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Most of digital signal processing applications are specified and designed with floatingpoint arithmetic but are finally implemented
using fixed-point architectures. Thus, the design flow requires a floating-point to fixed-point conversion stage which optimizes
the implementation cost under execution time and accuracy constraints. This accuracy constraint is linked to the application
performances and the determination of this constraint is one of the key issues of the conversion process. In this paper, a method
is proposed to determine the accuracy constraint from the application performance. The fixed-point system is modeled with
an infinite precision version of the system and a single noise source located at the system output. Then, an iterative approach for
optimizing the fixed-point specification under the application performance constraint is defined and detailed. Finally the efficiency
of our approach is demonstrated by experiments on an MP3 encoder.
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1. INTRODUCTION

In digital image and signal processing domains, computing
oriented applications are widespread in embedded systems.
To satisfy cost and power consumption challenges, fixed-
point arithmetic is favored compared to floating-point
arithmetic. In fixed-point architectures, memory and bus
widths are smaller, leading to a definitively lower cost and
power consumption. Moreover, floating-point operators are
more complex, having to deal with the exponent and the
mantissa, and hence, their area and latency are greater
than those of fixed-point operators. Nevertheless, digital
signal processing (DSP) algorithms are usually specified
and designed with floating-point data types. Therefore,
prior to the implementation, a fixed-point conversion is
required.

Finite precision computation modifies the application
functionalities and degrades the desired performances.
Fixed-point conversion must, however, maintain a sufficient
level of accuracy. The unavoidable error due to fixed-
point arithmetic can be evaluated through analytical- or
simulation-based approaches. In our case, the analytical
approach has been favored to obtain reasonable optimiza-

tion times for fixed-point design space exploration. In an
analytical approach, the performance degradations are not
analyzed directly in the conversion process. An intermediate
metric is used to measure the computational accuracy. Thus,
the global conversion method is split into two main steps.
Firstly, a computational accuracy constraint is determined
according to the application performances, and secondly the
fixed-point conversion is carried out. The implementation
cost is minimized under this accuracy constraint during the
fixed-point conversion process. The determination of the
computational accuracy constraint is a difficult and open
problem and this value cannot be defined directly. This
accuracy constraint has to be linked to the quality evaluation
and to the performance of the application.

A fixed-point conversion method has been developed for
software implementation in [1] and for hardware implemen-
tation in [2]. This method is based on an analytical approach
to evaluate the fixed-point accuracy. The implementation
cost is optimized under an accuracy constraint. In this
paper, an approach to determine this accuracy constraint
from the application performance requirements is proposed.
This module for accuracy constraint determination allows
the achieving of a complete fixed-point design flow for
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which the user only specifies the application performance
requirements and not an intermediate metric. The approach
proposed in this paper is based on an iterative process
to adjust the accuracy constraint. The first value of the
accuracy constraint is determined through simulations and
depends on the application performance requirements. The
fixed-point system behavior is modeled with an infinite
precision version of the system and a single noise source
located at the system output. The accuracy constraint is
thus determined as the maximal value of the noise source
power which maintains the desired application quality.
Our noise model is valid for rounding quantization law
and for systems based on arithmetic operations (addition,
subtraction, multiplication, division). This includes LTI and
non-LTI systems with or without feedbacks. In summary,
the contributions of this paper are (i) a technique to deter-
mine the accuracy constraint according to the application
performance requirements, (ii) a noise model to estimate
the application performances according to the quantization
noise level, (iii) an iterative process to adjust the accuracy
constraint.

The paper is organized as follows. After the description of
the problem and the related works in Section 2, our proposed
fixed-point design flow is presented in Section 3. The noise
model used to determine the fixed-point accuracy is detailed
in Section 4. The case study of an MP3 coder is presented
in Section 5. Different experiments and simulations have
been conducted to illustrate our approach ability to model
quantization effect and to predict performance degradations
due to fixed-point arithmetic.

2. PROBLEM DESCRIPTION AND RELATED WORKS

The aim of fixed-point design is to optimize the fixed-
point specification by minimizing the implementation cost.
Nevertheless, fixed-point arithmetic introduces an unal-
terable quantization error which modifies the application
functionalities and degrades the desired performance. A
minimum computational accuracy must be guaranteed to
maintain the application performance. Thus, in the fixed-
point conversion process, the fixed-point specification is
optimized. The implementation cost is minimized as long
as the application performances are fulfilled. In the case
of software implementations, the cost corresponds to the
execution time, the memory size, or the energy consumption.
In the case of hardware implementations, the cost corre-
sponds to the chip area, the critical path delay, or the power
consumption.

One of the most critical parts of the conversion process
is the evaluation of the degradation of the application
performance due to fixed-point arithmetic. This degrada-
tion can be evaluated with two kinds of methods corre-
sponding to analytical- and simulation-based approaches.
In the simulation-based method, fixed-point simulations
are carried out to analyze the application performances
[3]. This simulation can be done with system-level design
tools such as CoCentric (Synopsys) [4] or Matlab-Simulink
(Mathworks) [5]. Also, C++ classes to emulate the fixed-
point mechanisms have been developed as in SystemC

[4] or Algorithmic C data types [6]. These techniques
suffer from a major drawback which is the time required
for the simulation [7]. It becomes a severe limitation
when these methods are used in the fixed-point specifica-
tion optimization process where multiple simulations are
needed. This optimization process needs to explore the
design-space of different data word-lengths. A new fixed-
point simulation is required when a fixed-point format
is modified. The simulations are made on floating-point
machines and the extra-code used to emulate fixed-point
mechanisms increases the execution time to between one
and two orders of magnitude compared to traditional
simulations with floating-point data types [8]. Different
techniques [7, 9, 10] have been investigated to reduce this
emulation extra-cost. To obtain an accurate estimation of
the application performance, a great number of samples
must be taken for the simulation. For example, in the
digital communication domain, to measure a bit error
rate of 10−a, at least 102+a samples are required. This
large number of samples combined with the fixed-point
mechanism emulation leads to very long simulation times.
For example, in our case, one fixed-point C code simulation
of an MP3 coder required 480 seconds. Thus, fixed-point
optimization based on simulation leads to too long execution
times.

In the case of analytical approaches, a mathematical
expression of a metric is determined. Determining an
expression of the performance for every kind of application
is generally an issue. Thus, the performance degradations
are not analyzed directly in the conversion process and
an intermediate metric which measures the fixed-point
accuracy must be used. This computational accuracy metric
can be the quantization error bounds [11], the mean square
error [12], or the quantization noise power [10, 13]. In the
conversion process, the implementation cost is minimized
as long as the fixed-point accuracy metric is greater than
the accuracy constraint. The analytical expression of the
fixed-point accuracy metric is first determined. Then, in
the optimization process, this mathematical expression is
evaluated to obtain the accuracy value for a given fixed-point
specification. This evaluation is much more rapid than in the
case of a simulation-based approach. The determination of
the accuracy constraint is a difficult problem and this value
cannot be defined directly. This accuracy constraint has to
be linked to the quality evaluation and performances of the
application.

Most of the existing fixed-point conversion methods
based on an analytical approach [1, 11, 13–15] evaluate the
output noise level, but they do not predict the application
performance degradations due to fixed-point arithmetic.
In [12], an analytical expression is proposed to link the
bit error rate and the mean square error. Nevertheless, to
our knowledge, no general method was proposed to link
computational accuracy constraint with any application per-
formance metric. In this paper, a global fixed-point design
flow is presented to optimize the fixed-point specification
under application performance requirements. A technique
to determine the fixed-point accuracy constraint is proposed
and the associated noise model is detailed.
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Figure 1: Global fixed-point design process. This design flow is
made-up of three stages. An iterative process is used to adjust the
accuracy constraint xj for the fixed-point conversion.

3. PROPOSED FIXED-POINT DESIGN PROCESS

3.1. Global process

A fixed-point datum a of wla bits is made up of an integer
part and a fractional part. The number of bits associated with
each part does not change during the processing leading to a
fixed binary position. Let iwla and f wla be the binary-point
position referenced, respectively, from the most significant
bit (MSB) and the least significant bit (LSB). The terms
iwla and f wla correspond, respectively, to the integer and
fractional part word-length. The word-length wla is equal
to the sum of iwla and f wla. The aim of the fixed-point
conversion is to determine the number of bits for each part
and for each datum.

The global process proposed for designing fixed-point
systems under application performance constraints is pre-
sented in Figure 1 and detailed in the next sections. The
metric used to evaluate the fixed-point accuracy is the output
quantization noise power. Let by be the system output
quantization noise. The noise power is also called in this
paper noise level and is represented by the term x =
E(b2

y). The accuracy constraint xj used for the fixed-point
conversion process corresponds to the maximal noise level
under which the application performance is maintained.
The challenge is to establish a link between the accuracy
constraint xj and the desired application performances λobj.
These application performances must be predicted according
to the noise level x. The global fixed-point design flow is
made-up of three stages and an iterative process is used
to adjust the accuracy constraint used for the fixed-point
conversion. These three stages are detailed in the following
sections.

3.2. Accuracy constraint determination

The first step corresponds to the initial accuracy constraint
determination x0 which is the maximal value of the noise
level satisfying the performance objective λobj. For example,
in a digital communication receiver, the maximal quantiza-
tion noise level is determined according to the desired bit
error rate.

First, a prediction of the application performance is
performed with the technique presented below. Let fp(x)
be the function representing the predicted performances
according to the noise level x. To determine the initial
accuracy constraint value (x0), equation fp(x) = λobj is
solved graphically, and x0 is the solution of this equation.

3.2.1. Performance prediction

To define the initial value of the accuracy constraint (x0),
the application performance is predicted according to the
noise level x. The fixed-point system is modeled by the
infinite precision version of the system and a single noise
source bp located at the system output as shown in Figure 2.
This noise source models all the quantization noise sources
inside the fixed-point system. The system floating-point
version is used and the noise bp is added to the output. The
noise model used for bp is presented in Section 4. Different
noise levels x for the noise source bp are tested to measure
the application performance and to obtain the predicted
performance fp function according to the noise level x. The
accuracy constraint x0 corresponds to the maximal value of
the noise level which allows the maintenance of the desired
application performance.

Most of the time, the floating-point simulation has
already been developed during the application design step,
and the application output samples can be used directly.
Therefore, the time required for exploring the noise power
values is significantly reduced and becomes negligible with
regard to the global implementation flow. Nevertheless, this
technique cannot be applied for systems where the decision
on the output is used inside the system like, for example,
decision-feedback equalization. In this case, a new floating-
point simulation is required for each noise level which is
tested.

3.3. Fixed-point conversion process

The second step corresponds to the fixed-point conversion.
The goal is to optimize the application fixed-point speci-
fication under the accuracy constraint xj . The approaches
presented in [1] for software implementation and in [2]
for hardware implementation are used. This fixed-point
conversion can be divided into two main modules. The flow
diagram used for this conversion is shown in Figure 3.

The first part corresponds to the determination of the
integer part word-length of each datum. The number of bits
iwli for this integer part must allow the representation of all
the values taken by the data and is obtained from the data
bound values. Thus, firstly the dynamic range is evaluated
for each datum. Then, these results are used to determine,
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and a single noise source by located at the system output.
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Figure 3: Fixed-point conversion process. For each datum, the
number of bits for the integer part is determined and the fractional
part word-length is optimized.

for each data, the binary-point position which minimizes
the integer part word-length and which avoids overflow.
Moreover, scaling operations are inserted in the application
to adapt the fixed-point format of a datum to its dynamic
range or to align the binary-point of the addition inputs.

The second part corresponds to the determination of the
fractional part word-length. The number of bits f wli for
this fractional part defines the computational accuracy. Thus,
the data word-lengths are optimized. The implementation
cost is minimized under the accuracy constraint. Let wl =
{wl0,wl1, . . . ,wli, . . . ,wlN−1, } be an N-size vector including
the word-length of the N application data. Let C(wl) be the
implementation cost and let fa(wl) be the computational
accuracy obtained for the word-length vector wl. The
implementation cost C(wl) is minimized under the accuracy
constraint x:

minC
(

wl j
)

such as fa
(

wl j
) ≥ xj . (1)

The vector wl j is the optimized fixed-point specification
obtained for the constraint value xj at iteration j of the
process.

The data word-length determination corresponds to an
optimization problem where the implementation cost and
the application accuracy must be evaluated. The major
challenge is to evaluate the fixed-point accuracy. To obtain
reasonable optimization times, analytical approaches to
evaluate the accuracy have been favored. The computational
accuracy is evaluated using the quantization noise power.
The mathematical expression of this noise power is com-
puted for systems based on arithmetic operations with the
technique presented in [16]. This mathematical expression is
determined only once and is used for the different iterations
of the fixed-point conversion process and for the different
iterations of the global design flow.

3.4. Performance evaluation and accuracy
constraint adjustment

The third step corresponds to the evaluation of the real
application performance. The optimized fixed-point speci-
fication wl j is simulated and the application performance
is measured. The measured performances fr(xj) and the
objective value λobj are compared and, if (2) is not satisfied,
the accuracy constraint is adjusted and a new iteration is
performed:

λobj − ε < fr
(
xj
)
< λobj + ε, (2)

where the term ε is the tolerance on the objective value.
To modify the accuracy constraint value, two measure-

ments are used. Nevertheless, in the first iteration, only the
point (x0, fr(x0)) is available. To obtain a second point, all
the data word-lengths are increased (or decreased) by p bits.
In this case, as demonstrated in appendix the noise level
is increased (or decreased) by 6 · p dB. The number of bits
p is chosen as the minimal value respecting the following
inequality:

fr
(
x0
)− λobj∣∣ fr

(
x0)− λobj

∣∣ /=
fp
(
x0 ± 6 · p)− λobj∣∣ fp
(
x0 ± 6 · p)− λobj

∣∣ . (3)

The choice to increment or decrement depends on the
slope sign of fp and the sign of the difference between fr(x0)
and λobj. For the next iterations, two or more measured
points are available. The two consecutive points of abscissa
xa and xb such as fr(xa) < λobj < fr(xb) are selected and let
fab be the linear equation linking the two points (xa, fr(xa))
and (xb, fr(xb)). The adjusted accuracy constraint used for
the next iteration k is xk defined such as fab(xk) = λobj. The
adjustment process is illustrated in Section 5.3 through an
example.

4. NOISE MODEL

4.1. Noise model description

4.1.1. Quantization noise model

The use of fixed-point arithmetic introduces an unavoidable
quantization error when a signal is quantified. A common
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model for signal quantization has been proposed by Widrow
in [17] and refined in [18]. The quantization of a signal is
modeled by the sum of this signal and a random variable b,
which represents the quantization noise. This additive noise
b is a uniformly distributed white noise that is uncorrelated
with the signal, and independent from the other quantization
noises. In this study, the round-off method is used rather
than truncation. For convergent rounding, the quantization
leads to an error with a zero mean. For classical rounding, the
mean can be assumed to be null as soon as several bits (more
than 3 bits) are eliminated in the quantization process. The
expression of the statistical parameters of the noise sources
can be found in [16]. If q is the quantization step (accuracy),
the noise values are in the interval [−q/2; q/2].

4.1.2. Noise model for fixed-point system

The noise model for fixed-point systems presented in [16] is
used. The output quantization noise by is the contribution
of the different noise sources. Each noise source bi is due to
the elimination of some bits during a cast operation. From
the propagation model presented in [16], for each arithmetic
operation it can be shown that the operation output noise
is a weighted sum of the input noises associated with each
operation input. The weights of the sum do not include
noise terms, because the product of the noise terms can be
neglected. Thus, in the case of systems based on arithmetic
operations, the expression of the output quantization noise
by is as follows:

by(n) =
Ne∑

i=1

b′i (n) =
Ne∑

i=1

n∑

k=0

hi(k)bi(n− k), (4)

where the term h represents the impulse response of the
system having by as output and bi as input. In the case of
linear time invariant (LTI) systems, the different terms h(i)
are constant. In the case of non-LTI systems the terms h(i)
are time varying. In this context, two extreme cases can
be distinguished. In the first case, a quantization noise b′i
predominates in terms of variance compared to the other
noise sources. A typical example is an extensive reduction
of the number of bits at the system output compared to the
other fixed-point formats. In this case, the level of this output
quantization noise exceeds the other noise source levels.
Thus, the probability density function of the output quan-
tization noise is very close to that of the predominant noise
source and can be assimilated to a uniform distribution.
In the second case, an important number of independent
noise sources have similar statistical parameters and no noise
source predominates. All the noise sources are uniformly
distributed and independent of each other. By using the
central limit theorem, the sum of the different noise sources
can be modeled by a centered normally distributed noise.

From these two extreme cases, an intuitive way to model
the output quantization noises of a complex system is to use
a noise bp which is the weighted sum of a Gaussian and a
uniform noise. Let fb be the probability density function of
the noise b. Let bn be a normally distributed noise with a
mean and variance equal, respectively, to 0 and 1. Let bu be a

uniformly distributed noise in the interval [−1; 1]. The noise
bp is defined with the following expression:

bp = υ
(
β × bu + (1− β)× bn

)
. (5)

The weight β is set in the interval [0; 1] and allows the
representation of the different intermediate cases between
the two extreme cases presented above. The weight υ fixes
the global noise variance.

4.1.3. Choice of noise model parameters

The noise bp is assumed to be white noise. Nevertheless,
the spectral density function of the real quantization noise
depends on the system and most of the time is not white. If
the application performance is sensitive to the noise spectral
characteristic, this assumption will degrade the performance
prediction. Nevertheless, the imperfections of the noise
model are compensated by the iteration process which adapts
the accuracy constraint. The effects of the noise model
imperfections increase in the number of iterations required
to converge to the optimized solution.

To take account of the noise spectral characteristics,
the initial accuracy constraint x0 can be adjusted and
determined in a two-step process. The accuracy constraint
x0 is determined firstly assuming that the noise bp is
white. Then, the fixed-point conversion is carried out and
the fixed-point specification wl0 is simulated. The spectral
characteristics of the real output quantization noise br(wl0)
are measured. Afterwards, the accuracy constraint x0 is
adjusted and determined a second time assuming that the
noise bp has the same spectral characteristics as the real
quantization noise br(wl0).

Like for the spectral characteristics, the weight β is set to
an arbitrary value depending of the kind of implementation.
Then, after the first iteration, the β value is adjusted by
using the measured β value obtained from the real output
quantization noise br(wl0).

In most of the processors the architecture is based
on a double precision computation. Inside the processing
unit, most of the computations are carried out without
loss of information and truncation occurs when the data
are stored in memory. This approach tends to obtain a
predominant noise source at the system output. Thus, for
software implementation the weight β is fixed to 1. For
hardware implementation the optimization of the operator
word-length leads to a fixed-point system where no noise
source is predominant. The optimization distributes the
noise to each operation. Thus, for hardware implementation
the weight β is fixed to 0.

4.2. Validation of the proposed model

4.2.1. Validation methodology

The aim of this section is to analyze the accuracy of
our model with real quantization noises. The real noises
are obtained through simulations. The output quantization
noise is the difference between the system outputs obtained
with a fixed-point and a floating-point simulation. The
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floating-point simulation which uses double-precision types
is considered to be the reference. Indeed, in this case, the
error due to the floating-point arithmetic is definitely less
than the error due to the fixed-point arithmetic. Thus, the
floating-point arithmetic errors can be neglected.

Our model is valid if a balance weight β can be found
to model the real noise probability density function with
(5). The accuracy of our model with real noises is analyzed
with the χ2 goodness-of-fit test. This test is a statistical tool
which can be used to determine if a real quantization noise
br follows a chosen probability density function fbp [19]. Let
HX be the hypothesis that br follows the probability density
function fbp . The test is based on the distance between
the two probability density functions. If ys is the observed
frequency for interval s, Es is the expected frequency for s
and k the number of interval s, the statistical test is:

χ2 =
k∑

s=1

(
ys − Es

)2

Es
. (6)

This statistical test follows the χ2 distribution with k − 1
degrees of freedom. Therefore, if the distance is higher than
the threshold χth, then the hypothesis HX (br follows the
probability density function fbp) is rejected. The significance
level of the test is the probability of rejecting HX when the
hypothesis is true. Choosing a certain value for this level will
set the threshold distance for the test. According to [20], the
significance level α should be in [0.001 0.05].

Concerning the observed noise, there is no a priori
knowledge of the balance coefficient β. Thus, the χ2 test
has to be used collectively with a searching algorithm. This
algorithm finds the β weight for which the fb fits the best to
the noise. Let βoptim be the optimized value which minimizes
the term χ2 from (6), then:

χ2(βoptim
) = min

β∈[0;1]

(
χ2(β)

)
. (7)

The real quantization noise can be modeled with (5) if
the optimized value βoptim is lower than the threshold χth.

4.2.2. FIR filter example

The first system on which the before-mentioned test has been
performed is a 32-tap FIR filter. The filter output y(n) is
obtained from the following expression:

y(n) =
N−1∑

i=0

ci · e(n− i), (8)

where e is the filter input and ci the filter coefficients.
The signal flow graph of one cell i is presented in Figure 4.

To simplify the presentation, the integer part word-length
for the multiplication output and the input and output of
the addition are set to be equal. Thus, no scaling operation
is necessary to align the binary point positions at the adder
input. This simplification has no influence on the generality
of the results.

The word-lengths of the input signal (wle) and of the
coefficient (wlci) are equal to 16 bits. If no bit is eliminated

wladd wladd wlo

wlmult

wladd

wlci wle

Q

Q

ci e(n− i)

y(n)

Figure 4: Signal flow graph for one FIR filter tap.

during the multiplication, the multiplier output word-length
wlmult is equal to 32 bits. The adder input and output word-
length are equal to wladd. At the filter output, the data is
stored in memory with a word-length wly equal to 16 bits.

Two kinds of quantization noise sources can be located in
the filter. A noise source bmi can be located at each multiplier
output if bits are eliminated between the multiplication and
the addition. The number of eliminated bits kmi is obtained
with the following expression:

km = wlmult −wladd = wle +wlh −wladd. (9)

A noise source by is located at the filter output if bits are
eliminated when the addition output is stored in memory.
The number of eliminated bits ky is obtained with the
following expression:

ky = wladd −wly. (10)

The adder word-length wladd is varying between 16 and
32 bits, while the output of the system is always quantized on
16 bits.

The probability density function of the filter output
quantization noise is shown in Figure 5 for different values
of wladd. The noise is uniform when one source is prevailing
(the adder is on 32 bits). As long as the influence of the
sources at the output of the multiplier is increasing (the
length is decreasing), the distribution of the output noise
tends to become Gaussian. These simple visual observations
can be confirmed using the β-searching algorithm. The
change of the optimized value βoptim for different adder
word-lengths, varying from 16 to 32 bits, is shown in
Figure 6. When the output of the multiplier is 16 or 17 bits,
β = 0, the sources are numerous. Their influence on the
system output leads to a Gaussian noise. As the length of the
multiplier increases, β also grows and eventually tends to 1.
When wladd is greater than 26 bits, the variance of the noise
sources bmi located at each multiplier output is insignificant
compared to the variance of the noise source by located at the
filter output. Thus, this latter is prevailing and its influence
on the output signal is a uniform white noise. In this case,
the boundary values of the noise are [−q/2; q/2].
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4.2.3. Benchmarks

To validate our noise model, different DSP application
benchmarks have been tested and the adequacy between
our model and real noises has been measured. For each
application, different output noises have been obtained by
evaluating several fixed-point specifications and different
application parameters. The number of output noises ana-
lyzed for one application is defined through the term Nt. For
these different applications based on arithmetic operations,
the input and the output word-length are fixed to 16 bits.
The different fixed-point specifications are obtained by mod-
ifying the adder input and output word-lengths. Eight values
are tested for the adder: (16, 17, 18, 19, 20, 22, 24, 32).

The results are shown in Table 1 for two significance
levels α corresponding to the boundary values (0.05 and
0.001). For each application, the number Ns of real noise
which can be modeled with our noise model is measured.

Table 1: Adequacy between our model and real noises for different
DSP applications.

Applications
Test Significance level

number Nt α = 0.05 α = 0.001

FFT (16 and 32 samples) 16 100% 100%

IIR 8 direct form I 192 98% 99%

IIR 8 direct form II 192 100% 100%

IIR 8 transposed form 192 97% 99%

Adaptive APA filter 8 87% 100%

Volterra filter 8 100% 100%

WCDMA receiver 16 100% 100%

MP3 28800 78% 87%

The adequacy between our model and real noises is measured
with the metric Γ defined with the following expression:

Γ = Ns

Nt
. (11)

This metric corresponds to the ratio of output noises for
which a weight β can be found to model the noise probability
density function with (5).

The different applications used to test our approach
are presented in this paragraph. A fast Fourier transform
(FFT) has been performed on vectors made-up of 16 or 32
samples. Linear time-invariant (LTI) recursive systems have
been tested through an eight-order infinite impulse filter
(IIR). This filter is implemented with a cascaded form based
on four second order cells. For this cascaded eight-order IIR
filter, 24 permutations of the second-order cells can be tested
leading to very different output noise characteristics [21].
Three forms have been tested corresponding to Direct-form
I, Direct-Form II and Transposed-Form. An adaptive filter
based on the affine projection algorithm (APA) structure
[22] has been tested. This filter is made-up of eight taps and
the observation vector length is equal to five. A nonlinear
nonrecursive filter has been tested using a second-order
Volterra filter. Our benchmarks do not include non linear
systems with memory and thus do not validate this specific
class of algorithms.

More complex applications have been studied through
a WCDMA receiver and an MP3 coder. The MP3 coder is
presented in Section 5.1. For the third generation mobile
communication systems based on the WCDMA technique,
the receiver is mainly made up of an FIR receiving filter and
a rake receiver including synchronization mechanisms [23].
The rake receiver is made-up of three parts corresponding
to the transmission channel estimation, synchronization and
symbol decoding. The synchronization of the code and the
received signal is realized with a delay-locked loop (DLL).
The noises are observed at the output of the symbol decoding
part.

The results from Table 1 show that our noise model can
be applied to most of the real noises obtained for different
applications. For some applications, like FFT, FIR, WCDMA
receiver and the Volterra filter, a balance coefficient β can
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always be found. These four applications are nonrecursive
and the FFT, FIR, WCDMA receiver are LTI systems.

For the eight-order infinite impulse filter, almost all the
noises (97%–100%) can be modeled with our approach.
For these filters, 90% of the output quantization noise are
modeled with a balance coefficient β equal to 0. Thus, the
output noise is a purely normally distributed noise. In LTI
system, the output noise b′g due to the noise bg corresponds
to the convolution of the noise b′g with hg . This term hg
is the impulse response of the transfer function between
the noise source and the output. Thus, the output noise is
the weighted sum of the delayed version of the noise bg .
The noise bg is a uniformly distributed white noise, thus
the delayed versions of the noise bg are uncorrelated. The
samples are uncorrelated but are not independent and thus
the central limit theorem cannot be applied directly. Even if
only one noise source is located in the filter, the output noise
is a sum of noncorrelated noises and this output noise tends
to have a Gaussian distribution. For the MP3 coder, when
the level is 0.001 the test is successful about 87% of the time
(78% when α is 0.05).

For the different applications, the metric Γ is close to
100%. These results show that our model is suitable to model
the output quantization noise of fixed-point systems.

5. CASE STUDY: MP3 CODER

The application used to illustrate our approach and to
underline its efficiency comes from audio compression
and corresponds to an MP3 coder. First, the application
and the associated quality criteria are briefly described.
Then, the ability of our noise model to predict application
performance is evaluated. Finally, a case study to obtain
an optimized fixed-point specification which ensures the
desired performances is detailed.

5.1. Application presentation

5.1.1. MP3 coder description

The MP3 compression, corresponding to MPEG-1 Audio
Layer 3, is a popular digital audio encoding which allows effi-
cient audio data compression. It must maintain a reproduc-
tion quality close to the original uncompressed audio. This
compression technique relies on a psychoacoustic model
which analyzes the audio signal according to how human
beings perceive a sound. This step allows the formation of
some signal to noise masks which indicate where noise can
be added without being heard. The MP3 encoder structure is
shown in Figure 7. The signal to be compressed is analyzed
using a polyphase filter which divides the signal into 32
equal-width frequency bands. The modified discrete cosine
transform (MDCT) further decomposes the signal into
576 subbands to produce the signal which will actually be
quantized. Then, the quantization loop allocates different
accuracies to the frequency bands according to the signal to
noise mask. The processed signal is coded using Huffman
code [24]. The MP3 coder can be divided into two signal
flows. The one composed from the polyphase filter and

the MCDT and the one composed from the FFT and the
psychoacoustic model. The fixed-point conversion of the
second signal flow has low influence on compression quality
and thus, in this paper, the results are presented only for the
first signal flow.

The BLADE [25] coder has been used with a 192
Kbits/s constant bit rate. This coder leads to a good quality
compression with floating-point data types. A sample group
of audio data has been defined for the experiments. This
group contains various kinds of sounds, where each can lead
to different problems during encoding (harmonic purity,
high or low dynamic range, . . .). Ten different input tracks
have been selected and tested.

5.1.2. Quality criteria

In the case of an MP3 coder, the output noise power metric
cannot be used directly as a compression quality criterion.
The compression is indeed based on adding quantization
noises where it is imperceptible, or at least barely audible.
The compression quality has been tested using EAQUAL
[26] which stands for evaluation of audio quality. It is
an objective measurement tool very similar to the ITU-R
recommendation BS.1387 based on PEAQ technique. This
has to be used because listening tests are impossible to
formalize. In EAQUAL, the degradations due to compression
are measured with the objective degradation grade (ODG)
metric. This metric varies from 0 (no degradation) to −4
(inaudible). The level of −1 is the threshold beyond the
degradation becomes annoying for ears. This ODG is used
to measure the degradation due to fixed-point computation.
Thus for the fixed-point design, the aim is to obtain the
fixed-point specification of the coder which minimizes the
implementation cost and maintains an ODG lower or equal
to −1 for the different audio tracks of the sample group.

5.2. Performance prediction

The efficiency of our approach depends on the quality of
the noise model used to determine the accuracy constraint.
To validate this latter, its ability to model real quantization
noises and its capability to predict the application perfor-
mance according to the quantization noise level are analyzed
through experiments.

Our model capability to predict application performance
according to the quantization noise level has been analyzed.
The real and the predicted performances are compared
for different noise levels x. The application performance
prediction is obtained with our model as described in
Figure 2. The random signal modeling the output quan-
tization noise with a noise level of x is added to the
infinite precision system output. The real performances are
measured with a fixed-point simulation of the application.
This fixed-point specification is obtained with a fixed-point
conversion having x as an accuracy constraint. For this audio
compression application, the evolution of the predicted ( fp)
and the real ( fr) objective degradation grade (ODG) is given
in Figure 8(a). These performances have been measured for
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Figure 7: MP3 encoder structure.

different quantization noise levels x included in the range
[−108 dB; −88 dB].

The predicted and real performances are very close except
for two noise levels equal to −98.5 dB and −88 dB. In these
cases, the difference between the two functions fp and fr
is, respectively, equal to 0.2 and 0.4. In the other cases, the
difference is less than 0.1. It must be underlined that when
the ODG is lower than −1.5, the ODG evolution slope is
higher, and a slight difference in the noise level leads to
a great difference on the ODG. The case where only the
polyphase filter is considered to use fixed-point data type
(the MDCT is computed with floating-point data-types) has
been tested. The difference between the two functions fp and
fr is less than 0.13. Thus, our approach allows the accurate
prediction of the application performance.

5.3. Fixed-point optimization under
performance constraint

In this section, the design process to obtain an optimized
fixed-point specification which guarantees a given level of
performances is detailed. The ODG objective λobj is fixed to
−1 corresponding to the acceptable degradation limit.

First, to determine the initial value of the accuracy
constraint, a prediction of the application performance is
made. This initial value determination corresponds to the
first stage of the design flow presented in Figure 1. The
function fp is determined for different noise levels with a
balance coefficient varying from 0 to 1. Two results can be
underlined. Firstly, the influence of the balance coefficient β
has been tested and is relatively low. Between the extreme
values of β, the ODG variation is on average less than 0.1.
In these experiments, a hardware implementation is under
consideration, thus the balance coefficient β is fixed to 0.

Secondly, the ODG change is strongly linked to the kind
of input tracks used for the compression.

In these experiments, 10 different input tracks have been
tested. To obtain an ODG equal to −1, a difference of 33 dB
is obtained between the minimal and the maximal ODG.
These results underline the necessity to have inputs which
are representative of the different audio tracks encountered
in the real world. In the rest of the study, the audio sample
which leads to the minimal ODG is used as a reference. The
results obtained in this case are shown in Figure 8(a) and a
zoom is given in Figure 8(b).
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Figure 8: (a) Predicted ( fp) and the real ( fr) objective degradation
grade (ODG) for the MP3 coder. (b) Zoom on the range [−105 dB,
−99 dB], the point (xk : fr(xk)) involved in each iteration k are
given.

To determine the initial value of the accuracy constraint,
equation fp(x) = λobj is graphically solved. The noise
level x0 is equal to −99.35 dB. x0 is used as an accuracy
constraint for the fixed-point conversion. This conversion
is the second stage of the design flow (see Figure 1). The
aim is to find the fixed-point specification which minimizes
the implementation cost and maintains a noise level lower
than x0. After the conversion, the fixed-point specification is
simulated to measure the performance. It corresponds to the
third stage of the design flow (see Figure 1). The measured
performance fr(x0) is equal to −1.2. To obtain the second
point of x1 abscissa, all the data word-lengths are increased
by one bit and the measured performance fr(x1) is equal
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to −0.77. The accuracy constraint x2 for the next iteration
is obtained by solving f10(x) = −1. The function f10(x)
is the linear equation linking the points (x0 : fr(x0)) and
(x1 : fr(x1)). The obtained value is equal to −102.2 dB. The
process is iterated and the following accuracy constraints are
equal to−101 dB and−100,7 dB. The values obtained for the
different iterations are presented in Table 2. For this example,
six iterations are needed to obtain an optimized fixed-point
specification which leads to an ODG equal to −0.99. Only,
three iterations are needed to obtain an ODG of −0.95.

5.3.1. Execution time

For our approach, the execution time of the iterative process
has been measured. First, the initial accuracy constraint
is determined. The floating-point simulations have already
been carried out in the algorithm design process and this
floating-point simulation time is not considered. For each
tested noise level, the noise is added to the MDCT output
and then the ODG is computed. The global execution time
TIAC of this first stage is equal to 420 seconds. This stage is
carried out only once.

For the fixed-point conversion, the analytical model for
noise level estimation is determined at the first iteration. This
execution time TAED of this process is equal to 120 seconds. It
takes a small amount of time but it is done only once. Then,
this model is used in the process of fixed-point optimization
and the fixed-point accuracy is computed instantaneously by
evaluating a mathematical expression. For this example, each
fixed-point conversion TFpC takes only 0.7 seconds due to the
analytical approach.

In this fixed-point design process, most of the time is
spent in the fixed-point simulation (stage 3). This simulation
is carried out with C++ code with optimized fixed-point
data types. For this example, the execution time Tf pS of each
fixed-point simulation is equal to 480 seconds. But, only one
fixed-point simulation is required by iteration and a small
number of iterations are needed.

The expression of the global execution time TAA for
our approach based on analytical approach for fixed-point
conversion is as follows:

TAA
(
Nj
) = TIAC + TAED +Nj ×

(
Tf pS + TFpC

)

= 540 + 480×Nj ,
(12)

where Nj represents the number of iterations required to
obtain the optimized fixed-point specification for a given
ODG constraint. In this example, six iterations are needed
to obtain an optimized fixed-point specification which leads
to an ODG equal to −0.99 and three iterations are needed to
obtain an ODG of −0.95. Thus, the global execution time is
equal to 49 minutes for an ODG of−0.99 and 33 minutes for
an ODG of −0.95.

A classical fixed-point conversion approach based on
simulations has also been tested to compare with our
approach. The same code as in our proposed approach is
used to simulate the application. For this approach most of
the time is consumed by the fixed-point simulation used to
evaluate the application performances. Thus, the expression

Table 2: Description of the values obtained for the different
iterations i. The term xi corresponds to the accuracy constraint
for the fixed-point conversion. The term fr(wli) is the measured
performance obtained after the fixed-point conversion.

Iteration i
Noise level Measured performances

xi (dB) fr(wli) (ODG)

0 −99.35 −1.2

1 −105.35 −0.77

2 −102,2 −0.86

3 −101 −0.97

4 −100,85 −0.98

5 −100,7 −0.99

of the global execution time TSA for this approach based on
simulation is as follows:

TAA
(
Ns
) � Ns × Tf pS = 480×Ns, (13)

where Ns is the number of iterations of the optimization
process based on simulation.

An optimization algorithm based on Min + b bits
procedure [27] is used. This algorithm allows the limitation
of the iteration number in the optimization process. The
number of variables in the optimization process has been
restricted to 9 to limit the fixed-point design search space. In
this case, the number of iterations Ns is equal to 388. Given
that each fixed-point simulation requires 480 seconds, the
global execution becomes huge and is equal to 51 hours.

In our case, the optimization time is definitively lower.
For this real application, a fixed-point simulation requires
several minutes. For this example, the analytical approach
reduces the execution time by a factor 63. Moreover, the
fixed-point design space is very large and it cannot be
explored with classical techniques based on fixed-point
simulations.

6. CONCLUSION

In embedded systems, fixed-point arithmetic is favored but
the application performances are reduced due to finite
precision computation. During the fixed-point optimization
process, the performance degradations are not analyzed
directly during the conversion. An intermediate metric
is used to measure the computational accuracy. In this
paper, a technique to determine the accuracy constraint
associated with a global noise model has been proposed.
The probability density function of the noise model has
been detailed and the choice of the parameters has been
discussed. The different experiments show that our model
predicts sufficiently accurately the application performances
according to the noise level. The technique proposed to
determine the accuracy constraint and the iterative process
used to adjust this constraint allow the obtention of an
optimized fixed-point specification guaranteeing minimum
performance. The optimization time is definitively lower and
has been divided by factor of 63 compared to the simulation
based approach. Our future work is focused on the case of
quantization by truncation.
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APPENDIX

This section demonstrates the increase of 6 · p dB of the noise
power when all fixed-point data formats are increased of p
bits. The output noise is given by the expression (4).

The output noise power Pb is presented in [16]. In our
case, the rounding quantization mode is considered. Thus,
noise means are equal to zero and the output noise power is
given by the following relation:

Pb =
Ne∑

i=1

σ2
bi
Li (A.1)

with σ2
bi

the variance of the noise source bi(n). The terms Li
are constants computed with impulse response terms hi and
independent of the fixed-point formats [16]:

Li =
∞∑

k=0

E
[
hi(k)2] (A.2)

with qi the quantization step of the data after the quanti-
zation process which generates the noise bi(n). The term
k is the number of bits that have been eliminated by the
quantization process.

Let us consider that p bits are added to each fixed-point
data format. In that case, the new quantization step q′i is
equal to:

q′i =
qi
2p
. (A.3)

Thus, the new noise variance σ ′2bi is given by:

σ ′2bi =
q′2i
12
= q2

i

12∗22p =
σ2
bi

22p . (A.4)

As terms Li are constant and independent from fixed-
point data formats, the new output noise power P′b becomes:

P′b =
Pb
22p . (A.5)

By expressing the noise power in dB, the following
expression is obtained

P′bdB
= 10 · log10

(
P′b
)

= 10 · log10

(
Pb
22p

)

= 20 · p · log10(2) + log10

(
Pb
)

= 6 · p + PbdB .

(A.6)

This expression demonstrates the assumption that the
increase of p bits of all fixed-point data formats increases the
noise level of 6 · p dB.
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