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eAbstra
t. We investigate properties of subspa
e sub
odes of Gabidulin 
odes. They are iso-morphi
 to Gabidulin 
odes with the same minimum rank distan
e and smaller parameters.We design systemati
 en
oding and de
oding algorithms for subspa
e sub
odes. We show thatthe dire
t sum of subspa
e sub
odes of Gabidulin 
odes is isomorphi
 to the dire
t produ
t ofGabidulin 
odes with smaller parameters. Thanks to this stru
ture there is a great deal of 
or-re
table error-patterns whose rank ex
eeds the error-
orre
ting 
apability. Finally we show thatfor parti
ular sets of parameters, sub�eld sub
odes of Gabidulin 
odes 
an be uniquely 
hara
-terised by elements of the general linear group GLn(GF (q)) of non-singular q-ary matri
es ofsize n. 1. Introdu
tionGabidulin 
odes were introdu
ed in [8℄. They form a family of optimal 
odes for the so-
alledrank distan
e. There are polynomial-time algorithms de
oding errors of rank less or equal to theirerror-
orre
ting 
apability [8, 9, 24, 23, 16℄. Gabidulin 
odes and more generally 
odes 
orre
tingrank errors found their �rst appli
ations when data were stored on tapes, and errors o

urredalong spe
i�
 rows or 
olumns of the arrays, [4, 24, 3℄.Re
ently, interest in Gabidulin 
odes was rea
tivated in two main �elds:
• In the �eld of spa
e-time 
oding: Codes with optimal rate-diversity tradeo� are sets ofmatri
es over a �nite 
onstellation and su
h that, for a given size of the 
ode, the matri
ialrank between two 
odewords is maximized. Lu and Kumar showed how to 
onstru
t su
h
odes from Gabidulin 
odes, [17℄.
• In the �eld of random network 
oding: Errors and erasures o

ur in some de�nite ve
torspa
e of upper-bounded dimension. Suitable 
odes with e�
ient de
oding algorithms 
an be
onstru
ted from Gabidulin 
odes, [25℄.Apart from appli
ations in 
oding theory, rank distan
e and the family of Gabidulin 
odes havebeen employed in the design of M
Elie
e-like publi
-key 
ryptosystems, see [11℄. The motivationfor the use of 
odes 
orre
ting rank errors is that for similar parameters the work fa
tor of de
odinga random linear 
ode in rank metri
 is larger than in Hamming metri
, see [5, 20℄. Therefore thisenables to use smaller publi
 keys than in the original system.For the same reason that GRS 
odes shall not be used in 
ryptographi
 appli
ations withoutbeing properly s
rambled, Gabidulin 
odes have to be s
rambled before being used. A pro
edurefor s
rambling was proposed in the original paper [11℄ and others were proposed re
ently, see[19, 15, 1℄. It was shown however that the stru
ture of Gabidulin 
odes 
ould be re
overed byan atta
ker if the parameters of the s
rambler were not 
hosen adequately. Thus the publi
-key2000 Mathemati
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2 Ernst M. Gabidulin and Pierre Loidreausize must be in
reased and it redu
es the interest of using rank distan
e, rather than Hammingdistan
e, [21, 22℄.Be
ause of growing importan
e of rank distan
e and de
odable 
odes for rank distan
e inmodern appli
ations, it is of interest to study the stru
ture of 
odes derived from Gabidulin 
odeslike subspa
e and sub�eld sub
odes, not only for themselves but in the perspe
tive of �nding other
lasses of good 
odes for 
oding and 
ryptographi
 appli
ations.In Hamming metri
 the mere question of determining the minimum distan
e of a sub�eldsub
ode remains open. For the generi
 
ase, only bounds were obtained, [6, 27, 2℄. For the widerfamily of subspa
e sub
odes, the same type of bounds 
an be obtained, [13℄. In the 
ase of Reed-Solomon 
odes, the bounds were improved at the pri
e of a more 
ompli
ated formula involvingthe stru
ture of the 
hosen subspa
e, [18, 12℄. The problem of e�
iently en
oding informationwith subspa
e sub
odes was investigated in the 
ase of bit shortened Reed-Solomon 
odes and inthe more general 
ase of linear MDS 
odes [26, 7℄. In the latter 
ase the authors designed a verye�
ient systemati
 en
oding algorithm. This algorithm is non optimal in the sense that it doesnot always en
ode all the theoreti
ally possible amount of information.This paper extends the results previously obtained and presented in [10℄ and shows that in some
ases questions remaining open for subspa
e sub
odes of Reed-Solomon 
odes in Hamming metri

an be answered for Gabidulin 
odes in rank metri
: When the length of the parent Gabidulin 
odeis equal to the degree of the alphabet �eld, there exists a rank-preserving isomorphism betweenthe subspa
e sub
ode and a Gabidulin 
ode with smaller parameters. In that 
ase we designa systemati
 pro
edure en
oding all the possible information as well as a de
oding algorithm
orre
ting up to the 
apability of the subspa
e sub
ode. Then, we generalise the results to thedire
t sum of subspa
e sub
odes and show that the number of de
odable error-patterns is largerthan what is theoreti
ally possible for a 
ode with the same parameters, but without this additionalstru
ture. Finally we prove that sub�eld sub
odes of Gabidulin 
odes 
an be seen, modulo thea
tion of the general linear group, as the dire
t sum of Gabidulin 
odes with smaller parameters.2. Subspa
e sub
odes in rank metri
This se
tion is an introdu
tory se
tion: in a �rst part, we introdu
e rank metri
 and Gabidulin
odes. In a se
ond part, we re
all the de�nition and general properties of subspa
e sub
odes.2.1. Codes in rank metri
. Let GF (q) be the �eld with q elements and let GF (qm), m ≥ 1 bethe extension �eld with qm elements. In the following, we regard GF (qm) either as a �eld or asan m-dimensional ve
tor spa
e over GF (q).Definition 1 (Rank of a ve
tor, see [8℄).Let γ1, . . . , γm be a basis of GF (qm)/GF (q) and let e = (e1, . . . , en) ∈ GF (qm)n. The rank of eover GF (q) is by de�nition the rank of the matrix (eij)
m,n
i=1,j=1, where ej =

∑m
i=1 eijγj . The rankof ve
tor e is written Rk(e).Given a 
ode C ⊂ GF (qm)

n, its minimum rank distan
e is
d

def
= min

c1 6=c2∈C
(Rk(c1 − c2))Definition 2. A 
ode C is a (n, M, d)r 
ode over GF (qm) if

• C ⊂ GF (qm)n

• |C| = M
• C has minimum rank distan
e dMoreover if C is a k-dimensional linear 
ode, it is said to be a [n, k, d]r 
ode. The parametersare related by an equivalent of Singleton bound for rank distan
e see [8, 19℄:(2.1) M ≤ qmin(m(n−d+1),n(m−d+1)),And a 
ode satisfying the equality M = qmin(m(n−d+1),n(m−d+1)) is 
alled a Maximum RankDistan
e (MRD) 
ode.Advan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



Subspa
e sub
odes of Gabidulin 
odes 3Let [i]
def
= qi, when i ≥ 0 and [i]

def
= qm+i when i < 0. Let n ≤ m and(2.2) G =






g1 · · · gn... . . . ...
g
[k−1]
1 · · · g

[k−1]
n




 ,where g1, . . . , gn ∈ GF (qm) are linearly independent elements over GF (q). The 
ode G generatedby G is 
alled a Gabidulin 
ode, [8℄. A parity-
he
k matrix H of G has the same stru
ture as G:(2.3) H =






h1 · · · hn... . . . ...
h

[d−2]
1 · · · h

[d−2]
n




 ,for elements h1, . . . , hn ∈ GF (qm) linearly independent over GF (q). The 
ode G is an MRD-
ode and there are e�
ient polynomial-time de
oding algorithms 
orre
ting errors of rank up to

C = ⌊(d − 1)/2⌋, see [8, 9, 24, 23, 16℄.2.2. Subspa
e sub
odes in rank metri
.Definition 3 (see [13℄, for instan
e). Let G be a linear 
ode of length n over GF (qm). Let Vs(s ≤ m) be an s-dimensional subspa
e of GF (qm). Then
(G|Vs)

def
= G ∩ V n

s ,is an GF (q)-linear subspa
e of G 
alled subspa
e sub
ode or subgroup sub
ode of G restri
ted to
Vs.The following proposition lower bounds the 
ardinality of (G|Vs):Proposition 1. Let G be a [n, k, d]r 
ode over GF (qm). Let Vs (s ≤ m) be an s-dimensionalsubspa
e of GF (qm). If ns − m(n − k) > 0 then

qns−m(n−k) ≤ |(G|Vs)|A similar result was already proved in [13℄. The prin
iple of the proof is the following:Let c = (c1, . . . , cn) ∈ V n
s and let b = (β1, . . . , βs) be a bases of Vs. The ve
tor c is uniquelyde
omposable under the form(2.4) c = bU = (β1, . . . , βs)U,where U = (Ui,t)

s,n
i=1,t=1 ∈ GF (q)s×n. Let H = (hj,t)

n−k,n
j=1,t=1 be a parity-
he
k matrix of G. Wehave(2.5) c ∈ (G|Vs) ⇔

{
c = bU,
(β1, . . . , βs)UHT = 0,where U is a q-ary matrix of size s×n. By developing the equation we obtain the following linearsystem(2.6) ∀j = 1, . . . , n − k,

s,n
∑

i=1,t=1

βihj,t
︸ ︷︷ ︸

∈GF (qm)

Ui,t
︸︷︷︸

∈GF (q)

= 0,where the unknowns are the Ui,t for i = 1, . . . , s and t = 1, . . . , n. Let γ1, . . . , γm be a basis of
GF (qm)/GF (q). We 
an write

∀i, j, t, βihj,t =

m∑

k=1

δ
(j,k)
i,t γkwhere δ

(j,k)
i,t ∈ GF (q). Therefore solving (2.6) in GF (q) is equivalent to solving the following linearsystem:

∀j = 1, . . . , n − k, ∀k = 1, . . . , m

s,n
∑

i=1,t=1

δ
(j,k)
i,t Ui,t = 0.Advan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



4 Ernst M. Gabidulin and Pierre LoidreauIt is a linear system in sn unknowns and m(n− k) equations. Therefore the spa
e of solution hasdimension at least sn − m(n − k).3. Subspa
e sub
odes of Gabidulin 
odesIn the 
ase where G ⊂ GF (qm)
n is a Gabidulin 
ode, we dedu
e an upper-bound on the
ardinality of subspa
e sub
odes. If n = m, we show that subspa
e sub
odes of Gabidulin 
odesare MRD, and we show how to design spe
i�
 en
oding and de
oding algorithms for subspa
esub
odes of Gabidulin 
odes.3.1. Size of subspa
e sub
odes of Gabidulin 
odes.Proposition 2. Let G be the Gabidulin 
ode over GF (qm) with parity-
he
k matrix (2.3). Let

Vs (s ≤ m) be an s-dimensional subspa
e of GF (qm). We have
qns−m(d−1) ≤ |(G|Vs)| ≤ qm(s−d+1)Proof. The lower bound 
omes from proposition 1: A Gabidulin 
ode being an MRD-
ode we have

d − 1 = n − k.The mapping
GF (qm) → GF (qm)

x 7→ x[i]is GF (q)-linear. Therefore, solving (2.5) is equivalent to solving(3.7) (v1, . . . , vs)







β
[m]
1 . . . β

[m−d+2]
1... . . . ...

β
[m]
s . . . β

[m−d+2]
s







︸ ︷︷ ︸

HT
Vs

= 0,where v1 =
∑n

t=1 U1,tht, . . . , vs =
∑n

t=1 Us,tht ∈ GF (qm) are the unknowns. This implies that
(G|Vs) 
an be regarded as an GF (q)-linear sub
ode of the [s, s − d + 1, d]r Gabidulin 
ode withparity-
he
k matrix HVs

. ⋄Definition 4 (Parent Code). The linear 
ode over GF (qm) with parity-
he
k matrix HVs
is
alled the parent 
ode of (G|Vs). It is denoted by P(G|Vs).If n = m both inequalities of proposition 2 mat
h and |(G|Vs)| = qm(s−d+1). In that 
ase (G|Vs)is an MRD 
ode. In the following we will suppose that m = n.Proposition 3. Let m = n, let G ⊂ GF (qn)n be the Gabidulin 
ode with parity-
he
k matrix(2.3). Let h = (h1, . . . , hn) be the �rst row. Let Vs be an s-dimensional subspa
e of GF (qn) andlet b = (β1, . . . , βs) be a basis of Vs. The mapping

fb : V n
s → GF (qn)

s

c = bU 7→ fb(c) = hUTsatis�es the following properties1. fb is GF (q)-linear and bije
tive2. fb preserves the rank, i.e. Rk(fb(c)) = Rk(c)3. fb (G|Vs) = P(G|Vs)4. fb 
an be 
omputed in O(sn2) multipli
ations in GF (q) and O(sn) additions in GF (qn)5. f−1
b


an be 
omputed in O(n3) multipli
ations in GF (q) and O(sn) additions in GF (qn)Proof. 1. Let d ∈ GF (qn)
s. Sin
e by 
onstru
tion h = (h1, . . . , hn) is a basis of GF (qn)/GF (q),there is a unique q-ary matrix U su
h that d = hUT . Therefore the unique c ∈ V n

s su
hthat fb(c) = d is c = bU . This proves the bije
tivity. GF (q)-linearity is immediate.Advan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



Subspa
e sub
odes of Gabidulin 
odes 52. b = (β1, . . . , βs) is a basis of Vs. From de�nition 1 we have Rk(c = bU) = Rk(U). Moreover,sin
e fb(c) = hUT , and sin
e h1, . . . , hn are linearly independent over GF (q), we haveRk(fb(c)) = Rk(UT ) = Rk(U) = Rk(c).3. Any ve
tor of (G|Vs) satis�es (2.5) for some q-ary matrix U . Sin
e G is a Gabidulin 
ode,
v = (

∑n
t=1 U1,tht, . . . ,

∑n
t=1 Us,tht) satis�es (3.7). Therefore v ∈ P(G|Vs). This implies that

fb (G|Vs) ⊂ P(G|Vs). Sin
e both sets have the same 
ardinality, then they are equal.4. A ve
tor of V n
s is 
hara
terised by a unique q-ary s× n matrix U . Therefore, 
omputing fb
onsists of 
omputing the produ
t of h = (h1, . . . , hn) by UT (sn2 multipli
ations in GF (q)and sn additions in GF (qn)). Conversely, to 
ompute f−1

b
(v1, . . . , vs) one needs to(a) determine U su
h that (v1, . . . , vs) = (h1, . . . , hn)UT : By 
onsidering the elements of

GF (qn) as q-ary ve
tors of length n this implies solving a matri
ial system over GF (q),and this gives a 
omplexity of O(n3) multipli
ations in GF (q).(b) 
ompute bU : s2n multipli
ations in GF (q) and sn additions in GF (qn).
⋄3.2. En
oding and de
oding. The rank preserving isomorphism fb is the tool for designingen
oding and de
oding pro
edures for subspa
e sub
odes.3.2.1. En
oding. From Proposition 2 we en
ode up to n(s − d + 1) q-ary digits with P(G|Vs). Let
x = (x1, . . . , xs−d+1) ∈ GF (qn)

s−d+1 be an information ve
tor. Let GVs
be a generator matrix of

P(G|Vs).
x is en
oded into a 
odeword c by a two steps pro
edure:1. Compute y = xGVs2. Compute c = f−1

b
(y)From proposition 3, c belongs to (G|Vs). The 
omplexity of the en
oding pro
edure is essentiallythe 
omplexity of 
omputing xGVs

that is: (s − d + 1) × s produ
ts in GF (qn).3.2.2. De
oding. Let y = c+e be a re
eived ve
tor where c ∈ (G|Vs) and e ∈ V n
s is an error-ve
torof rank t ≤ ⌊(d − 1)/2⌋. From proposition 3, we dedu
e

fb(y) = fb(c) + fb(e),and Rk(fb(e)) = t. The de
oding pro
edure is:1. De
ode fb(y) in P(G|Vs) and re
over c′ ∈ P(G|Vs) and e′ su
h that fb(y) = c′ + e′.2. Compute c = f−1
b

(c′) and e = f−1
b

(e′).It is the de
oding step of a Gabidulin 
ode whi
h has the main 
ontribution for the evaluationof the 
omplexity. Therefore it strongly depends on the 
hosen de
oding algorithm. For instan
eif we use the one des
ribed in [9℄, where 2t = d − 1 then the 
omplexity is roughly equal to
t(2s + n + t2) produ
ts in GF (qn). If we use the algorithm in [16℄ the 
omplexity is s2 − 5st + 6t2produ
ts in GF (qn). 4. Dire
t sum of subspa
e sub
odesFor i = 1, . . . , u, let 1 ≤ si ≤ n and let Vsi

be an si-dimensional subspa
e of GF (qn) over
GF (q). We suppose that

∀i, j = 1, . . . , su, i 6= j, Vsi
∩ Vsj

= {0}.It implies that ∑u
i=1 si ≤ n. For all i = 1, . . . , u, let bi be a basis of Vsi

and let fbi
be theasso
iated mappings de�ned in proposition 3. We de�ne

f(b1,...,bu) : V n
s1

⊕ · · · ⊕ V n
su

→ GF (qn)
s1+···+su

c = c1 + · · · + cu 7→ f(b1,...,bu)(c) = (fb1
(c1), . . . , fbu

(cu))Advan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



6 Ernst M. Gabidulin and Pierre LoidreauLet M = (G|Vs1
)⊕ · · · ⊕ (G|Vsu

). M is a GF (q)-linear sub
ode of G. For all i = 1, . . . , u, let HVsibe the matrix given by (3.7). Let PM be the [
∑u

i=1 si,
∑u

i=1 (si − d + 1), d]r-
ode over GF (qn)with parity-
he
k matrix(4.8) HM =






HVs1
· · · 0... . . . ...

0 · · · HVsu




 .From proposition 3 we haveProposition 4.1. f(b1,...,bu) is GF (q)-linear, bije
tive and preserves the rank.2. f(b1,...,bu)(M) = PM.The 
ode PM is 
alled parent 
ode of M. From the stru
ture of matrix (4.8) it is 
lear that

PM is the dire
t produ
t of Gabidulin 
odes over GF (qn) with parameters [si, si − (d− 1), d]r for
i = 1, . . . , u. We dedu
e the following 
orollaryCorollary 1. M is a (n, M, D)r additive 
ode, where

• M = qn
P

u
i=1

(si−(d−1)).
• D = d.4.1. En
oding with M. Let x be a qn-ary ve
tor of length ∑u

i=1 si − u(d − 1).1. Write x = (x1, . . . ,xu) where, for all i = 1, . . . , u, xi has length si − d + 1.2. For i = 1, . . . , u, xi is en
oded into ci ∈ (G | Vsi
), using the pro
edure des
ribed in se
tion3.2 with mapping fbi

.3. The en
oded 
odeword is c = c1 + · · · + cu ∈ M.The 
omplexity of the en
oding pro
edure is equal to ∑u
i=1 si(si − d + 1) produ
ts in GF (qn).4.2. De
oding in M. Suppose the re
eiver gets y ∈ GF (qn)n, where

y = c
︸︷︷︸

∈M

+ e ∈ V n
s1

⊕ · · · ⊕ V n
suFor all i = 1, . . . , u, let yi be the proje
tion of y onto Vsi

. We have






y1 = c1 + e1, where c1 ∈ (G|Vs1
),...

yu = cu + eu, where cu ∈ (G|Vsu
).If for all i = 1, . . . , u, ei has rank less than C

def
= ⌊(d − 1)/2⌋, y 
an be de
oded in polynomialtime. Namely, for i = 1, . . . , u, it su�
es to de
ode yi in (G|Vsi

) with the de
oding pro
eduredes
ribed in se
tion 4.2.Furthermore some error-patterns e of rank larger than C 
an be also de
oded with the samealgorithms. Namely, if
{ Rk(e) > C,

∀i = 1, . . . , u, Rk(ei) ≤ C.Then it is 
lear that e 
an be re
overed in polynomial time. This in
reases the number of 
or-re
table patterns by a fa
tor that we want to evaluate.Let NC(n, s) be the number of error-patterns of V n
s and of rank less than C. We have, see [14℄page 455

NC(n, s) =

C∑

j=0

j−1
∏

i=0

(qn − qi)(qs − qi)

qC − qi
.This quantity is lower and upper bounded by

q(n+s−1)C−C2

≤ NC(n, s) ≤ q(n+s+1)C−C2+1Let N
def
=

∑u
i=1 si. We haveAdvan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



Subspa
e sub
odes of Gabidulin 
odes 7
• The number N of error-patterns of length n over Vs1

⊕ · · · ⊕ Vsu
and of rank less than Csatis�es

q(n+N−1)C−C2

≤ N ≤ q(n+N+1)C−C2+1

• The number N ′ of error-ve
tors that 
an be 
orre
ted in polynomial-time is equal to thenumber of ve
tors e =
∑u

i=1 ei of length n su
h that for all i = 1, . . . , u Rk(ei) ≤ C satis�es
q(un+N−u)C−uC2

≤ N ′ =

u∏

i=1

NC(n, su) ≤ q(un+N+u)C−uC2+u

• A Gabidulin 
ode with the same length and 
ardinality has minimum rank distan
e D =
u(d − 1) + 1. It 
orre
ts error-patterns of rank between uC and (u + 1)C a

ording to theparity of d − 1. The number NGab of 
orre
table error-patterns therefore satis�es

q(n+N−1)uC−(uC)2 ≤ NGab ≤ q(n+N+u)(u+1)C−(u+1)2C2+1Example. Let C be a (20, 2240, 5)r additive 
ode over GF (220), and let M be a (20, 2240, 5)r-
odeobtained from a parent 
ode with parameters [20, 16, 5]r over GF (220), and u = 2, s1 = 10, s2 =
10. Then

• The number N of 
orre
table error patterns in C satis�es
274 ≤ N ≤ 279

• The number N ′ or 
orre
table error patterns in M satis�es
2108 ≤ N ′ ≤ 2116A Gabidulin 
ode with the same length and 
ardinality has a minimum rank distan
e D = 9.Therefore it 
an 
orre
t a number NGab of error-patterns bounded by

2140 ≤ NGab ≤ 2149Although the number of polynomial-time 
orre
table error-patterns remains lower than for aGabidulin 
ode with same length and 
ardinality, our 
onstru
tion enables to 
orre
t signi�
antlymore error-patterns than for a 
ode with same parameters but without the dire
t sum stru
ture.5. A parti
ular 
ase: subfield sub
odesWhen the subspa
e Vs is the �eld GF (qs) the results of the previous se
tions 
an be extended.We prove the following result: Given GF (qs) ⊂ GF (qn) and a parity-
he
k matrix of a [s, k′, d]rGabidulin 
ode over GF (qs), the sub�eld sub
ode restri
ted to GF (qs) of a [n, k, d]r Gabidulin
ode over GF (qn) and minimum rank distan
e d is uniquely 
hara
terised by an element of thegeneral linear group GLn(GF (q)).More pre
isely:Proposition 5.Let G be the 
ode over GF (qn) with parity-
he
k matrix (2.3), Let s|n and let
A =






a1 · · · as... . . . ...
a
[d−2]
1 · · · a

[d−2]
s




 .where the ai ∈ GF (qs) ⊂ GF (qn) for all i = 1, . . . , s, are GF (q)-linearly independent. Then, thereexists a unique matrix S ∈ GLn(GF (q)) su
h that (G|GF (qs)) has parity-
he
k matrix

Hqs =






A · · · 0... . . . ...
0 · · · A




S,Advan
es in Mathemati
s of Communi
ations Volume 00, No. 0 (2008),



8 Ernst M. Gabidulin and Pierre LoidreauProof.Let h denote the �rst row of matrix H given by (2.3). It 
an be rewritten
H =






h...
h[d−2]




where h[i] def

=
(

h
[i]
1 , . . . , h

[i]
n

). Trivially a parity-
he
k matrix of (G|GF (qs)) 
an be obtained by:1. Choosing a basis of GF (qn)/GF (qs).2. Expanding the rows of H 
olumnwise with respe
t to the 
hosen basis: A row of length nwith 
oe�
ients in GF (qn) is transformed into a matrix of size n/s × n with 
oe�
ients in
GF (qs), that is

h = (h1, . . . , hn) 7→ H =






h1,1 · · · h1,n... . . . ...
hn/s,1 · · · hn/s,n




Sin
e the rows of H are the h[i] for i = 0, . . . , d − 2, there exists a n/s × n/s non-singular qs-arymatrix Qi satisfying

h[i] = (h
[i]
1 , . . . , h[i]

n ) 7→ QiH
[i],where H[i] denotes matrix H whose 
omponents have been elevated to the power [i]. Therefore,there exists a parity-
he
k matrix of (G|GF (qs)) whi
h has the form

Hqs =






H...
H[d−2]




 .The hi's being by de�nition linearly independent over GF (q)), then the 
olumns of H are ve
torsof rank n/s. Hen
e, there is a n × n matrix S with 
oe�
ients in GF (q) su
h that

H =






a · · · 0... . . . ...
0 · · · a




S,where a

def
= (a1, . . . , as) ∈ GF (qs)s. Let

A =






a...
a[d−2]




 ,There exists a permutation matrix P su
h that

Hqs =






H...
H[d−2]




 = P






A · · · 0... . . . ...
0 · · · A




SMultiplying a parity-
he
k matrix on the left by a non-singular matrix generates the same 
ode.A parity-
he
k of (G|GF (qs)) is therefore given by






A · · · 0... . . . ...
0 · · · A




S
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