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Abstract

We present a new family of binary codes derived from the family
of classical Goppa codes. We generalize properties of Goppa codes to
this family and deduce bounds on the dimension and on the minimum
distance, and the existence of a polynomial-time decoding algorithm
up to a constructed error-correcting capability. Asymptotically these
codes have the same parameters as Goppa codes.

1 Introduction

Goppa codes were introduced in [3]. They form a family of binary linear
codes generated by the Goppa polynomial g(x) of degree t with coefficients
taken in a finite field GF(2m) and by the subset L = {α1, . . . , αn} over this
field, whose elements αi are not roots of g(x). Lower bounds are known on
their dimension and on their minimum distance as well as a fast (polynomial-
time) decoding algorithm realizing the constructed distance of the code.

We start constructing a new family of codes by considering Goppa codes
with a special automorphism group. Namely, if the coefficients of the Goppa
polynomial belong to some subfield of the field GF(2m), then the automor-
phism group of the code contains the group generated by the Frobenius
automorphism. From the set of elements of the code that are invariant un-
der the action of the Frobenius group we derive a code of smaller length
which we call s-projected code.

For this new family of codes, we derive bounds on their dimension and
minimum distance. We also transfer to it some known results for Goppa
codes. In particular we show that the bound on the dimension is reached
in the case when the degree of the Goppa polynomial is small. Moreover,
by using the standard decoding algorithm for Goppa codes, we build a
polynomial time decoding procedure for s-projected codes correcting errors
up to half the constructed minimum distance.
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2 Binary Goppa codes

Goppa codes can be defined in various ways (see [7]). In this paper we
consider the definition using the parity-check matrix of a generalized Reed-
Solomon code.

Let g(x) ∈ GF(2m)[x] be a polynomial of degree t over the field GF(2m).
Let L = {α1, . . . , αn} be a subset of elements of GF(2m) such that g(αi) 6= 0.
We label the coordinates of the vector a ∈ (GF(2m))n with the elements of
L in the following way:

a = (aα1 , . . . , aαn).

Definition 1 ([7]) The Goppa code Γ(L, g) of generating polynomial g and

generating set L = {α1, . . . , αn} is the set of binary vectors a = (aα1 , . . . , aαn)
such that

Hat = 0,

where

H =




1
g(α1) . . . 1

g(αn)
α1

g(α1) . . . αn
g(αn)

. . .
. . . . . .

αt−1
1

g(α1) . . . αt−1
n

g(αn)




.

The code Γ(L, g) is by definition the subfield subcode over GF(2) of the
generalized Reed-Solomon code with parity check matrix H.

Proposition 1 ([7]) Let Γ(L, g) be a Goppa code with parameters [n, k, d].
Then we have

• k ≥ n − mt, where t is the degree of g;

• d ≥ 2 deg(g)+1, where g is the square-free polynomial of highest degree

which divides g;

• there exists a polynomial-time decoding algorithm which corrects up to

deg(g) errors.

Theorem 1 ([8]) Let g(x) ∈ GF(2m)[x] be a square-free polynomial of de-

gree t with no roots in GF(2m), and let Γ(L, g) be the corresponding Goppa
code of length n and dimension k. If t < 2m/2−1, then k = n − mt.

3 Construction of s-projected codes

The automorphism group of the Goppa code, whose generating polynomial
has coefficients in the subfield GF(2s) of GF(2m) contains the group gener-
ated by the Frobenius automorphism of GF(2m)/GF(2s). The set of the
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code vectors that are invariant under the action of the Frobenius automor-
phism is a subcode of the Goppa code which is in one-to-one correspondence
with a code of smaller length, called by us s-projected code.

Let a = (aα1 , . . . , aαn) be a vector labeled by the elements of L, let π be
a permutation of L. We define the action of π on the vector a by

π(a) = (aπ−1(α1), . . . , aπ−1(αn)).

The vector a is an invariant of the group G if π(a) = a for every π ∈ G.
Let us denote by σ : z 7→ z2s

the Frobenius automorphism from the
field GF(2m) onto GF(2s).

Lemma 1 If g(x) ∈ GF(2s)[x], then σ(a) ∈ Γ(L, g) for any vector a of

Γ(L, g), that is the automorphism group of the code Γ(L, g) contains the

group < σ >, generated by σ.

Proof
The binary vector a = (aα1 , . . . , aαn) belongs to the code Γ(L, g) if
and only if it satisfies the following parity check equations

n∑

i=1

aαi

αj
i

g(αi)
= 0

for j = 0, . . . , t − 1. Let us represent the vector σ(a) in the form
(aβ1 , . . . , aβn), where β2s

i = αi. Since the coefficients of g(x) belong to
the field GF(2s), then g(αi) = g

(
β2s

i

)
= g(βi)

2s
. It follows that

n∑

i=1

aσ−1(αi)
αj

i

g(αi)
=

n∑

i=1

aβi

αj
i

g(αi)
=

n∑

i=1

aβi

(βj
i )

2s

g(βi)2
s =

(
n∑

i=1

aβi

(βj
i )

g(βi)

)2s

= 0

for j = 0, . . . , t−1. Hence the vector σ(a) is in the code Γ(L, g), which
completes the proof.

Lemma 1 implies if GF(2s) is a strict subfield of GF(2m), then the au-
tomorphism group of the Goppa code is not trivial and its order is greater
than m/s.

It is possible to show that for almost all Goppa codes, whose generating
vector g(x) has coefficients in GF(2s), the automorphism group is generated
by the Frobenius automorphism, i.e. it is exactly the group < σ > and is
of order m/s.

Let g(x) ∈ GF(2s)[x] and L = {α1, . . . , αn} be the set of elements of
GF(2m) that are not roots of g. Since the coefficients of g(x) belong to
GF(2s), the set of the roots of g(x) that are in GF(2m) is invariant under
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the action of the Frobenius group < σ >. Hence the set L can formally be
written in the form

L = ∪N
i=1Oi

where the Oi are orbits of the elements of the field, that are not roots of
g(x), under the action of the group < σ >.

Let us denote by I(L, g) = {a ∈ Γ(L, g) | σ(a) = a} the set of the vectors
of the Goppa code Γ(L, g) that are invariant under the action of σ.
For the code I(L, g) we deduce the following properties:

1. I(L, g) is a linear subcode of Γ(L, g),

2. the support, i.e. the set of non zero coordinates (here equal to 1), of
any vector a ∈ I(L, g) is a union of some orbits Oi.

Now we pass to the construction of s-projected codes. Let g(x) ∈
GF(2s)[x], and Γ(L, g) the corresponding Goppa code. We consider the
subcode I(L, g) formed with the vectors that are invariant under the action
of the Frobenius automorphism σ. Let O1, . . . ,ON be the orbits which
form L under the action of < σ >. In every orbit Oi, we take a represen-
tative oi ∈ Oi, and we consider the corresponding set R = {o1, . . . , oN}.
Since the support of any vector a = (aα1 , . . . , aαn) of I(L, g) is a union of
orbits Oi, the vector a, whose coordinates are labeled by the elements of L,
is in one-to-one correspondence with the vector ã ∈ GF(2)N by “projecting”
every orbit Oi onto the corresponding point oi ∈ R, that is

[ n, kI , dI ] − code I(L, g) → [ N, kI , deI ] − code − Ĩ(R, g)

a = (aα1 , . . . , aαn) 7→ ã = (ao1 , . . . , aoN
)

The set Ĩ(R, g) thus deduced is a linear code of length N ≤ n, and has
the same dimension kI as the code I(L, g).

We notice that the code Ĩ(R, g) is independent of the choice of the rep-
resentatives oi in the orbits, i.e. the projection produces a unique code.

Conversely, any vector a = (ao1 , . . . , aoN
) ∈ Ĩ(R, g) can be lifted into an

invariant vector a ∈ I(L, g) ⊂ Γ(L, g) by duplicating each coordinate aoi

exactly |Oi| times. This implies that this is a one-to-one mapping between
the codes Ĩ(R, g) and I(L, g) ⊂ Γ(L, g).

Definition 2 The code Ĩ(R, g) is called s-projected code of parent code

Γ(L, g), and of generating set R.

Example 1
Consider the polynomial g(x) = x3 + x + 1 with coefficients in GF(2).

Since g is irreducible over GF(24), we take for L the whole field GF(24).
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Let α be a primitive element of GF(24). We split the set L relatively to the

orbits

L = ( 0︸︷︷︸
O1

, 1︸︷︷︸
O2

, α, α2, α4, α8

︸ ︷︷ ︸
O3

, α12, α3, α6, α9

︸ ︷︷ ︸
O4

, α5, α10

︸ ︷︷ ︸
O5

, α11, α13, α14, α7

︸ ︷︷ ︸
O6

)

A generating matrix of the Goppa code Γ(L, g) can be represented in the

following form

GΓ =




1 | 0 | 0 0 0 0 | 0 0 0 0 | 1 1 | 1 1 1 1
0 | 1 | 0 0 0 0 | 1 1 1 1 | 0 0 | 1 1 1 1
0 | 0 | 1 0 1 0 | 0 0 1 1 | 1 0 | 1 0 1 0
0 | 0 | 0 1 0 1 | 1 1 0 0 | 0 1 | 0 1 0 1


 .

Then, a generating matrix of the subcode I(L, g) of the vectors that are in-

variant under the action of the Frobenius automorphism has the following

form

GI =




1 | 0 | 0 0 0 0 | 0 0 0 0 | 1 1 | 1 1 1 1
0 | 1 | 0 0 0 0 | 1 1 1 1 | 0 0 | 1 1 1 1
0 | 0 | 1 1 1 1 | 1 1 1 1 | 1 1 | 1 1 1 1


 .

Thus by choosing R = (0, 1, α, α12 , α5, α11) we build the 1-projected code

Ĩ(R, g) whose generating matrix is obtained by taking the columns of the

matrix GI that are labeled by the elements of R:

0 1 α α12 α5 α11

GeI =




1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1




4 Properties of s-projected codes

In this paragraph, we show that s-projected codes are the binary subcodes of
some codes over GF(2s) for which we exhibit a parity check matrix. Hence
we deduce lower bounds on the dimension of s-projected codes. The main
result concerns s-projected codes which have a square-free Goppa polyno-
mial of comparatively low degree without roots in the field GF(2m). In that
case we calculate exactly the dimension of s-projected codes. The proper-
ties of the Goppa codes given in the property 1 can thus be extended to
s-projected codes.

Proposition 2 Let Γ(L, g) be the [n, k, d]-Goppa code where L ⊂ GF(2m),
and where the degree of the Goppa polynomial g(x) ∈ GF(2s)[x] is equal to

t. Let Ĩ(R, g) be the corresponding s-projected code of length N = |R|,
of dimension kI and minimum distance dI . Then we have the following

properties:
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• kI ≥ N − st,

• dI > d s
m ,

• any decoding algorithm of Goppa codes can be adapted to decode deg(g) s
m

errors in the s-projected codes,

• if the polynomial g(x) is square free and has no roots in GF(2m), and

if its degree t < 2m/2 − 1 then kI = N − st.

We first prove the assertions dealing with the dimension of the s-projected
codes. We show that a s-projected code is the subcode over the field GF(2)
of some code over GF(2s) whose parity check matrix is directly derived from
the parity check matrix of the parent Goppa code.

Consider the Goppa code Γ(L, g) such that its Goppa polynomial g(x) ∈
GF(2s)[x] has degree t. Let Ĩ(R, g) be the corresponding s-projected code,
where R = (o1, . . . , oN ), and let

HI =




Tr1

(
o1

g(o1)

)
· · · TrN

(
oN

g(oN )

)

...
. . .

...

Tr1

(
ot−1
1

g(o1)

)
· · · TrN

(
ot−1

N
g(oN )

)




where GF(2s)(oi) denotes the smallest field containing GF(2s) and oi, and
Tri = TrGF(2s)(oi)/ GF(2s) denotes the trace operator of GF(2s)(oi)/GF(2s).
Then we have

Lemma 2 For such a code, we have

Ĩ(R, g) = {ã ∈ GF(2)N | HI ã
t = 0}.

Proof
Consider a word ã = (ao1 , . . . , aoN

) of the code Ĩ(R, g). Since there is

a bijection between Ĩ(R, g) and the set of invariant points I(L, g), the
word ã can be “lifted” into a word a = (aα1 , . . . , aαn) of I(L, g).

Since I(L, g) ⊂ Γ(L, g), a satisfies the following set of parity check
equations

n∑

i=1

aαi

αj
i

g(αi)
= 0

for j = 0, . . . , t − 1. By summing over the orbits Oi we obtain the
following set of parity check equations

N∑

i=1

aoi

∑

β∈Oi

βj

g(β)
= 0
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for j = 0, . . . , t − 1. Since the coefficients of g(x) belong to GF(2s),
the polynomial g(x) and the Frobenius automorphism σ commute.
As a consequence, we obtain the equations

∑

β∈Oi

βj

g(β)
= Tri

(
oj
i

g(oi)

)
,

and it follows that
N∑

i=1

aoi Tri

(
oj
i

g(oi)

)
= 0

for j = 0, . . . , t − 1. Thus HI ã
t = 0.

By choosing a basis of GF(2s), considered as a vector space over GF(2),
and by extending every element of HI accordingly, we get a parity check
matrix of Ĩ(R, g). Thus the lower bound on the dimension of Ĩ(R, g) can be
immediately deduced. We say that a linear code is non-degenerated if its
dimension is greater than zero.

Corollary 1 Let Γ(L, g) be a Goppa code with g(x) ∈ GF(2s)[x] of de-

gree t and let Ĩ(R, g) be the corresponding s-projected code of length N and

dimension kI . Then

kI ≥ N − st.

Corollary 2 The s-projected code Ĩ(R, g) of parent Goppa code Γ(L, g) is

non-degenerated provided n − mt > 0.

Proof
The cardinality of the orbits Oi is less than m/s since the group
generated by the Frobenius automorphism is of order m/s. Since
n = |L| =

∑N
i=1 |Oi|, we have N ≥ n s

m and N − st ≥ n s
m − st =

s
m(n − mt) > 0. Thus kI ≥ N − st > 0, which achieves the proof.

Corollary 1 can be used to estimate the dimension of the parent Goppa
code. Since obviously kI < k where k is the dimension of the parent Goppa
code, it implies that whenever N −st > n−mt, the lower bound k ≥ N −st
is an improvement of the traditional lower bound k ≥ n−mt for the number
k of information symbols of the Goppa code.

We illustrate this observation with the example L = GF(210), m = 10.
The bound k ≥ n−mt ascertains that the Goppa codes are non-degenerated
provided 102 ≥ t. Now we show for the different possible values of s (s =
1, 2, 5) the range of t for which the lower bound N − st is better than
n − mt:
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• for s = 1 then N = 108 and for 108 > t ≥ 102 the bound is tightened,

• for s = 2 then N = 208 and for t = 103 the bound is tightened,

• for s = 5 then N = 528 and for 105 > t ≥ 100 the bound is tightened.

As was shown in [8], the dimension of a Goppa code attains the lower
bound k ≤ n − mt, if the degree of the Goppa polynomial is small enough.
Here we show that it is possible to transfer this result to s-projected codes.

Theorem 2 Let g(x) ∈ GF(2s)[x] be a square-free polynomial of degree t
with no roots in the field GF(2m), and let Ĩ(R, g) be the corresponding s-
projected code of length N and dimension kI . If t < 2m/2−1 then kI = N−st.

To prove the theorem, we need the two following lemmas.

Lemma 3 For Ĩ(R, g)⊥, the dual code of the s-projected code Ĩ(R, g), we

have

Ĩ(R, g)⊥ =
{ (

Tr(1)(z1), . . . ,Tr(N)(zN )
)

| f(x) ∈ GF(2s)[x],deg(f) < t
}

,

where Tr(i)(z) = TrGF(2s)(oi)/ GF(2)(z), and zi = f(oi)/g(oi).

Proof
In accordance with the lemma 2 the code Ĩ(R, g) is the binary sub-
code of the code over GF(2s) with parity check matrix HI where
R = (o1, . . . , oN ) and

HI =




Tr1

(
o1

g(o1)

)
· · · TrN

(
oN

g(oN )

)

...
. . .

...

Tr1

(
ot−1
1

g(o1)

)
· · · TrN

(
ot−1

N
g(oN )

)




with Tri = TrGF(2s)(oi)/ GF(2s). Now we use a known theorem by Del-
sarte [2] which asserts that for any linear code defined over an ex-
tension F of the field F0, we have (C|F0)

⊥ = TrF/F0
(C⊥). From here

follows that

Ĩ(R, g)⊥ =

{ (
TrGF(2s)/ GF(2)

[
Tri

(
f(oi)

g(oi)

)] )N

i=1

∣∣∣∣
f(x) ∈ GF(2s)[x],
deg(f(x)) < t.

}

Now the proof of the lemma derives from the following property of the
trace operator:

TrGF(2s)(oi)/ GF(2)(z) = TrGF(2s)/ GF(2)(Tri(z)),

that is Tr(i)(z) = TrGF(2s)/ GF(2)(Tri(z)).
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Lemma 4 directly derives from the Bombieri’s inequalities [1] (see [8]).

Lemma 4 (Bombieri) Let g(x) ∈ GF(2m)[x] be a polynomial of degree t
with no roots in GF(2m) and let f(x) ∈ GF(2m)[x] be a non-zero polynomial

of degree less than t − 1. If
∣∣∣∣∣∣

∑

α∈GF(2m)

(−1)
TrGF(2m)/ GF(2)

“
f(α)
g(α)

”
∣∣∣∣∣∣
> (2t − 2)2m/2

then the equation Y 2 + Y = f/g has a solution in the field GF(2)(x) where

GF(2) is the the algebraic closure of GF(2), and GF(2)(x) is the fraction

field of GF(2). .

Proof of the theorem
Thanks to the linearity of the trace operator, it is enough to show
that a non-zero polynomial f(x) ∈ GF(2s)[x] of degree less that t does
not give the zero vector in Ĩ(R, g). Thus the dimension of Ĩ(R, g)⊥

is not smaller than st. On the other hand, from the corollary 1, the
dimension of Ĩ(R, g)⊥ is not greater than st. From this follows that
this dimension is exactly equal to st.

We use contradiction arguments. We suppose that there exists a non-
zero polynomial f(x) ∈ GF(2s)[x] of degree less than t such that

Tr(i) (f(oi)/g(oi)) = 0,

where i = 1, . . . , N , and Tr(i)(z) = TrGF(2s)(oi)/ GF(2)(z). Since TrGF(2m)/ GF(2)(z) =
TrGF(2m)/ GF(2s)(oi)(1)Tri(z), we also have

TrGF(2m)/ GF(2) (f(oi)/g(oi)) = 0

for i = 1, . . . , N . The polynomials f and g have coefficients in GF(2s)
thus they commute with the Frobenius automorphism σ : x 7→ x2s

.
Moreover the trace operator also commutes with σ and since the set
L labels the whole field GF(2m), then for any element α of the field
GF(2m), we have

TrGF(2m)/ GF(2) (f(α)/g(α)) = 0.

Thus we deduce that
∣∣∣∣∣∣

∑

α∈GF(2m)

(−1)
TrGF(2m)/ GF(2)

“
f(α)
g(α)

”
∣∣∣∣∣∣
= 2m

We have t < 2m/2 − 1, hence 2m > (2t − 2)2m/2. Therefore
∣∣∣∣∣∣

∑

α∈GF(2m)

(−1)
TrGF(2m)/ GF(2)

“
f(α)
g(α)

”
∣∣∣∣∣∣
> (2t − 2)2m/2.
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By applying the lemma 4, we deduce that there exists a rational func-
tion h with coefficients in GF(2) such that

h2 + h = f/g

Let h(x) = v(x)/u(x), where v(x) and u(x) are prime together. Let
G(x) = g(x)/d(x) and F (x) = f(x)/d(x), where d(x) = (g(x), f(x)) is
the greatest common divisor of the polynomials g(x) and f(x). With
this notations, the previous equation can be rewritten

G(v2 + vu) = Fu2.

Since G(x) and F (x) are prime together, then G(x) divides u2, and
since G(x) is square-free, then G divide u. If we take U = u/G, then
the equation becomes

v2 + vUG = FU2G.

From here it follows that G divides v2, thus G divides v. This con-
tradicts the fact that v(x) and u(x) are prime together. Thus h(x)
is a polynomial satisfying the equation Y 2 + Y = f/g, and therefore
f/g is also a polynomial. It follows that the degree of the polynomial
f(x) is not less than the degree of g(x), that is t, which contradicts
the hypothesis of the theorem.

The restriction t < 2m/2−1 of the theorem can be practically increased.
For example for n = 1024, that is m = 10, the theorem gives the exact value
kI = N − st for t < 16, whereas experimental results show that this formula
remains true for substantially higher values of t.

Now we derive an upper bound on the minimum distance of s-projected
codes.

Proposition 3 Let Ĩ(R, g) be the s-projected code of parent code Γ(L, g)
with L ⊂ GF(2m) and of minimum distance d. If dI denotes the minimum

distance of Ĩ(R, g) then

dI ≥ d
s

m
.

Proof
Consider a non-zero vector a ∈ Ĩ(R, g). The vector a can be lifted into
a vector a ∈ I(L, g) by duplicating its coordinates, according to the
cardinality of the corresponding orbits. Let wt(x) denote the Ham-
ming weight of the vector x. Since in any orbit there is no more than
m/s elements, then wt(a) ≤ wt(a)m

s . Since a lies in the Goppa code
then wt(a) > d and dI ≥ d s

m .

10



Code Γ(L, g) Ĩ(L, g)

Length n = 128 N = 20, Number of orbits.
Dimension k = 30, n − mt = 30 kI = 6, N − t = 6
Transmission rate 0.23 0.33
Correction 14 errors 2 = 14/7 errors

Table 1: Properties of Γ(L, g) and of Ĩ(L, g) for the length n = 128

The decoding of s-projected codes is based on the principle of lifting the
words into the parent Goppa code. Thus the complexity of the decoding is
roughly the same. However the computations can be done in the subfield
GF(2s) rather than in the field GF(2m).

For more convenience we assume that the polynomial g(x) ∈ GF(2s)[x]
is of degree t and square-free. Then the minimum distance d of the Goppa
code is greater than 2t+1, and known decoding algorithms correct t and less
errors (see [7, 6]) in polynomial time. According to the proposition 3 the
minimum distance of an s-projected code is dI ≥ (2t+1) s

m . By projection we
get a decoding algorithm reaching this bound, that is correcting t s

m errors,
on the same model as any decoding algorithm for Goppa codes correcting t
errors.

Decoding algorithm

1. The receiver gets from the channel the vector y = x + e where y =
(yoi)

N
i=1, x = (xoi)

N
i=1 ∈ Ĩ(R, g) is the word to be decoded, and word

e = (eoi)
N
i=1 an error vector of weight less than t s

m . The receiver lifts
the vector y into the vector y = (yOi)

N
i=1 of length n, which takes the

same value yoi on the coordinates belonging to the same orbit Oi. The
vector y can be written y = x + e where x = (xOi)

N
i=1 ∈ Γ(L, g) and

e = (eOi)
N
i=1 are the analogous derived liftings of the vectors x and e

respectively, and wt(e) ≤ wt(e)m
s ≤ t.

2. The receiver applies the decoding algorithm of the Goppa code to the
vector y and recovers x ∈ Γ(L, g), since the number of errors (weight
of e) is less or equal than t.

3. By projection of x onto R, the receiver recovers the transmitted word
x.

Example 2
Consider the polynomial g(x) = x14 + x3 + 1 with no roots in GF(27)

and set L = GF(27). The relation between the corresponding Goppa code

and its 1-projected code can be found in the table 1.
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Code Goppa
code

s-projected code

Length n N : Number of orbits ≈ n s
m when n

grows

Dimension k ≥ n − mt kI ≥ N − st

Transmission
rate

R = k/n RI = kI/N ≈ R when n grows

Constructed
distance

d ≥ 2t + 1 dI ≥ (2t + 1) s
m

Table 2: Asymptotic comparison of the parameters of Goppa codes and
s-projected codes

This example shows that for small length, the Goppa code and the
s-projected code behave differently (the first being better). However this
difference vanishes when the length of the codes increases. Consider the
case when m

s is a prime number and the Goppa polynomial has no roots in
the field GF(2m). In this case, the number of orbits is

N = 2s + (2m − 2s)
s

m
= n

s

m

(
1 + 2s−m

(m

s
− 1
))

,

where n = 2m. Hence, when m
s = const and when the length n = 2m of the

Goppa code increases, the s-projected code has length N ≈ n s
m and the

parameters of the codes are proportional as indicated in the table 2.

5 Conclusion

In this paper we have built a new family of codes by using the binary Goppa
codes. These codes are obtained from the words that are invariant under the
action of the Frobenius automorphism by “gluing” together (projecting)
coordinates taken in the same orbit. This construction enables to transfer
many properties of the Goppa codes on the new codes. The properties of s-
projected codes characterize in some way the parent Goppa codes. However,
we do not know if the subcode of the words invariant under the action of the
Frobenius automorphism characterizes uniquely the Goppa code, but this
was verified in some numerical examples. When satisfied, this hypothesis
enables to greatly reduce the complexity of structural attacks against the
McEliece cryptosystem [5], in the case where the coefficients of the Goppa
polynomial are taken in a subfield [4].
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