Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods
0000 0000000000000000 00000000000

Fast p-adic arithmetic
for (hyper)elliptic AGM point counting algorithms

R. Lercier

DGA & University of Rennes — France

email : reynald.lercier(at)méx.org
www : http://perso.univ-rennesl.fr/reynald.lercier/

Counting Points: Theory, Algorithms and Practice
Montréal, April 2010



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods
0000 000000000000 0000 00000000000

Motivation

@ In 2000, Satoh and Mestre independently proposed very efficient
p-adic methods for counting points on elliptic and hyperelliptic
curves in [Fpn.

@ Numerous improvements finally made decrease the complexity in
time from O(n3t°(1)) to O(n?*to().

@ We focus on the choice of good basis for p-adic unramified
extensions, especially we consider p-adic analogues of the normal
elliptic basis introduced by Couveignes and L. in 2009 for [Fpn.
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Elliptic Curve

Elliptic curves

O(n*t°() in time, O(n) in space:

o T. Satoh. The canonical lift of an ordinary elliptic curve over a
finite field and its point counting. J. Ramanujan Math. Soc., 15,
2000.

o M. Fouquet, P. Gaudry R.J. Harley. An extension of Satoh’s
algorithm and its implementation. J. Ramanujan Math. Soc., 2000.

e B. Skjernaa, Satoh’s algorithm in characteristic 2. Math. Comp.,
2000.

O(n3*°()) in time, O(n?) in space:

o F. Vercauteren, B. Preneel, J. Vandewalle. A Memory Efficient
Version of Satoh's Algorithm. EUROCRYPT 2001, LNCS.

o J.F. Mestre. AGM pour le genre 1 et 2. Lettre 3 Gaudry et Harley.
December 2000.
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Elliptic Curve

Elliptic curves

O(n?>*t°()) time, O(n?) in space:
@ T. Satoh, B. Skjernaa, Y. Taguchi. Fast computation of canonical

lifts of elliptic curves and its application to point counting. August
2001.

o T. Satoh. On p-adic point counting algorithms for elliptic curves
over finite fields. ANTS-V. July 2002.

e H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim, S.G. Hahn.
Fast elliptic curve point counting using gaussian normal basis.
ANTS-V. July 2002.

o P. Gaudry. A comparison and a combination of SST and AGM
algorithms for counting points of elliptic curves in characteristic 2.
ASIACRYPT 2002.



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods
coeo 0000000000000000 00000000000

Elliptic Curve

Elliptic curves

O(n?t°() in time, O(n?) in space:

o D. Bernstein. Re: Elliptic Curve Point Counting: 32003 bits.
Number Theory Mailing List, November 2002.

e R. Lercier, D. Lubicz. Counting points on elliptic curves over finite
fields in quadratic time. EUROCRYPT 2003.

o R.J. Harley, Algorithmes avancés pour I'arithmétique des courbes.
PHD thesis, 2003.

o F. Vercauteren, Computing Zeta functions of curves over finite
fields. PHD thesis, 2003.
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Hyperelliptic Curve

Hyperelliptic curves of small genus

Genus 2, O(n3+t°()) in time, O(n?) in space:

o J.F. Mestre. AGM pour le genre 1 et 2. Lettre 3 Gaudry et Harley,
2000.

o P. Gaudry. Algorithms for counting points on curves. ECC,
Woaterloo, 2001.

o J.F. Mestre. Algorithmes pour compter des points en petite
caractéristique en genre 1 et 2. Talk at the cryptographic seminar
of Rennes, 2002.

O(n?*t°(M)) in time, O(n?) in space:
@ R. Lercier, D. Lubicz. A quasi-quadratic time algorithm for
hyperelliptic curve point counting. The Ramanujan Journal, 2006.

@ R. Carls, D. Lubicz. A p-adic quasi-quadratic point counting
algorithm. Int. Math. Res. Journal, 2008.
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Notations

p-adic numbers
p-adic norm | - |, of r € Q% is |r|p = p~" (r=pu/v,p fu, p [v).

Field of p-adic numbers Q, is the completion of Q w.r.t. | - |p,
i .
Y ap', a€{0,1,....p—1}, peLZ
i=p

p-adic integers Zj, is the ring with | - [, <1 or p > 0.
F, = Z,/M where M is the unique maximal ideal

M={xeQp||x]p <1} =pZp.

Def. Let 7, be the projection from Z/p™*'Z onto Z/p™Z, then a
p-adic integer is a sequence x = (X1, X2, ..., Xm,...) With xy, € Z/p™Z
and such that 7y, (Xmt1) = Xm.
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Notations

p-adic field extensions

K extension of Q, of degree n with
valuation ring Zg and maximal ideal Mz, = {x € K | |x|x < 1}.

Def. The Teichmuller Lift is the map w : Fq — Zg defined by
w(0) = 0 and for x # 0, w(x) is the unique g — 1-th root of one in Zg
such that m(w(x)) = x with 7 the canonical projection of Z, to .

Def. The semi-Witt decomposition of x € Z, is the unique sequence
(xi)iz0 of Fg such that x = Y50 w(x;)p'.

The Galois group of (unramified) K/Q, is cyclic with generator
Frobenius substitution o and o modulo Mz, equals to the small
Frobenius on .

Prop. Let (xj)j>0 be the semi-Witt decomposition of a p-adic x, then
x7 =Y isow(xi)Pp".
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Notations

Basis

Polynomial Basis. Let F, 2 F,[t]/(F(t)), let F(t) be any lift of F(t)
to Zp[t], then K can be constructed as
K = Qplt]/(F(1)).
Such a choice yields a basis {1,t,..., t""1}.
Multiplication, at precision m, costs T, , = O((nm)*o(1)),
Gaussian Normal Basis (GNB). For cyclic Galois extension K/Qp,

there exists elements « which yields basis of the form
n—1
{a,a%, ..., "}

Def. For some r such that 3 a primitive r-th root of unity 7 in
Z/(nr + 1)Z and such that o = 32727 (7" (where ("*1 = 1) generates
a gaussian normal basis over Q, of type r.

In this case, T, = O((r nm)1+e(1)),
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AGM

O(n3t°) time complexity

A first algorithm by Satoh, improved by Vercauteren to obtain a O(n?)
in space. Another algorithm by Mestre for Fon, based on AGM.

Algorithm 1: AGM

input : An (ordinary) elliptic curve E/Fan : y* 4+ xy = x> + «
output: The trace c of E
// Lift phase
1 a:=1+8a€Zgb:=1¢Zy;
2 fori:=1to [§]+2do
L a,b:= %”7 Vab
// Norm phase
A :=a; B :=b;
for i :=1 to ndo
L a,b:= %b, Vab

return é mod 2" as a signed integer in [—2+/2",2+/2"].

w

N o b
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AGM iterations

@ An AGM step is an isogeny of
degree 2 between elliptic curves.

@ Repeatedly, we get the following
sequence
1 m—1 m Gmn—1

1 o o m o m-+n
Ik, . v . I

o Then, (JZ'™); converges to J™,,
the canonical lift of Jj".

m
ch\.n

Jm+3n

m+2n

gmn

m
Jo
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Fast canonical lift

O(n**°()) time complexity

Lift phase. First,

_ aitb
a1 = A,
biy1 = +aib;,
can be replaced via ¢; = a;/b; by ¢j11 = 2t¢i
Second,

Cit1=¢f.
Consequently, one must solve at precision n/2 + O(1),
4x(x7)% = (14 x)?| .
This equation is an equation of the form ¢(x, x?) where
&(x,y) is a polynomial.
Norm phase. We simply have,

2¢rn/2143
— N _“injel+s
C Z2n/Zg <1 + C[n/2"‘ 43
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Fast canonical lift

Fast “lift” and “norm” algorithms

Norm
tnfl

Lift

F,: ot" 'rnoth .y otf
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Fast canonical lift

Newton iteration

To compute the root of a polynomial f(x) from

of
f(x+ p"d) =f(x)+p"é

o () + O(p™).

Algorithm 2: Newton

input : xp s.t. f(x) = 0 mod p?**1 where

k = v(0f /Ox(x0)) and m € N.
output: x a solution of f(x) mod p™.
1 if m<2k+1 then
2 L return xp

3 x := Newton(xo, [ 3] + k);
4 V:=f(x) mod p™; A, :=0f/dx(x) mod p*¥~k,
5 return x — V /A,

Remark. Very fast in practice. For polynomials with O(1) terms of
degree O(1), time complexity is O( Ty, ).



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods
0000 0000000080000 000 00000000000

Fast canonical lift
Generalized Newton iterations
One generalizes Newton alg. to eq. of the form ¢(x,x?) = 0. Based on

w w c\Oo / o W‘({)O [eg W‘U(F)‘ o w
P(x+p"0,(x +p0)7) = o(x,x")+ p éi(x,x )+ p"o %(x,x )—Q—O(p2 ).

Algorithm 3: NewtonlLift
input : xp s.t. ¢(x0, x) = 0 mod p*** where k = v(9¢/dy(x)) and m € N.
output: x a solution of ¢(x,x°) mod p”.
if m<2k+1 then
L return xp

w =[]+ k; x := NewtonLift(xo, w);

Lift x to Zq/p"Zq; y := x° mod p™;

Ay = 0xp(x,y) mod p” 5 A, :=8,¢(x,y) mod p¥K

V = ¢(x,y) mod p™;

a, b := ArtinSchreierRoot(—V/(p" *A,), —Ax/Ay, w — k, n);
return x + p*~¥(1 —a)7'b

O N OO BB W N

Remark. ArtinSchreierRoot is a “black box" which solves equations of
the form x? = ax + b, aand b in Z,.
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Fields with Normal Basis

Artin-Schreier equations with Normal Basis

_ Forall k e N, X7 = agx + by mod p”
_ x" = x, which means that (1 — a,)x = b,.
_ A classical “square and muItlpIy composmon formula Vk, k' € 72,

gktk
= ak ap x + ak by + b“

Algorithm 4: ArtinSchreierRoot
input : Eq. x = ax+ b in Zq/pT™Zq, m and v in N.
output: A and Bs.t. x° =Ax+ B mod p™.
if v =1 then
L return a, b mod p™
w = |v/2]; A, B := ArtinSchreierRoot(a, b, w);
A, B := AA°"  BA®" + B mod p™;
if ¥ =1 mod 2 then
| A B:=Aa, bA’ + B’ mod p"
return A, B,

N o, W=

Complexity is O( T, log n).
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Fields with Normal Basis

Norm computation with Normal Basis

_ A square and multiply approach suggested by Kedlaya.
_ Combine, from ag = a, quantities of the form

2! .
ajp1:=af ajfori=0,...,|logyn].

Algorithm 5: Norm

input : ain Z4 and a precision m in N.
output: Nk qg,(a) mod p™.
i:=mn;j:=0,r:=1 s:=a;

while i > 0 do

if i =1 mod 2 then r::sr"zj;
if i > 1 then s::ss”zj;

ji=j+1i:=1i/2;

return r;

S s W N

Complexity is O( T, log n).
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Fields with Normal Basis

Timings for counting points on elliptic curves defined over
F,» (GNB)

On a 731 MHz Alpha EV6 CPU (2002 timings).

n GNB type 1
Lift Norm Total
1018 2.5s 1.5s 4s
2052 10s 7s 17s
4098 Imn 45s 1mn 45

8218 6mn 30 | 4mn 30 | 11mn
16420 34mn 23mn 57mn
32770 3h 17 2h 18 5h 35
65538 15h 45 | 13h 20 1d 5
100002 1d 18 1d 16 3d 10
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Fields without Normal Basis

Lifting the Frobenius at precision m [Satoh-Harley]

Computing x? in a polynomial basis is a costly task.

One lifts F(t) at precision m to the minimal polynomial F of w(t) with
p—1 _
F(t?) = [] F(t¢) with ¢P = 1.
i=0

This can be done by Newton iterations in O(pTpm,nlog n).
It follows that t° = tP and
n—1 ) p—1
XT=3"xtP =" Y st | Gi(t) mod F(t).
i=0

j=0 \0<pk+j<n

With C;(t) = t» mod F(t) precomputed, a O(p T, ) complexity.
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Fields without Normal Basis

Artin-Schreier equations without Normal Basis
[Harley-Gaudry]

A two-fold recursive algorithms to doubling the precision.

Algorithm 6: ArtinSchreierRoot
input : Eq. x? = ax+ b in Zq/p"Zq with |blx <1, min N.
output: A x € Zg s.t. x? =ax+ b mod p™.
if m =1 then
| return b°
N:=|m/2|; M :=m—N,
Xo := ArtinSchreierRoot(a, b, N);
8= (x{ — axo — b)/p" mod p";
x1 := ArtinSchreierRoot(a, 8, M);
return xp + pNx1 mod p™

N oG AW N

Let T(n) be the running time for precision m, then

T(m) <2T(m/2) + (prm)*+* = T(m) = O(pTn log m).
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Fields without Normal Basis

Norm computation without Normal Basis

For a € Qp,
NK/Qp(a) — pnordp(a) NK/Qp(a/pordp(a)) )
For v a unit, let o = 7:_01 a;t’, then

n—1
Ny /q,(a) = Res(F(t), Z ait').
i=0

The resultant Res(F(t), Y74 a;t') can be computed in softly linear
time using a variant of Moenck’s fast extended GCD algorithm.

Complexity is O( T nlog n), mostly due to multiplications of 2 x 2
matrices with (polynomial) coefficients in Z,|[t], at precision m.
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Fields without Normal Basis

Harley's timings

Measured on a 750 MHz Alpha EV6 (Nov. 2002, NMBRTHRY mailing list) .

Bits Point counting Precomputation
Lift Norm Lift Norm

197 0.04 0.04 0.01 -
409 0.26 0.25 0.04 0.01
571 0.76 0.61 0.11 0.02
1000 2.46 1.43 0.35 0.08
2003 15.2 7.71 2.02 0.86
4001 | Im 33 52 12 11
8009 | 9m 30 6m20 1Im21 2m 09
16001 50m 48m 56 9m 06 31m 42
32003 | 6h 9m  6h 41m 1h 4m 5h 58m
130020 ?7 67h 17m ? ?

Remark. Asymptotically fast lifts, but still a O(n**1/3log nlog log n)
norm computation (after Satoh).
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Normal basis

Some remarks

It is expected that normal basis (with fast multiplication tensors), even
if it does not change the asymptotic complexity, yield faster point
counting algorithms :

@ it supresses the computation of the lift F in Q,[t] of the definition
polynomial F(t) for Fg,

@ it supresses the p factor in the complexity of some parts of the
algorithm, especially the ArtinSchreierRoot routine,

e it is expected that Zq/Z, norms can be computed faster.

Maybe more important, we may hope that memory requirements are
slightly lowered too.

But, it is hopeless to expect that a Gaussian normal basis of small type
r exists for many degree n : in general r ~ n®log?(np)
[Adleman-Lenstra 1986].
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Normal basis

Elliptic Normal Basis (Finite Fields)

For ¥y, we made use of torsion points on elliptic curves instead of roots
of unity to obtain analogues of Gaussian normal basis.

Theorem (Couveignes-L.)

To every couple (q, n) with q a prime power and n > 2 an integer s.t.
ng < /g, one can associate a normal basis ©(q, n) of the degree n
extension of Fg such that the following holds:

@ There exists an algorithm that multiplies two elements given in
©(q, n) at the expense of O(nlog q) elementary operations.

This can be easily extend to a result without any restriction on g and n.

Remark: Here ng is such that
@ vi(ng) = ve(n) if £ is prime to g — 1, ve(ng) = 0 if v¢(n) =0,
@ vy(ng) = max(2ve(g — 1) + 1, 2ve(n)) if £ divides both g — 1 and n.



Bibliography Fast Point Counting Algorithms p-adic Elliptic Periods
0000 0000000000000000 00@00000000

Normal basis

A p-adic generalisation

e Let E/Q, be an elliptic curve given by
Y2Z + i XYZ + a3YZ? = X3 + 2 X%Z + an XZ? + a6 Z3 .

e If A, B and C are three pairwise distinct points in E(Qp), we

define
(C-A)-y(A-B)

(C—A) —x(A_B)"
e We define a function ua g € Qp(E) by uag(C) =T (A, B, C).

M(AB,C)="~

It has degree two with two simple poles, at A and B.
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Normal basis

Ingredient 1: Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over Q.

e Assume E(Qp) contains a cyclic subgroup 7 of order n
(find such a curve mod p and lift it, with 7, to Q,) .

@ Let / : E — E’ be the degree n cyclic isogeny with kernel 7
o Take ain E'(Qp) s.t. I(a) # Ok.
o Let P be the fibre /71(a) = 3",/ [b + t], a simple divisor over Q,.
@ Then, ¢(b) — b € T (where ¢ is the Frobenius map).
Under some mild condition, ¢(b) — b is a generator of 7 and the n

geometric points above a are defined on a degree n extension K of Q,
(and permuted by Galois action).

K is the residue extension of Q,(E) at P.
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Normal basis

p-adic Elliptic Normal Basis

Coming back to the functions uag, we choose for A and B consecutive
points in 7.

For k € Z/dZ, we more precisely set

Uk = QUge (k+1)t T b
(a and b, constants chosen such that > ux = 1),
and we evalute the uy's at b.

Lemma (A normal basis)
The system © = (uk(b))rez/qz is @ Qp normal basis of K. }
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Multiplication Tensor

Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

rAB,C) = TI(B,C,A)=-T(B,AC)—a
= —T(-A-B,—C)—ar,
uag+upgc+uca = T(ABC)—ar,
and
uapliac = XA+r(A, B, C)UA_yc—{—r(A, C, B)UA,B
+as + xa(B) + xa(C),
Ufug = xa+xg—aiuap+xa(B)+ a2,

where
@ 74 : E — E denotes the translation by A,
@ and in Qp(E), xa=xo07_pand ya =y o7 4.
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Multiplication Tensor

A fast multiplication algorithm

uaguac = xa+T(A B, Cluac+T(A C Buas
+a; + xa(B) + xa(C),
Uf\,B = xa+xg—aiuap+xa(B) + ax.

This yields a multiplication tensor for © with quasi-linear complexity,

G x f=(@7) (@ = o(@) o (F—a(@)) +
G % (e * @) o (g * ) — (a%%r) * (@ — o(@)) o (F— 0 () -

Notations :
@ & « 3, the convolution product (@ %; §);, with @ *; 3 = > i
@ (@) = (@i—-1)i, the cyclic shift of a.

@ dof = (aif) the component-wise product.



Bibliography

Fast Point Counting Algorithms
0000

p-adic Elliptic Periods
0000000000000000

00000008000
Multiplication Tensor

Evaluations/interpolations

It consists in evaluations and interpolations at n points r + kt,
where

re E(Qp) — E[d].

Constants are

a— (Li)Ogigdfl s.t. X(b) = Zogkgd—l I
)?R = (x(r + kt))ggkgd_l ,
ip = (uo(r + kt))nggd—l-
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Multiplication Tensor

Fast convolutions

@ Convolution and polynomial multiplication :

n—1 n—1
F(X)=>_ X', GX)=>_ gX
i=0 i=0
Then :

h=Ffxg < HX)=F(X)G(X) mod (X" —1)

o FFT's speedup :
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Multiplication Tensor

Application to normal elliptic basis

-,

(@27« ((@=o@) o (F- () +
7Y « ((ﬁR « @) o (Gr * F) — (a%R) * ((& — (@) o (B — of *))))

“Dense"” Polynomial
Basis

Normal Elliptic
Basis

p-adic Elliptic Periods
00000000080

“Sparse” Polynomial
Basis

44+3=7 FFTs of Ig. 2n

3+5= 8 FFTs of Ig. n

2+1= 3 FFTs of Ig. 2n

Product | "L 14 FFTs of Ig. n ~ 6 FFTs of Ig. n
. 34+3= 6 FFTs of Ig. 2n B 1+1= 2 FFTs of Ig. 2n
AANg | © 15 FRTsoflg n | 2H T OFFTSOTB 11 L 4 erTs of Ig. n

@ Precompute FFTs for 7, up(™1, g et Xg,

e 3 direct FFTs, for @, § et (@ — o(@)) o (6 — o(f),

@ 5 inverse FFTs.
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Multiplication Tensor

To conclude

It is expected that elliptic normal basis yields faster practical
implementations of Satoh/Mestre's algorithms.

Especially, for p large enough such that the Hasse's bound
n<p+1+2,/pis satisfied.

For p very small, typ. p = 2, it is not clear that the extra log n penalty
to pay for the existence of an elliptic normal basis will be too large.
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