ADVANCES IN MATHEMATICS OF COMMUNICATIONS WER siTE: http://www.aimSciences.org
Vorume 00, No. 0, 2008, 1 9

PROPERTIES OF SUBSPACE SUBCODES OF GABIDULIN CODES

ERNST M. GABIDULIN

Moscow Institute of Physics and Technology
Institutskii per. 9, 141700 Dolgoprudny
Moscow Region, Russia

PIERRE LOIDREAU

CELAr and IRMAR, Université de Rennes
La Roche Marguerite
BP 57419, 35171 Bruz, France

ABsTrACT. We investigate properties of subspace subcodes of Gabidulin codes. They are iso-
morphic to Gabidulin codes with the same minimum rank distance and smaller parameters.
We design systematic encoding and decoding algorithms for subspace subcodes. We show that
the direct sum of subspace subcodes of Gabidulin codes is isomorphic to the direct product of
Gabidulin codes with smaller parameters. Thanks to this structure there is a great deal of cor-
rectable error-patterns whose rank exceeds the error-correcting capability. Finally we show that
for particular sets of parameters, subfield subcodes of Gabidulin codes can be uniquely charac-
terised by elements of the general linear group GL,(GF(q)) of non-singular g-ary matrices of
size n.

1. INTRODUCTION

Gabidulin codes were introduced in [8]. They form a family of optimal codes for the so-called
rank distance. There are polynomial-time algorithms decoding errors of rank less or equal to their
error-correcting capability [8, 9, 24, 23, 16]. Gabidulin codes and more generally codes correcting
rank errors found their first applications when data were stored on tapes, and errors occurred
along specific rows or columns of the arrays, [4, 24, 3].

Recently, interest in Gabidulin codes was reactivated in two main fields:

e In the field of space-time coding: Codes with optimal rate-diversity tradeoff are sets of
matrices over a finite constellation and such that, for a given size of the code, the matricial
rank between two codewords is maximized. Lu and Kumar showed how to construct such
codes from Gabidulin codes, [17].

e In the field of random network coding: Errors and erasures occur in some definite vector
space of upper-bounded dimension. Suitable codes with efficient decoding algorithms can be
constructed from Gabidulin codes, [25].

Apart from applications in coding theory, rank distance and the family of Gabidulin codes have
been employed in the design of McEliece-like public-key cryptosystems, see [11]. The motivation
for the use of codes correcting rank errors is that for similar parameters the work factor of decoding
a random linear code in rank metric is larger than in Hamming metric, see [5, 20]. Therefore this
enables to use smaller public keys than in the original system.

For the same reason that GRS codes shall not be used in cryptographic applications without
being properly scrambled, Gabidulin codes have to be scrambled before being used. A procedure
for scrambling was proposed in the original paper [11] and others were proposed recently, see
[19, 15, 1]. It was shown however that the structure of Gabidulin codes could be recovered by
an attacker if the parameters of the scrambler were not chosen adequately. Thus the public-key
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size must be increased and it reduces the interest of using rank distance, rather than Hamming
distance, [21, 22].

Because of growing importance of rank distance and decodable codes for rank distance in
modern applications, it is of interest to study the structure of codes derived from Gabidulin codes
like subspace and subfield subcodes, not only for themselves but in the perspective of finding other
classes of good codes for coding and cryptographic applications.

In Hamming metric the mere question of determining the minimum distance of a subfield
subcode remains open. For the generic case, only bounds were obtained, [6, 27, 2]. For the wider
family of subspace subcodes, the same type of bounds can be obtained, [13]. In the case of Reed-
Solomon codes, the bounds were improved at the price of a more complicated formula involving
the structure of the chosen subspace, [18, 12]. The problem of efficiently encoding information
with subspace subcodes was investigated in the case of bit shortened Reed-Solomon codes and in
the more general case of linear MDS codes [26, 7]. In the latter case the authors designed a very
efficient systematic encoding algorithm. This algorithm is non optimal in the sense that it does
not always encode all the theoretically possible amount of information.

This paper extends the results previously obtained and presented in [10] and shows that in some
cases questions remaining open for subspace subcodes of Reed-Solomon codes in Hamming metric
can be answered for Gabidulin codes in rank metric: When the length of the parent Gabidulin code
is equal to the degree of the alphabet field, there exists a rank-preserving isomorphism between
the subspace subcode and a Gabidulin code with smaller parameters. In that case we design
a systematic procedure encoding all the possible information as well as a decoding algorithm
correcting up to the capability of the subspace subcode. Then, we generalise the results to the
direct sum of subspace subcodes and show that the number of decodable error-patterns is larger
than what is theoretically possible for a code with the same parameters, but without this additional
structure. Finally we prove that subfield subcodes of Gabidulin codes can be seen, modulo the
action of the general linear group, as the direct sum of Gabidulin codes with smaller parameters.

2. SUBSPACE SUBCODES IN RANK METRIC

This section is an introductory section: in a first part, we introduce rank metric and Gabidulin
codes. In a second part, we recall the definition and general properties of subspace subcodes.

2.1. CODES IN RANK METRIC. Let GF(q) be the field with ¢ elements and let GF(¢™), m > 1 be
the extension field with ¢™ elements. In the following, we regard GF'(¢™) either as a field or as
an m-dimensional vector space over GF(q).

DEFINITION 1 (Rank of a vector, see [8]).

Let v1,...,vm be a basis of GF(¢™)/GF(q) and let e = (e1,...,e,) € GF(¢g™)". The rank of e
over GF(q) is by definition the rank of the matriz (eij)z":"ijzl, where e; = Y| e;;v;. The rank
of vector e is written Rk(e).

Given a code C C GF(¢™)", its minimum rank distance is

de

f .
d = Rk(c; —
o, in (Rlk(er —¢2))

DEFINITION 2. A code C is a (n, M, d), code over GF(¢™) if

e CCGF(g™)"
o IC|l=M

o C has minimum rank distance d

Moreover if C is a k-dimensional linear code, it is said to be a [n, k, d], code. The parameters
are related by an equivalent of Singleton bound for rank distance see [8, 19]:

(2.1) M < qmin(m(n7d+1),n(m,d+1)),

And a code satisfying the equality M = ¢min(m{n—d+1)n(m—d+1)) ig called a Maximum Rank
Distance (MRD) code.
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Let [1] def q*, when i > 0 and [i] def g™t when i < 0. Let n < m and
g1 0 On
(2.2) G=|: R ;
k-1 k-1
gg b gl

where g1, ..., g9, € GF(q™) are linearly independent elements over GF'(q). The code G generated
by G is called a Gabidulin code, [8]. A parity-check matrix H of G has the same structure as G:
hy o hy,

(23 o |
hy—ﬂ oo pld

for elements hy,...,h, € GF(¢™) linearly independent over GF(q). The code G is an MRD-
code and there are efficient polynomial-time decoding algorithms correcting errors of rank up to
C=|(d-1)/2], see [8, 9, 24, 23, 16].

2.2. SUBSPACE SUBCODES IN RANK METRIC.

DEFINITION 3 (see [13], for instance). Let G be a linear code of length n over GF(q™). Let Vi
(s <m) be an s-dimensional subspace of GF'(¢™). Then

GIvy) Y gnvy,

is an GF(q)-linear subspace of G called subspace subcode or subgroup subcode of G restricted to
V.
The following proposition lower bounds the cardinality of (G|V;):

PROPOSITION 1. Let G be a [n,k,d], code over GF(¢™). Let Vi (s < m) be an s-dimensional
subspace of GF(q™). If ns —m(n — k) > 0 then

qns—m("_k) < |(g|V€)|

A similar result was already proved in [13]. The principle of the proof is the following:
Let ¢ = (¢1,...,¢,) € VI and let b = (B1,...,0s) be a bases of V;. The vector ¢ is uniquely

S
decomposable under the form

(24) c=bU = (ﬂlv"'vﬁs)Uv

where U = (Ui 1);% =, € GF(¢q)*™". Let H = (hj7t);7’:_1]f’t":1 be a parity-check matrix of G. We
have

c=bU
2.5 € (G|Vy) & ’
(25) cc@m = { G s umr —o
where U is a g-ary matrix of size s x n. By developing the equation we obtain the following linear
system

(26) VJ = ]-a cee, N — kv Z 6ihj,t Ui,t = Oa
i=li=1 >

€EGF(q™) €GF(q)

where the unknowns are the U;; for ¢ = 1,...,sand ¢t = 1,...,n. Let 7,..., v, be a basis of
GF(¢™)/GF(q). We can write

Vivjﬂfv ﬁlh_]f = 251(?{16)’71@
k=1

where 51(,{;]6) € GF(q). Therefore solving (2.6) in GF(q) is equivalent to solving the following linear
system:

Vi=1,...n—k Vk=1..m Y 05 U.=0.

i=1,t=1
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It is a linear system in sn unknowns and m(n — k) equations. Therefore the space of solution has
dimension at least sn — m(n — k).

3. SUBSPACE SUBCODES OF GABIDULIN CODES

In the case where G C GF(¢™)" is a Gabidulin code, we deduce an upper-bound on the
cardinality of subspace subcodes. If n = m, we show that subspace subcodes of Gabidulin codes
are MRD, and we show how to design specific encoding and decoding algorithms for subspace
subcodes of Gabidulin codes.

3.1. SIZE OF SUBSPACE SUBCODES OF GABIDULIN CODES.

PROPOSITION 2. Let G be the Gabidulin code over GF(q™) with parity-check matriz (2.8). Let
Vi (s <m) be an s-dimensional subspace of GF(¢™). We have

qnsfm(dfl) < |(g|‘/s)| < qm(sfdJrl)

Proof. The lower bound comes from proposition 1: A Gabidulin code being an MRD-code we have
d—1=n-—k.
The mapping
GF(q™) — GF(q™)
x — gl
is GF(q)-linear. Therefore, solving (2.5) is equivalent to solving
ﬁgm] o gmfdJr?]
(37) (Ul,...,Us) =0,
ﬁgm] o ‘Lm—d+2]

T
HVs

where vy = Y7 Ui ihe, ..., 05 = Y 1y Usthe € GF(¢™) are the unknowns. This implies that
(G|Vs) can be regarded as an GF(q)-linear subcode of the [s,s — d + 1, d], Gabidulin code with
parity-check matrix Hy,. © O

DEFINITION 4 (Parent Code). The linear code over GF(q™) with parity-check matriz Hy, is
called the parent code of (G|Vs). It is denoted by Pgv,)-

If n = m both inequalities of proposition 2 match and |(G|V5)| = ¢4+, In that case (G|V;)
is an MRD code. In the following we will suppose that m = n.

PROPOSITION 3. Let m = n, let G C GF(¢™)" be the Gabidulin code with parity-check matriz
(2.3). Let h = (hy,...,hy) be the first row. Let Vs be an s-dimensional subspace of GF(q"™) and
let b= (f1,...,0s) be a basis of V5. The mapping
fo: VI — GF(q")°
c=bU +— fp(c)=hUT

satisfies the following properties

—_

. fo is GF(q)-linear and bijective

. fo preserves the rank, i.e. Rk(fvn(c)) = Rk(c)

- fo (GIVs) = Pgv,)

. fo can be computed in O(sn?) multiplications in GF(q) and O(sn) additions in GF(q™)
. f5 ! can be computed in O(n®) multiplications in GF(q) and O(sn) additions in GF(q")

Ot = W N

Proof. 1. Letd € GF(q™)°. Since by construction h = (hy, ..., h,) is a basis of GF(q")/GF(q),
there is a unique g-ary matrix U such that d = hU7T. Therefore the unique ¢ € V* such
that fp(c) = d is ¢ = bU. This proves the bijectivity. GF(q)-linearity is immediate.
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2. b=(01,...,0s) is a basis of V. From definition 1 we have Rk(c = bU) = Rk(U). Moreover,
since fp(c) = hU7T, and since hq,..., h, are linearly independent over GF(q), we have

Rk(fu(c)) = Rk(UT) = Rk(U) = Rk(c).

3. Any vector of (G|Vs) satisfies (2.5) for some g-ary matrix U. Since G is a Gabidulin code,
v =11 Uthes ..o, > o1 Usthy) satisfies (3.7). Therefore v € P(gjy,). This implies that
fb (G|Vs) C Pigv.)- Since both sets have the same cardinality, then they are equal.

4. A vector of V' is characterised by a unique g-ary s x n matrix U. Therefore, computing fy
consists of computing the product of h = (h1,...,h,) by UT (sn? multiplications in GF(q)
and sn additions in GF(¢™)). Conversely, to compute fl;l(vl, ...,Vs) one needs to
(a) determine U such that (vy,...,vs) = (hi,...,h,)UT: By considering the elements of

GF(q") as g-ary vectors of length n this implies solving a matricial system over GF(q),
and this gives a complexity of O(n?) multiplications in GF(q).
(b) compute bU : s?n multiplications in GF(q) and sn additions in GF(q").
o O

3.2. ENCODING AND DECODING. The rank preserving isomorphism fy is the tool for designing
encoding and decoding procedures for subspace subcodes.

3.2.1. Encoding. From Proposition 2 we encode up to n(s — d + 1) g-ary digits with Pgy,). Let
X=(T1,...,Ts—dy1) € GF(q")S*dJrl be an information vector. Let Gy, be a generator matrix of

Pigv.)-
X is encoded into a codeword ¢ by a two steps procedure:

1. Compute y = xGy,
2. Compute ¢ = f,, ! (y)

From proposition 3, ¢ belongs to (G|Vs). The complexity of the encoding procedure is essentially
the complexity of computing xGy, that is: (s —d + 1) x s products in GF(¢").

3.2.2. Decoding. Let'y = c+e be a received vector where ¢ € (G|V;) and e € V* is an error-vector
of rank ¢ < |(d —1)/2]. From proposition 3, we deduce

fo(y) = fo(c) + fo(e),
and Rk(fp(e)) = t. The decoding procedure is:
1. Decode fy(y) in Pgv,) and recover ¢’ € Pgjv,) and €’ such that fi,(y) =c’+ €.
2. Compute ¢ = f,*(c’) and e = f,,; ' (e/).

It is the decoding step of a Gabidulin code which has the main contribution for the evaluation
of the complexity. Therefore it strongly depends on the chosen decoding algorithm. For instance
if we use the one described in [9], where 2t = d — 1 then the complexity is roughly equal to
t(2s +n +t2) products in GF(g"). If we use the algorithm in [16] the complexity is s — st + 6t2
products in GF(q™).

4. DIRECT SUM OF SUBSPACE SUBCODES

For i = 1,...,u, let 1 < s; < n and let V;, be an s;-dimensional subspace of GF(q™) over
GF(q). We suppose that

Vi,j=1,...,84, 1#7j, Vi, NV, ={0}.

It implies that E?Zl s; < n. Forall i =1,...,u, let b; be a basis of V,, and let fp, be the
associated mappings defined in proposition 3. We define

f(bl,...,bu) : V:i DD V::‘ — GF(q")Sl+"'+S“
c=cit+-tc =  fb,. b)) =(fb,(c1),.--, fb,(Cu))
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Let M = (G|Vs,) @ --- @ (G|Vs,). M is a GF(g)-linear subcode of G. For all i = 1,...,u, let Hy,,
be the matrix given by (3.7). Let Paq be the D7 | s, > 1, (s; — d + 1),d],~code over GF(g")
with parity-check matrix

Hy, - 0

(4.8) Hy = : :

From proposition 3 we have
PROPOSITION 4.

L. fib,...ba) i GF'(q)-linear, bijective and preserves the rank.
2. fbr, b)) (M) = Pum.

The code Ppy is called parent code of M. From the structure of matrix (4.8) it is clear that
P is the direct product of Gabidulin codes over GF(¢™) with parameters [s;, s; — (d — 1), d], for
i=1,...,u. We deduce the following corollary

COROLLARY 1. M is a (n, M, D), additive code, where
o M = anlll (si—(d—1))
e D=d.

4.1. ENCODING WITH M. Let x be a ¢™-ary vector of length >"1" | s, — u(d — 1).

1. Write x = (xq,...,X,) where, for all i = 1,...,u, x; has length s; —d + 1.

2. For i =1,...,u, x; is encoded into ¢; € (G | Vs,), using the procedure described in section
3.2 with mapping fe,.

3. The encoded codewordisc =c¢q +---+ ¢, € M.

The complexity of the encoding procedure is equal to > | s;(s; — d + 1) products in GF(g").

4.2. DECODING IN M. Suppose the receiver gets y € GF(q™)", where
y=. tecVio -0V
eM
Foralli=1,...,u, let y; be the projection of y onto V;,. We have

y1 = c1 + e1, where ¢; € (G|V,),

Yu = Cy + €, where ¢, € (g|V9u)-

If for all i = 1,...,u, e; has rank less than C def |(d—1)/2], y can be decoded in polynomial
time. Namely, for ¢ = 1,...,u, it suffices to decode y; in (G|V;,) with the decoding procedure
described in section 4.2.

Furthermore some error-patterns e of rank larger than C' can be also decoded with the same
algorithms. Namely, if

Vi = 1,...,u, Rk(ez) S C.
Then it is clear that e can be recovered in polynomial time. This increases the number of cor-
rectable patterns by a factor that we want to evaluate.
Let N (n, s) be the number of error-patterns of V. and of rank less than C. We have, see [14]
page 455

{ Rk(e) > C,

len

-y [t
7=0 =0
This quantity is lower and upper bounded by

q(nJrsfl)CfCQ SNC(TL, 8) < q(n+s+1)C7C2+1

def

Let N = Y | s;. We have
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e The number A of error-patterns of length n over Vi, @ --- & V;, and of rank less than C
satisfies
q(n+N—1)c—c2 <N < q(n+N+1)c—c2+1

e The number N’ of error-vectors that can be corrected in polynomial-time is equal to the
number of vectors e = Y, e; of length n such that for all i = 1,...,u Rk(e;) < C satisfies

u
q(un+N—u)C—uC2 <N'= H/\/c(n,su) < q(un-l—N-l—u)C—uC2+u
i=1
e A Gabidulin code with the same length and cardinality has minimum rank distance D =
u(d — 1) + 1. It corrects error-patterns of rank between uC and (u + 1)C according to the
parity of d — 1. The number Ngqp of correctable error-patterns therefore satisfies

q(n-i—N—l)uC—(uC)2 SNGab < q(n,+N+u)(u+1)C—(u+1)2C2+1
Example. Let C be a (20,2240, 5),. additive code over GF(22°), and let M be a (20, 224°,5),.-code

obtained from a parent code with parameters [20, 16, 5], over GF(2?"), and u = 2, s1 = 10, s3 =
10. Then

e The number N of correctable error patterns in C satisfies
274 S N é 279
e The number N or correctable error patterns in M satisfies
9108 ~ A7 < 9116

A Gabidulin code with the same length and cardinality has a minimum rank distance D = 9.
Therefore it can correct a number Nggqp of error-patterns bounded by

2140 < NGab < 2149

Although the number of polynomial-time correctable error-patterns remains lower than for a
Gabidulin code with same length and cardinality, our construction enables to correct significantly
more error-patterns than for a code with same parameters but without the direct sum structure.

5. A PARTICULAR CASE: SUBFIELD SUBCODES

When the subspace V; is the field GF(¢®) the results of the previous sections can be extended.
We prove the following result: Given GF(¢®*) C GF(g"™) and a parity-check matrix of a [s, k', d],
Gabidulin code over GF(g®), the subfield subcode restricted to GF(¢®) of a [n, k, d], Gabidulin
code over GF(¢"™) and minimum rank distance d is uniquely characterised by an element of the
general linear group GL,,(GF(q)).

More precisely:

PROPOSITION 5.
Let G be the code over GF(q™) with parity-check matriz (2.3), Let s|n and let

a
A= :
da-2 . [d 2]
where the a; € GF(q°) C GF(q") for alli =1,...,s, are GF(q)-linearly independent. Then, there
exists a unique matriz S € GL,(GF(q)) such that (G |GF( *)) has parity-check matriz

A
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Proof.
Let h denote the first row of matrix H given by (2.3). It can be rewritten
h
H = :
hld—2]

where hlil % (h[li], R h%])- Trivially a parity-check matrix of (G|GF(¢®)) can be obtained by:

1. Choosing a basis of GF(¢")/GF(¢®).

2. Expanding the rows of H columnwise with respect to the chosen basis: A row of length n
with coefficients in GF'(¢") is transformed into a matrix of size n/s x n with coefficients in
GF(q®), that is

hix -+ hin
h=(hy,....,h,)—H= : . :
Pnjsa o Bnjsn
Since the rows of H are the hl!l for i = 0,...,d — 2, there exists a n/s x n/s non-singular ¢*-ary

matrix @Q; satisfying

hl = (Al Rl @l
where H!? denotes matrix H whose components have been elevated to the power [i]. Therefore,
there exists a parity-check matrix of (G|GF(¢®)) which has the form

H
Hg = :
Hd—2]

The h;’s being by definition linearly independent over GF'(q)), then the columns of H are vectors
of rank n/s. Hence, there is a n x n matrix S with coefficients in GF'(¢q) such that

a --- 0
H=|: . |8

where a </ (ai,...,as) € GF(¢®)". Let

A= = ],

a[dl2]
There exists a permutation matrix P such that
H I 0
Hg = =P S
Hld—2] 0o --- A

Multiplying a parity-check matrix on the left by a non-singular matrix generates the same code.
A parity-check of (G|GF(q®)) is therefore given by

A - 0

<gab@pop3.mipt.ru ; Pierre.Loidreau@univ-rennesl.fr>
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