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Abstract. We study the asymptotic behaviour of the minimum rank distance of

constant rate random codes and random linear codes. In the case of linear codes,

we show that the codes reach GV-bound.

1 Introduction

In [4] was prooved an asymptotic equivalent for the minimum rank distance of
codes reaching rank metric GV-bound Following the work initiated by Pierce
in [5] and Barg and Forney [1] for Hamming metric, we show in this paper that
random codes are asymptotically far from reaching GV-bound whereas random
linear codes asymptotically reach GV-bound.

In the first part of the paper, we recall some rank metric background. In
the second part we establish the asymptotic equivalent of the minimum rank
distance of constant rate codes and constant rate linear codes.

2 Background in rank metric

Let q be a power of a prime and let b = (β1, . . . , βn) be a basis of GF (qm)
over GF (q). The integer n will denote the length of the code. Rank norm over
GF (q) of a an element of GF (qm)n is defined by

Definition 1 ( [2]).
Let x = (x1, . . . , xn) ∈ GF (qm)n. The rank of x on GF (q), is the rank of

matrix

X =







x11 · · · x1n
...

. . .
...

xm1 · · · xmn






,

where xj =
∑n

i=1 xijβi. It is denoted by Rk(x)

Rank metric is the metric over GF (qm)n induced by the rank norm. spheres
and balls in rank metric have the following expression:

• Sphere of radius t ≥ 0: St
def
= {y ∈ GF (qm)n | Rk(y) = t}.
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• Ball of radius t ≥ 0: Bt
def
= ∪t

i=0Si.

We have the following bounds:
{

q(m+n−1)t−t2 ≤ St ≤ q(m+n+1)t−t2+σ(q)

q(m+n)t−t2 ≤ Bt ≤ q(m+n+1)t−t2+σ(q) (2.1)

where σ(q) = − 1
ln(q)

∑∞
i=1 ln(1− q−i) ≤ 1.

Let C ⊂ GF (qm)n for m and n non-zero integers. If M denotes the cardi-

nality of C and d
def
= minc1 6=c2∈C(Rk(c1−c2)) we say that C is a (n,M, d)r code

over GF (qm). The integer d is called the minimum rank distance of C.
From [4], we have

Definition 2.
A (n,M, d)r-code reaches GV-bound if

(M − 1)× Bd−1 < qmn ≤ M × Bd−1. (2.2)

and also the proposition

Proposition 1 (GV-Bound).

Let F be a family of (n,Mn = qαn
2R, dn)r codes over GF (qαn) reaching

GV-bound. Then

lim
n→∞

dn/n =
α+ 1

2
−

√

(α− 1)2/4 + αR. (2.3)

3 Asymptotic behaviour of Random codes

The goal of this section is to establish both parts in rank metric for non-linear
and linear constant rate random codes. We define the sampling spaces over
which we will take the probabilities. We proove that the relative minimum
rank distance of general constant rate random linear codes depends on the rate
of the codes, the exponent of the extension and is strictly less than GV-bound.
For linear codes we show that the relative minimum distance asymptotically
corresponds to GV-bound.

3.1 General case

Let 0 < R < 1, and α > 0. A rate R random code C overGF (qαn) is constructed
as such:

• pick up randomly c1, . . . , cM codewords uniformly and independently in

the space of vectors of length n overGF (qαn), whereM = qαn
2R. Without

loss of generalities we suppose that M is an integer ;
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• the code C is C = {c1, . . . , cM}.

The codewords are not necessarily distinct. Thanks to this construction, the
probability that the codeword cj ∈ C is at rank distance less than i from a
vector y ∈ GF (qαn)n depends on i only and is equal to:

Pr(Rk(cj − y) ≤ i) =
Bi

qαn2 ≤ q(m+n)i−i2−αn2+σ(q),

Now we define the following random variable on C by:

Di =
M
∑

u=1

u−1
∑

v=1

1Rk(cu−cv)≤i
,

where 1Rk(cu−cv)≤i
is this indicator function, that is equal to 1 if Rk(cu−cv) ≤ i

and equal to 0 if Rk(cu − cv) > i. Thus Di counts the number of unordered
pairs of codewords at rank distance less or equal to i from each other. Let d be
the minimum rank distance of C.

It is clear that

• d ≤ i implies Di ≥ 1, that is: there is at least one pair of codewords at
rank distance less than i;

• d ≥ i implies:

1. either Di−1 = 0: that is, there are no pairs of codewords at distance
less than i− 1;

2. or Di−1 ≥ 1. In that case there is at least one vector appearing
twice in the M codewords randomly chosen, that is: there are u and
v with 1 ≤ u < v ≤ M such that cu = cv;

Hence, for all i ≥ 1,

• Pr(d ≤ i) ≤ Pr(Di ≥ 1),

• Pr(d ≥ i) ≤ Pr(Di−1 = 0) + Pr(∃1 ≤ u < v ≤ M | cu = cv). From the
birthday paradox, we have

Pr(∃u < v | cu = cv) =

(

M
2

)

qαn2 ≤
M2

2qαn2 .

Therefore Pr(d ≥ i) ≤ Pr(Di−1 = 0) + M2

2qαn2 .

Let ∆ = α+1
2 −

√

(α− 1)2/4 + 2αR we show the following proposition
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Proposition 2.

For 0 ≤ R < 1, and for all ǫ such that ǫn grows to +∞ with n, we have

Pr(d/n ≤ ∆− ǫ)
n→∞
→ 0. Moreover, if ǫ is a constant, the probability decreases

exponentially.

Proof.
We have Pr(d/n ≤ ∆ − ǫ) = Pr(d ≤ n(∆ − ǫ)) ≤ Pr(Dn(∆−ǫ) ≥ 1). For

simplicity let us write i
def
= n(∆ − ǫ). Since all the codewords in C are chosen

independently, we have

Pr(Di ≥ 1) =

(

M

2

)

Pr(Rk(cu − cv) ≤ i) ≤ 0.5qf(i)+σ(q),

where f(x) = −x2 + (α + 1)nx − (1 − 2R)αn2. Then the discriminant of f is
equal to (α − 1)2n2 + 8αn2R. That is n∆ is the smallest root of f . Then for
all ǫ, by Taylor formula we have that:

f(n(∆− ǫ)) = −((α+ 1)n− 2n∆)nǫ− ǫ2n2.

By construction we have ∆ ≤ α+1
2 , therefore

f(n(∆− ǫ)) ≤ −ǫ2n2

Hence ǫn grows to infinity with n, the quantity 0.5qσ(q)qf(n(∆−ǫ)) ≤ 0.5qσ(q)q−ǫ2n2

vanishes with n. Moreover, if ǫ is constant, then it decreases exponentially to-
wards 0.

We now proove the converse statement.

Proposition 3.

For 0 ≤ R < 1/2, and for all ǫ constant sufficiently small, we have Pr(d/n ≥

∆+ ǫ)
n→∞
→ 0, exponentially fast.

Proof.

We have Pr(d/n ≥ ∆+ ǫ) = Pr(d ≥ n(∆+ ǫ)) ≤ Pr(Dn(∆+ǫ)−1 = 0)+ M2

2qαn2 .

Since R < 1/2, and since M = qαRn2
the quantity M2

2qαn2 decreases exponentially

fast when n → +∞. Therefore it remains to proove that Pr(Dn(∆+ǫ)−1 = 0)

also decreases exponentially fast. Let i
def
= n(∆+ ǫ), then Di−1 = 0 if and only

if all the codewords in C are at distance greater than i − 1 from each other.
Therefore since

Pr(Rk(cu − cv) > i− 1) = 1−
Bi−1

qαn2 ,
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we have

Pr(Di−1 = 0) =

(

1−
Bi−1

qαn2

)(M2 )
= e

(M2 ) ln(1−
Bi−1

qαn2 )
(3.4)

Now since ∀0 ≤ x ≤ 1 ln(1− x) ≤ −x, we have

Pr(Di−1 = 0) ≤ λe
−M2 Bi−1

qαn2
≤ λe−qf(i−1)

,

where λ is the constant e−0.5, and f(x) = −x2+(α+1)nx− (1− 2R)αn2. The
function f is the same function as in the proof of proposition 2. Therefore the
smallest root of f is equal to n∆ and by Taylor formula

f(i− 1) = f(n(∆ + ǫ)− 1) = ((α+ 1)− 2∆)(n2ǫ− n)− (nǫ− 1)2.

Since (α + 1) − 2∆ > 0, by construction, for ǫ constant sufficiently small (<
(α + 1) − 2∆) the quantity f(i − 1) increases quadratically in n. Therefore
Pr(Di−1 = 0) decreases exponentially fast.

3.2 Linear codes

Let 0 < R < 1, and α > 0. A rate R random code C over GF (qαn) is:

• label the vector space {x1, . . . ,xqαn2R} = GF (qαn)nR, and where x1 = 0.

We suppose without loss of generalities that nR is an integer ;

• choose randomly and uniformly a matrix nR × R with coefficients in
GF (qαn) denoted by G ;

• set C = {x1G, . . . ,x
qαn2RG}.

Let j > 1. The probability that the codeword xj ∈ C has rank less than i is

Pr(Rk(xjG) ≤ i) =
Bi−1

qαn2 .

Now we define the following random variable on C:

Di =

qαn2R
∑

j=2

1Rk(xjG)≤i

Let d be the random variable giving the minimum rank distance of C. We
have:

• d ≤ i implies Di ≥ 1, that is there is at least one j > 2 such that xjG
has rank less or equal to i ;
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• d ≥ i implies:

1. either Di−1 = 0. In our case this is equivalent to the fact that G has
rank nR ;

2. or Di−1 ≥ 1. But this implies that there is at least one j > 2 such
that xjG = 0. Since xj 6= 0, this implies that G has rank < nR.

Therefore, for all i ≥ 1,

• Pr(d ≤ i) ≤ Pr(Di ≥ 1),

• Pr(d ≥ i) ≤ Pr(Di−1 = 0) + Pr(Rk(G) < nR).

Recall that GV-bound satisfies ∆GV = α+1
2 −

√

(α− 1)2/4 + αR. With
these properties and by using similar arguments as in previous section, we can
show the following two propositions.

Proposition 4.
For 0 ≤ R < 1, and for all ǫ such that ǫn grows to ∞ with n, we have

Pr(d/n ≤ ∆GV −ǫ)
n→∞
→ 0. Moreover, if ǫ is a constant, the probability decreases

exponentially.

For the other bound, we have a similar result.

Proposition 5.
For 0 ≤ R < 1, and for all ǫ constant sufficiently small, we have Pr(d/n ≥

∆GV + ǫ)
n→∞
→ 0, exponentially fast.
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