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reduce the optimization and design times, analytical models are used for the fixed-point optimization process.
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1. INTRODUCTION

Advances in VLSI technology offer the opportunity to inte-
grate hardware accelerators and heterogenous processors in
a single chip (system-on-chip) or to obtain FPGAs with sev-
eral millions of gate equivalent. Thus, complex signal pro-
cessing applications can be now implemented in embedded
systems. For example, the third generation of mobile com-
munication system requires implementing in a digital plat-
form the wide band code division multiple access (WCDMA)
transmitter/receiver, a turbo-decoder, and different codecs
for voice (AMR), image (JPEG), and video (MPEG4). The
application time-to-market requires reducing the system de-
velopment time and thus, high-level design tools are needed.
To bridge the gap between the available gate count and the
designer productivity, design reuse approaches [1] based on
intellectual properties (IP) blocks have to be used. The de-
signer assembles predesigned and verified block to realize the
architecture.

To reduce the cost and the power consumption, the fixed-
point arithmetic has to be used. Nevertheless, the application
fixed-point specification has to be determined. This specifi-
cation defines the integer and fractional word length for each
data. The data dynamic range has to be estimated for com-
puting the data binary-point position corresponding to the
data integer word length. The fractional part word length
depends on the operators word length. For efficient hard-
ware implementation, the chip size and the power consump-
tion have to be minimized. Thus, the goal of this hardware

implementation is to minimize the operator word length as
long as the desired accuracy constraint is respected.

From an arithmetic point of view, the available IP blocks
are limited. In general, the IP user can only configure the in-
put and output word length and sometimes the word length
of some specific operators. Thus, the fixed-point conversion
has to be done manually by the IP user. This manual fixed-
point conversion is a tedious, time-consuming, and error-
prone task. Moreover, the fixed-point design search space
cannot be explored easily with this approach.

Algorithm level optimization is an interesting and prom-
ising opportunity in terms of computation quality. For a
specific application, like a linear time-invariant filter, differ-
ent structures can be tested. These structures lead to dif-
ferent computation accuracy. As shown in the experiment
presented in Section 5, for a same architecture the signal-
to-quantization-noise ratio (SQNR) can vary from 30 dB to
62 dB for different structures. Thus, this search space must
be explored and the adequate structure must be chosen to
reduce the chip size and the power consumption. This algo-
rithm level search space cannot be explored easily with avail-
able IPs without a huge exploration time. Indeed, the com-
putation accuracy evaluation is based on fixed-point simula-
tions.

In this paper, a new kind of IP optimized in terms of
fixed-point arithmetic is presented. The fixed-point conver-
sion is automatically achieved through the determination of
the integer and fractional part word lengths. These IPs are
configurable according to accuracy constraints influencing
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the algorithm quality. The IP user specifies the accuracy con-
straint and the operator word lengths are automatically op-
timized. The optimal operator word lengths which minimize
the architecture cost and respect the accuracy constraint are
then searched. The accuracy constraint can be determined
from the application performances through the technique
presented in [2].

The computation accuracy is evaluated with analytical
approaches to reduce dramatically the optimization time
compared to simulation-based approach. Moreover, our an-
alytical approach allows exploring the algorithm level search
space in reasonable time.

In this paper, our method is explained through the least
mean square (LMS), delayed-LMS (DLMS) applications, and
infinite impulse response (IIR) filter. The paper is organized
as follows. After a review of the available IP generators, our
approach is presented in Section 3. The fixed-point opti-
mization process is detailed in Section 4. Finally, the interest
of our approach is underlined with several experiments in
Section 5. In each section, the LMS/DLMS application case
is developed and the experiments are detailed with IIR appli-
cations also.

2. RELATED WORKS

To provide various levels of flexibility, IP cores can be classi-
fied into three categories corresponding to hard, soft, or firm
cores [1]. Hard IP cores correspond to blocks defined at the
layout level and mapped to a specific technology. They are
often delivered in masked-level designed blocks (e.g., GDSII
format). These cores are optimized for power, size, or per-
formance and are much more predictable. But, they depend
on the technology and lead to minimum flexibility. Soft IP
cores are delivered in the form of synthesizable register trans-
fer (RT) or behavioral levels hardware description languages
(e.g., VHDL, Verilog, or SystemC) code and correspond to
the IP functional descriptions. These cores offer maximum
flexibility and reconfigurability to match the IP user require-
ments. Firm IP cores are a tradeoff between the soft and hard
IP cores. They combine the high performances of hard cores
and the flexibility of soft cores but are restricted in terms of
genericity.

To obtain a sufficient level of flexibility, only soft cores
are considered in this paper. For soft cores, FPGA vendors of-
ten provide a library of classical DSP functions. For most of
these blocks, different parameters can be set to customize the
block to the specific application [3]. Especially, the data word
length can be configured. The user sets these different IP pa-
rameters, and the complete RTL code is generated for this
configuration. Nevertheless, the link between the application
performances and the data word length is not immediate. To
help the user to set the IP parameters, some IP providers sup-
ply a configuration wizard (Xilinx generator, Altera Mega-
Function). The different data word lengths for the IP can be
restricted to specific values and all the word lengths cannot be
tested. In these approaches, the determination of the binary-
point position is not automated and must be done manually
by the IP user. This task is tedious, time consuming, and er-
ror prone.

The different tools provided by AccelChip integrate an IP
generator core (AccelWare) [4] and assist the user to achieve
the floating-point to fixed-point conversion [5, 6]. The ef-
fect of finite word length arithmetic can be evaluated with
Matlab fixed-point simulations. The data dynamic range is
automatically evaluated by using the interval arithmetic and
the binary-point positions are computed from these infor-
mation. Then, a fixed-point Matlab code is generated to eval-
uate the application performances. Thus, the user sets man-
ually the data word length with general rules and modifies
them to explore the fixed-point design space. This approach
helps the user to convert into fixed-point but does not al-
low exploring the design space by minimizing the architec-
ture cost under accuracy constraint.

This approach has been extended in [7, 8] to minimize
the hardware resources by constraining the quantization er-
ror into a specified limit. This optimization is based on an
iterative process made up of data word length setting and
fixed-point simulations with Matlab. First of all, a coarse
grain optimization is applied. In this case, all the data have
the same word length. When the obtained solution is closed
to the objective, a fine grain optimization is achieved to get
a better solution. The different data can have their own word
length. This fine grain optimization cannot be applied di-
rectly because it will take a long time to converge.

This accuracy evaluation approach suffers from a major
drawback which is the time required for the simulation [9].
The simulations are made on floating-point machines, and
the extra-code used for emulating the fixed-point mecha-
nisms increases the execution time between one and two or-
ders of magnitude compared to a traditional simulation with
floating-point data types [10]. For obtaining an accurate es-
timation of the noise statistic parameters, a great number of
samples must be taken for the simulation. This great num-
ber of samples, combined with the increase of execution time
due to the fixed-point mechanisms emulation, leads to long
simulation time.

This approach becomes a severe limitation when these
methods are used in the process of data word length op-
timization where multiple simulations are needed to ex-
plore the fixed-point design space. To obtain reasonable op-
timization times, heuristic search algorithms like the coarse-
grain/fine-grain optimization are used to limit this design
space.

Moreover, these approaches test a unique structure for
an application. This tool does not explore the algorithm level
search space to find the adequate structure which minimizes
the chip size or the power consumption for a given accuracy
constraint.

3. IP GENERATION METHODOLOGY

3.1. IP generation flow

The aim of our IP generator is to provide an RTL-level VHDL
code for an IP with a minimal architecture cost. The archi-
tecture cost corresponds to the architecture area, the energy
consumption, or the power consumption. This IP generator,
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Figure 1: Methodology for the fixed-point IP generation.

presented in Figure 1, is made up of three modules corre-
sponding to the algorithm level exploration, the fixed-point
conversion, and the back end which generates the RTL level
VHDL code.

The aim of the algorithm level exploration module is to
find the structure which leads to minimal architecture cost
and fulfils the computation accuracy constraints. This mod-
ule tests the different structures for a given application, to se-
lect the best one in terms of architecture cost. For each struc-
ture, the fixed-point conversion process searches the specifi-

cation which minimizes the architecture cost C(�b) under an

accuracy constraint where �b is the vector containing the data
word lengths of all variables. The conversion process returns

the minimal cost Cmin(�b) for the structure which is selected.
The main part of the IP generator corresponds to the

fixed-point conversion process. The aim of this module is to
explore the fixed-point search space to find the fixed-point
specification which minimizes the architecture cost under ac-
curacy constraints. The first stage corresponds to the data dy-
namic range determination. Then, the binary-point position
is deduced from the dynamic range to ensure that all data val-
ues can be coded to prevent overflow. The third stage is the

data word length optimization. The architecture cost C(�b)
(area, energy consumption) is minimized under an accuracy
constraint as expressed in the following expression:

min
(
C(�b)

)
with SQNR(�b) ≥ SQNRmin, (1)

where �b represents all data word length and SQNRmin

the accuracy constraint. The optimization process requires

evaluating the architecture cost C(�b) and the computa-

tion accuracy SQNR(�b) defined through the signal-to-quan-
tization-noise ratio (SQNR) metric. This metric corresponds
to the ratio between the signal power and the quantization
noise power due to finite word length effect. These two pro-
cesses are detailed in Sections 4.1 and 4.2. To determine the
parallelism level K which allows respecting the throughput
constraint, the architecture execution time is evaluated as ex-
plained in Section 3.3.2. Once the different operator word
lengths and the parallelism level are defined, the VHDL code
representing the architecture at the RTL level is generated.

3.2. User interface

The user interface allows setting the different IP parameters
and constraints. The user defines the different parameters as-
sociated with the application. For example, for linear-time-
invariant filters, the user specifies the transfer function. For
the least-mean-square (LMS) adaptive filter, the filter size or
the adaptation step can be specified.

For the fixed-point conversion, the dynamic range evalu-
ation and the computation accuracy require different infor-
mation on the input signal. The user gives the dynamic range
and test vectors for the input signals.

For generating the optimized architecture, the user de-
fines the throughput and the computation accuracy con-
straints. The throughput constraint defines the output sam-
ple frequency and is linked to the application sample fre-
quency. Different computation accuracy constraints can be
considered according to the application. For the LMS, the
output SQNR is used. For linear-time-invariant filters, three
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Figure 2: LMS/DLMS algorithm.

constraints are defined. They correspond to the maximal fre-
quency response deviation |ΔHmax(ω)| due to finite word
length coefficient, the maximal value of the power spectrum
for the output quantization noise |Bmax(ω)|, and the SQNR
minimal value SQNRmin.

3.3. Architecture model

3.3.1. Generic architecture model

Architecture performances depend on algorithm structure.
Thus, a generic architecture model is defined for each kind of
structure associated with the targeted algorithm. This model
can be configured according to the parameters set by the IP
user. This architecture model defines the processing and con-
trol units, the memory, and the input and output interfaces.
The processing unit corresponds to a collection of arithmetic
operators, registers, and multiplexors which are intercon-
nected. These operators and the memory are extracted from
a library associated with a given technology. The control unit
generates the different control signals which manage the pro-
cessing unit, the memory, and the interface. This control unit
is defined with a finite state machine. To explore the search
space in reasonable time, analytical models are used for eval-
uating the architecture cost, the architecture latency, and the
parallelism level.

LMS/DLMS architecture

In this part, the architecture of the IP LMS example is
detailed. The least-mean-square (LMS) adaptive algorithm,
presented in Figure 2, estimates a sequence of scalars yn from
a sequence of N-length input sample vectors xn [11]. The lin-
ear estimate of yn is wt

nxn, where wn is an N-length weight
vector which converges to the optimal vector wopt. The vec-
tor wn is updated according to the following equation:

wn+1 = wn + μxnen−D with en = yn −wt
nxn, (2)

where μ is a positive constant representing the adaptation
step. The delay D is null for the LMS algorithm and differ-
ent from zero for the delayed-LMS (DLMS).

The architecture model presented in Figure 3 consists of
a filter part and an adaptation part to compute the new co-
efficient value. To satisfy the throughput constraint, the filter
part and the adaptation part can be parallelized. For the fil-
ter part, K multiplications are used in parallel and for the
adaptation part K multiply-add (MAD) patterns are used in

parallel. The different data word lengths�b in this architecture
are bx for the input filter, bm for the filter multiplier output,
bh for the filter coefficient, and be for the filter output.

To accelerate the computation, the processing is pipe-
lined and the operators work in parallel. Let Tcycle be the
cycle-time corresponding to the clock period. This cycle-time
is equal to the maximum value between multiplier and adder
latency. The filter part is divided into several pipeline stages.
The first stage corresponds to the multiply operation. To add
the different multiplication results, an adder based on a tree
structure is used. This tree is made up of log2(K) levels. This
global addition execution is pipelined. Let LADD be the num-
ber of additions which can be executed in one cycle-time.
Thus, the number of pipeline stages for the global addition
is given by the following expression:

MADD =
⌈

log2(K)
LADD

⌉
with LADD =

⌈
Tcycle

tADD 1

⌉
, (3)

where tADD 1 is the 2-input adder latency. The last pipelined
stage for the filter part corresponds to the final accumulation.
The adaptive part is divided into three pipeline stages. The
first one is for the subtraction. The second stage corresponds
to the multiplication and the final addition composes the last
stage.

3.3.2. Parallelism level determination

To satisfy the throughput constraint specified by the IP us-
er, several operations have to be executed in parallel. The
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Figure 3: Generic architecture for the LMS/DLMS IP.

parallelism level is determined such that the architecture la-
tency is lower than the throughput constraint. To solve this
inequality, the operator latency has to be known and this la-
tency depends on the operator word length. Firstly, the oper-
ator word lengths are optimized with no parallelism. The ob-
tained operator word lengths allow determining the operator
latency. Secondly, the parallelism level is computed from the
throughput constraint, and then the operator word lengths
are optimized with the parallelism level real value.

LMS/DLMS architecture

In this part, the architecture of the IP LMS example is de-
tailed. The LMS architecture is divided into two parts corre-
sponding to the filter part and the adaptation part. The ex-
ecution time of the filter part is obtained with the following
expression:

TFIR = N

K
Tcycle + MADDTcycle + Tcycle. (4)

The execution time of the adaptation part is given by

TAdapt = Tcycle +
N

K

(
Tcycle

)
+ Tcycle. (5)

The system throughput constraint depends on the chosen
algorithm. For the LMS algorithm, the sampling period Te

must satisfy the following expression:

TFIR + TAdapt < Te. (6)

Even if the delayed-LMS algorithm has a slower conver-
gence speed compared to the LMS Algorithm, as the error
is delayed, the filter part and the adaptation part can be
computed in parallel which gives to the DLMS a potentially
higher execution frequency. The constraints become

TFIR < Te, TAdapt < Te. (7)

The parallelism level is obtained by solving analytically
expressions (6) and (7).

3.4. Dynamic range evaluation

Two kinds of method can be used for evaluating the data dy-
namic range of an application. The dynamic range of a data
can be computed from its statistical parameters obtained
by a floating-point simulation. This approach estimates ac-
curately the dynamic range with the signal characteristics.
Nevertheless, overflow can occur for signals with different
statistics. The second method corresponds to analytical ap-
proaches which allow computing the dynamic range from
input data dynamic range. These types of methods guaran-
tee that no overflow occurs but lead to more conservative re-
sults. Indeed, the dynamic range expression is computed in
the worst case. The determination of the data dynamic range
is obtained by the interval arithmetic theory [12]. The opera-
tor output data dynamic range is determined by its input dy-
namic using propagation rules. For linear time-invariant sys-
tems, the data dynamic range can be computed from the L1
or Chebychev norms [13] according to the frequency char-
acteristics of the input signal. These norms allow computing
the dynamic range of a data in the case of nonrecursive and
recursive structures with the help of the computation of the
transfer function between the data and each input. For an
adaptive filter like the LMS/DLMS, a floating-point simula-
tion is used to evaluate the data dynamic range.

To determine the binary-point position of a data, an
arithmetic rule is supplied. The binary-point position mx of
a data x is referenced from the most significant bit as pre-
sented in Figure 4. For a data x, the binary-point position is
obtained from its dynamic range Dx with the following rela-
tion:

mx =
⌈

log 2
(
Dx
)⌉

with Dx = max
(∣∣x(n)

∣
∣). (8)

A binary-point position is assigned to each operator in-
put and output and a propagation rule is applied for each
kind of operators (adder, multiplier, etc.) [14]. Scaling op-
erations are inserted in the graph to align the binary point
position in the case of addition or to adapt the binary-point
position to the data dynamic range.
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4. FIXED-POINT OPTIMIZATION

The fixed-point specification is optimized through the ar-
chitecture cost minimization under a computation accuracy
constraint. In this section, the architecture cost and the com-
putation accuracy evaluation are detailed and then, the algo-
rithm used for the minimization process is presented.

4.1. Computation accuracy evaluation

The computation accuracy evaluation based on analytical ap-
proach is developed in this part. Quantization noises are de-
fined and modelized, and their propagation through an oper-
ator is studied. Then, the expression of the output quantiza-
tion noise power is detailed for the different kinds of systems.

4.1.1. Noise models

The use of fixed-point arithmetic introduces an unavoidable
quantization error when a signal is quantized. A well-known
model has been proposed by Widrow [15] for the quantiza-
tion of a continuous-amplitude signal like in the process of
analog-to-digital conversion. The quantization of a signal x
is modeled by the sum of this signal and a random variable
bg . This additive noise bg is a stationary and uniformly dis-
tributed white noise that is not correlated with the signal x
and the other quantization noises. This model has been ex-
tended for modeling the computation noise in a system re-
sulting from the elimination of some bits during a cast oper-
ation (fixed-point format conversion), if the number of bits
eliminated k is sufficiently high [16, 17].

These noises are propagated in the system through op-
erators. These models define the operator output noise as a
function of the operator inputs. An operator with two inputs
X and Y and one output Z is under consideration. The in-
puts X and Y and the output Z are made up, respectively,
of a signal x, y, and z and a quantization noise bx, by and
bz. The operator output noise bz is the weighted sum of the
input noises bx and by associated, respectively, with the first
and second inputs of the operation. Thus, the function fγ ex-
pressing the output noise bz from the input noises is defined
as follows for each kind of operation γ (γ ∈ {+,−,×,÷})
[18]:

bz = fγ
(
bx, by

) = α(1) · bx + α(2) · by. (9)

The terms α(1) and α(2) are associated with the noise lo-
cated, respectively, on the first and second inputs of the op-
eration. They are obtained only from the signal x and y and
include no noise term. They are represented on Table 1.

Table 1: Different values of the terms α(1) and α(2) of (9) for differ-
ent operations {+,−,×,÷}.

Operator Value of α(1) Value of α(2)

Z = X ± Y 1 1

Z = X × Y y x

Z = X

Y

1
y

− x

y2

4.1.2. Output quantization noise power

Let us consider, a nonrecursive system made up of Ne inputs
xj and one output y. For multiple-output system, the ap-
proach is applied for each output. Let ŷ be the fixed-point
version of the system output. The use of fixed-point arith-
metic gives rise to an output computation error by which is
defined as the difference between ŷ and y. This error is due
to two types of noise sources. An input quantization noise is
associated with each input x̂ j . When a cast operation occurs,
some bits are eliminated and a quantization noise is gener-
ated. Each noise source is a stationary and uniformly dis-
tributed white noise that is uncorrelated with the signals and
the other noise sources. Thus, no distinction between these
two types of noise sources is done. Let Nq be the number of
noise sources. Each quantization noise source bqi is propa-
gated inside the system and contributes to the output quan-
tization noise by through the gain υi as presented in Figure 5.
The analytical approach goal is to define the power expres-
sion of the output noise by according to the noise source bqi
parameters and the gains υi between the output and the dif-
ferent noise sources.

Linear time-invariant system

For linear time-invariant (LTI) systems, the gain αi is ob-
tained from the transfer function Hi(z) between the system
output and the noise source bqi . Let mb′qi

and σ2
b′qi

be, re-

spectively, the mean and the variance of the noise source
bqi . Thus, the output noise power Pby corresponding to the
second-order moment is obtained with the following expres-
sion [13]:

Pby =
Nq∑

i=0

σ2
b′qi
· 1

2π

∫ π

−π

∣
∣Hi

(
e jΩ
)∣∣2

dΩ+
(
mb′qi

Hi(1)
)2
. (10)

This equation is applied to compute the output noise
power of the IIR applications.
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Nonlinear and nonrecursive systems

For the nonrecursive system, each noise bqi is propagated
throughKi operations oki , and leads to the b′qi noise at the sys-
tem output. This noise is the product of the bqi input quan-
tization noise source and the different αk signals associated
with each oki operation involved in the propagation of the bqi
noise source.

b′qi = bqi

Ki∏

k=1

αk = bqiυi with υi =
Ki∏

k=1

αk. (11)

For a system made up of Nq quantization noise sources,
the output noise by can be expressed as follows:

by =
Ns−1∑

i=0

b′qi =
Ns−1∑

i=0

bqiυi. (12)

Given that the bqi noise source is not correlated with any
υi signal and with the other bqj noise sources, the output
noise power is obtained with the following expression [18]:

Pby =
Ns∑

i=0

E
(
b2
qi

)
E
(
υ2
i

)
+ 2

Ns∑

i=0

Ns∑

j=0
j>i

E
(
bqi
)
E
(
bqj

)
E
(
υiυj

)
.

(13)

The computation of the noise power expression pre-
sented in (13) requires the knowledge of the statistical pa-
rameters associated with the noise sources bqi and the signal
υi.

Adaptive systems

For each kind of adaptive filter, an analytical expression of the
global noise power can be determined. This expression is es-
tablished using algorithm characteristics. For gradient-based
algorithms, an analytical expression has been developed to
compute the output noise power for the LMS/NLMS in [19]
and for the affine projection algorithms (APA).

The LMS/DLMS algorithm noise model is presented in
the rest of this part. The different noises are presented in

Figure 2. With fixed-point arithmetic, the updated coeffi-
cient expression (2) becomes

w′n+1 = w′n + μe′nx
′
n + γ

n
, (14)

where γ
n

is the noise associated with the term μe′nx′n and de-
pends on the way the filter is computed. The error in finite
precision is given by

e′n = y′n −w′tn x
′
n − ηn (15)

with ηn the global noise in the inner product w′tn x′n. This
global noise is the sum of each multiplication output noise
and output accumulation noise:

ηn =
N−1∑

i=0

vn(i) + un. (16)

Moreover, a new term ρ
n

is introduced:

ρ
n
= w′n −wn, (17)

which is the N-length error vector due to the quantization
effects on coefficients. This noise cannot be considered as the
noise due to a signal quantization. The mean of each term is
represented by m whereas σ2 represents its variance and can
be determined as explained in [17].

The study is made at steady-state, once the filter coef-
ficients have converged. The noise is evaluated at the filter
output. The power of the error between filter output in finite
precision and in infinite precision is determined. It is com-
posed of three terms:

E
(
by
)2 = E

(
αtnwn

)2
+ E
(
ρt
n
xn
)2

+ E
(
η2
n

)
. (18)

At the steady state, the vector wn can be approximated by
the optimum vector wopt. So the term E(αtnwn)2 is equal to
|wopt|2(m2

α + σ2
α) with |wopt|2 =

∑
w2

opti
.

The second term E(η2
n) depends on the specific imple-

mentation chosen for the filter output computation (filtered
data).

The last term is detailed in [19] and is equal to

E
(
ρt
n
xn
)2 = m2

γ

∑N
i=1

∑N
k=1

(
R−1
ki

)

μ2
+
N
(
σ2
γ −m2

γ

)

2μ
. (19)

4.2. Architecture cost evaluation

The IP processing unit is based on a collection of operators
extracted from a library. This library contains the arithmetic
operators, the registers, the multiplexors, and memory banks
for the different possible word lengths. Each library element li
is automatically generated and characterized in terms of area
Ari and energy consumption Eni using scripts for the synop-
sys tools. The IP architecture area (ArIP) is the sum of the dif-
ferent IP basic element area and the IP memory as explained
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Table 2: Different structure complexity for the 8th-order IIR filter.

Kinds of
structure

Cell
order

Number of
cells

Filter complexity

Addition Multiplication Storage Coefficients

8 1 16 17 15 17

Direct form I 4 2 16 18 15 18

2 4 16 20 15 20

8 1 16 17 12 17

Direct form II 4 2 16 18 12 18

2 4 16 20 12 20

8 1 16 17 12 17

Transposed form II 4 2 16 18 12 18

2 4 16 20 12 20

in expression (20). Let IParchi be the set of all elements set-
ting up the IP architecture. The different element area Ari
depends on the element word length bi:

ArIP(�b) =
∑

li∈IParchi

Ari
(
bi
)
. (20)

The IP energy consumption (EnIP) is the sum of different
operation energy consumption executed to compute the IP
algorithm output as explained in expression (21). These op-
erations include the arithmetic operations, the data transfer
between the processing unit and the memory (read/write).
Let IPops, be the set of all operations executed to compute
the output. The different En j operation energy consumption
depends on the operation bj word length

EnIP(�b) =
∑

l j∈IPops

En j
(
bj
)
. (21)

The En j operation energy consumption is evaluated
through simulations with synopsys tool. The mean energy is
computed from the energy obtained for 10 000 random input
data.

4.3. Optimization algorithm

For the optimization algorithm, operations are classified into
different groups. A group contains the operations executed
on the same operator, and thus these operations will have
the same word length corresponding to the operator word
length. All group word lengths are initially set to their max-
imum value. So the accuracy constraint must be satisfied.
Then, for each group, the minimum value still verifying the
accuracy constraint is determined, whereas all other group
word lengths keep their maximum value. Next, all groups are
set to their minimum value. The group for which the word
length increases gives the highest ratio between accuracy con-
straint and the cost has its word length incremented until sat-
isfying the accuracy constraint. Finally, all word lengths are
optimized under the accuracy constraint.

5. EXPERIMENTS AND RESULTS

Some experiments have been made to illustrate our method-
ology and to underline our approach efficiency. Two applica-
tions have been tested, an 8th-order IIR filter and a 128-tap
LMS/DLMS algorithm. The operator library has been gener-
ated from 0.18 μm CMOS technology. Each library element
is automatically generated and characterized in terms of area
and energy consumption using scripts for the synopsys tools.

5.1. IIR filter

5.1.1. IIR IP description

In this part, an infinite impulse response filter (IIR) IP is un-
der consideration. Let NIIR be the filter order. Three types of
structure corresponding to direct form I, direct form II, and
transposed form II can be used [13]. For high-order filter,
cascaded versions have to be tested. The cell order (Ncell) can
be set from 2 to NIIR/2 if NIIR is even or from 2 to (NIIR − 1)/2
if NIIR is odd. The cell transfer functions are obtained with
the factorization of the numerator and denominator poly-
nomials. The complexity of the different IIR filter configura-
tions are presented in Table 2 for an 8th-order IIR filter.

For a cascaded version of the IIR filter, the way that the
different cells are organized is important. Thus, different cell
permutations must be tested. For the 4th-order cell three dif-
ferent couples of cell transfer functions can be obtained and
for each couple, two cell permutations can be tested. For the
2nd-order cell, 24 cell permutations are available. For this 8th
IIR filter, the three different types of structure, the different
cell orders, the different factorization cases, and the different
cell permutations have been tested. It leads to 93 different
structures for the same application.

5.1.2. Fixed-point optimization

Coefficient word length optimization

The fixed-point optimization process for the IIR filter is
achieved in two steps. First, the coefficient word length bh is
optimized to limit the frequency response deviation |ΔH(ω)|
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due to the finite word length coefficients as in the following
equation:

min
(
bh
)

with
∣
∣ΔH(ω)

∣
∣ ≤ ∣∣ΔHmax(ω)

∣
∣. (22)

The maximal frequency response deviation |ΔHmax(ω)|
has been chosen such that the frequency response obtained
with the fixed-point coefficient remains in the filter template.
Moreover, the filter stability is verified with the fixed-point
coefficient values. The results obtained for the 8th-order fil-
ter obtained with the cascaded and the noncascaded version
are presented in Table 3. For high-order cell, the coefficients
have greater value, so, more bits are needed to code the inte-
ger part. Thus, to obtain the same precision for the frequency
response, the coefficient word length must be more impor-
tant for high-order cell. To simplify, a single coefficient word
length is under consideration. Nevertheless, to optimize the
implementation, the coefficients associated with the same
multiplication operator can have their own word length.

Signal word length optimization

The second step of the fixed-point optimization process cor-
responds to the optimization of the signal word length. The
goal is to minimize the architecture cost under computation
accuracy constraints. With this filter IP, two accuracy con-
straints are taken into account. They correspond to the power
spectrum maximal value for the output quantization noise
|Bmax(ω)| and the SQNR minimal value SQNRmin

min
(
C(�b)

)
with

SQNR(�b) ≥ SQNRmin,
∣∣B(ω)

∣∣ ≤ ∣∣Bmax(ω)
∣∣.

(23)

The computation accuracy has been evaluated through
the SQNR for the 93 structures to analyze the difference be-
tween these structures. This accuracy has been evaluated with
a classical implementation based on 16 × 16 → 32- bit mul-
tiplications and 32- bit additions. For the noncascaded filter
the quantization noise is important and leads to a nonstable
filter. The results are presented in Figure 6 for the filter based
on 2nd-order cells and 4th-order cells.

The results obtained for the transposed form II are those
obtained with the direct form I with an offset. This offset
is equal to 7 dB for the filter based on 2nd-order cells, and
9 dB for the filter based on 4th-order cells. These two filter
types have the same structure except that the adder results
are stored in memory for the transposed form II. This mem-
ory storage adds a supplementary noise source. Indeed, in
the memory the data word lengths are reduced.

The analysis of the results obtained that for the direct
form I and the direct form II, none of these two forms is al-
ways better. The results depend on the cell permutations. In
the case of filter based on 2nd-order cells, the SQNR varies
from 42 dB to 57 dB for the direct form I and from 50 dB
to 61 dB for the direct form II. In the case of filter based on
4th-order cells, the SQNR varies from 30 dB to 45 dB for the
direct form I and from 26 dB to 49.5 dB for the direct form
II. Thus, the choice of filter form cannot be done initially and
all the structures and permutations have to be tested.

Table 3: IIR filter coefficient word length.

Cell order Optimized coefficient word length

8 24

4 15

2 13

The IP architecture area and energy consumption have
been evaluated for the different structures and for two accu-
racy constraints corresponding to 40 dB and 90 dB. The re-
sults are presented in Figure 7 for the power consumption
and in Figure 8 for the IP architecture area. To underline the
IP architecture area variation due to operator word length
changes, the throughput constraint is not taken into account
in these experiments in the case of IIR filter. Thus, the num-
ber of operators for the IP architecture is identical for the
different tested structures.

As shown in Figure 6, the filters based on 4th-order cells
lead to SQNR with lower values compared to the filters based
on 2nd-order cells. Thus, these filters require operator with
greater word length to fulfill the accuracy constraint. This
phenomenon increases the IP architecture area as shown in
Figure 8. Nevertheless, these filters require less operations to
compute the filter output. This reduces the power consump-
tion compared to the filters based on 2nd-order cells. Thus,
the energy consumption is slightly greater for the filters based
on 4th-order as shown in Figure 8.

The energy consumption is more important for the direct
form I because this structure requires more memory accesses
to compute each filter cell output. For the transposed form
II and direct form II, the results are closed. The best solution
is obtained for the transposed form II with 2nd-order cells
and leads to an energy consumption of 1.6 nJ for the 40 dB
accuracy constraint and to 2.7 nJ for the 90 dB accuracy con-
straint. As shown in Figure 6, this structure gives the lowest
SQNR, thus, the operator word length is greater than that for
the other forms. Nevertheless, this form consumes less en-
ergy because it requires less memory accesses than the direct
form II. In the direct form II the memory transfers corre-
spond to the read of the signal to compute the products with
the coefficients and the memory write to update the delay
taps. In the transposed form II, the memory accesses corre-
spond only to the storage of the adder output.

Compared to the best solution the other structures based
on 2nd-order cells leads to a maximal energy over cost of
36% for the 40 dB accuracy constraint and to 53% for the
90 dB accuracy constraint. For the structures based on 4th-
order cells the maximal energy over cost is equal to 48% for
the 40 dB accuracy constraint and to 71% for the 90 dB accu-
racy constraint.

The architecture area, is more important for the filters
based on 4th-order cells. As explained before, these filters
lead to SQNR lower value compared to the filters based on
2nd-order cells. Thus, they require operators with greater
word length to fulfill the accuracy constraints. The best solu-
tion obtained for the direct form II with 2nd-order cells leads
to an architecture area of 0.3 mm2 for the 40 dB accuracy
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Figure 6: Fixed-point accuracy versus permutations and cell structures.
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Figure 7: Energy consumption evolution versus cell permutations and cell order.

constraint and to 0.12 mm2 for the 90 dB accuracy con-
straint. Compared to this best solution the other structures
based on 2nd-order cells lead to a maximal area over cost of
100% for the 40 dB accuracy constraint and to 40% for the
90 dB accuracy constraint. For the structures based on 4th-
order cells the maximal energy over cost is equal to 225% for

the 40 dB accuracy constraint and to 74% for the 90 dB accu-
racy constraint.

The best structure depends on the kind of architecture
cost. The results are different for the architecture area and
for the energy consumption. These results underline the op-
portunities offered by the algorithm level optimization to
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Figure 8: IP architecture area versus permutations cells and cells order.

optimize the architecture cost and the necessity to test the
different structures and to select the best one.

For a given structure, the IP architecture area and power
consumption evolve linearly according to the SQNR con-
straint. Between a 40 dB and 90 dB constraints, the energy
varies from a factor 1.68 and the area from a factor 4. These
results underline the necessity to choose the adapted accu-
racy constraint in order not to waste energy or area.

5.2. LMS and DLMS algorithms

The LMS and DLMS IP blocks have been used for different
experiments to underline the necessity to optimize the opera-
tor and memory word lengths under an accuracy constraint.
The IP users have to supply the reference and input signal.
For the architecture generation, the throughput constraintTe

and the accuracy constraint SQNRmin must be defined.
The LMS and DLMS IP blocks have been tested for dif-

ferent values of the throughput constraint Te and the accu-
racy constraint SQNRmin. For each Te and SQNRmin value,
the operator and memory word lengths are optimized under
the accuracy constraint. Then, the architecture is generated.
The architecture area, the parallelism level, and the energy
consumption are calculated by simulation and the results are
presented, respectively, in Figures 9(a), 9(b), and 9(c) for a
timing constraint between 60 ns and 170 ns and for an accu-
racy constraint between 30 dB and 90 dB.

The evolution of the energy consumption according
to the accuracy constraint is presented in Figure 9(c). In
our model, the energy consumption is independent of the
throughput constraint and the power can be estimated by

dividing the energy by the throughput period. The energy
consumption varies from 4 nJ to 8.1 nJ for an accuracy con-
straint going from 30 dB to 90 dB. The energy is multiplied
by two between these two accuracy constraints. This energy
consumption increase is only due to the growth of the ar-
chitecture element word length. To fulfill the accuracy con-
straint, the operator word length has to be increased.

The evolution of the IP architecture area according to the
accuracy and throughput constraints are presented in Fig-
ures 9(a) and 9(b). For the minimal accuracy and throughput
constraints, the architecture area is equal to 0.3 mm2 with a
parallelism level of K = 4. The architecture area climbs to
9 mm2 with a parallelism level of K = 20 for the maximal
accuracy and throughput constraints. The architecture area
increases when the timing constraint decreases. Indeed, to
respect this constraint, the parallelism level K must be more
important. More operators are needed and thus the process-
ing unit area is increased. The architecture area increases
with the accuracy constraint. High values of accuracy con-
straint require using operators and data with a greater word
length. Thus, it increases the energy consumption and the
area of the processing and memory units, and moreover, the
operator latency. Thus to respect the timing constraint, the
parallelism level K must be more important and the process-
ing unit area is increased.

Our results have been compared to a classical solution
based on 16 × 16 → 32- bit multiplications and 32- bit ad-
ditions. This solution leads to an SQNR of 52 dB. The cost
has been evaluated for the classical approach and our op-
timized approach for an accuracy constraint of 52 dB and
with different timing constraints. The results are presented
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Figure 9: Experiment results: architecture area, energy consumption, and parallelism level for different values of accuracy and timing
constraints.

in Figure 9(d). For the same computation accuracy our ap-
proach reduces the architecture area by 30% and the power
consumption by 23%.

6. CONCLUSION

In this paper, a new kind of fixed-point arithmetic IP has
been proposed. The architecture cost is minimized under
one or several accuracy constraints. This IP is based on a
library of operators and a generic architecture. The par-
allelism level is adapted to the timing and the computa-
tion accuracy constraints. The architecture cost and, espe-
cially, the computation accuracy are evaluated analytically
to reduce dramatically the evaluation time. This technique
allows exploring the fixed-point search space and thus
to find the fixed-point specification which optimizes the
implementation. Moreover, this analytical approach offers
the opportunity to explore the algorithm level search space
to find the optimal structure. The results presented for the
8th-order filter underline the interest of algorithm level op-
timization. The best structure can reduce significantly the IP

area and the energy consumption compared to some ineffi-
cient structures. For a 128-tap LMS filter, compared to a clas-
sical approach, and for the same computation accuracy, the
architecture area and the energy consumption are reduced,
respectively, by 30% and 23%. With our approach, the user
can optimize the tradeoff between the architecture cost, the
accuracy, and the execution time.
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more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


