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Abstract. In this paper we describe the rank metric based McEliece
type cryptosystems which where first introduced by Gabidulin, Para-
monov and Tretjakov in the 90’s. Then we explain the principle of Over-
beck’s attack is so efficient on these types of systems. Finally we show
how to choose the parameters so that the public-key size remain rela-
tively small (typically less than 20 000 bits), with a good security against
structural and decoding attacks.

1 Introduction

Code based public-key cryptosystem form an interesting alternative to public-
key cryptosystems based on coding theory. Their principle was first stated by
McEliece in the early days of public-key cryptography, [20]. These systems have
some nice properties such as

— they are very fast in encryption and decryption compared to number theory
based systems,

— there are no algorithms working on quantum computers that would enable
to decrease the complexity of the attacks contrarily to number theory based
cryptosystems,

— the related complexity problem have been widely investigated since Shan-
non’s seminal paper more than 60 years ago.

The main drawback which made them unpractical in the 70’s and 80’s is
that the public-key size is too large to be implemented on limited resource de-
vices, typically several hundreds of thousands of bits. Therefore one of the great
challenges designing of code based cryptosystems is to find a way to reduce the
public-key size, sufficiently to be implemented on cheap devices.

Since 20 years several proposals were made in that sense. Basically two di-
rections have been considered. The first one consists of exploiting the algebraic
structure of families of codes to diminish the key-size. For instance using of
Goppa codes with a non-trivial automorphism group as the family of codes, [18],
hiding the structure of codes by taking subcodes of generalised Reed-Solomon
codes [5], and more recently the using quasi-cyclic codes [14], or dyadic Goppa



codes [21]. However attacks against some of these systems show that the struc-
ture of the codes introduces structural weaknesses in the public-key [17, 3, 23].

The second direction which is the heart of this paper consists of using rank
metric rather than Hamming metric, a metric in which the decoding problems
have the reputation to be more complex. This idea was first used by Gabidulin,
Paramonov and Tretjakov in 1991, who proposed a public-key cryptosystem
based on a family of codes published by Gabidulin correcting rank errors, [13].
In the seminal paper, they proposed to use public-keys as low as 5 000 bits.
During the 90’s, different modifications of the system were published, see [5,
12,25, 26, 4] especially after the design of structural attacks by Gibson [15, 16]
which lead to increasing the key size, however these kind of systems survived until
Overbeck designed a somehow devastating attack exploiting fully the structure
of the underlying family of codes, [30].

Until now the question was to know if cryptosystems based on rank metric
can be made resistant to Overbeck’s attack or not, by keeping a public-key size
reasonably small compared to the counterpart in Hamming metric. A first step
in the analysis of the problem consists in fully understanding the principle on
which is based Overbeck’s attack, that is to know, the relative stability of the
codes under the action of the Frobenius automorphism of the codes. In a second
step, we establish results and relations between parameters so that the attack
does not work.

In a first part we recall some essential properties of rank metric and of
Gabidulin codes. In a second part we design an attack on the system. This attack
uses the same structural flaw as Overbeck’s attack, and has the same working
domain. From the study of the working domain of the attack, a conceiver can
deduce parameters to secure the cryptosystem.

2 Background on rank metric and Gabidulin codes

In this section we briefly recall the definition of rank metric and Gabidulin codes,
which form the heart of rank metric based cryptosystems. We will use only fields
of characteristic 2 but all these results can be extended to fields of any prime
characteristic.

2.1 Rank metric

Let GF(2™) be the finite field with 2™ elements and let (51,...,8m) be a basis
of GF(2™) over GF(2).

Définition 1 ([9])
Let x = (x1,...,2n) € GF(2™)"™. The rank of x in GF(2) is the rank of the
matriz X = (), where x; =Y 1" x;; ;. It is written Rg(x).

The rank of a vector is a norm, independent of the chosen basis (51, .., Om),
and if C is a linear code, the minimum rank distance of C is naturally defined by

def .
d = min(Rg(c))



Let C be a code, y be a vector and ¢t be an integer, the complexity problem
Bounded decoding for codes in rank metric can be defined as:

Bounded decoding(y,C,t)
Find if exists c € C and e € GF(2™)"™ with Rg(e) <t such thaty = c+e.

If d denotes the minimum rank distance of C, k its dimension, and in the case
where t < (d — 1)/2, this problem has either one or zero solution. In the case
where there is exactly one solution, the best algorithms to find the solution are
probabilistic algorithms due to Ourivski and Johannson and have average work
factor, which are based on the principle of finding codewords of the smallest rank
in a linear code, [27]:

— Basis enumeration algorithm: W}, s = (k + t)32(t—1)(M—t)+2_
— Coordinate enumeration algorithm: W .4 ~ (k + t)3t32(t*1)(k+1).

If we consider the same problem on the same parameters but in Hamming
metric, solving the problem is considerably less difficult, [7, 1]. This is the reason
why McEliece types rank metric based cryptosystems can theoretically employ
public-keys of much smaller size than for Hamming metric based cryptosystems.

2.2 Gabidulin codes

Let g = (91,...,9,) € GF(2™) linearly independent over GF(2). Let

gl gn

G = R ; (1)
k— k—
e

where [i] e/ 9i s the ith power of the Frobenius automorphism of GF(2™)/GF(2).

Définition 2 ([9])
The Gabidulin code Gabi(g) over GF(2™) of dimension k and generator
vector g is the code generated by G.

The error-correcting capability of Gabi(g) is |(n — k)/2]. There are very
efficient decoding algorithms for Gabidulin codes up to the rank error correcting
capability [9, 10,32, 31, 19].

3 McEliece type cryptosystems based on rank metric

In this section we first describe the original GPT cryptosystem, published in
1991, by Gabidulin, Paramonov and Tretjakov, [13]. Other versions where later
published like the one by Ourivski and Gabidulin, using a right scrambler which
is a linear isometry of rank metric [25]. It is immediate to see that this version
is a generalisation of the initial proposition. Therefore we will only present this
version of the cryptosystem.



3.1 The original system
Parameters

— The field GF(2™)
— An integer t;

Key generation The private key is composed with

— S, a k x k non-singular matrix with coefficients in GF(2™).

— G, a k X n matrix over GF(2™) generating a Gabidulin code of generator
vector g = (¢g1,...,9gn) under the canonical form given in (1). Hence we can
correct up to rank t = |(n — k)/2] errors.

— Z, a k x t; matrix with coefficients in GF(2™).

— T, a (n+t1) x (n+t1) non-singular matrix with coefficients in GF'(2). The
matrix T is a linear isometry of rank metric [2].

The public-key is thus the k x (n + ¢;) matrix
Gpub =S(G | \Zf, )T (2)
t1 cols

The encryption procedure is exactly the same as for the original McEliece
cryptosystem:

Encryption Let x € GF(2™)F be the information vector that must be encrypted.
The ciphertext y is

y = prub +e
where e is a vector of rank <t = |(n — k)/2]

The decryption procedure is:

Decryption Let y be the received ciphertext, we have
y =xGpyp t+ e,
where Rg(e) < t. Then the receiver computes
yT™ ' =x(G | Z) +eT 7},

and removes the last ¢; positions of yT~!. Finally he decodes in the Gabidulin
code of generator matrix G.
The security of the cryptosystem relies on the following two assumptions:

— The code generated by G}, behaves randomly.
— Solving Bounded decoding(y,C,t), where C is a random code of length n,
dimension k over GF'(2™) is difficult

As shown in section 2.1, the second assumption is satisfied provided the pa-
rameters are sufficiently large. The first assumption however is more problematic,
since the previous cryptosystems based on scrambled Gabidulin codes have until
now been severely attacked.



3.2 Structural attacks

One of the main problem in designing rank metric based cryptosystems is that
there is only known family of codes with a fast decoding algorithm, the family
of Gabidulin codes. Therefore all rank metric based cryptosystems have to rely
on codes derived from Gabidulin codes (scrambled codes, subfield subcode for
instance). Moreover, it is impossible to use Gabidulin codes without scrambling
the structure as it was shown by Gabidulin (case where ¢; = 0). Namely in
that case there exists an attack recovering a decoder for the public-code in
polynomial time. This attack is an analog of Sidel’nikov-Shestakov attack in the
case where Generalised Reed-Solomon codes are used in the Hamming metric
based McEliece cryptosystem.

Moreover, different attacks have shown that the scrambling matrix Z had
to be very carefully chosen. The first person to attack structurally the initial
parameters was Gibson [15,16], who exploited some properties of Gabidulin
codes. After these attacks some new parameters, as well as modifications of the
system were proposed to render Gibson attacks inefficient, [12, 25]. More recently
Overbeck used Gibson’s attacks as black boxes against the new versions of the
system, [29]. But the most powerful attack until now using fully the structure of
the codes was still proposed by Overbeck who cryptanalysed almost all versions
of McEliece type cryptosystems based Gabidulin codes, [28,30]. To prevent the
attack from succeeding, the parameters should be so much increased that the
interest of rank metric systems decreases compared to Hamming based systems.

The success of this approach is that Overbeck fully exploits the large structure
of Gabidulin codes, that is that the intersection of a k—dimensional Gabidulin
code and the Gabidulin code on which the Frobenius automorphism acts is a
k — 1-dimensional Gabidulin code, namely it:

Gab(g) N Gabk(g)m = Gabk,l(gm)

To show how to design cryptosystems which are resistant to Overbeck’s at-
tacks, and still with very reasonable key sizes, we first need to present an attack
whose efficiency is comparable to that of Overbeck’s. The heart of the attack is
described in proposition 1, which is not in Overbeck’s work.

The public key is given by the matrix Gy, from equation (2). Let us recall
that Gl is the matrix derived from G, by elevating each component to the ith
power of the Frobenius automorphism, that is to the power 2.

If all the components of Gy, are elevated to the powers 1,2),...,[n—k-1],
we obtain



Gpub S0 - 0 G Z

el : ] 0
b 1y -, G Z
. pu _ O S 0 . . T, (3)
. 0 T : . .
thufbkfl] 0 ... S[nfkfl] G[n—k—l] Z[n—k—l]
—_———
g|z
gpub S @12

where

~ Gpup is @ k(n — k) x n matrix of rank n — 1, thanks to the properties of
Gabidulin codes.

Since S is non-singular, so is S.

Since T has coefficients in the base field GF(2), for all 4, T/ = T, and T
has rank n + t;.

— Zis a k(n — k) x t; matrix of rank s < min(k(n — k), t1).

Since we want to optimise the public-key size in the design of the system it
is reasonable to suppose that ¢; is much less than k(n — k). In that case, if Z
is chosen randomly, then Z has very probably rank ¢;. This implies that gpub
is very probably of rank n + ¢; — 1. Hence its right kernel has rank 1. This
leads to the following proposition which shows that in the cases where the right
kernel is one dimensional, a decoder form the public-code can be recovered in
polynomial-time.

Proposition 1
If the right kernel ker,(G,up) of Gpup has dimension 1, then
— There exists a vector h of rank n over GF(2) such that
ker(Gpup) = { T (ah | 0)T | a € GF(2™)}.

— Let'y € ker(Gpyp), then every matriz Q of size (n+t1) X (n+t1) and with
coefficients in GF(2) such that Qy = (x | 0)T, is non-singular and satisfies

AB
TQ ' =
o' =(5p):
where A is an n X n non-singular matriz, and D is an t1 X t1 non-singular
matriz. Such a matriz Q can be determined in polynomial-time.

Proof

— Since the right kernel of gpub has dimension 1 the kernel of (G | Z)
is of the form (ah | 0) where h generates the right kernel of G. But
G generates a n — 1 dimensional Gabidulin code whose dual is a 1
dimensional Gabidulin code with generator vector h. This implies in
particular that h has rank n over GF(2).



— Let y € ker(G,,p). From the structure of the kernel describe in the

preceding item, we have y = T~!(ah | 0)7. Suppose we have determined
a binary non-singular matrix Q such that

Qy=(x]0)"=QT '(ah | 0)”.

If we split QT ! into four blocks such that

_ A’ B’
QT ' = <C/ D/)a

then we have C'h” = 0. Therefore for all i = 1,...¢;, ¢;h” = 0 where
c; is the ith row of C’. Since the components of C’ are in GF(2) and
since h has rank n over GF'(2), we have that ah has also rank n over
GF(q) and for all ¢ = 1,...,t; we have ¢; = 0. Moreover, since Q is
non-singular, the inverse (QT~!)~! = TQ™! is also upper-triangular by
blocks.

Given y € ker(G,yp,) we determine a non-singular matrix Q by:

1. Solving the equationQoy” = 0 where Qg is a t; x (n +t1) matrix of

rank t;.
2. Determining a matrix Q; such that

def (Qu
Q2 )’
is invertible

Since y has rank n over GF'(2) the matrix Y obtained by expanding the
components of y over a basis of GF(2™)/GF(2) has size m x (n + t1)
and rank n. Hence the right kernel of Y has dimension ¢;. Finding Q2
consists thus in finding a bases of the right kernel of Y, since we have to
solve YQZ = 0. This can be done in polynomial time.

Now whenever the right kernel kerr(gpub) has rank 1, by applying the pre-
vious proposition, we can find a matrix Q satisfying

GpubQ ' =S(GA | Z)).

Since A is non-singular and has components in the base field GF(2), the matrix
G’ = GA generates Gabi(gA). If we denote by Gi the n first columns of
GpubQ_l, the attacker has to solve the equation

G, =SG/,

that is Gi is a randomly chosen generator matrix of Gabi(gA). This can be
done in polynomial time [11]. The matrix S thus determined is unique.
We have just proved the following proposition



Proposition 2
If the right kernel of gp“b given by the equation (3) has dimension 1, an
attacker can recover in polynomial-time matrices Q,S and Z such that

G’pu’hQi1 = S(GI | Zl)a
where

— Qisa(n+t1) X (n+t1) matriz with coefficients in GF(2),
— S is a k X k non-singular matriz

— G’ generates a k-dimensional Gabidulin code,

— 7' is a k x t; matriz.

4 Which parameters for a rank metric based
cryptosystem

From previous section, the parameters of the system must be chosen so that the
dimension of the right kernel of G, is greater than 1, and even sufficiently large
to avoid enumeration so that an attacker fall by chance on a vector of the dual
of the Gabidulin code by selecting a vector randomly in the kernel.

The following corollary gives us information to choose the parameters of the
system so that we cannot apply the previous attack.

4.1 Design criteria

Corollary 1 Let Gy, = S(G | Z)T of size k x (n+t1). If there is an integer
{ such that
ty — ¢
< g
“n—k
then the dimension of kerT(gpub) is greater or equal to 1+ £.

Proof
If s = Rg(Z), then Rg(Z) < s(n — k). Hence Rg(Gp,,1,) < s(n— k) +n — 1.
Then if s(n — k) < t; — ¢, the right kernel of gp“b has dimension > 1 + /.
|

1 <Rg(Z)

Therefore to prevent attacks based on the principle described in previous
section, it suffices to choose £ > 1 and the distortion matrix Z such that

t— ¢
Z) <
Rg(Z) < —,

which implies t; > (n — k).
Now here are the criteria that have to be taken into account in the design of
the cryptosystem:

— First note that the dimension of ker,(G,,;) must be large enough to avoid
enumerations since the vector h discussed in proposition 1

— Second, the best decoding attack has to be of sufficient complexity. We take
as references the complexities given in section 2.1

— Third we try to obtain the smallest possible size for these systems



4.2 Proposition of parameters

Suppose that we want to reach a security of 2% binary operations for the sys-
tem. In table 1 we propose two sets of parameters, involving a Gabidulin code
correcting rank 6 errors over GF(224)24. We can easily show that the complexity
of the decoding attacks is larger than 280

— In the first proposal ker, (Gp,,;) has dimension 5 over GF(2%%)

— In the second proposal ker,(G,,) has also dimension 4 over GF(2*%)

This implies that an attack consisting in enumerating the right kernel and testing
all vectors candidates for being h will take on average (2120 —1)/(224 — 1) ~ 2%
tries.

The last column shows how it is possible to improve the transmission rate of
the system by using a modification proposed in [4]. It increases the transmission
rate by

(m+n—-tt—r
m(n +t1)

where r is the number of selected random bits.

)

|m = n[k[s[t:] Key size [Decoding] k/n_|[Improv. BeL0i2004]

24 [12]3]40]14 976bits| > 2% | 19% 30%
24 |12|4(52[18 432bits| > 283 |15,8% 24, 3%

Table 1. Proposed parameters

5 Conclusion and perspectives

In this paper we have shown how to choose parameters be to design rank metric
based cryptosystems. The resulting proposals are public-key cryptosystems with
public-keys of very reasonable sizes compared to the original McEliece cryptosys-
tem.

The performances of the systems in encryption and decryption have to be
compared to Hamming metric based cryptosystems, but this is another story.
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