
Similarly, letting m → ∞ in (3.63) we deduce (2.11), using the weak lower semi-
continuity of the last term in (3.63).

Then, setting in (3.62) w := v
mw with arbitrary w ∈ L∞(0, T ;W 1,∞

D (Ω)) and
adding the result to (3.63) we arrive at

∫ T

0

〈Em
,t , w〉 − (vm(pm + km),∇w) − (Gm(|vm|2)vm ⊗ v

m,∇(vmw)) dt

+

∫ T

0

(ν(Tm(km))DDD(vm)vm,∇w) + (µ(km)∇km,∇w) + (ε(km), w) dt = 0,

(3.91)

where we set

Em :=
1

2
|vm|2 + km.

Noticing that the third term in (3.91) can be simplified by using integration by
parts and also the fact that div v

m = 0 in Ω, we get

(Gm(|vm|2)vm ⊗ v
m,∇(vmw)) =

1

2
(wv

m,∇Γm(|vm|2) + (Gm(|vm|2)|vm|2vm,∇w)

= ((Gm(|vm|2)|vm|2 − 1

2
Γm(|vm|2))vm,∇w).

From (3.91) we can obtain the estimate on the time derivative of Em and by
selecting a subsequence observe that

(3.92) Em
,t ⇀ E,t weakly in Lq(0, T ;W−1,q

D (Ω)), where E :=
1

2
|v|2 + k,

for all 1 < q < min
{

10
9 , w0,

3β+5
3β+4

}

; w0 is introduced in (3.68).

Finally, setting m → ∞ in (3.91) it is standard to obtain (2.10).

3.2.1. Attainment of initial condition. We aim to prove (2.12). The first part, i.e.,
the attainment of the initial velocity v0 is standard and we refer the reader to
[22]. To establish the second part we use the similar procedure as in the previous
subsection with only one essential change. First part follows the procedure from
the preceding subsection and we deduce that

(3.93) lim inf
t→0+

(
√

Θ1(k(t)), ϕ) ≥ (
√

Θ1(k0), ϕ) for all ϕ ∈ L2(Ω), ϕ ≥ 0 a.e. in Ω.

To finish the proof of (2.12) it is then enough to obtain

(3.94) lim sup
t→0+

‖Θ1(k(t))‖1 ≤ ‖Θ1(k0)‖1

and the same arguments as in preceding subsection then leads to (2.12). To prove
(3.94) we have to proceed differently. Rewriting (3.56) again as

(3.95) ‖Θ1(k
m(t))‖1 ≤

∫ t

0

∫

Ω

ν(Tm(km))|DDD(vm)|2 dx dt + ‖Θ1(k0)‖1.

we can replace the first term on the right hand side by using w := v
nχ[0,t] as a

test function in (3.62). Hence, after neglecting the boundary integral, because of
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correct sign, we get

(3.96) ‖Θ1(k
m(t))‖1 ≤ −‖vm(t)‖2

2 + ‖v0‖2
2 + ‖Θ1(k0)‖1.

Therefore, passing to the limit w.r.t. m we get after using the Fatou lemma and
weak lower semicontinuity of norm that

(3.97) ‖Θ1(k(t))‖1 ≤ −‖v(t)‖2
2 + ‖v0‖2

2 + ‖Θ1(k0)‖1.

Consequently, using also the first part of (2.12) then leads to (3.94). Thus, the
proof is complete.
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