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Abstract

In this paper we show how to strengthen public-key cryptosystems against known attacks,
together with the reduction of the public-key. We use properties of subcodes to mask the
structure of the codes used by the conceiver of the system. We propose new parameters for
the cryptosystems and even a modified Niederreiter cryptosystem in the case of Gabidulin
codes, with a public-key size of less than 4 000 bits.

1 Introduction

Among the family of public-key cryptosystems, the ones whose security rely on the difficult
problem of decoding a codeword are not much studied. The principle of such systems was
introduced in 1978 by McEliece [14]. They form an interesting alternative to cryptosystems
whose security is based on problems of number theory. One of their advantages is their speed in
the cipher-decipher procedure. However, the main drawback remains the size of the public key
which is prohibitive.

In this paper we show that it is possible to strengthen the security of such systems against
all known attacks together with reducing the size of the public-key. Namely, the smallest key
size attainable for such systems is reached when the conceiver uses optimal codes such as GRS
codes for Hamming metric and Gabidulin codes for the rank metric. For such codes it is not
possible to scramble enough the structure of the public-key so that it becomes infeasible for the
attacker to recover a decoder for the public code. Both attacks of Sidel'nikov-Shestakov [16]
and of Gibson [9, 10]. are perfects examples of it.

In this paper we show that it is possible to strengthen the cryptosystems by using “almost
optimal” codes, that is by using some well chosen subcodes of optimal codes. Since subcodes can
be decoded by the same decoding algorithm as the one for the parent code, by taking subcodes
of dimension slightly less than the code’s dimension, we obtain a family of codes resistant to
known attacks.

In the first part we show how to do it by using the family of GRS codes in the Niederreiter
cryptosystem, and we propose secure parameters giving a public-key size significantly less than
for the McEliece cryptosystem. In the second part, we build the Niederreiter form of the GPT
cryptosystem based on the rank metric and show how to construct an efficient and resistant
cryptosystem, with a public-key size that is less than 4 000 bits.
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2 DMcEliece and Niederreiter cryptosystems

The McEliece public key cryptosystem [14] is based on the difficulty of decoding linear codes,
that is finding the nearest codeword of a given word. Its dual version, the Niederreiter public
key cryptosystem [15] is based on the difficulty of finding a coset leader of a coset of the code,
that is finding the smallest with a given syndrome.

Clearly, for a given code, these problems are equivalent. Both use a class C of codes of length
n and dimension k having a fast decoding algorithm for correcting up to t errors.

2.1 Description of the McEliece public key cryptosystem

e Private key:
- An element C of the class of codes C, with a fast decoding algorithm.
- An invertible k x k matrix S.
- A n x n permutation matrix P.

e Public key:
- A matrix Gpu = SGP, where G is a generator matrix of €. The matrix Gy, is a
generator matrix of the code Cpyp equivalent to C' under the permutation P.

e Encryption:
¢ — y = cGpy + €, where ¢ is a message of size k and €’ a random word of weight ¢.

e Decryption:
- Compute z = yP~ ! = ¢SG + ¢’P~L. Note that ¢SG is a codeword of C and e = ¢’P~!
is a word of weight t.
- Decode x with the secret algorithm for C'. This gives ¢SG.
- Compute ¢ from c¢SG.

The class of codes proposed by McEliece is the class of binary Goppa codes. These codes
are subfield subcodes over GF'(2) of Generalized Reed-Solomon codes (GRS codes). The secret
key is in fact the underlying algebraic structure of GRS codes, and the decoding algorithm is
the classical Berlekamp-Massey algorithm for GRS codes.

The original parameters are n = 1024, k > 524, ¢t = 50 and a designed distance d = 101.
With these values, the characteristics of this system are (cf. [2]):

e Size of public key: 67072 bytes.

e Transmission rate: 0.512.

e Number of codes: ~ 21%,

There are two classes of attacks against a such system:

e The structural attacks: Except for some weak keys (cf. [12]), there is no know attack
recovering the structure of Goppa codes from the public-key.

e The decoding attacks: how to decode a random code without structure? The main idea of
such attacks is to recover an information set of symbols without errors. These attacks are
briefly described in Section 2.3. However the proposed parameters remain resistant under
such attacks.
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2.2 Description of the Niederreiter public key cryptosystem

e Private key:
- An element C of the class of codes C.
- An invertible (n — k) x (n — k) matrix S.
- A n x n permutation matrix P.

e Public key:
- A matrix Hp,, = SHP, where H is a parity check matrix of C. The matrix Hp,, is a
parity check matrix of the code C),; equivalent under the permutation P to C.

e Encryption:
c—s = cH;ub, where c is a message of weight ¢.

e Decryption:
- Compute s = s'S7! = ¢P'H!. Set ¢ = c¢P?. Note that ¢ is a word of weight t and s is
the syndrome of ¢’ by H.
- Decode s with the secret algorithm for C. This gives .
- Compute ¢ from ¢’ = cP.

In its original paper (cf. [15], Niederreiter proposed as a possibility for C the class of Gen-
eralized Reed-Solomon codes over an extension field GF'(2"). Unfortunately, V.M. Sidel’nikov
and S.0O. Shestakov [16] gave a polynomial algorithm to recover the structure of GRS codes. We
will describe this algorithm in the next section.

However, it is possible to use the Niederreiter cryptosystem with the class of Goppa codes
proposed by McEliece. Contrary to McEliece cryptosystem, the matrix H' can be under a
systematic form without loss of security.

For the preceding parameters, the characteristics of the Niederreiter system are (cf. [2]):

e Size of public key: 32750 bytes.
e Transmission rate: 0.568.

e Number of codes: a~ 2498,

The security of this system against structural and decoding attacks is equivalent to the
security of McEliece cryptosystem with same parameters.

One of the great advantage of McEliece or Niederreiter cryptosystems is the work-function of
encryption-decryption. For example, using standard parameters (cf. [2]), the number of binary
operations performed by the encryption per information bit are respectively 514, 50 and 2402 for
the McEliece, Niederreiter and RSA cryptosystems. The number of binary operations performed
by the decryption per information bit are respectively 5140, 7863 and 738112.

The main problem of the McEliece or Niederreiter cryptosystems remains the size of the
public key: respectively 67072 bytes, 32750 bytes and 256 bytes for the McEliece, Niederreiter
and RSA cryptosystems.
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2.3 Why construct a cryptosystem with extension fields

We will see in the next section that the structure of GRS code is easy to recover. Hence, the
use of this class of codes for C is not secure. However, the use of codes over an extension field
instead of GF'(2) is of great interest for many reasons.

The most important property is the fact that, for a given length and a given dimension, the
minimum distance is larger than in the binary case.

For example, the parameters of Goppa codes used in the classical McEliece cryptosystem are
[1024,524,101], i.e. a capacity of correcting t = 50 errors. If you use a GRS code, you obtain
the parameters [1024,524, 501], i.e. a capacity of correction t = 250.

For a fixed dimension k, the difficulty of decoding increases with the number ¢ of errors used
in the cryptosystem.

The best known probabilistic algorithms to correct ¢ errors are based on the search of infor-
mation set, i.e. k elements of the support without errors (cf. [2]).

The probability of finding such a set is:

n—t n
()G

Moreover, the various improvements of this method in the binary case does not hold in
the extension field case. For instance the Lee & Brickell algorithm needs 2™ — 1 steps at each
iteration instead of 2 — 1 =1 step in the binary case.

As an example, for a binary code of parameters [1024, 524, 101], the work function of these
algorithms is 264, For a code of parameters [255,129,123] over GF(256), the work function is
greater than 2%, For this estimation we consider that a multiplication or an addition over
GF(2™) needs m binary operations.

For a fixed level of security, the choice of codes over extension field allows the use of smaller
codes. Consequently, the key size as well as the work function of decryption are smaller.

2.4 How to recover the structure of GRS codes.

The main known class of MDS codes with an efficient decoding algorithm is the class of Gen-
eralized Reed-Solomon codes. Unfortunately, their algebraic structure is very strong and it is
possible to recover it.
In this section, we recall the definition of Generalized Reed-Solomon codes and a method to
recover the structure of such a code which is essentially Sidel'nikov and Shestakov’s (cf. [16]).
Let K be the finite field GF(p™) and K = K U{co} be a set of coordinates for the projective
line.

Definition 1 Let £ = (ag,...,an_1) be an n-tuple of distinct elements of K and
v = (vg,...,Un—1) be an n-tuple of non-zero elements of K. Let k be an integer less than n.
The Generalized Reed-Solomon code GRSy (v, L) is the code of length n over K with generator
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matrix
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Where by convenience a1 = 00.

Such a code is a MDS code (cf [13]). The dual of a GRS code is a GRS code. Moreover, the
support of the dual code is £, and its scalars v’ are explicit from v (cf. [4] Theorem 1).

For a cryptographic use, the public matrix is Gpyp = SMy (v, L), where S is a s x s invertible
matrix. The private key is the matrix S and the knowledge of v and £ which are used for
decoding. Note that the choice of an order for the support £ corresponds to the choice of the
permutation P in the classical presentation of the McEliece cryptosystem.

An important point is the fact that distinct values of v and L give the same GRS code (cf.
[4]). More precisely, there is an action of the projective linear group PGL(2, K) on the support
L and the scalar v which preserves the code GRSy(v, L). This fact is directly related to the
structure of the full automorphism group of GRS codes. For more details, the reader can refer
to [4].

For our purpose, we need only two facts:

e First, the group PGL(2, K) is triply-transitive on K, which implies that it is always possible
to fix arbitrary 3 points of the support £ of a GRS code. In the next, we suppose oy = 1,
aip+1 = 0 and «,, = co. Moreover, the scalars v are defined up to a scalar multiplication, and
then we can suppose v, = (—1)**! without loss of generality.

e The canonical form of the systematic generator matrix of a GRS code is known from v
and L. The following theorem describes this matrix.

Theorem 1 (Theorem 2 of [4].) Let C' be the GRS code GRS,(L,v) . Let M = (I|B) be
its systematic generator matriz: I is the k x k identity matriz and B = (b;j), i = 1,...,k,

d.
j=k+1,...,nisakx (n—k) matriz . Then b;; = ——L—, with
T dilai, g
[, o] = (a; — o) if (i, 05) € K2, [, 00] = =1, [00, ;] = 1 if o # o0.

k
d; = v; H [as, ) fori=1,... k.
s=1,s#1

k
dj:ij[as,aj] forj=k+1,... n.

An important corollary is the following;:

Corollary 1 For all i, j, u and v such that 1 < 4,5 < k and k+ 1 < u,v < n, we have the
relation

b@u X bjﬂ, . [Ozj,Oéu] X [ozi,ozv]

bj,u X bm} [ai,au] X [aj, av] '
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d;

_ . ]
di[ovi, o]

Proof : It is just the direct application of relation b; ; =

Note that the b; ;s are known. Using these relations, if you know 3 values from «;, o, oy
and a,,, we obtain directly the fourth.
Remember that it is always possible to choose three elements of the support and one scalar

v;. Under the hypothesis ap = 1, ax41 =0, o, = 00 and v, = (—1)k+1, we obtain the explicit
formulas:
b; b
e Forv=1,... k: ai:M, di:b;}b.
b1,nbi k1 ’

; dobo jorg — diby jaq
eftorj=k+1,...,n—1: o = J »J ’
’ ! daby j — dyby j

dj = dlbl,j(l — Ozj).

Now, we are able to describe the method for recover a generator matrix of the GRS code of
the form My (v, L).

1. Construction of the systematic generator matrix of C from the public generator matrix

Gpub~
2. Compute «; and d; for i = 1,...,k from relations
d; = b} and o = 2nDLktL
’ b1,nbi k41
3. Compute «; and d; for j = k +1,...,n from relations

o — doby jag — diby jou
J deQJ — dlbl,j

and dj = dlbl,j(l — Oéj).

k
4. Compute v; for i = 1,...,k from the relation d; = v; H (s, ]
s=1,s#1
k
and vj for j =k+1,...,n — 1 from the relation d; = v; H[as,ai].
s=1

The workfunction of this attack is @(n®): this corresponds to the construction of the sys-
tematic generator matrix. The other operations are linear.

2.5 Masking the GRS structure with subcodes

The main idea for masking the structure of a GRS code GRS}, of parameters [n, k, d] is to use
a subcode C of GRS}, of parameters [n, k — ¢, d’] with ¢ small and d’ > d. Clearly, the decoding
algorithm of GRS}, can be used for C to correct up to t = |(d — 1)/2] errors.

The simplest method to construct such a subcode is to add ¢ rows to the parity-check matrix
of GRS:

e Let My = My(v, L) be a generator matrix of GRS, i.e. a (d— 1) x n parity check matrix
of GRS.

e A / x n-matrix A such that its rows are linearly independent from those of H.
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e A (d—1+44) x (d—1+¢) non singular matrix S over GF(¢™).

Now the parity-check matrix of the subcode C' is

Mg
Hpub — S (7) .

2.5.1 Resistance to the Sidel’nikov-Shestakov’s attack

Let M = (I|B) be the systematic generator matrix of the GRS code GRSy(L,v) given in
Theorem 1.
Clearly, up to a permutation of the columns, there exists a generator matrix of C' of the form

< e | B >
0 [ LT
where B = (b;j) fori=1,...,kand j=k+1,...,n.
T=(tj),fori=1,...,0andj=k+L+1,...,n.
Since Hp,; is known, it is possible to compute the systematic generator matrix of C:
(Uktok+e|R), with R = (r; ;) fori=1,...,k+land j=k+{+1,...,n.
From these remarks, it follows

¢
e Fori=1,....,kand j=k+{+1,...,n, Tij :bi,j_zts,jbi,kJrs'
s=1

efori=k+1,...,k+0land j=Fk+1,....,n, 7ri;j=1t_p;

Note that the matrix R is known, and then T is known.
In order to develop the Sidel'nikov-Shestakov’s attack, we need to recover directly the b; ;’s

from the k x (n — k — £) equations
¢

bi,j:Ti,j+zt5,jbi7k+s,izl,...,k and j=k+£4+1,...,n

s=1
and then to solve this with the previous method.
Clearly, this system has ¢"* solutions and only one holds. For usual values of ¢, k and ¢ this
is not feasible (for example, ¢ = 256, n = 255, k = 129 and ¢ = 4).

Remark 1 In [5], E. Gabidulin, A. Ourivski and V. Pavlouchkov gave an attack for the case ¢ =
b@u X bjﬂ, . [Ozj,Oéu] X [Ozi,OéU]

1. In this attack, they search to recover directly the cross ratios =
bj,u X biﬂ, [ai,au] X [Ozj,OéU]
instead of the values of b; j’s. Unfortunately, this attack does not work for £ > 2.

Choice of the matrix A

For some particular values of A it is possible that the matrix H,,,; corresponds to the parity
check matrix of another GRS code of parameters [n,k — ¢,d + ¢]. Note that this possibility is
very improbable for a random choice of A. However it is possible to avoid this problem easily:
if the subcode has a minimal distance d’ such that d’ = d, it cannot be a MDS code, and then
it cannot be a GRS code.
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M,
More precisely, the public parity-check matrix is Hp,, = S <7d>

We can suppose without loss of generality that

0 ... 0 aLd c.. A1n
A=
0 ... 0 aggq ... agn

Suppose now what we add one more zero column to A, i.e.

0o ... 0 a17d+1 - Q1n
A=
0 ... 0 apgy1 - app

Proposition 1 Under the previous hypothesis, the minimum distance of the code C having A
as parity-check matriz is d = d

Proof : Let GRS}, be the generalized Red Solomon codes of parity-check matrix My. Let d’
be the minimum distance of C. Since C' is a subcode of GRS}, d' > d.

Let ¢ € GRS\ be a codeword of weight d and support {1,...,d}, ¢ = (c1,...,¢4,0,...,0).
Clearly cHéub =0, cis a codeword of C and d' = d. O

2.5.2 Example of parameters

We propose the following parameters: the alphabet is K = GF (28)7 the parameters of the GRS
code is [255,133,123]. We choose ¢ = 4 and then the parameters of our public code is then
[255,129,123]. The correction capacity is t = 61 errors.
The work-function of the decoding attacks is greater than
The structural attack needs approximatively 22°°° Sidel'nikov & Shestakov attacks!
With these parameters, the characteristics of the McEliece cryptosystem are

2100

e Size of public key: 32895 bytes.

e Transmission rate: 0.506.

Whose of the Niederreiter cryptosystem are
e Size of public key: 16254 bytes.

e Transmission rate: 0.680.

3 Cryptosystems based on the rank metric

GPT cryptosystem originally presented in [8] is a McEliece type system. Its security relies
on the difficulty of decoding linear codes with respect to the rank metric introduced in [6] by
Gabidulin. In the rank metric, the decoding attacks consisting in finding information sets of
symbols without errors do not work. They are replaced by attacks denoted Basis enumeration
attacks, which can be prevented even with a small key size.
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However, despite the use of some distortion matrix, the Gabidulin codes used in the concep-
tion of the system are too much structured and an attacker can easily recover a polynomial-time
decoder for the public code, thus breaking the system by some structural attack, see [9, 10].

In this section we present briefly the properties of the rank metric, and of the Gabidulin
codes, which play the same role as GRS codes in the classical McEliece system. Then we
present the GPT system, and the known attacks. Finally, we construct a full Niederreiter type
cryptosystem, and we show that it is easy to control the structure of the public key by choosing
some subcode of a Gabidulin code, so that the system resists all known attacks. Thus we preserve
the small size of the public-key, and the efficiency of the system.

3.1 Rank metric and Gabidulin codes

Consider any finite field GF(q). Given a vector
a=(ai,as,...,a,) € GF(¢™",

the rank weight of a is by definition the rank of the m x n-matrix over GF'(q) formed by extending
every coordinate a; on a basis of GF(¢"™)/GF(q). The construction is independent of the chosen
basis.

The rank weight being a norm, it also defines a metric. With the distance related to the
metric, we define the minimum rank distance of a linear code, in the same way as the classical
minimum distance for a code in the Hamming metric.

Definition 2 Let C be a linear code over GF(q™). The minimum rank distance of C is d where
d = Min.cc+(Rk(c)).

Given any matrix over GF(q"™) we also define the rank of a matrix over GF(q), and the
minimum rank distance of a code

Definition 3 Let X be a k x n matriz with coefficients in GF(q™). The rank of X over GF(q)
is equal to the mazimum number of columns of X that are linearly independent over GF(q).

In 1985 Gabidulin, [6] published a family of codes which are optimal for the rank metric.
Namely, they reach the “Singleton bound” for the rank metric.

One first chooses n elements g1, ¢g2,...,9, € GF(¢™)", which are linearly independent over
q. Thus the matrix

g1 g2 9n
g 95 - gh
a=| " ; . (1)
I;—l I;—l k—1
g g - gl

is of rank k. Let C be the linear code of length n and of dimension k generated by G.

Proposition 2 (see [6])
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e The linear code with generating matrix G reaches the Singleton bound for the rank metric.
That is, let d be the minimum rank distance of C, we have

d—1=n-—k.
e There exists a polynomial-time algorithm decoding up to t = (d — 1)/2 errors. One step
decoding has complexity t(t* 4+ 2n) multiplications in GF(¢™).
Definition 4 The code C with generating matrixz (1) is called Gabidulin code of dimension k,
and of generating vector g = (g1,92,- - n)-
3.2 Description of the GPT cryptosystem

The family of Gabidulin codes is optimal for the rank metric, and has a polynomial-time decoding
algorithm [6]. Thus it is suitable to build McEliece like cryptosystems. We consider a finite
field GF(q™). Usually the examples are taken with fields of characteristic 2, but they can be
generalized to any characteristic without loss of generalities.

3.2.1 Construction of the cryptosystem

The conceiver of the system chooses as private key:

i\ k—1,n
e A k X n-generating matrix of a Gabidulin code under the form G = (gjq- ) .
1=U,J=

e A k x k-non singular matrix S with coefficients in GF(¢™).

e A kxn matrix X of rank ¢; over GF'(q) — see definition 3. X is denoted distortion matrix
and the integer t; is denoted distortion parameter.

The matrices (G, S, X) form the private key of the cryptosystem. The conceiver publishes:
(Gpub = SG + X, tl) .

The encryption-decryption procedure is very similar to the encryption-decryption procedure
in the McEliece system. Namely,

e Let ¢ be a vector of length k. The sender computes and sends
y= CGpub + €,
where e is a random error-vector of length n and of rank t — t; over GF(q).

e The receiver gets
Yy =cGpyp +e=cSG + (cX +e).

By property of the rank weight, Rk(cX +e) < Rk(c¢X )+ Rk(e). Since X is of rank ¢; over
GF(q), then the vector cX is of rank less than ¢;. Since the rank weight of e is equal to
t — t1, we obtain

Rk(cX +e) <t.

Therefore, by applying the polynomial-time algorithm decoding ¢ errors in the Gabidulin
code, the receiver recovers ¢S. Then ¢ by multiplying by S~!, he gets c.
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3.2.2 Bases enumeration attack

Contrary to McEliece system which relies on the difficulty of decoding in the Hamming metric,
GPT system does not at all suffer from decoding attacks as described in [1, 11]. Indeed, since
the rank of a word is the crucial thing, the Hamming weight of error-words e can be as high as
possible, provided their rank is not greater than ¢ —¢;. Since the most efficient decoding attacks
need to pick up randomly a set of £ non corrupted positions of the support of the intercepted
word, it can easily be avoided in our case.

The only possibility to decrypt an intercepted word is called bases enumeration attack.

Let Hy,, be a parity-check matrix of the code with generating matrix Gyy,. Given the
ciphertext y, the best way to cryptanalyze the system is first to evaluate the syndrome s = Hg;by
of the ciphertext y and second to find the unique vector e of length n and of rank ¢t — ¢; such
that

s = eHIzb. (2)

Since e is of rank t — t1, there exists a vector E = (Ey,...,E;_y,) € GF(¢™)"™™ of maximum
rank over GF(q), and a (t — t1) x n-matrix S over GF'(q) of rank (¢t — ¢1) such that

e=ES. (3)
Thus, by combining both equations, we have

s:E&ﬁ@ (4)

for some 2-uple (E,S). Moreover, it is easily seen that whenever the 2-uple (Ey, Sp) is a solution
of (4), then any 2-uple (EqU,U~'S)) is also a solution, where U runs for non-singular (t —t;) x
(t — t1)-matrix over GF(q). The attacks consists in picking randomly a vector E and try to
solve (4). The average number of tries to do is thus equal to

[ m }: (¢" —1)(¢" —q)--- (" — g™
t—t (gt — 1) (gtt —q)--- (gt~ — gt=t1=1)

Since the numerator is greater than ¢ (1 — (¢ —t1)/q™), and since the denominator is less than

m (m—t+t1)(t—t1) . t—t
[t—tl ] >4 ' e gmti-t+in )

For practical use, m > 2t, the second term is negligible and the number of tries is lower bounded
by ¢ 1) Since for each try one has to solve the linear system (4), the complexity of

the attack is O (n(t - tl)gq(m*tﬂl)(t*tl)) multiplications in GF(q™).

q(t*tl)Q, we have

3.2.3 Structural attacks

Above in section 2.4 we saw that there existed an efficient structural attack recovering a decoder
for the public code whenever the secret code is a generalized Reed-Solomon code. The reason is
that the structure of GRS codes cannot be hidden in an efficient way. For the same reason, it
can be proved that the distortion matrix of a GPT system plays a crucial role in its strength.
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Given the public key (Gpup, t1) of a GPT cryptosystem, the goal of a structural attack is to
recover a decoder for the public code. Practically this means that one has to find three matrices
G', S, X’ such that

Gpup = S'G'+ X',

where
e (i is a generating matrix under the form given by (1),
e S’ is a non-singular matrix,
e X' is a distortion matrix of rank t; over GF(q).

In 1995 and 1996, Gibson presented two complementary structural attacks against GPT
cryptosystem, see [9, 10]. Let us denote by r the natural rank of the distortion matrix X. Note
that necessarily ¢; the rank of X over GF'(q) is such that ¢; > r.

e First attack: the average complexity is greater than ¢ multiplications in GF(¢"™).

T

The complexity ¢ of the first attack comes from the fact that any k& x n-matrix X of
rank 7 over GF(¢™) can be written X = AB, where A is a k x r-matrix of full rank over
GF(q™) and B is a r x n-matrix of full rank over GF(¢™).

e Second attack: the average complexity is greater than k® +max(0, t; — 2r)g™aX(0t1=2r)(k+2)
multiplications in GF(g™).

The complexity of the second attack partly derives from the fact that any k£ x n-matrix X
of rank ¢; over GF(q) and of rank r over GF(¢"™) can be written

X=AB,

where A" is a k x t; matrix over GF(¢™) of rank r and where B is a t; x n matrix over
GF(q) of rank t;.

Both attacks are complementary since if r increases the first attack becomes more difficult
whereas the second attack gets easier. Thus to prevent any attack, one should choose ¢; high
and r high such that ¢; — 27 remains high.

The ideal would be to find parameters such that the complexities of both structural attacks
are roughly equivalent and are much greater than the complexity of the decoding attack, that
is try to find m, k,t,t1,r positive integers, such that

m—2k —4

(t1 —2r)(k+2)=mr = # PRI

Since t; — 2r must be high enough to avoid the second attack we must have at least (m — 2k —
4)/(k +2) > 2. Thus if one takes k& = 10, then the extension of the code to choose is at least
m = 47. Thus t = 19, and if we take t; = 17 and r = 3. These parameters could be a good
choice. However there are two main problems

e the transmission rate of the system is very bad : k/m = 0.213.
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Parameters Size of the | Transmission | Decoding | Gibson 1 | Gibson 2
public key, rate
m=20, k=11, t =4 || 4400 bits 0.55 2! 201 210
ti1=1,r=1
m =46, k=23, t =12, || 48 668 bits 0.5 288 292 2150
t1 =10, r =2
m =47, k=10, t =19, || 22 090 bits 0.22 2% o4l 2132
tl = 17, r=3

Table 1: Lower bound on the average complexity of known attacks

e the extension degree of the field increases. For example, if we consider fields of charac-
teristic 2, the cost of one multiplication in GF(2™) cannot be made smaller in software
implementation than mLog m binary operations, provided the field is too big to be stored
on any media.

In Table 1 we sum up the results of the complexity of the different attacks for various
parameters.

For practical interest, the smaller the better, the public-key size should be the smallest
possible by keeping a enough security against the known attacks.

By choosing carefully the parameters, one can assure the security of the system, however
the size of the public-key is in this case prohibitive. Namely for the second example in table 1,
m =n =46, k = 23 the size of the key is 48 668 bits.

Even if the size of the public-key is ten times smaller than that of the McEliece system, it is
not satisfactory, since it remains big, and the calculus have to be computed into fields that are
becoming very large.

3.3 A Niederreiter-type system

The idea of modifying the GPT system so that it resists the Gibson attacks without increas-
ing too much the size of the public-key is not new and is part of the work accomplished by
Gabidulin and Ourivski and can be found in [7]. However they still use the McEliece form of
the cryptosystem by publishing a generating matrix of some scrambled subcode of a Gabidulin
code.

Our approach is to show that a simple Niederreiter type cryptosystem can be constructed,
based on the property of the rank metric. To hide the structure of the chosen Gabidulin codes,
we use the general idea of the first section, that is we take a subcode of the Gabidulin code
by adding some extra lines to the parity-check matrix. This approach has the advantage to
be simple. Moreover, by choosing carefully the lines, we show that the system can efficiently
resist to all known attacks, still keeping a low public-key size. Moreover the distortion matrix
is unnecessary.

3.3.1 Presentation of the system

The conceiver of the system chooses as private key:
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n,d—2

e A (d—1) x n-parity check matrix H = (hgj) o of a Gabidulin code C over GF'(¢™).
1=1,7=
Hence C' has minimum rank distance d, and error-correcting capability ¢t = |(d — 1)/2].

e A/ x n-matrix A with coefficients in GF(¢™) whose properties will be discussed below.
A is the matrix which enabling to control the security of the system, against all attacks.
Its parameters are thus crucial.

e A (d—1+¥4) x (d— 1+ ¢)-non singular matrix S over GF(¢™).

Let =
Hpub = S <Z> .
H,,p is a parity-check matrix of a subcode of C' whose structure is controlled by the matrix A.

The conceiver publishes (Hpys, t).
The encryption-decryption procedure is the following;:

e Let ¢ be the message of length n and of rank ¢, that has to be encrypted. The sender
computes and sends
5= cHg;b.

e The receiver gets
s = (cHT | cAT) ST

and need only to compute s(ST)~! = (cH T cAT). Then he decodes the syndrome cHT
thanks to the polynomial-time decoding algorithm of the Gabidulin code C' of parity-check
matrix H.

For the complexity of the system we have:
o Complezity of the encryption: £(d — 1) multiplications in GF(¢™).

o Complexity of the decryption: we have one decoding in the code C' and a multiplication by
a (2t+£) x (2t+£) matrix over GF(¢™). Thus it is equal to t+nt+ (2t +£)? multiplications
in GF(q™).
Proposition 3 The transmission rate of the system is equal to

_ LogyNmt + Logy Nyt — Log, N+

5
’ m(d—1+0) : (5)
where
j—1
Nij = H (¢ —q¢), Jj<i
s=0

Proof : By definition the transmission rate 7 of the system is equal to the logarithm in base
q of the number of transmissible words, divided by the logarithm in base ¢ of the number of
possible words, that is

Log,N

T= Log,q"CH0’
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where N denotes the number of words over GF(¢") of length n and of rank t. By definition,
this number is exactly equal to the number of matrices of size m x n over GF(q) and of rank ¢,
that is

o m o Nm,t
N = [ ; } Npyt = Nis Npt.

O

Provided m and n are significantly larger than ¢, the transmission rate can be approximated by

_tm+n—t)
Tm(d—1440)

3.3.2 Encoding procedure for the messages

The transmission rate of the system is given by (5), provided every word of length n and of rank
t corresponds to a message. Messages consist usually in continuous blocks of bits. In this part
we consider fields of characteristic 2, and describe a procedure enabling to encode messages into
matrices of size m x n and of rank ¢, corresponding thus to a decodable syndrome. A necessary
condition being that the encoding-decoding procedure is faster than the encryption-decryption
procedure.

For the binary case the procedure is the following. We encode blocks of ¢ = t(m +n — 2t)
bits into words of length n, of weight ¢ over GF(2™). Let f be a received word of t(m +n — 2t)
bits. First the block f is splitted into two blocks f1 and fs respectively of length ¢(n — ¢) and
(m —t)t. Then

1. 1= (fl,h fiz, ... ,th(n,t)) is viewed as a t X (n — t)-matrix F; where
Ji1 Ji2 o finet
Jin—t+1 Jin—t+2 12—t
=1 ) .
Jt-0)m=0+1 Ji,e=Dm=t)+2 " Siim—1
2. fo= (f271, f22,. .. ,f27(m,t)t) is viewed as a (m — t) x t-matrix F, where
fa1 fa2 o far
o f2,t+1 .f2,n7t+2 f2,2t
Jom—t—1)t+1  Jo(met—1)t42 " So,m-t)

3. The encoding matrix is thus the m x n-binary matrix of rank ¢:

Iivy Iy
Fe| — | —— . (6)
Fy FyF

The complexity of the encoding-decoding procedure is:
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e FEncoding : The cost is equal to the multiplication of the matrices F» and Fj, that is on
average
mnt — (m + n)t? + 3
2
Recall that the encryption costs n(d— 14 ¢) multiplications over GF'(2™). Experimentally,
the size of m > 32 prevents from putting the whole field in memory. Thus underestimating
the cost of a multiplication by mLogom seems legitimate. Thus the complexity of the
encryption is roughly, with d — 1 = 2¢

binary multiplications

mn(2t + ¢)Logym binary operations.

With m = 32, and ¢t = ¢ = 4, the encoding procedure is more than 100 times faster than
the encryption procedure.

e Decoding : It consists in reading both matrices F; and Fb. It is linear in complexity. Thus
the decoding is negligible compared to the decryption procedure.

In that case the practical transmission rate of the system is equal to

_ t(m+n—2t)
T T et + 0

Hence the loss between the theoretical and the practical transmission rate is approximately
equal to

t
T—prim(Qt—i_g)

3.3.3 Controlling the security by using subcodes

This new system is based on the theory of Gabidulin codes. Such cryptosystems can be attacked
with the bases enumeration attack and by using the Gibson attacks. Since we require that the
cryptosystem be strong against such attacks, this provides us conditions on the matrix A.

The scheme can be made resistant against bases enumeration attacks even for small param-
eters. Namely, the only condition required is on the parameter d of the system, that has to be
large enough.

However, we want it to be resistant to Gibson attacks. The first step is to decompose the
public-key into the sum of a parity-check matrix of a Gabidulin code and of some distortion
matrix, that is

Hyyp = SH + é}:,

X
where with [i] = ¢,
0 e 0
hy hy,
. p ol v 0 0
- C L T ay — A a1n — Al
plie=2) pla+t=2] : ' :

ap — WA gy, — pl
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Under this form we can evaluate the complexity of the attacks described in section 3.2.3 against
this system. We saw that the complexity of the Gibson attacks depended on the rank ¢; of the
matrix X over GF(q) and on its rank r over GF(¢™). Namely, if k = d — 1 + ¢ we have:

e first Gibson attack: O ((n — k:)/-c?’qrm) multiplications in GF(¢™),

e second Gibson attack: O ((k +t+2)(t — 2r)q(t1_2'r)(k+2)> multiplications in GF'(¢™).

The goal of the conceiver is to choose A such that the rank of X over GF(q) is high and
its rank over GF'(¢") is small. Thus the parameters of X depend only on the matrix Y, which
itself depends on the matrix A.

Regarding the complexity of the different attacks, the ideal is first to have the parameter ¢;
the highest possible, that is t;1 = n. Recall that by definition of the distortion parameter, we
have

t1 = Max cqp(gmr (Rk(cX)).

It is very easy to pick up matrices A such that
RK(X|GF(q) =m, RK(X|GF(g™)) = (.
One way to proceed is the following:

1. Choose the first line of A such that the rank over GF(q) of the vector
y1=(an — Y g — Rl ay, — RlEY),

is equal to n. One way to proceed just choose randomly the vector (a;;) until y; is of
rank n. Namely, the number of vectors of length n in GF(¢™) and of rank n over GF(q)
is equal to

Ny = (@™ =1)(¢™ —q) - (g™ —¢").

Thus the probability that a random chosen vector of length n in GF(q"™) is of rank n
exactly is equal to

N, 1 1 1
- (-5) (-7) - (7).
With ¢ > 2, and by choosing m = n, we have :
1 1 1
il
a ¢ q*

That is P is greater than 1/4. Hence it takes at most 4 tries on average to get a vector of
rank n.

2. Choose the £ — 1 remaining lines of A such that Y of maximum rank /.

Now this proposition gives what we need to evaluate the complexity of Gibson attacks against
the modified Niederreiter system.
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Parameters Size of Transmission Bases Gibson 1 | Gibson 2
the key rate enumeration

m=n=25 t=4, { =4 | 3850 bits | 0.56 292 oIl 2212

m=n=25 t=>5, £=>5 | 3750 bits | 0.53 2136 o137 2233

m=n=232 t=4, { =4 | 7680 bits | 0.58 2123 2138 2393

Table 2: Complexity of the different attacks against the modified Niederreiter cryptosystem

Proposition 4 Let the ¢ x n-matriz A be of rank ¢ over GF(q™) and of rank n over GF(q).
The (d — 1+ £) x n-distortion matriz X is of rank ¢ over GF(q"™) and of rank n over GF(q)

r=( %)

The rank of Y is thus equal to £. Moreover by definition 3 the fact that a line vector of Y — a
line vector of A — is of rank n is enough to prove that Y is of rank n over GF(q). Thus Y can
be written as Y = Yy B, where Yj is a (d — 1 4+ £) x n matrix of rank ¢, and B is a n X n-non
singular matrix over GF(q). Hence

Proof : We have X = SY, where

X = SY,B,
where SYj is of rank . Thus X has rank ¢ over GF(¢"™) and rank n over GF(q) O

Proposition 5 For the modified Niederreiter cryptosystem, with d = 2t, the complexity of the
attacks is the following.

e Bases enumeration : O (nt3qt(m_t)) multiplications in GF(2™).
e First Gibson attack : O((2t + £)3¢"™) multiplications in GF(2™).

e Second Gibson attack : O ((315 +0+4+2)(n— 2€)q("72€)(2t+@> multiplications in GF(2™).

The proof derives directly from the replacement of d by 2¢, r by ¢ and ¢ by n in the formulas
giving the complexity of the different attacks.

3.4 Examples

In Table 2, we give the different parameters of the modified Niederreiter system for some practical
parameters. The size of the public-key is given for the reduced form of the public matrix. First
note that the size of the public key is not really a criterion for evaluating the security of the
system against known attacks. Namely the second line provides the best choice. The public-key
is very small, and the system is extremely secure against every type of attacks.
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