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Abstract. In this paper we present a new public key cryptosystem
whose security relies on the intractability of the problem of reconstruct-
ing p—polynomials. This is a cryptosystem inspired from the Augot—
Finiasz cryptosystem published at Eurocrypt 2003. Though this system
was broken by Coron, we show However, in our case, we show how
these attacks can be avoided, thanks to properties of rank metric and
p—-polynomials. Therefore, public-keys of relatively small size can be pro-
posed (less than 4000 bits).

1 Introduction

At EUROCRYPT 2003, a cryptosystem based on the so-called problem of poly-
nomial reconstruction was presented by Augot and Finiasz [I]. However, this
system was broken soon after by Coron, by modifying the Welch—Berlekamp de-
coding algorithm for Reed—Solomon codes. He managed to argue that in most
cases, the system could be broken in Polynomial-time by recovering the valid
plaintext from the ciphertext [4]. More recently a result by Kiayias and Yung
showed that it was not possible to choose an other way of rescuing the system
such as adding more errors and then using Sudan list-decoding algorithm [§]. A
different attempt was to use properties of the Trace operator to scramble the
structure and design a secure cryptosystem. Once again it was shown that this
system could be broken [21/4].

In this paper we design a cryptosystem based on a new problem called p-
polynomials reconstruction problem. Whereas the classical polynomial recon-
struction problem is closely related to the decoding of Reed—Solomon codes, this
problem is closely related to the problem of decoding Gabidulin codes [9]. We
show how the attacks investigated in the case of the original Augot—Finiasz cryp-
tosystem can be prevented. Namely, the efficiency of the attacks mainly depends
on the metric used in the design of the system. We also construct a public-key
cryptosystem with a public-key size of at most 4000 bits, and a security to the
state of the art attacks.

The outline of the paper is the following. In section 2, we briefly recall the
definitions of rank metric and linear polynomials, mostly in order to fix the no-
tations. In section 3, we present a first, simple adaptation of the Augot-Finiasz
system, and we show its vulnerability. In section 4, we introduce the trace oper-
ator, and we use it to build the cryptosystem which is the main subject of the
paper. Lastly, in section 5, we discuss about the security of this second system.
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2 Gabidulin Codes and p—Polynomials

Let p be a prime number (practically p = 2), ¢ = p™, and GF(q) be the field
with ¢ elements. p-polynomials (also called Linearized polynomials) over GF(q)
were widely investigated by Qre in 1933, 1934 [10,[11]. They are polynomials of
the form:
k £
P(X)=arX? 4+...+aX? +...+ a1 X? + aoX,

where ag, ..., a; are elements of GF(q). If ar, # 0, the integer k is called the
p-degree of P. From now on we will denote [¢] def p’. For any vector x € GF(q)",

€

we denote P(x) < (P(x1),..., P(zn)).

Definition 1. Letc = (¢q1,...,¢,) be a vector of length n over the field GF(q) =
GF(p™). The rank of c, denoted Rk(c) is the rank of the m x n p-ary matriz
obtained by expanding each coordinate of ¢ over a basis of GF(p™)/GF(p).

Using this definition, we can build the rank distance between two words, by
computing the rank (which can move from 0 to n) of their difference. Then, we
obtain the rank metric over words of length n in GF(q).

The rank metric is used as a substitute of the Hamming metric, for crypto-
graphic goals mostly. Many properties of the rank metric were widely studied,
and it is not the goal of this paper to review them all.

We now assume k <n < m.Let g € GF(q)n a vector of rank n. The Gabidulin
code of length n, dimension k and generating vector g is the set of words obtained
by the evaluation of a p-polynomial of degree at most £ — 1 over g;:

Gabi(g) < {(P(g1),. .., P(gn)) = P(g) , deg,(P)<k—1}.

By this construction, it can be shown that the code Gaby(g) has minimum rank
distance n — k. Hence it is an optimal code for rank metric [6]. Moreover there
exist polynomial-time decoding algorithms that can correct up to the error-
correcting capability of the code [7},9,[13]14].

3 An Augot—Finiasz Type Cryptosystem

In this section we show how to design a cryptosystem similar to the Augot—
Finiasz cryptosystem. We also show that Coron’s attacks can equally be adapted,
although their complexity is not any more linear in the weight of the error-vector,
but exponential.

3.1 Counstruction of the System

Parameters:
Let n < m, and k < n, be integers and let g = (g1,-..,9n) € GF(q)" be a vector
of linearly independent elements over GF(p).
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Key Generation:
The conceiver of the system picks randomly a p—polynomial P over GF(q) of
p—degree k — 1. He chooses randomly a vector E of length n and of rank W >

(n—k)/2.

— The public key is K = P(g) + E.
— The secret key consists of the pair (P, E).

Encryption:

The message m = (mo, ..., mk_2) € GF(q)
polynomial m(x) = Zi:oz m;zll. The sender chooses randomly a € GF(q), and
an error-vector e of rank w < (n — k — W)/2. The ciphertext y is:

*=1 can be transformed into the p-

y=m(g) + aK +e.

Decryption:

The receiver projects y on the subspace of GF(g)" of dimension n — W that
is orthogonal to the vector space generated by the coordinates of E. Since he
knows E, he equally knows or can easily compute a non-singular p-ary matrix R
such that ER’s n — W first positions are equal to 0. Hence since R is p-linear,
then P(g)R = P(gR), and

yR =m(g)R + aP(g)R + aER + eR = (m + aP)(gR) + cER + eR.

Let ;IV{ be the vector of length n— W obtained by removing the last W positions
of yR. We obtain that

yR = (m + aP)(gR) + eR.

But Rk(eR) < Rk(eR) < Rk(e) < w < 2=W=k_Therefore, since (m + aP) has
p-degree less than k,

By decoding yR in the Gabidulin code Gabi(gR) one recovers Q = m + aP.
Since P has p—degree exactly k — 1, and since m has degree at most k — 2, the
field element aPj;,_; is the leading coefficient of (). Thus the receiver gets a and
finally recovers m = @ — aP.

3.2 Investigation on the Security of the System
The security of the system relies on the fact that given the public-key
K =P(g) +E,

it is not computationally feasible to recover (P,E). Since any other possible
candidate (R,F) such that K = R(g) + F would lead to wrong decoding, an
attacker would have to list all possibilities and try them one by one. It is a
kind of list decoding of Gabidulin codes up to the rank W. We can show that
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such a list-decoding is strictly equivalent to finding all p—polynomial V' with
degp,(V) < W and f with deg,(f) < k such that

This means that we would have to solve the following problem

Reconstruction(K,g = (g1,...,92), k, W).

Find the set (V, f) where V is a non-zero p—polynomial of p-degree < W and
where [ is a p—polynomial of p-degree < k, such that V(g;) = V[f(g:)], for all
t=1,...,n.

In rank metric we have no equivalent of the Johnson bound, but our simula-
tion results tend to show that this problem is hard to solve. Actually, we used
the MAGMA computational algebra system, which is optimized for fast com-
putations over finite fields. Over small sizes (p = 2,n = 3), it is possible to
compute the exhaustive list of solutions to the Reconstruction problem. But the
size of this list increases dramatically (seemingly exponentionnaly) as soon as W
is larger than the error-correcting capability of Gaby(g). Therefore solving this
problem can be considered as being hard, as it implies the manipulation of an
oversized list.

The problem on which the security of the Augot-Finiasz cryptosystem relies is
also a hard problem. The system was nevertheless broken by Coron who showed
that one could generally recover plaintexts by finding roots of a polynomial of
degree w + 1,[4]. This new system does not suffer from the weakness shown by
Coron for the original system. Namely, by following the same idea, an attacker
would have to find the roots of a polynomial (not a p-polynomial) of degree
(¢“*tt —1)/(q—1). Therefore this system would provide a much better security
than the original one.

Our system suffers from an other weakness, which was shown in [3]. Given a
received ciphertext y an attacker wants to find m, o, e such that:

y =m(g) +aK +e,

with deg,(m) < k — 2 and Rk(e) < 2=E=
Using a kind of Welch-Berlekamp technique, as in [4], solving this system is
equivalent to finding m, a, V' such that:

V(y) = Vom(g) +V(aK), (2)

with deg,(m) < k — 2 and deg,(V) < w.
Instead of solving this system, we study a more general system. We search
N,V, V' such that:
V(y) = N(g) + V'(K),

with deg,(N) < k +w — 2, deg,(V) < w, and deg, (V') < w. Considering the
coefficients of N, V, V'’ as unknowns, it is a linear system with n equations and
k+ 3w+ 1 unknowns. Therefore, it can be solved in polynomial time. Since there
is by construction at least one solution to the system, and since we can show
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that k 4+ 3w 4+ 1 < n, this implies that the matrix of the system is degenerate,
and the solution space often is of small dimension, typically 1. If it is the case
we can find a solution to system (2)).

4 System Using the Trace Operator

In this section we were inspired by the attempt to repair the original system by
means of the trace operator which was introduced in [2]. In Hamming metric,
Coron showed that this could not work. In rank metric however, such attacks
cannot be adapted.

Definition 2. The Trace operator from GF(¢") to GF(q) is defined by :
Ve e GF(¢"),Tr(z) =2 + 27+ 4t

We can extend this definition to vectors :

Tr(x) ™ (Tr(zy), ..., Tr(z,))

and to linearized polynomials over GF(¢") :

k k
. de .
Tr(Y" pix ) =S Tr(p) X1

i=0 i=0
We will require the following proposition :

Proposition 1. If (g1,...,9,) € GF(q)", and P is a p-polynomial over GF(q%),
then Tr(P(g)) = (Tr(P))(g)-

Proof.

Let ]fE [1,n]. Since g; € GF(q),Vx € GF(¢"), we have :
Tr(zg;) = g;Tr(x) (by GF(q)—linearity). 4

So Tr(P(g;)) = Tr(S o pig)) = Yiso 9, Tr(ps) = Tr(P)(g;)-
Hence Tr(P(g)) = (Tr(P))(g).

This leads to the design of a cryptosystem based on the trace operator.

4.1 Design of the System
Parameters

— We counsider g = (g1, ..., 9n) a vector formed of elements of GF(q) that are
linearly independent over GF(p);

— An extension field GF(¢") of GF(q);

— An integer k;

— Aninteger W > "T_k This implies that the linearized reconstruction problem
is difficult as it was discussed in section
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Key generation

We generate randomly a p—polynomial P with coefficients in GF(¢"), of p-degree

k—1, such that the coefficients py_1, . .., pp— form a basis of GF(¢") over GF(q).
We also generate an error vector E, with coefficients in GF(¢g"), of rank W.

— The public key is K = Tr(P(g)) + E € GF(¢“)".
— The secret key is the pair (P, E).

Encryption

Let m € GF(q) be a plaintext written as a p—polynomial of degree at most
k—wu—1, that is m(X) = moX +m1 XP + ...+ M1 XP° "7 We generate
randomly o € GF(g*) and e an error vector in GF(¢) of rank w < (n—W —k)/2.
The ciphertext is:

y=m(g)+Tr(aK)+eec GF(q)"

The encryption can be done in O(nk) multiplications in GF(q).

Decryption

Without loss of generality we can assume that the receiver knows an invertible

p-ary matrix R, such that the first n — W columns of ER are equal to zero.
Since p-polynomials and the trace operator are GF(p)-linear transformations,

we have that Tr(aP(g))R = Tr(aP(gR)). Since g has coefficients in GF(q),

the vector gR has also coefficients in GF'(¢) and by proposition [, this implies

that Tr(aP(gR)) = Tr(aP)(gR). Therefore:

yR=m(g)R+ Tr(aP(g))R+ Tr(c¢ER) + eR,

< yR = (m+Tr(aP))(gR) + Tr(cER) + eR.

Let yNR be the vector obtained by removing the last W positions of yR. We
have: . . .
yR = (m +Tr(aP))(gR) + eR.

But Rk(eR) < Rk(eR) < Rk(e) < w < 2=0/=k

Hence, by decoding ;ﬁ in the code Gabk(gfﬁ), one recovers the linear poly-
nomial @ = m+ Tr(aP). Since the p-degree of m is at most k —u — 1, and since
Pk—1, - - - s Dk—v form a basis of GF(¢") over GF(q), the receiver recovers a, and
then m = Q — Tr(aP).

Using precomputation, the complexity of the decryption phase is then
O(w?(k 4+ w) + (k + w?) 4+ u® + kn) multiplications in GF(q).

5 Security of the System

In the case of Hamming metric, Coron, showed that the cryptosystems could
be broken in polynomial-time. It was even shown by Kiayias and Yung that it
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was illusionary to try to repair the system by adding more errors and then using
Sudan algorithm rather than classical decoding algorithms for Reed-Solomon
codes [§].

Here, one attack can be translated directly from Coron’s approach implying
that the parameters have to be carefully chosen, but the second one is too much
related with properties of Hamming metric to be adapted to rank metric.

Let y1,...,7, be a basis of GF(¢") over GF(q). If we write a = > ayy, we
i=1

have: Tr(aK) = > ayTr(1K). Let Ky = Tr(1:K), for t =1...u.
=1

The vectors K; are vectors in GF(q) easily computable from the public key
K. Knowing y,g,Kj, ..., K,, recovering the plaintext consists of solving:

y =m(g) + X /K +e,
t=1

= (3)
deg,(m) <k —u—1,Rk(e) < w.

de,m,aq, ..., Q,

The rest of this section consists of investigating three ways of solving
system (B]).

5.1 Decoding Attacks

The decoding attack is a cipher-text only attack. The ciphertext can be seen
under the form

y =cG + e,
where ¢ = (mo, ..., Mk—y—1,01,...,0y), and
gl P gn
k—u—1]  [h—u—1
G- gg u ]...91[1 u=1]
K1
K,

Hence it can be reduced to a problem of decoding the linear code of dimension
k generated by G up to the rank distance w. To do this we do not know a better
decoder than a general purpose decoder. The most efficient one was designed
by Ourivski and Johannson and works in O((qw?®)p*+t1D(“=1) operations in the
base field, [12].

5.2 Attack by Linearization

This attack is made on the ciphertext. The attacker writes the encryption equa-
tion, and uses it to obtain a linear system over GF(q).
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Proposition 2. Assuming k+ (u+2)w < n, an attacker can recover the plain-
text from a given ciphertext in polynomial time with very high probability. If
n > k+ (u+2)w, then the same attack can be made in O(n3q"~F~(W+2)w) myl-
tiplications with very high probability.

Proof.
We consider another kind of Welch—Berlekamp approach. Namely, solving system
@) is equivalent to solving:

V(y) = Vom(g) + tfjl aV(K,),

dm,aq,...,ay,V, =
deg,(m) <k —u—1,deg,(V) <w

By linearizing the equations, we now obtain the following system:

V(y) = N(g) + 3. Ri(Ky),

t=1
AV, By, oo, R, N, deg, (V) < w,deg,(R;) < w,

deg,(N) <k+w—-u—1

If one writes the unknown coefficients of polynomials V, Ry,...,R,, N in a
vectorial form, one has to solve :

Vv
R
M|: |[=0
Ry,
N
where :
Yy ... ygw] —K11 ce —K{T] ce _Kul e —Kq[ﬁ] —3g1 ... —gyﬁLw]iu*l
M = Yj ... y][w] _Klj ce —K{U;] ce _Kuj e —K}Z] -9 --- —gj[-kjLw]iu*l
Yn - - - yLw] —Kin ... —Kﬁ] | —Kyn - .. —Kq[f;l] —Gn .- —g,[lkﬂ)]fu*l

using the notation [i] = p'.

M isn x (k4 (u+ 2)w + 1)-matrix in GF(g), we can compute its kernel in
polynomial time to find all the solutions for polynomials V, Ry,..., Ry, N.

Because there exists a non-trivial solution, the kernel of M is of dimension at
least 1. Aside from this condition, practical experiments lead us to think that
M is very likely to have maximum rank. Thus, we simply deduce the dimension
of ker(M) from the size of M, and we almost always have : dim(ker(M)) =
max(1l, k+ (v + 2)w + 1 —n).
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From the space of solutions for V) Ry,..., R,, N, we now have to extract a
suitable non-trivial solution for m, a1, ..., ay, V, and then this m is the plaintext.

If £+ (u+ 2)w < n, then with high probability dim(ker(M)) = 1, and thus,
any solution of the linearized system allows us to find m by a mere left Euclidian
division, the whole attack made in polynomial time.

If this is not the case, one has to check each direction of the solution space,
which leads to an attack in roughly O(n3¢"~*~(“+2)¥) multiplications, [5].

5.3 Algebraic Attacks

This part is devoted to finding the secret element «. Once one recovers the
element o« € GF(¢%), it is trivial to recover the plaintext, by computing y —
Tr(aK) = m(g) + e and decoding this vector in the Gabidulin code.

To decrypt we have to solve the following system

yi — Tr(aK;) =m(g;) +e;, Yi=1,...,n,

where the unknowns are e = (ey,...,e,) of rank w, « € GF(¢"), and the p-
polynomial m. Solving this system is still equivalent to solving

V(y; — Tr(aK;)) =Vom(g), Vi=1,...,n, 4)

where the unknowns are m, o and the coefficients of a p-polynomial V' of degree
w. Now to solve this system we consider the system

V(y; — Tr(aK;)) = N(g:), Vi=1,...,n (5)

where the unknowns are the element «, and the coefficients of two p-polynomials
V of degree w and N of degree k + w — u — 1. If (a, V,m) is a solution of ({),
then (o, V; N =V om) is a solution of (Bl). There are two manners to solve this
system:

Univariate case
Let us define the following n x (k 4+ 2w — u + 1) matrix

y1 = Tr(@Ky) - (y1 = Tr(@k1)) gy oo g 7Y
M(z) = L z A
Yn — T’I‘(LL'Kn) U (yn - TT(,’BK.”))[W] gn " g'EzkjLwiu*l]
where [i] = p’.

Provided « is known, M («) is the matrix of system (B)). Since by construction
(k42w —u+1) <n and since that we know that there is a non-zero solution,
the matrix M () is not of full rank. Therefore, the determinant of every square
submatrix M (x) of M(x) satisfies the equation

Det(M(a)) = 0.
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The Trace operator is a polynomial of degree ¢“~!, therefore any determinant
is a polynomial over GF(q%) of degree at most ¢“ 1 (p“*! —1)/(p — 1). Hence,
a way to find the value of a would be to search for common divisors between
some of the obtained determinants. However for practical cases, as we will see
further, the quantity ¢*~*(p**1 —1)/(p — 1) > 280,

Since such an approach is not very practical, we skip to another more inter-
esting case.

Multivariate case

If we set x = Z?Zl v;Z;, where v1,...,7, is a basis of GF(¢")/GF(q), by setting
K+ def Tr(yK;) fort=1,...,uand i =1,...,n, we now define

yr = Sy Kuwe - (g1 — iy Ky go oo g oY
M(CC1,...,$U): . . . - .

: : : P
Yn — 30 Koty o (yn — Y1 Knad) g - giF ]

N d . . .
Once again if « < iy v, then M(aq,. .., a,) is the matrix of the linear

system (B)). Hence, the determinant of every square submatrix M(wl, ey Ty) Of
M satisfies the equation

Det(M(ay,...,ay)) =0.

The determinants M (x1,...,2,) are multivariate polynomials of degree at most
(p“ —1)/(p—1). in u variables. We can construct up to (", ,) different
determinants by choosing exactly k + 2w — u + 1 lines out of n.

We made some simulations in the MAGMA language by using the algorithms
finding first Grobner bases and then solving the equations. Every time we suc-
ceeded in computing the Grobner Basis of the system we obtained only one
solution that was exactly the element « of the private key.

Simulation results can be found in Table[Il For these computations we used
an OPTERON processor 2,2Ghz with 8Gb of memory.

Table 1. Simulations of attacks made on parameters n = 36, ¢ = 236, k =10, W = 14

Number of variables| Error-Rank|Degree Magma 2.11—2/F4|

w=2 |7 0.01s
w=3 |15 0.340s
u =2 w=4 |31 9s

w=>5 163 500s
w=2~6 127 11 hours
w=2 |7 0.06s
u=3 w=3 15 54s
w=4 |31 15 hours
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5.4 Discussion About the Choice of Parameters

Now we propose the following set of parameters:
— Extension field: ¢ = 236, and «w = 3 which implies ¢* = 218,
— Length of the code: n = 36.
— Public-key: vector of length 36 over GF(210%), that is 36 x 108 = 3888 bits.

The different attacks we described in the paper give the following results:

— Decoding attacks: The best general purpose decoding algorithm was designed
by Ourivski and Johannson [12]. The complexity of recovering a vector of
rank w in a code of dimension k + u is equal to (nw)32(k+uth(w=1) 5 991
binary operations.

— Attacks by linearization: We have to check ¢(F*(ut2)w—n) — 9144 golutions of
a linear system to recover the plaintext.

— Algebraic attacks: Table[I shows that these parameters are well beyond what
is feasible for now. Namely the system to solve consists of ~ 232 cubic equa-
tions of degree 127 over GF(23°). In the univariate case, one has to compute
ged’s of polynomials of degree 2100,

An implementation of the system in the MAGMA language on a 1200 MHz
processor gives the following average times (1000 tests). The decoding algorithm
used is described in [5,9].

— Key generation: 72 ms.
— Precomputation: 16 ms.
— Clipher: 23 ms.

— Decipher: 7.9 ms.

This corresponds to a the transmision of (k — u)m = 252 information bits,
encapsulated in a message of nm = 1296 bits, the useful transmission rate is so
about 11 kb/s on this computing speed. Therefore, we can greatly increase the
speed of the algorithms by using an efficient language, for example C language.
It is also possible to transmit more information by putting some information on
the error codeword. On how to do this, see for example [3].
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