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2 Ernst M. Gabidulin and Pierre Loidreausize must be inreased and it redues the interest of using rank distane, rather than Hammingdistane, [21, 22℄.Beause of growing importane of rank distane and deodable odes for rank distane inmodern appliations, it is of interest to study the struture of odes derived from Gabidulin odeslike subspae and sub�eld subodes, not only for themselves but in the perspetive of �nding otherlasses of good odes for oding and ryptographi appliations.In Hamming metri the mere question of determining the minimum distane of a sub�eldsubode remains open. For the generi ase, only bounds were obtained, [6, 27, 2℄. For the widerfamily of subspae subodes, the same type of bounds an be obtained, [13℄. In the ase of Reed-Solomon odes, the bounds were improved at the prie of a more ompliated formula involvingthe struture of the hosen subspae, [18, 12℄. The problem of e�iently enoding informationwith subspae subodes was investigated in the ase of bit shortened Reed-Solomon odes and inthe more general ase of linear MDS odes [26, 7℄. In the latter ase the authors designed a verye�ient systemati enoding algorithm. This algorithm is non optimal in the sense that it doesnot always enode all the theoretially possible amount of information.This paper extends the results previously obtained and presented in [10℄ and shows that in someases questions remaining open for subspae subodes of Reed-Solomon odes in Hamming metrian be answered for Gabidulin odes in rank metri: When the length of the parent Gabidulin odeis equal to the degree of the alphabet �eld, there exists a rank-preserving isomorphism betweenthe subspae subode and a Gabidulin ode with smaller parameters. In that ase we designa systemati proedure enoding all the possible information as well as a deoding algorithmorreting up to the apability of the subspae subode. Then, we generalise the results to thediret sum of subspae subodes and show that the number of deodable error-patterns is largerthan what is theoretially possible for a ode with the same parameters, but without this additionalstruture. Finally we prove that sub�eld subodes of Gabidulin odes an be seen, modulo theation of the general linear group, as the diret sum of Gabidulin odes with smaller parameters.2. Subspae subodes in rank metriThis setion is an introdutory setion: in a �rst part, we introdue rank metri and Gabidulinodes. In a seond part, we reall the de�nition and general properties of subspae subodes.2.1. Codes in rank metri. Let GF (q) be the �eld with q elements and let GF (qm), m ≥ 1 bethe extension �eld with qm elements. In the following, we regard GF (qm) either as a �eld or asan m-dimensional vetor spae over GF (q).Definition 1 (Rank of a vetor, see [8℄).Let γ1, . . . , γm be a basis of GF (qm)/GF (q) and let e = (e1, . . . , en) ∈ GF (qm)n. The rank of eover GF (q) is by de�nition the rank of the matrix (eij)
m,n
i=1,j=1, where ej =

∑m
i=1 eijγj . The rankof vetor e is written Rk(e).Given a ode C ⊂ GF (qm)

n, its minimum rank distane is
d

def
= min

c1 6=c2∈C
(Rk(c1 − c2))Definition 2. A ode C is a (n, M, d)r ode over GF (qm) if

• C ⊂ GF (qm)n

• |C| = M
• C has minimum rank distane dMoreover if C is a k-dimensional linear ode, it is said to be a [n, k, d]r ode. The parametersare related by an equivalent of Singleton bound for rank distane see [8, 19℄:(2.1) M ≤ qmin(m(n−d+1),n(m−d+1)),And a ode satisfying the equality M = qmin(m(n−d+1),n(m−d+1)) is alled a Maximum RankDistane (MRD) ode.Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),



Subspae subodes of Gabidulin odes 3Let [i]
def
= qi, when i ≥ 0 and [i]

def
= qm+i when i < 0. Let n ≤ m and(2.2) G =






g1 · · · gn... . . . ...
g
[k−1]
1 · · · g

[k−1]
n




 ,where g1, . . . , gn ∈ GF (qm) are linearly independent elements over GF (q). The ode G generatedby G is alled a Gabidulin ode, [8℄. A parity-hek matrix H of G has the same struture as G:(2.3) H =






h1 · · · hn... . . . ...
h

[d−2]
1 · · · h

[d−2]
n




 ,for elements h1, . . . , hn ∈ GF (qm) linearly independent over GF (q). The ode G is an MRD-ode and there are e�ient polynomial-time deoding algorithms orreting errors of rank up to

C = ⌊(d − 1)/2⌋, see [8, 9, 24, 23, 16℄.2.2. Subspae subodes in rank metri.Definition 3 (see [13℄, for instane). Let G be a linear ode of length n over GF (qm). Let Vs(s ≤ m) be an s-dimensional subspae of GF (qm). Then
(G|Vs)

def
= G ∩ V n

s ,is an GF (q)-linear subspae of G alled subspae subode or subgroup subode of G restrited to
Vs.The following proposition lower bounds the ardinality of (G|Vs):Proposition 1. Let G be a [n, k, d]r ode over GF (qm). Let Vs (s ≤ m) be an s-dimensionalsubspae of GF (qm). If ns − m(n − k) > 0 then

qns−m(n−k) ≤ |(G|Vs)|A similar result was already proved in [13℄. The priniple of the proof is the following:Let c = (c1, . . . , cn) ∈ V n
s and let b = (β1, . . . , βs) be a bases of Vs. The vetor c is uniquelydeomposable under the form(2.4) c = bU = (β1, . . . , βs)U,where U = (Ui,t)

s,n
i=1,t=1 ∈ GF (q)s×n. Let H = (hj,t)

n−k,n
j=1,t=1 be a parity-hek matrix of G. Wehave(2.5) c ∈ (G|Vs) ⇔

{
c = bU,
(β1, . . . , βs)UHT = 0,where U is a q-ary matrix of size s×n. By developing the equation we obtain the following linearsystem(2.6) ∀j = 1, . . . , n − k,

s,n
∑

i=1,t=1

βihj,t
︸ ︷︷ ︸

∈GF (qm)

Ui,t
︸︷︷︸

∈GF (q)

= 0,where the unknowns are the Ui,t for i = 1, . . . , s and t = 1, . . . , n. Let γ1, . . . , γm be a basis of
GF (qm)/GF (q). We an write

∀i, j, t, βihj,t =

m∑

k=1

δ
(j,k)
i,t γkwhere δ

(j,k)
i,t ∈ GF (q). Therefore solving (2.6) in GF (q) is equivalent to solving the following linearsystem:

∀j = 1, . . . , n − k, ∀k = 1, . . . , m

s,n
∑

i=1,t=1

δ
(j,k)
i,t Ui,t = 0.Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),



4 Ernst M. Gabidulin and Pierre LoidreauIt is a linear system in sn unknowns and m(n− k) equations. Therefore the spae of solution hasdimension at least sn − m(n − k).3. Subspae subodes of Gabidulin odesIn the ase where G ⊂ GF (qm)
n is a Gabidulin ode, we dedue an upper-bound on theardinality of subspae subodes. If n = m, we show that subspae subodes of Gabidulin odesare MRD, and we show how to design spei� enoding and deoding algorithms for subspaesubodes of Gabidulin odes.3.1. Size of subspae subodes of Gabidulin odes.Proposition 2. Let G be the Gabidulin ode over GF (qm) with parity-hek matrix (2.3). Let

Vs (s ≤ m) be an s-dimensional subspae of GF (qm). We have
qns−m(d−1) ≤ |(G|Vs)| ≤ qm(s−d+1)Proof. The lower bound omes from proposition 1: A Gabidulin ode being an MRD-ode we have

d − 1 = n − k.The mapping
GF (qm) → GF (qm)

x 7→ x[i]is GF (q)-linear. Therefore, solving (2.5) is equivalent to solving(3.7) (v1, . . . , vs)







β
[m]
1 . . . β

[m−d+2]
1... . . . ...

β
[m]
s . . . β

[m−d+2]
s







︸ ︷︷ ︸

HT
Vs

= 0,where v1 =
∑n

t=1 U1,tht, . . . , vs =
∑n

t=1 Us,tht ∈ GF (qm) are the unknowns. This implies that
(G|Vs) an be regarded as an GF (q)-linear subode of the [s, s − d + 1, d]r Gabidulin ode withparity-hek matrix HVs

. ⋄Definition 4 (Parent Code). The linear ode over GF (qm) with parity-hek matrix HVs
isalled the parent ode of (G|Vs). It is denoted by P(G|Vs).If n = m both inequalities of proposition 2 math and |(G|Vs)| = qm(s−d+1). In that ase (G|Vs)is an MRD ode. In the following we will suppose that m = n.Proposition 3. Let m = n, let G ⊂ GF (qn)n be the Gabidulin ode with parity-hek matrix(2.3). Let h = (h1, . . . , hn) be the �rst row. Let Vs be an s-dimensional subspae of GF (qn) andlet b = (β1, . . . , βs) be a basis of Vs. The mapping

fb : V n
s → GF (qn)

s

c = bU 7→ fb(c) = hUTsatis�es the following properties1. fb is GF (q)-linear and bijetive2. fb preserves the rank, i.e. Rk(fb(c)) = Rk(c)3. fb (G|Vs) = P(G|Vs)4. fb an be omputed in O(sn2) multipliations in GF (q) and O(sn) additions in GF (qn)5. f−1
b

an be omputed in O(n3) multipliations in GF (q) and O(sn) additions in GF (qn)Proof. 1. Let d ∈ GF (qn)
s. Sine by onstrution h = (h1, . . . , hn) is a basis of GF (qn)/GF (q),there is a unique q-ary matrix U suh that d = hUT . Therefore the unique c ∈ V n

s suhthat fb(c) = d is c = bU . This proves the bijetivity. GF (q)-linearity is immediate.Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),



Subspae subodes of Gabidulin odes 52. b = (β1, . . . , βs) is a basis of Vs. From de�nition 1 we have Rk(c = bU) = Rk(U). Moreover,sine fb(c) = hUT , and sine h1, . . . , hn are linearly independent over GF (q), we haveRk(fb(c)) = Rk(UT ) = Rk(U) = Rk(c).3. Any vetor of (G|Vs) satis�es (2.5) for some q-ary matrix U . Sine G is a Gabidulin ode,
v = (

∑n
t=1 U1,tht, . . . ,

∑n
t=1 Us,tht) satis�es (3.7). Therefore v ∈ P(G|Vs). This implies that

fb (G|Vs) ⊂ P(G|Vs). Sine both sets have the same ardinality, then they are equal.4. A vetor of V n
s is haraterised by a unique q-ary s× n matrix U . Therefore, omputing fbonsists of omputing the produt of h = (h1, . . . , hn) by UT (sn2 multipliations in GF (q)and sn additions in GF (qn)). Conversely, to ompute f−1

b
(v1, . . . , vs) one needs to(a) determine U suh that (v1, . . . , vs) = (h1, . . . , hn)UT : By onsidering the elements of

GF (qn) as q-ary vetors of length n this implies solving a matriial system over GF (q),and this gives a omplexity of O(n3) multipliations in GF (q).(b) ompute bU : s2n multipliations in GF (q) and sn additions in GF (qn).
⋄3.2. Enoding and deoding. The rank preserving isomorphism fb is the tool for designingenoding and deoding proedures for subspae subodes.3.2.1. Enoding. From Proposition 2 we enode up to n(s − d + 1) q-ary digits with P(G|Vs). Let
x = (x1, . . . , xs−d+1) ∈ GF (qn)

s−d+1 be an information vetor. Let GVs
be a generator matrix of

P(G|Vs).
x is enoded into a odeword c by a two steps proedure:1. Compute y = xGVs2. Compute c = f−1

b
(y)From proposition 3, c belongs to (G|Vs). The omplexity of the enoding proedure is essentiallythe omplexity of omputing xGVs

that is: (s − d + 1) × s produts in GF (qn).3.2.2. Deoding. Let y = c+e be a reeived vetor where c ∈ (G|Vs) and e ∈ V n
s is an error-vetorof rank t ≤ ⌊(d − 1)/2⌋. From proposition 3, we dedue

fb(y) = fb(c) + fb(e),and Rk(fb(e)) = t. The deoding proedure is:1. Deode fb(y) in P(G|Vs) and reover c′ ∈ P(G|Vs) and e′ suh that fb(y) = c′ + e′.2. Compute c = f−1
b

(c′) and e = f−1
b

(e′).It is the deoding step of a Gabidulin ode whih has the main ontribution for the evaluationof the omplexity. Therefore it strongly depends on the hosen deoding algorithm. For instaneif we use the one desribed in [9℄, where 2t = d − 1 then the omplexity is roughly equal to
t(2s + n + t2) produts in GF (qn). If we use the algorithm in [16℄ the omplexity is s2 − 5st + 6t2produts in GF (qn). 4. Diret sum of subspae subodesFor i = 1, . . . , u, let 1 ≤ si ≤ n and let Vsi

be an si-dimensional subspae of GF (qn) over
GF (q). We suppose that

∀i, j = 1, . . . , su, i 6= j, Vsi
∩ Vsj

= {0}.It implies that ∑u
i=1 si ≤ n. For all i = 1, . . . , u, let bi be a basis of Vsi

and let fbi
be theassoiated mappings de�ned in proposition 3. We de�ne

f(b1,...,bu) : V n
s1

⊕ · · · ⊕ V n
su

→ GF (qn)
s1+···+su

c = c1 + · · · + cu 7→ f(b1,...,bu)(c) = (fb1
(c1), . . . , fbu

(cu))Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),



6 Ernst M. Gabidulin and Pierre LoidreauLet M = (G|Vs1
)⊕ · · · ⊕ (G|Vsu

). M is a GF (q)-linear subode of G. For all i = 1, . . . , u, let HVsibe the matrix given by (3.7). Let PM be the [
∑u

i=1 si,
∑u

i=1 (si − d + 1), d]r-ode over GF (qn)with parity-hek matrix(4.8) HM =






HVs1
· · · 0... . . . ...

0 · · · HVsu




 .From proposition 3 we haveProposition 4.1. f(b1,...,bu) is GF (q)-linear, bijetive and preserves the rank.2. f(b1,...,bu)(M) = PM.The ode PM is alled parent ode of M. From the struture of matrix (4.8) it is lear that

PM is the diret produt of Gabidulin odes over GF (qn) with parameters [si, si − (d− 1), d]r for
i = 1, . . . , u. We dedue the following orollaryCorollary 1. M is a (n, M, D)r additive ode, where

• M = qn
P

u
i=1

(si−(d−1)).
• D = d.4.1. Enoding with M. Let x be a qn-ary vetor of length ∑u

i=1 si − u(d − 1).1. Write x = (x1, . . . ,xu) where, for all i = 1, . . . , u, xi has length si − d + 1.2. For i = 1, . . . , u, xi is enoded into ci ∈ (G | Vsi
), using the proedure desribed in setion3.2 with mapping fbi

.3. The enoded odeword is c = c1 + · · · + cu ∈ M.The omplexity of the enoding proedure is equal to ∑u
i=1 si(si − d + 1) produts in GF (qn).4.2. Deoding in M. Suppose the reeiver gets y ∈ GF (qn)n, where

y = c
︸︷︷︸

∈M

+ e ∈ V n
s1

⊕ · · · ⊕ V n
suFor all i = 1, . . . , u, let yi be the projetion of y onto Vsi

. We have






y1 = c1 + e1, where c1 ∈ (G|Vs1
),...

yu = cu + eu, where cu ∈ (G|Vsu
).If for all i = 1, . . . , u, ei has rank less than C

def
= ⌊(d − 1)/2⌋, y an be deoded in polynomialtime. Namely, for i = 1, . . . , u, it su�es to deode yi in (G|Vsi

) with the deoding proeduredesribed in setion 4.2.Furthermore some error-patterns e of rank larger than C an be also deoded with the samealgorithms. Namely, if
{ Rk(e) > C,

∀i = 1, . . . , u, Rk(ei) ≤ C.Then it is lear that e an be reovered in polynomial time. This inreases the number of or-retable patterns by a fator that we want to evaluate.Let NC(n, s) be the number of error-patterns of V n
s and of rank less than C. We have, see [14℄page 455

NC(n, s) =

C∑

j=0

j−1
∏

i=0

(qn − qi)(qs − qi)

qC − qi
.This quantity is lower and upper bounded by

q(n+s−1)C−C2

≤ NC(n, s) ≤ q(n+s+1)C−C2+1Let N
def
=

∑u
i=1 si. We haveAdvanes in Mathematis of Communiations Volume 00, No. 0 (2008),



Subspae subodes of Gabidulin odes 7
• The number N of error-patterns of length n over Vs1

⊕ · · · ⊕ Vsu
and of rank less than Csatis�es

q(n+N−1)C−C2

≤ N ≤ q(n+N+1)C−C2+1

• The number N ′ of error-vetors that an be orreted in polynomial-time is equal to thenumber of vetors e =
∑u

i=1 ei of length n suh that for all i = 1, . . . , u Rk(ei) ≤ C satis�es
q(un+N−u)C−uC2

≤ N ′ =

u∏

i=1

NC(n, su) ≤ q(un+N+u)C−uC2+u

• A Gabidulin ode with the same length and ardinality has minimum rank distane D =
u(d − 1) + 1. It orrets error-patterns of rank between uC and (u + 1)C aording to theparity of d − 1. The number NGab of orretable error-patterns therefore satis�es

q(n+N−1)uC−(uC)2 ≤ NGab ≤ q(n+N+u)(u+1)C−(u+1)2C2+1Example. Let C be a (20, 2240, 5)r additive ode over GF (220), and let M be a (20, 2240, 5)r-odeobtained from a parent ode with parameters [20, 16, 5]r over GF (220), and u = 2, s1 = 10, s2 =
10. Then

• The number N of orretable error patterns in C satis�es
274 ≤ N ≤ 279

• The number N ′ or orretable error patterns in M satis�es
2108 ≤ N ′ ≤ 2116A Gabidulin ode with the same length and ardinality has a minimum rank distane D = 9.Therefore it an orret a number NGab of error-patterns bounded by

2140 ≤ NGab ≤ 2149Although the number of polynomial-time orretable error-patterns remains lower than for aGabidulin ode with same length and ardinality, our onstrution enables to orret signi�antlymore error-patterns than for a ode with same parameters but without the diret sum struture.5. A partiular ase: subfield subodesWhen the subspae Vs is the �eld GF (qs) the results of the previous setions an be extended.We prove the following result: Given GF (qs) ⊂ GF (qn) and a parity-hek matrix of a [s, k′, d]rGabidulin ode over GF (qs), the sub�eld subode restrited to GF (qs) of a [n, k, d]r Gabidulinode over GF (qn) and minimum rank distane d is uniquely haraterised by an element of thegeneral linear group GLn(GF (q)).More preisely:Proposition 5.Let G be the ode over GF (qn) with parity-hek matrix (2.3), Let s|n and let
A =






a1 · · · as... . . . ...
a
[d−2]
1 · · · a

[d−2]
s




 .where the ai ∈ GF (qs) ⊂ GF (qn) for all i = 1, . . . , s, are GF (q)-linearly independent. Then, thereexists a unique matrix S ∈ GLn(GF (q)) suh that (G|GF (qs)) has parity-hek matrix

Hqs =






A · · · 0... . . . ...
0 · · · A




S,Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),



8 Ernst M. Gabidulin and Pierre LoidreauProof.Let h denote the �rst row of matrix H given by (2.3). It an be rewritten
H =






h...
h[d−2]




where h[i] def

=
(

h
[i]
1 , . . . , h

[i]
n

). Trivially a parity-hek matrix of (G|GF (qs)) an be obtained by:1. Choosing a basis of GF (qn)/GF (qs).2. Expanding the rows of H olumnwise with respet to the hosen basis: A row of length nwith oe�ients in GF (qn) is transformed into a matrix of size n/s × n with oe�ients in
GF (qs), that is

h = (h1, . . . , hn) 7→ H =






h1,1 · · · h1,n... . . . ...
hn/s,1 · · · hn/s,n




Sine the rows of H are the h[i] for i = 0, . . . , d − 2, there exists a n/s × n/s non-singular qs-arymatrix Qi satisfying

h[i] = (h
[i]
1 , . . . , h[i]

n ) 7→ QiH
[i],where H[i] denotes matrix H whose omponents have been elevated to the power [i]. Therefore,there exists a parity-hek matrix of (G|GF (qs)) whih has the form

Hqs =






H...
H[d−2]




 .The hi's being by de�nition linearly independent over GF (q)), then the olumns of H are vetorsof rank n/s. Hene, there is a n × n matrix S with oe�ients in GF (q) suh that

H =






a · · · 0... . . . ...
0 · · · a




S,where a

def
= (a1, . . . , as) ∈ GF (qs)s. Let

A =






a...
a[d−2]




 ,There exists a permutation matrix P suh that

Hqs =






H...
H[d−2]




 = P






A · · · 0... . . . ...
0 · · · A




SMultiplying a parity-hek matrix on the left by a non-singular matrix generates the same ode.A parity-hek of (G|GF (qs)) is therefore given by






A · · · 0... . . . ...
0 · · · A




S

⋄<gab�pop3.mipt.ru ; Pierre.Loidreau�univ-rennes1.fr>Advanes in Mathematis of Communiations Volume 00, No. 0 (2008),
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