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Motivation

In 2000, Satoh and Mestre independently proposed very efficient
p-adic methods for counting points on elliptic and hyperelliptic
curves in Fpn .

Numerous improvements finally made decrease the complexity in
time from O(n3+o(1)) to O(n2+o(1)).

We focus on the choice of good basis for p-adic unramified
extensions, especially we consider p-adic analogues of the normal
elliptic basis introduced by Couveignes and L. in 2009 for Fpn .
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Elliptic Curve

Elliptic curves

O(n3+o(1)) in time, O(n3) in space:
T. Satoh. The canonical lift of an ordinary elliptic curve over a
finite field and its point counting. J. Ramanujan Math. Soc., 15,
2000.
M. Fouquet, P. Gaudry R.J. Harley. An extension of Satoh’s
algorithm and its implementation. J. Ramanujan Math. Soc., 2000.
B. Skjernaa, Satoh’s algorithm in characteristic 2. Math. Comp.,
2000.

O(n3+o(1)) in time, O(n2) in space:
F. Vercauteren, B. Preneel, J. Vandewalle. A Memory Efficient
Version of Satoh’s Algorithm. EUROCRYPT 2001, LNCS.
J.F. Mestre. AGM pour le genre 1 et 2. Lettre à Gaudry et Harley.
December 2000.
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Elliptic curves

O(n2.5+o(1)) time, O(n2) in space:
T. Satoh, B. Skjernaa, Y. Taguchi. Fast computation of canonical
lifts of elliptic curves and its application to point counting. August
2001.
T. Satoh. On p-adic point counting algorithms for elliptic curves
over finite fields. ANTS-V. July 2002.
H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim, S.G. Hahn.
Fast elliptic curve point counting using gaussian normal basis.
ANTS-V. July 2002.
P. Gaudry. A comparison and a combination of SST and AGM
algorithms for counting points of elliptic curves in characteristic 2.
ASIACRYPT 2002.
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Elliptic Curve

Elliptic curves

O(n2+o(1)) in time, O(n2) in space:
D. Bernstein. Re: Elliptic Curve Point Counting: 32003 bits.
Number Theory Mailing List, November 2002.
R. Lercier, D. Lubicz. Counting points on elliptic curves over finite
fields in quadratic time. EUROCRYPT 2003.
R.J. Harley, Algorithmes avancés pour l’arithmétique des courbes.
PHD thesis, 2003.
F. Vercauteren, Computing Zeta functions of curves over finite
fields. PHD thesis, 2003.
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Hyperelliptic Curve

Hyperelliptic curves of small genus

Genus 2, O(n3+o(1)) in time, O(n2) in space:
J.F. Mestre. AGM pour le genre 1 et 2. Lettre à Gaudry et Harley,
2000.
P. Gaudry. Algorithms for counting points on curves. ECC,
Waterloo, 2001.
J.F. Mestre. Algorithmes pour compter des points en petite
caractéristique en genre 1 et 2. Talk at the cryptographic seminar
of Rennes, 2002.

O(n2+o(1)) in time, O(n2) in space:
R. Lercier, D. Lubicz. A quasi-quadratic time algorithm for
hyperelliptic curve point counting. The Ramanujan Journal, 2006.
R. Carls, D. Lubicz. A p-adic quasi-quadratic point counting
algorithm. Int. Math. Res. Journal, 2008.



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods

Outline

1 Point counting over Fpn , p small
Elliptic Curve
Hyperelliptic Curve

2 Fast Point Counting Algorithms
Notations
AGM
Fast canonical lift
Fields with Normal Basis
Fields without Normal Basis

3 p-adic Elliptic Periods
Normal basis
Multiplication Tensor



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods

Notations

p-adic numbers
p-adic norm | · |p of r ∈ Q∗ is |r |p = p−ρ (r = pρu/v , p 6 | u, p 6 | v).

Field of p-adic numbers Qp is the completion of Q w.r.t. | · |p,
∞∑

i=ρ
aipi , ai ∈ {0, 1, . . . , p − 1}, ρ ∈ Z.

p-adic integers Zp is the ring with | · |p 6 1 or ρ > 0.

Fp ∼= Zp/M where M is the unique maximal ideal

M = {x ∈ Qp | |x |p < 1} = pZp .

Def. Let πm be the projection from Z/pm+1Z onto Z/pmZ, then a
p-adic integer is a sequence x = (x1, x2, . . . , xm, . . .) with xm ∈ Z/pmZ
and such that πm(xm+1) = xm.
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Notations

p-adic field extensions
K extension of Qp of degree n with

valuation ring Zq and maximal ideal MZq = {x ∈ K | |x |K < 1} .

Def. The Teichmuller Lift is the map ω : Fq → Zq defined by
ω(0) = 0 and for x 6= 0, ω(x) is the unique q − 1-th root of one in Zq
such that π(ω(x)) = x with π the canonical projection of Zq to Fq.

Def. The semi-Witt decomposition of x ∈ Zq is the unique sequence
(xi)i≥0 of Fq such that x =

∑
i≥0 ω(xi)pi .

The Galois group of (unramified) K/Qp is cyclic with generator
Frobenius substitution σ and σ modulo MZq equals to the small
Frobenius on Fq.

Prop. Let (xi)i≥0 be the semi-Witt decomposition of a p-adic x , then
xσ =

∑
i≥0 ω(xi)

ppi .
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Notations

Basis

Polynomial Basis. Let Fq ∼= Fp[t]/(F (t)), let F (t) be any lift of F (t)
to Zp[t], then K can be constructed as

K ∼= Qp[t]/(F (t)) .

Such a choice yields a basis {1, t, . . . , tn−1}.
Multiplication, at precision m, costs Tm,n = O((nm)1+o(1)).

Gaussian Normal Basis (GNB). For cyclic Galois extension K/Qp,
there exists elements α which yields basis of the form
{α, ασ, . . . , ασn−1}.

Def. For some r such that ∃ a primitive r -th root of unity γ in
Z/(nr + 1)Z and such that α =

∑r−1
i=0 ζ

γ i (where ζnr+1 = 1) generates
a gaussian normal basis over Qp of type r .

In this case, Tm,n = O((r nm)1+o(1)).
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AGM

O(n3+o(1)) time complexity

A first algorithm by Satoh, improved by Vercauteren to obtain a O(n2)
in space. Another algorithm by Mestre for F2n , based on AGM.

Algorithm 1: AGM
input : An (ordinary) elliptic curve E/F2n : y 2 + xy = x3 + α
output: The trace c of E
// Lift phase
a := 1 + 8α ∈ Zq; b := 1 ∈ Zq;1
for i := 1 to d n

2 e+ 2 do2
a, b := a+b

2 ,
√

ab3

// Norm phase
A := a; B := b;4
for i := 1 to n do5

a, b := a+b
2 ,
√

ab6

return A
a mod 2n as a signed integer in [−2

√
2n, 2
√
2n].7
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AGM

AGM iterations

An AGM step is an isogeny of
degree 2 between elliptic curves.

Repeatedly, we get the following
sequence

J1
Kq

σ1 // . . . σm−1
// Jm

Kq
σm

// . . . σ
m+n−1

// Jm+n
Kq

.

Then, (Jm+in
Kq

)i converges to Jm
can,

the canonical lift of Jm
0 .

JmanJm+3nKJm+2nKJm+nKJmKJm0
K
Fq
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Fast canonical lift

O(n2+o(1)) time complexity

Lift phase. First, {
ai+1 = ai+bi

2 ,
bi+1 =

√
aibi ,

can be replaced via ci = ai/bi by ci+1 = 2+ci
2√ci

.

Second,
ci+1 = cσi .

Consequently, one must solve at precision n/2 + O(1),
4x(xσ)2 = (1 + x)2 .

This equation is an equation of the form φ(x , xσ) where
φ(x , y) is a polynomial.

Norm phase. We simply have,

c = NZ2n/Z2

(
2cdn/2e+3

1 + cdn/2e+3

)
.
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Fast canonical lift

Fast “lift” and “norm” algorithms
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Fq : tn−1
+ · · ·+ tk+ · · · + t0
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Fast canonical lift

Newton iteration
To compute the root of a polynomial f (x) from

f (x + pwδ) = f (x) + pwδ
∂f
∂x (x) + O(p2w ).

Algorithm 2: Newton
input : x0 s.t. f (x0) ≡ 0 mod p2k+1 where

k = v(∂f /∂x(x0)) and m ∈ N.
output: x a solution of f (x) mod pm.
if m 6 2k + 1 then1

return x02

x := Newton(x0, dm
2 e+ k);3

V := f (x) mod pm; ∆x := ∂f /∂x(x) mod pw−k ;4
return x − V /∆x5

Remark. Very fast in practice. For polynomials with O(1) terms of
degree O(1), time complexity is O(Tm,n).
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Fast canonical lift

Generalized Newton iterations
One generalizes Newton alg. to eq. of the form φ(x , xσ) = 0. Based on

φ(x + pwδ, (x + pwδ)σ) = φ(x , xσ) + pwδ
∂φ

∂x (x , xσ) + pwδσ
∂φ

∂y (x , xσ) + O(p2w ).

Algorithm 3: NewtonLift
input : x0 s.t. φ(x0, xσ0 ) ≡ 0 mod p2k+1 where k = v(∂φ/∂y(x0)) and m ∈ N.
output: x a solution of φ(x , xσ) mod pm.
if m 6 2k + 1 then1

return x02

w := dm
2 e+ k; x := NewtonLift(x0,w);3

Lift x to Zq/pmZq; y := xσ mod pm;4
∆x := ∂xφ(x , y) mod pw−k ; ∆y := ∂yφ(x , y) mod pw−k ;5
V := φ(x , y) mod pm;6
a, b := ArtinSchreierRoot(−V /(pw−k∆y ),−∆x/∆y ,w − k, n);7
return x + pw−k(1− a)−1b8

Remark. ArtinSchreierRoot is a “black box” which solves equations of
the form xσ = ax + b, a and b in Zq.
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Fields with Normal Basis

Artin-Schreier equations with Normal Basis

_ For all k ∈ N, xσk ≡ akx + bk mod pw .
_ xσn

= x , which means that (1− an)x = bn.
_ A classical “square and multiply” composition formula, ∀k, k ′ ∈ Z2,

xσk+k′
= aσk′

k ak′x + aσk′

k bk′ + bσk′

k .

Algorithm 4: ArtinSchreierRoot
input : Eq. xσ = ax + b in Zq/pmZq, m and ν in N.
output: A and B s.t. xσ

ν

= Ax + B mod pm.
if ν = 1 then1

return a, b mod pm2

w := bν/2c; A, B := ArtinSchreierRoot(a, b, w);3
A, B := AAσ

w
,BAσ

w
+ Bσ

w
mod pm;4

if ν ≡ 1 mod 2 then5
A, B := Aaσ, bAσ + Bσ mod pm6

return A,B;7

Complexity is O(Tm,n log n).
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Fields with Normal Basis

Norm computation with Normal Basis

_ A square and multiply approach suggested by Kedlaya.
_ Combine, from a0 = a, quantities of the form

ai+1 := aσ2
i

i ai for i = 0, . . . , blog2 nc .

Algorithm 5: Norm
input : a in Zq and a precision m in N.
output: NK/Qp (a) mod pm.
i := n; j := 0, r := 1, s := a;1
while i > 0 do2

if i ≡ 1 mod 2 then r := s rσ
2j
;3

if i > 1 then s := s sσ
2j
;4

j := j + 1; i := bi/2c;5

return r ;6

Complexity is O(Tm,n log n).
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Fields with Normal Basis

Timings for counting points on elliptic curves defined over
F2n (GNB)

On a 731 MHz Alpha EV6 CPU (2002 timings).

n GNB type 1
Lift Norm Total

1018 2.5s 1.5s 4s
2052 10s 7s 17s
4098 1mn 45s 1mn 45
8218 6mn 30 4mn 30 11mn
16420 34mn 23mn 57mn
32770 3h 17 2h 18 5h 35
65538 15h 45 13h 20 1d 5
100002 1d 18 1d 16 3d 10
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Fields without Normal Basis

Lifting the Frobenius at precision m [Satoh-Harley]

Computing xσ in a polynomial basis is a costly task.

One lifts F (t) at precision m to the minimal polynomial F of ω(t) with

F (tp) =
p−1∏
i=0

F (tζ i) with ζp = 1.

This can be done by Newton iterations in O(pTm,n log n).

It follows that tσ = tp and

xσ =
n−1∑
i=0

xi t ip =
p−1∑
j=0

 ∑
06pk+j<n

xpk+jtk

Cj(t) mod F (t) .

With Cj(t) = t jp mod F (t) precomputed, a O(p Tm,n) complexity.
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Fields without Normal Basis

Artin-Schreier equations without Normal Basis
[Harley-Gaudry]
A two-fold recursive algorithms to doubling the precision.

Algorithm 6: ArtinSchreierRoot
input : Eq. xσ = ax + b in Zq/pmZq with |b|K < 1, m in N.
output: A x ∈ Zq s.t. xσ = ax + b mod pm.
if m = 1 then1

return bσ̄2

N := bm/2c; M := m − N;3
x0 := ArtinSchreierRoot(a, b, N);4
β := (xσ0 − ax0 − b)/pN mod pM ;5
x1 := ArtinSchreierRoot(a, β, M);6
return x0 + pNx1 mod pm7

Let T (n) be the running time for precision m, then

T (m) 6 2T (m/2) + (pnm)1+o(1) ⇒ T (m) = O(pTm,n logm) .
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Fields without Normal Basis

Norm computation without Normal Basis

For α ∈ Qp,

NK/Qp(α) = pn ordp(α) NK/Qp(α/p
ordp(α)) .

For α a unit, let α =
∑n−1

i=0 ai t i , then

NK/Qp(α) = Res(F (t),
n−1∑
i=0

ai t i) .

The resultant Res(F (t),
∑n−1

i=0 ai t i) can be computed in softly linear
time using a variant of Moenck’s fast extended GCD algorithm.

Complexity is O(Tm,n log n), mostly due to multiplications of 2× 2
matrices with (polynomial) coefficients in Zp[t], at precision m.
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Fields without Normal Basis

Harley’s timings
Measured on a 750 MHz Alpha EV6 (Nov. 2002, NMBRTHRY mailing list) .

Bits Point counting Precomputation
Lift Norm Lift Norm

197 0.04 0.04 0.01 -
409 0.26 0.25 0.04 0.01
571 0.76 0.61 0.11 0.02
1000 2.46 1.43 0.35 0.08
2003 15.2 7.71 2.02 0.86
4001 1m 33 52 12 11
8009 9m 30 6m 20 1m 21 2m 09

16001 59m 48m 56 9m 06 31m 42
32003 6h 9m 6h 41m 1h 4m 5h 58m
130020 ? 67h 17m ? ?

Remark. Asymptotically fast lifts, but still a O(n2+1/3 log n log log n)
norm computation (after Satoh).
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Normal basis

Some remarks
It is expected that normal basis (with fast multiplication tensors), even
if it does not change the asymptotic complexity, yield faster point
counting algorithms :

it supresses the computation of the lift F in Qp[t] of the definition
polynomial F (t) for Fq,

it supresses the p factor in the complexity of some parts of the
algorithm, especially the ArtinSchreierRoot routine,

it is expected that Zq/Zp norms can be computed faster.

Maybe more important, we may hope that memory requirements are
slightly lowered too.

But, it is hopeless to expect that a Gaussian normal basis of small type
r exists for many degree n : in general r ' n3 log2(np)
[Adleman-Lenstra 1986].
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Normal basis

Elliptic Normal Basis (Finite Fields)

For Fq, we made use of torsion points on elliptic curves instead of roots
of unity to obtain analogues of Gaussian normal basis.

Theorem (Couveignes-L.)
To every couple (q, n) with q a prime power and n > 2 an integer s.t.
nq 6

√q, one can associate a normal basis Θ(q, n) of the degree n
extension of Fq such that the following holds:

There exists an algorithm that multiplies two elements given in
Θ(q, n) at the expense of Õ(n log q) elementary operations.

This can be easily extend to a result without any restriction on q and n.

Remark: Here nq is such that
v`(nq) = v`(n) if ` is prime to q − 1, v`(nq) = 0 if v`(n) = 0,
v`(nq) = max(2v`(q − 1) + 1, 2v`(n)) if ` divides both q − 1 and n.
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Normal basis

A p-adic generalisation

Let E/Qp be an elliptic curve given by

Y 2Z + a1XYZ + a3YZ 2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3 .

If A, B and C are three pairwise distinct points in E (Qp), we
define

Γ(A,B,C) =
y(C − A)− y(A− B)

x(C − A)− x(A− B)
.

We define a function uA,B ∈ Qp(E ) by uA,B(C) = Γ(A,B,C).

It has degree two with two simple poles, at A and B.
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Normal basis

Ingredient 1: Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over Qp.

Assume E (Qp) contains a cyclic subgroup T of order n
(find such a curve mod p and lift it, with T , to Qp) .

Let I : E → E ′ be the degree n cyclic isogeny with kernel T

Take a in E ′(Qp) s.t. Î(a) 6= OE .

Let P be the fibre I−1(a) =
∑

t∈T [b + t], a simple divisor over Qp.

Then, φ(b)− b ∈ T (where φ is the Frobenius map).

Under some mild condition, φ(b)− b is a generator of T and the n
geometric points above a are defined on a degree n extension K of Qp
(and permuted by Galois action).

K is the residue extension of Qp(E ) at P.
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Normal basis

p-adic Elliptic Normal Basis

Coming back to the functions uAB, we choose for A and B consecutive
points in T .

For k ∈ Z/dZ, we more precisely set

uk = aukt,(k+1)t + b

(a and b, constants chosen such that
∑

uk = 1),

and we evalute the uk ’s at b.

Lemma (A normal basis)
The system Θ = (uk(b))k∈Z/dZ is a Qp normal basis of K.
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Multiplication Tensor

Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

Γ(A,B,C) = Γ(B,C ,A) = −Γ(B,A,C)− a1
= −Γ(−A,−B,−C)− a1 ,

uA,B + uB,C + uC ,A = Γ(A,B,C)− a1 ,

and

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C ,B)uA,B

+a2 + xA(B) + xA(C) ,

u2A,B = xA + xB − a1uA,B + xA(B) + a2 ,

where
τA : E → E denotes the translation by A,
and in Qp(E ), xA = x ◦ τ−A and yA = y ◦ τ−A.
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Multiplication Tensor

A fast multiplication algorithm

uA,BuA,C = xA + Γ(A,B,C)uA,C + Γ(A,C ,B)uA,B

+a2 + xA(B) + xA(C) ,

u2A,B = xA + xB − a1uA,B + xA(B) + a2 .

This yields a multiplication tensor for Θ with quasi-linear complexity,

~α× ~β = (a2−→ι ) ?
(
(~α− σ(~α)) � (~β − σ(~β))

)
+

−→uR
(−1)?

(
(~uR ? ~α) � (~uR ? ~β)− (a2~xR) ?

(
(~α− σ(~α)) � (~β − σ(~β))

))
.

Notations :
~α ? ~β, the convolution product (~α ?j ~β)j , with ~α ?j ~β =

∑
i αiβj−i .

σ(~α) = (αi−1)i , the cyclic shift of ~α.
~α � ~β = (αiβi)i , the component-wise product.
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Multiplication Tensor

Evaluations/interpolations

It consists in evaluations and interpolations at n points r + kt,
where

r ∈ E (Qp)− E [d ] .

Constants are
−→ι = (ιi)06i6d−1 s.t. x(b) =

∑
06k6d−1 ιkθk ,

~xR = (x(r + kt))06k6d−1 ,

~uR = (u0(r + kt))06k6d−1.
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Multiplication Tensor

Fast convolutions

Convolution and polynomial multiplication :

F (X ) =
n−1∑
i=0

fiX i , G(X ) =
n−1∑
i=0

giX i

Then :

~h = ~f ? ~g ⇐⇒ H(X ) ≡ F (X )G(X ) mod (Xn − 1)

FFT’s speedup :

~f ? ~g =
ˆ̂~f � ~̂g

(−1)
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Multiplication Tensor

Application to normal elliptic basis

(a2−→ι ) ?
(
(~α− σ(~α)) � (~β − σ(~β))

)
+

−→uR
(−1) ?

(
(~uR ? ~α) � (~uR ? ~β)− (a2~xR) ?

(
(~α− σ(~α)) � (~β − σ(~β))

))
“Dense” Polynomial Normal Elliptic “Sparse” Polynomial

Basis Basis Basis

Product 4+3= 7 FFTs of lg. 2n
3+5= 8 FFTs of lg. n 2+1= 3 FFTs of lg. 2n

' 14 FFTs of lg. n ' 6 FFTs of lg. n

Squaring 3+3= 6 FFTs of lg. 2n
2+4= 6 FFTs of lg. n 1+1= 2 FFTs of lg. 2n

' 12 FFTs of lg. n ' 4 FFTs of lg. n

Precompute FFTs for −→ι , −→uR
(−1), ~uR et ~xR ,

3 direct FFTs, for ~α, ~β et (~α− σ(~α)) � (~β − σ(~β),
5 inverse FFTs.
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Multiplication Tensor

To conclude

It is expected that elliptic normal basis yields faster practical
implementations of Satoh/Mestre’s algorithms.

Especially, for p large enough such that the Hasse’s bound
n 6 p + 1 + 2√p is satisfied.

For p very small, typ. p = 2, it is not clear that the extra log n penalty
to pay for the existence of an elliptic normal basis will be too large.
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