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Abstract. We design a new McEliece-like rank metric based encryption
scheme from Gabidulin codes. We explain why it is not affected by the
invariant subspace attacks also known as Overbeck’s attacks. The idea of
the design mixes two existing approaches designing rank metric based en-
cryption schemes. For a given security our public-keys are more compact
than for the same security in the Hamming metric based settings.

1 Introduction

The security of the main post-quantum (PQ) primitives relies on the difficulty
of solving decoding problems in some metrics (Hamming metric for codes, Eu-
clidean metric for lattices). The security of the encryption schemes is generally
evaluated relatively to the best existing algorithms solving the considered prob-
lems.

At the beginning of the 90’s another type of code-based cryptography emerged
whose security was based on an alternative metric, the so-called rank metric
[GPT91]. The difference with McEliece cryptosystem consists in the choice of
the family of codes and in the choice of the metric. Originally, there was only one
family of codes with an efficient algebraic polynomial-time decoding algorithm
up to some bound, the family of Gabidulin codes [Gab85]. The initial proposals
were attacked by Gibson who was able to recover a decoder from the public-key
in polynomial time, [Gib95,Gib96]. Then, there was a succession of reparations
and attacks, the latter being usually devastating. Overbeck in 2005 proposed
a framework which could be adapted to all variants of Gabidulin codes based
encryption schemes, [Ove05]. The structural weakness of the scheme came from
the fact that Gabidulin codes contain a huge vector space invariant under the
Frobenius automorphism. Exploiting this weakness lead to the complete crypt-
analysis of all the previous Gabidulin codes based cryptosystems. From this date
on, evolutions were proposed claiming to be secure against the existing attacks,
[Gab08,GRH09,RGH10]. However, it was recently shown in [OKN16], that all ex-
isting variants could be reformulated as instances of the original problem, thus
breakable in polynomial-time. Until now the common idea was that although
rank metric would be a good candidate for designing code-based primitives with
compact keys, a cryptosystem could not be designed from Gabidulin codes.

In the paper we argue against this idea. We show that Gabidulin codes can
be used to design effective and secure code-based cryptosystems, moreover with



compact keys. By secure we mean that the complexity of an attack consisting
in recovering a polynomial-time decoder for the public code is exponential. The
point is to scramble sufficiently the structure of Gabidulin codes to avoid exist-
ing attacks. Concerning Goppa codes that are subfield subcodes of Generalized
Reed-Solomon codes (GRS) on scrambles the structure by keeping the subcode
formed with the binary vectors of the parent GRS code. Though GRS codes are
unsuitable for use in cryptosystems, Goppa codes are widely admitted as being
suitable and even the best choice for the design of secure code-based primitives
and even PQ primitives, [AB315]. Unfortunately, this idea does not work for
Gabidulin codes since subfield subcodes of Gabidulin codes are isomorphic to
the direct product of Gabidulin codes over smaller fields, [GL08]. We propose
a new approach mixing original ideas such as the structure of the encryption
scheme and more recent ideas who led to the design of Low Rank Parity-check
Codes (LRPC) based encryption schemes. This idea can also be considered as
an adaptation to rank metric of an idea in Hamming metric whose interesting
instances were broken, [BBC+16,COTG15]. For a given security of 128 and 256
bits, and a PQ security of 128 Mcbits, we propose a public-key size 20 times
smaller than the proposition for long term post-quantum systems, in [AB315]
relying on Goppa codes. The parameters being versatile, a designer can tune the
parameters according to its needs (smaller key and larger ciphertext expansion
or larger key and smaller ciphertext expansion for instance).

The structure of the paper is the following: First we define rank metric, the
related decoding problems and we emphasize the fact that the complexity of
generic decoding in rank metric is exponentially more difficult than in Hamming
metric for the same settings. We evaluate the consequence of Grover algorithm
on the generic decoding complexity in a PQ world. In a second part, we present
how rank metric is commonly used in the design of encryption schemes. We also
briefly detail the reason why Gabidulin codes based encryption schemes were
broken. Finally, we show how to hide the structure of Gabidulin codes in a very
simple manner, avoiding thus the main weaknesses of Gabidulin codes based
cryptosystems. We also analyze the security of the encryption scheme against
various attacks and propose sets of parameters.

2 Rank metric decoding problems

In this section, we show that for the same settings, rank metric decoding prob-
lems are exponentially more difficult to solve than their counterparts in Hamming
metric.

2.1 Rank metric

As an ambient space we consider vectors of length n over a finite field GF (2m).
Given basis B = {β1, . . . , βm} of GF (2m) regarded as a GF (2)–vector space,



and a vector x = (x1, . . . , xn) ∈ GF (2m)
n
, we consider the transformation:

x 7→ X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


where (x11, . . . , xm1)T is the binary expansion vector of xi in the basis B, i.e.

xi =

m∑
j=1

xjiβj .

The rank weight Rk(x) of vector x is: Rk(x)
def
= Rk(X), where Rk is the usual

rank of a binary matrix. Rank metric is independent of the chosen basis and in
the following of the paper, we will consider that a binary basis is fixed.

2.2 Decoding problems

A rank code C ⊂ GF (2m)
n

is a set of vectors of GF (2m)
n
, together with the

distance induced by rank metric.
In applications, it is usual to consider C as being an additive code. In that

case, the minimum rank distance of C is the minimum rank weight of any non-
zero codeword:

dr(C)
def
= min

x∈C\{0}
Rk(x).

If the code is GF (2m)-linear of dimension k, it is called a [n, k, dr]-code over
GF (2m)

Problem 1 (Bounded distance binary rank decoding (BDR2(C, t,y)))

– Instance:
• A 2m-ary code C =< g1, . . . ,gK >GF (2),
• An integer t
• y ∈ GF (2m)

n

– Problem: Find if it exists λ1, . . . , λK ∈ GF (2)
K

and e ∈ GF (2m)
n

of rank
weight t, such that

y =

K∑
i=1

λigi + e

Solving BDR2(C, t,y) is NP -hard. If one considers the matricial form of the
problem by expanding every element of GF (2m) into a m-dimensional vector
over GF (2), then the associated decisional problem is an evolution of the NP -
complete MinRank problem, [Cou01].

Though the complexity of this problem gives some arguments about the dif-
ficulty of decoding additive codes in rank metric, a designer will more probably
consider linear codes over an extension field GF (2m). Therefore, it is more ade-
quate to study the following decoding problem, for GF (2m)-linear codes.



Problem 2 (Bounded distance 2m-ary rank decoding (BDR(C, t,y)))

– Instance:

• A 2m-ary code C =< g1, . . . ,gk >GF (2m),

• An integer t

• y ∈ GF (2m)
n

– Problem: Find if it exists µ1, . . . , µk ∈ GF (2m)
k

and e ∈ GF (2m)
n

of rank
weight t, such that

y =

k∑
i=1

µigi + e

It is not known if the decisional version of this latter problem is NP -complete.
However when one considers the dual problem called Rank Syndrome Decoding
problem (RSD) a nice result from [GZ14] establishes that if RSD is in ZPP
then this would imply that ZPP = NP. The ZPP class is the class of decisional
problems solvable by a Turing machine such that:

– The machine runs in polynomial-time of the size of the input

– Answers YES, NO or ? ;

– The answer YES or NO is the correct answer ;

– It answers ? with probability at most 1/2.

This statement backs up the feeling that decoding in rank metric is a hard
problem.

2.3 Hamming metric vs rank metric

In the design of encryption schemes whose security relies on a difficult problem,
it is worthwhile to have precise estimation of the best effective complexity of the
algorithms solving the problem for randomly and uniformly chosen parameters
in a given space.

Decoding in Hamming metric The complexity of decoding up to some bound a
random code in Hamming metric is an old problem, [Pra62]. Since the seminal
work by Prange a lot of work was done to improve the asymptotic complexity
or the effective complexity. The most efficient algorithms are smart refinements
of the so-called Information Set Decoding (ISD).

The basics of ISD are: Suppose one wants to decode δn errors in a k dimen-
sional code of length n over GF (2m), where δ is less than Varshamov-Gilbert
(GV) bound to ensure the uniqueness of the solution. Then one chooses k
columns of the generator matrix of the code. If these positions are error-free,
and if the k×k matrix has full rank, then decoding consists in making some lin-
ear algebra computations and check if the obtained vector has Hamming weight
≤ δn. If this fails then one chooses randomly another set of k positions and



proceeds as before, until it works. If any k columns of the generator matrix form
a non-singular matrix (MDS code), then after(

n
k

)(
n−δn
k

)
attempts, the probability of success is greater than 1/2. The average complexity
of ISD is

n3
(
n
k

)(
n−δn
k

) operations in GF (2m).

For constant rate codes, i.e. k = Rn, provided that 0 < R < 1/2, approxi-
mations of the Newton binomial gives a running time of: ≈ n32n[H(R)−H(R−δ)]

binary operations, where H(R) = −R log2R − (1 − R) log2(1 − R) is the bi-
nary entropy function. There has been many refinements of ISD. Still, the best
decoding algorithms derive from ISD and have a complexity of

2calgo(n+o(1)) ops. in the code alphabet,

where calgo is depends on the chosen algorithm, [BLP11,BJMM12,CTS16,MO15].

Decoding in rank metric The first paper giving a precise estimation of the com-
plexity of solving BDR(C, t,y) was published in the, 90’s, [CS96] and was later
improved in [OJ02]. Recently a survey unifying different approaches was pub-
lished [GRS16].

Provided t is less than rank metric GV bound (ensuring uniqueness of the
decoding), there exists an algorithm solving BDR(C, t,y) with probability > 1/2
running in:

m32(t−1)b(kmin (m,n))/nc binary ops.

This implies in particular that if m ≥ n the running time is lower bounded by

m32δRn
2

binary ops.

Compared to the n32n[H(R)−H(R−δ)] complexity of generic ISD for Hamming
metric, for the same set of parameters, decoding in rank metric is exponentially
more difficult than in Hamming metric.

In Table 1, we fix some decoding complexity. In the second column and
third column, we give parameters for codes whose average decoding complexity
is approximately equal to the corresponding decoding complexity, in Hamming
metric (2nd column) and rank metric (3rd column). The subscripts correspond
to the size of the field alphabet, i.e. 2m, if the considered field is GF (2m). Near
the parameters we write the minimum size in bytes of the necessary information
sufficient to characterize the corresponding code.

The complexity evaluations in Hamming metric are for binary codes and
borrowed from [CTS16]. The chosen Hamming weight is close to the GV bound.
This implies that these are the best possible codes, meaning that any other code



satisfying the decoding complexity and rate requirements is necessarily longer
than the proposed codes. Concerning rank metric, since for m = n, GV bound
corresponds to n(1−

√
k/n) [Loi14] we chose parameters relatively close to this

bound to express the decoding complexity.

Dec. Complex. Ham. Met. Gen. Mat. Rank Met. Gen. Mat.

2128 [2400, 2006, 58]2 ≈ 100 KBytes [48, 39, 4]248 ≈ 2.2 KBytes

2256 [4150, 3307, 132]2 ≈ 350 KBytes [70, 50, 5]270 ≈ 8.7 KBytes

Table 1: Comparisons of the decoding complexity of codes on GV bound for Hamming
metric and for rank metric [n, k, w]q correspond to a q-linear code of length n, dimension
k, correcting w errors in the considered metric

Remark 1. The comparison between rank metric and Hamming metric is not
fair when one considers binary codes. Namely, if one fixes the alphabet of the
field, the rate of the code in Hamming metric can be kept constant when the
lenght goes to infinity. In the rank metric case however this has no sense to do
this. The alphabet of the code has to grow to infinity. Therefore the comparison
has a sense only when the alphabet size grows.

2.4 Post-Quantum security

A study of the PQ security of solving BDR(C, t,y) was already investigated in
[GHT16]. Since the results are straightforward, we recall how to evaluate this
PQ security.

In [Ber10] it is shown that the use of Grover’s algorithm implies that the
exponential term in the decoding complexity of ISD should be square-rooted. On
our previous estimation of the decoding complexity this gives:

≈ n32
n
2 [H(R)−H(R−δ)]

The most efficient algorithm solving BDR(C, t,y) solves the equivalent dual
problem RSD, [GRSZ14]: Given a parity-check matrix H of an [n, k, d]r code C
over GF (2m), find e ∈ GF (2m)

n
of rank weight t such that

yHT = eHT . (1)

To stress how Grover’s algorithm can be employed to improve the decoding
complexity we need to recall the principles of the algorithm

– e = (e1, . . . , en) has rank weight t⇒ for all i, ei ∈ E , a t-dimensional binary
subspace of GF (2m) ;

– Let B = (β1, . . . , βt′), a basis of some E ′ such that E ⊂ E ′ ;
– System (1) becomes: yHT = BTHT , where T and E ′ are unknown ;



– W.l.o.g we can suppose β1 = 1. Thus solving (1) consists in enumerating
t′ − 1 dimensional binary vector subspaces of GF (2m) and trying to solve
the linear system of (n− k)m equations and t′n unknowns.

An assumption is that if the system is overdefined (t′n ≤ m(n− k)) then the
solution is unique. Therefore the average number of tries to find a suitable vec-
tor space is 2(t−1)b(kmin (m,n))/nc. Remaining linear algebra can be implemented
with circuits in O(n3) size. We can apply Grover’s algorithm. A lower bound
estimation of the PQ complexity of solving BDR(C, t,y) is thus

m32(t−1)b(kmin (m,n))/(2n)c ops.

3 Rank metric based cryptography

In code-based cryptography, the security is estimated by the decoding complexity
of random codes in the considered metric. This estimation requires that the
public-key must look like a random code. This implies that the family of codes
used as private-key space cannot be distinguished from a family of randomly
constructed codes. Given a family F of [n, k, d] codes over a finite field GF (2m)
with known decoding algorithm up to errors of rank weight t, the original and
general procedure to design the pair public/private key pair for a McEliece type
cryptosystem is:

1. Select randomly a code in F . The code is given by generator or parity-check
matrix G under a form enabling an efficient decoding.

2. Publish a scrambled structure of G → Gpub such that Gpub looks like ran-
dom. The scrambling procedure has to be a linear isometry of the metric.

Two types of decoding algorithms are considered:

– Algebraic decoding: It is used for Goppa codes in Hamming metric [McE78].
This family is recommended for long-term PQ security under well chosen
parameters. In rank metric, only Gabidulin codes are of this kind.

– Probabilistic decoding: MDPC or QC-MDPC in Hamming metric [MTSB12],
or LRPC in rank metric, [GMRZ13].

Since our interest concerns rank metric, we present how Gabidulin codes and
LRPC are used in the design of code-based encryption schemes. We explain the
reason why, until now, Gabidulin codes cannot be used in the design of secure
encryption schemes. We also present the idea sustaining the design of the family
of LRPC since this seminal idea is a natural path which leads us to propose a
new families of codes with algebraic decoding to be used in the design of rank
metric codes based cryptosystems.

3.1 Algebraic decoding based cryptosystems

Gabidulin codes Let n ≤ m and let g = (g1, . . . , gn) ∈ GF (2m), where the g′is
are linearly independent over GF (2). Let [i] = 2i such that x 7→ x[i] is the ith



power of the Frobenius automorphism x 7→ x2. The code Gabk(g), is the linear
code with generator matrix

G =


g1 · · · gn

g
[1]
1 · · · g

[1]
n

...
. . .

...

g
[k−1]
1 · · · g[k−1]n

 , (2)

i.e.
Gabk(g) = {xG | x ∈ GF (2m)

k}.
These codes can be decoded in polynomial-time for errors of rank weight up to
b(n− k)/2c, see [Gab85].

Invariant subspace attack From the origins, see [GPT91], numerous designs of
Gabidulin codes based encryption schemes were proposed relying on the model
of McEliece cryptosystem. However, all these proposals were broken by deriva-
tions of the so-called invariant subspace attack. The reason is the inherent struc-
ture of the family of Gabidulin codes. A detailed analysis can be found in
[Ksh07,OKN16].

We present the principle of the attacks. This is essential to understand where
lies the weakness and how to get rid of it. In every proposed Gabidulin codes
based encryption scheme, the public-key Gpub can be rewritten under the form

Gpub = S(X | G)P, (3)

where P is a binary (n+ t)× (n+ t) invertible matrix, G is a matrix generating
an [n, k, dr] Gabidulin code under the form (2), and S is an u × k-matrix with

entries in GF (2m), where u ≤ k. Now consider the action of x→ x2
i def

= x[i] on

the entries of Gpub denoted by G
[i]
pub. We have

G
[i]
pub = S[i](X[i] | G[i])P[i].

Since P is binary this implies

G
[i]
pub = S[i](X[i] | G[i])P.

Let Cpub be the code generated by Gpub and let C[i]pub be the code obtained
by raising the codewords of Cpub (resp. C) to the ith power of the Frobenius
automorphism. From the structure of the public code, we have

dim
(
Cpub + · · ·+ C[i]pub

)
≤ min (n, k + i+ t). (4)

If Cpub were a random u-dimensional code one would expect the dimension of

Cpub + · · ·+ C[i]pub to be equal to min(n, (i+ 1)u) with a high probability. Hence
the previous property provides a distinguisher of the public code. Moreover, if
k + i+ t = n− 1, and if the dimension is exactly equal to 1 then a polynomial-
time decoder for the public code can be recovered by simple elementary linear
algebra.



3.2 Probabilistic decoding based cryptosystems

Low Rank Parity-Check Codes The principle consists in

– selecting randomly a λ-dimensional vector space V ⊂ GF (2m).
– constructing an (n− k)× n matrix H = (hij), where hij ∈ V are randomly

selected.

The private-key consists of the knowledge of H and the public key is Gpub,
the generator matrix of the code with parity-check matrix H under systematic
form. The key idea behind the decoding procedure is: Suppose one receives a
ciphertext y = xGpub + e, where GpubH

T
pub = 0. Then

yHT = xGpubH
T︸ ︷︷ ︸

0

+eHT .

Since e has rank t its entries belong to a binary vector space E of dimension t.
This implies that the entries of yHT belong to the binary vector space

E ∗ V = {ev | e ∈ E , v ∈ V}.

The dimension of E ∗ V is upper bounded by tλ. If dim(E ∗ V) = tλ a basis for E
can be recovered with an estimated error probability of 2−(n−k+1−tλ), [GRSZ14].

– The main strength of this scheme is that the private key is randomly selected
with entries in a secret λ-dimensional vector space. Thus it prevents all types
of attacks attempting to use some algebraic properties to break the scheme.

– Concerning the weaknesses of the scheme, the first one is that the estimated
residual error decoding probability is non-negligible for small parameters.
The second main weakness comes from the fact that the decoding is prob-
abilistic. This could induce attacks on the model of [GSJ16] consisting in
guessing the secret vector space by observing the behavior of a decoder.

4 The new cryptosystem

In the case of Gabidulin codes, the strategy, which works for GRS codes, consist-
ing of scrambling their structure by considering a subfield subcode is a dead-end.
The reason is that a subfield subcode of a Gabidulin code is essentially isomor-
phic to the direct sum of Gabidulin codes over the subfield, [GL08].

Our approach consists in scrambling the codes via the choice of a randomly
selected vector space of GF (2m) of fixed dimension. The essential idea comes
from the rank multiplication property used to show that the LRPC decoding
procedure works. This could also be interpreted as a rank metric equivalent
of the idea in [BBC+16] which, for short, replaces the permutation matrix in
McEliece cryptosystem by a matrix multiplying the Hamming weight of the
vectors.



Proposition 1 (Rank multiplication). Let P ∈Mn(V) be an invertible ma-
trix with entries in a binary λ-dimensional vector space V ⊂ GF (2m). For all
x ∈ GF (2m)

n
, Rk(xP) ≤ λRk(x).

Proof. Consider x = (x1, . . . , xn) ∈ GF (qm) of rank weight r. Let X =<
x1, . . . , xn > be generated by < y1, . . . , yt >. Suppose moreover that V =<
α1, . . . , αλ >, then the entries of xP, belong to the vector space < yiαj >i,j
which has dimension ≤ λt.

4.1 Design of the encryption scheme

The key generation procedure is the following:

– Private key:
• A Gabidulin code of length n over GF (2m), dimension k with generator

matrix G under the form (2) ;
• A non-singular k × k- matrix S with entries in GF (2m);
• A λ-dimensional subspace of GF (2m), denoted by V ;
• A non-singular matrix P with entries in V, i.e. P ∈Mn(V).

– Public key: Gpub = SGP−1. The public code Cpub is generated by Gpub.

The encryption and decryption procedures are:

– Encryption of x ∈ GF (2m)
k
:

• Choose a random vector e ∈ GF (2m)
n

of rank weight b(n− k)/(2λ)c ;
• Compute y = xGpub + e ;
• Send the encrypted message y to the receiver.

– Decryption of y:
• Compute yP = xSG + eP ;
• Since P has entries in V and from Proposition 1 eP has rank weight
≤ λb(n− k)/(2λ)c ≤ b(n− k)/2c, and can be decoded with G;

• Recover xS and eP by decoding and recover x by multiplying with S−1.

The public-key is a randomly chosen generator matrix of the code

Cpub
def
= CP−1 = {cP−1 | c ∈ C}.

A corollary of Proposition 1 gives:

Corollary 1. Let C be a [n, k, d]r code over GF (qm). Let V be a λ-dimensional
subspace of GF (qm) seen as a GF (q)-vector space. And let P ∈Mn(V). Then

CP−1 def= {cP−1 | c ∈ C}

has dimension k and minimum rank distance d′ ≥ bd/λc .

Proof. Since P is invertible C and CP−1 have the same dimension. Concerning
the minimum distance, suppose that d′ < d/λ. Then let c ∈ CP−1 6= 0 with
rank weight d′. By construction cP ∈ C. From proposition 1, Rk(cP) ≤ d′λ < d,
which implies that cP = 0. Thus c = 0, which contradicts the hypothesis.



4.2 Security arguments

We analyze the security of the scheme.

1. The first type of attacks consists in decoding the ciphertext in the pub-
lic code. We suppose that the public code cannot be distinguished from
a random code. Therefore the complexity of recovering a plaintext from a
ciphertext corresponds to the complexity of solving BDR(Cpub, λRk(e),y).
From sections 2.3 and 2.4, we have:

– Decoding complexity: m32(λr−1)b(kmin (m,n))/nc binary operations.
– PQ-security: m32

1
2 (λr−1)b(kmin (m,n))/nc operations.

2. The question of the distinguishability of the public-code from a random
code is raised. The arguments presented in section 3.1 do not work. Namely,
raising the public-key to the ith power of the Frobenius gives:

G
[i]
pub = S[i]G[i](P−1)[i].

Matrix P has entries in V, but the entries of P−1 have no reason to belong
to some strict subspace of GF (2m). Therefore (4) is not satisfied and the
usual distinguisher for a Gabidulin code does not work.
An attacker could try to recover a decoder for the public code by solving

Hpub = HP, (5)

where Hpub is a (n−k)×n parity-check matrix of the public code Cpub under

systematic form, H = (h
[i]
j ) is a parity-check matrix of a Gabidulin code,

and P has entries in a λ-dimensional vector space.
W.l.o.g, we suppose that H is known. This hypothesis might seem very strong
but if we consider the case m = n this does not remove security. In that let
< h′1, . . . , h

′
n >2 be a basis of GF (2m) regarded as a GF (2)–vector space,

and let a matrix H′ = ((h′j)
[i]) under the form (2). There exists a binary

invertible matrix M such that

H = H′M.

System (5) becomes Hpub = H′MP︸︷︷︸
P′

. Since M is binary, P′ has entries in

V. Under this setting, we investigate two ways of solving (5), which gives us
a lower bound on the estimation of the complexity of recovering a decoder
from the public-key.

– System (5) is an underdefined affine system with n × n unknowns (the
entries of P) and n(n− k) equations. Given a solution P0 of the system,
an attacker has to search for a matrix in the coset P0 +P whose entries
belong to a λ-dimensional vector space. A solution is to enumerate the
coset of size 2m(n2−n(n−k)) and if the matrices belong to a common λ-
dimensional vector space.



– Another approach consists in decomposing the entries of P = (pij) under

the form pij =
∑λ
u=1 µ

(u)
ij αu, where α1, . . . , αλ are candidates to be the

basis of V, and the µ
(u)
ij are binary elements. Once the equations are pro-

jected on the binary field, we obtain a system with mn(n− k) equations
and mλ+ λn2 unknowns. If α1, . . . , αλ is fixed then the system is linear
and overdefined (λ < n ≤ m) and can thus be solved in polynomial time.

For the previous reasons, we estimate that a lower bound on the complexity
of recovering a decoder corresponds to the enumeration of λ−1-dimensional
GF (2)-subspaces of GF (2m). The choice of λ − 1 rather than λ is justified
since if λ = 1, i.e. V =< α >, then for some element α ∈ GF (2m), it is
obvious that an attack can be achieved in polynomial time. Namely, P =
(1/α)P′ with P′ has entries in GF (2). Therefore, we suppose that 1 ∈ V.

The lower bound on the complexity is thus 2(λ−1)m−(λ−1)
2

.

4.3 Choice of parameters

Table 2 proposes some parameters for an expected security, and with a cipher-
text expansion between 1.6 and 1.8. Since the parameters on can consider to
decrease the key-size by increasing the expansion factor, but the designer has to
note that case other types of decoding attacks can occur and should be taken
into account, [GRSZ14].

For a 2128 bits security the key-size proposed in [AB315] for a McEliece en-
cryption scheme using Goppa codes is approximately of 1 MB. For an equivalent
rate our proposal gives a public-key 20 times smaller.

Param. Dec. Sec. PQ Dec. Sec. K. Rec. Sec. Key size

m = n = 50, k = 32, λ = 3, t = 3 ≈ 281 ≈ 249 ≈ 296 3.6 KB

m = 96, n = 64, k = 40, λ = 3, t = 4 ≈ 2139 ≈ 280 ≈ 2188 11.5 KB

m = 128, n = 120, k = 80, λ = 5, t = 4 ≈ 2261 ≈ 2141 ≈ 2496 51 KB

Table 2: Proposition of parameters for the family of codes used in the cryptosystem

5 Acknowledgments

The author expresses deep thanks to Alain Couvreur who pointed out the ex-
istence of a straightforward distinguisher if the parameters are not carefully
chosen. The proposed parameters avoid the problem.

The author also wishes to thank the reviewers who made constructive com-
ments to improve the quality of the paper and pointed out mistakes and misses
in the original submission.



6 Conclusion

We proposed a new code-based public-key cryptosystem based on the deriva-
tion of Gabidulin codes. We did not consider security reductions but presented
detailed arguments why we think that our proposal makes it possible to de-
sign secure code-based encryption schemes in rank metric. Security conversion
exist that take as input One-way encryption schemes and convert it into a
IND − CCA2 in the random oracle model, [KI01,BL04]. Our proposal is ver-
satile and can be declined for finite fields of any characteristic since Gabidulin
codes have the same structure over any finite field. To evaluate the security we
need to replace 2 by the cardinality of the considered base field, say q if we
consider Gabidulin codes over GF (qm).
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