
Control unit for parallel embedded system 
 

Stéphane Chevobbe, Raphael David, Frederic Blanc, Thierry Collette 
CEA-List DRT/DTSI/SARC/LCEI 

F-91191 Gif sur Yvette 
FRANCE 

{stephane.chevobbe,raphael.david,frederic.fblanc,thierry.collette}@cea.fr

Olivier Sentieys 
IRISA - ENSSAT 

6 rue de Kérampont 
22305 Lannion Cedex 

olivier.sentieys@enssat.fr
 
 

ABSTRACT 
New integration methodologies as IP reuse have become more 
and more popular since few years. These methodologies represent 
an opportunity to reduce the gap between the integration 
capacities and the ability of the designers to develop complex 
systems. SOC (System On Chip), that are composed of different 
heterogeneous cores, have taken benefit of these methodologies. 
Recent SOCs are usually Globally Asynchronous and Locally 
Synchronous and exploit a lot of parallelism. Up to now, research 
efforts have mainly been focused on the definition of new 
communication and processing primitives. Unfortunately, control 
mechanisms have not evolved as fast as the rest of the system. 
Besides, these devices are usually organized around a 
microprocessor supporting an operating system managing the 
execution of the different tasks on the processing primitives and 
their communications. We propose in this paper a hardware 
solution to manage tasks and communication in such parallel 
systems. This controller focus on the implementation of Petri nets 
and has the property to be reconfigurable and to self-manage its 
configurations. Physical implementation of this component has 
been done in 0.13µm technology. 
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1. Introduction 
In one hand, to take benefits from technology improvements 
while trying to reduce more and more design costs, recent design 
methodologies are based on IP reuse. In the other hand, to achieve 
more and more computing power new execution models are 
proposed. Here are introduced the main execution models 
proposed in the literature. 
Commercial products based on the SOC paradigm are often 
dedicated to specific domains. Those designs are usually based on 
a central CPU, which manages hardwired accelerators executing 
time-consuming tasks. For example, the platforms Nomadik 
architecture from STMicroelectronics [1] and the Nexperia [2] 
from Philips are dedicated to multimedia applications. They are 
composed of a central CPU which manages with I/O controllers 
and hardware accelerators optimize for audio or video. In these 
platforms the control is assumed by an OS running on the host 
processor. The main drawbacks of this kind of solutions are both 
the lack of scalability and their poor ability to execute parallel 
applications. Due to the CPU, the execution model of such SOC is 
too sequential to achieve high level of parallelism, and because of 
centralized control, these architectures can not be extended 
keeping the same organization. 

On the contrary, dataflow architectures propose to use a spatial 
distribution of tasks on the chip. IPs are connected by a network 
on chip and synchronizations between tasks are performed by the 
data [3]. As an example the RAPID architecture [4] is composed 
of ALU and memories elements connected by a reconfigurable 
network. These approaches are very efficient for regular 
applications, whose control flows can be statically predicted, but 
are not suitable for irregular ones.  

Hybrid architectures try to solve drawbacks of the two previous 
solutions by mixing them. Hybrid SOCs are composed of two 
kinds of resource. The first one is in charge of the task level 
control. The second one is composed of processing elements that 
can be eventually heterogeneous (specific data-path or 
reconfigurable structures). As example, DART is a reconfigurable 
coarse-grained architecture in which the operators and the data-
path are dynamically reconfigurable [5]. PACT proposes the XPP 
[6] architecture which is a dynamically reconfigurable data-path 
composed of DSP, ALU and memory elements. Even if these 
solutions offer some real advances in embedded computing, they 
still fail to cope with dynamic control flows which needs tight 
coupling between control and computations and reactive 
solutions. 

As we briefly show upper, the management of computation and 
exploitation of the potential parallelism of the application is a key 
for the system performance. The kind and the amount of 
parallelism may however significantly vary between two 
applications, and even between two implementation of a same 
application. Parallelism properties have thus to be extracted from 
the applications. 

It can be done by extracting and analyzing data-dependencies 
between these applications [7]. However, once extracted, the 
parallelism will also be limited by the computation model of the 
hardware structure. For example, SIMD architecture will only 
efficiently exploit similar independent tasks because of its control 
structure. Furthermore, hardware structures may add extra 
constraints to the system, such as the sharing of memories which 
imply the introduction of synchronization primitives in the 
application control flow.  

The aim of the study is to propose a control solution that 
does not add those extra constraints. The paper is organized as 
follow. The next section presents the control requirements at 
system level and a state of the art of hardware implementing Petri 
Nets. The third section introduces the RAMPASS platform and 
the fourth describes in detail our controller named RAC. The fifth 
section presents performances and implementation results of the 
architecture. 
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2. System control requirement 
2.1 Definition of control functionalities 
Control is defined as a process able to make decisions regarding a 
set of events and a history of previous taken decisions. Four kinds 
of control structures can be used to describe the control flow of an 
application: 
1 Free Choice: a set of actions is possible depending on the 

forthcoming events. In a software point of view this is 
equivalent to a “if…then…else…” structure. 

2 Parallel divergence: This control structure creates branches 
in the decision tree. It is equivalent to a fork instruction used 
in parallel language. 

3 Parallel Convergence: This control structure joins decision 
branches. It is equivalent to a join instruction used in parallel 
language. 

4 Mutual exclusion: This structure permits to manage 
synchronizations due to any shared resources. 

2.2 Control system and Petri net 
Finite state machines have been intensively used to describe the 
control flow of application in specific integrated circuit, it is not 
well suited for concurrency description. This model imposes to 
describe each states of the system, which can be enormous in case 
of concurrent behavior. Petri nets have been proposed as an 
alternative modeling formalism to exploit the advantages that they 
offer over automata models [8]. Petri net models are generally 
more compact and more powerful than automata models. They are 
a powerful formalism for describing and studying systems that are 
characterized as being concurrent, asynchronous, distributed, 
parallel and non deterministic [9]. 
A Petri Net is a particular kind of directed graph with an initial 
state called the initial marking. The underlying graph of a Petri 
net is a directed, weighted, bipartite graph consisting of two kinds 
of nodes, called places and transitions. Edges connect either a 
place to a transition and a transition to a place. A change in the 
net marking corresponds to the execution of actions (known as 
transition firing or occurrence). These changes occur according to 
the following basic rules: 

(a) a transition is enabled if every of its input places has 
at least one token; 

(b) any enabled transition can occurs. Their firing 
removes a token from each of the corresponding input places and 
insert a new token in all their output places; 

(c) enabled transitions can occur concurrently as long as 
they are independent, i.e., as long as they use different tokens. 
Different subclass of Petri net can be described according to their 
decision and modeling power. SMs (State Machine) admit no 
synchronization, MGs (Marked Graphs) admit no conflict, FCs 
(Free Choice) allows asymmetric confusion but disallow 
symmetric confusion which are admitted by PNs (Pure Net) [10].  
On a control point of view, the computational units in the system 
need only an untimed model, in this sense that there is only a 
sequence of actions that have to be completed. Some actions must 
occur before others to respect data precedence constraints and 
causality, whereas others can occur in parallel. No timing 
considerations are needed for the controller to guarantee this 
action scheduling. 

2.3 Related work 
The use of controllers based on Petri net is very large. The first 
architectures were dedicated to the control of asynchronous 
concurrent systems. A lot of others applications have also been 
found from that time, as industrial systems control or used in 
synthesis methodology of asynchronous design [10]. 
First published hardware implementations of Petri Nets controller 
were developed by S. S. Patil in 1972 [11]. They propose this 
kind of controller because of the ease of describing concurrent 
behavior with Petri Nets. These implementations were based on 
the use of flip-flops to substitute each individual place and 
transition. 
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Figure 1: Architectural space of controller based on Petri Net 
The architectures implementing Petri Net can be classified 
according to the execution model to compute the PN and the 
target architecture on which is implemented the PN. Globally, the 
space of these architectures can be divided in two fields as shown 
in figure 1. The first one is related to the implementation of a 
particular Petri Net, while the other support the modification of 
the implemented Petri net after the component fabrication. In each 
field, several architectural targets are available to implement the 
Petri Net. Hardwired as well as programmable processors 
controllers can be found in the literature.  

2.3.1 Direct implementation 
When Petri nets are directly synthesis in hardware with glue logic 
and flip-flops it is called direct implementation. A configurable 
architecture based on the Kolte Array is proposed in 1988 by R. 
W. Hartenstein and al. [12]. Thus, the architecture is a little more 
flexible than dedicated one. The main drawback is the 
interconnect network between the places and the transitions. It is a 
crossbar to allow connection between each place and transition 
but it is under used because of static configuration. This kind of 
architecture is used to implement safe Petri nets, which are a 
subclass of Petri nets with no more than one token at a place and 
where no place is both the input and the output of the same 
transition. 
A dataflow machine based on implementation of Petri net is 
proposed by J. P. David [13]. Different nodes are used to 
implement an application. The methodology is limited by the 
interconnection. Indeed, the size of the bus that connects the 
nodes of the net is equal to the size of the data. 

2.3.2 Programmed implementation 
Petri net implementations based on commercial platforms are 
based on the use of general-purpose processors which do not 
inherently behave in an event-driven manner. S. Bulach proposes 
a dedicated programmable controller based on the execution of 
PN [14]. Starting from the net structures supporting concurrent 
processes and the inclusion of I/O signals in the firing conditions, 



an encoding scheme for the storage of the net structure in an 
EPROM memory is generated. The cyclic net execution algorithm 
consists of transition enabling checks and firings. New output 
signals are set after all enabled transitions of the current marking 
have been fired. Although the execution model of the controller is 
based on PN, the computation of the next marking is sequential. 
Performances of the architectures implementing Petri Net are a 
limitation to use it as a control unit of systems on chip. We thus 
propose an architecture which takes advantage of the flexibility of 
programmable solutions without reducing performance (cf. figure 
1). We propose in the next section a new computation platform, 
named RAMPASS (Reconfigurable And Advanced Multi-
Processing Architecture for future Silicon Systems), whose 
control unit is based on an efficient implementation of Petri nets. 

3. RAMPASS platform 
RAMPASS is divided in three parts [15], depicted in figure 2. An 
application memory stores the complete description of the 
application. The active control part (RAC: Reconfigurable 
Architecture for the Control) manages the tasks execution on all 
the resources of the computing part (RAO : Reconfigurable 
Architecture for the Operators). The computing part is composed 
of processing elements that receive commands from the control 
part. Processing elements can be programmable processors, 
reconfigurable operators or hardwired accelerators. 
This platform is event driven and is able to manage synchronous, 
asynchronous, as well as hybrid Globally Asynchronous Locally 
Synchronous systems. Because of the modular structure of SOC, 
this control part has to be able to manage concurrently several 
independent control flows to manage the different computing 
primitives independently. 
To be implemented in the RAC, the application has to be splitted 
into tasks and described as a safe labeled Petri net. Places 
describe local states of the application execution and transitions 
are associated to a command/event couple. The command is sent 
to the computing part to start the execution of a computation. The 
events point a specific transition of the application that evaluates 
the state of the execution. This description formalism will be 
detailed in section 5.2. 
The RAC executes active windows of the whole application 
described in the application memory. These windows depict the 
parts of the application containing at least one active place in the 
Petri net describing the application. It is continuously updated by 
internal building and release mechanisms. The set of tokens 
propagated in the window is sufficient to describe the global state 
of the system. Each active token in the window will trigger the 
sending of a command to the computing part. Next, the computing 
part executes the commands as soon as they are received, and sent 
back event at the end of the executions. Finally, according to 
these events, all the tokens move from the input places of the 
transitions to their output places. As the events are sent 
independently by computing resources of the RAO, several tokens 
can evolve in parallel.  
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Figure 2: RAMPASS overview 

There are thus two interfaces between the control part and the 
computing part. The first one (command interface) is used to send 
the commands to the computing resources and the second one 
(event interface) allows to send events from the computing part to 
the control part. The command interface implements a simple 
two-phase handshaking protocol. 

4. RAC description (Reconfigurable 
Adapted to Control) 
The control part of RAMPASS is an architecture dedicated to the 
implementation of PN. We discus at first in this section its 
architectural principles. In subsection 4.2 we will detail some 
prototyping issues of this solution. Finally section 4.3 will clarify 
the application description formalism. 

4.1 Architectural description 
The RAC implements directly PN on a dynamically auto-
adaptable architecture. It self-manages its hardware resources, 
through the realization of three basic functions:  

• Execution: the RAC fires transitions when all their input 
places own a token and when its associated condition is 
high. The execution is in charge of moving the tokens 
from input place of transitions to their output places. 
Finally, it sends the associated commands to transitions.  

• Building: The RAC is able to identify the branches of 
the active windows that have to be extended. It is also 
able to place and route new cells on its network of cells 
to implement the new active windows. 

• Release: This action is needed to free resources on the 
RAC network of cells. Basically, cells without token in 
their input branches are released slowly but 
continuously. When there is an urgent need of 
resources, the RAC is also able to release concurrently 
all the cells of its input branch. 

All these three functions are done concurrently to optimize the 
use of the hardware. This makes the architecture dynamically 
reconfigurable. All the decisions concerning the allocation and the 
routing of the PN build in the hardware are done by the 
architecture itself. Thanks to the self managing of the building 
and release actions, the description of the application can be 
shortened. Indeed no place and route information have to be 
added to the functional description of the PN to implement it in 



the RAC. These properties enable new tradeoff between 
flexibility (programmable processor) and performance (direct 
implementation of PN).  
To illustrate the execution model of the RAC a simple example 
can be used. Let consider at first a network of cells totally free. A 
boot sequence configures a boot cell from which the whole net 
will be built. This boot cell points the initial marking of the PN in 
the application memory. The architecture has next to select 
enough free cells in the hardware structure to begin the 
implementation of the PN. Each new cell is then selected to 
develop every branch of the PN starting from the boot cell. These 
new cells are named leaf cells. 
When a leaf cell is selected to build a new cell, its description is 
loaded from the application memory. For each cell connected 
from the selected leaf, two cases can occur. Indeed the cell can be 
already mapped in the cell network. In that case, the connection is 
directly performed. On the contrary, if the cell is not mapped in 
the network, a free cell has to be selected before to perform the 
connection. Next the graph continues to be developed, by 
searching new leaf cells. When all the cells are used, reset 
processes are executed to release cells. In this way, the PN is 
continuously extended. 
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Figure 3: RAC overview 

The RAC is divided into six basic blocs as shown in figure 3. The 
RAC net and the instruction memory are involved in the execution 
of the PNs. The others modules (Configuration Protocol Layer, 
Freefinder, Leaffinder, Content Addressable Memory) are only 
involved in the management of the resources.  

4.1.1 CPL 
The Control Protocol Layer manages at high level the 
implementation of the PN on the hardware. It triggers the 
different steps of the building and release of the PN in the 
hardware. It is not involved in the execution of the PN. 

4.1.2 CAM 
Pointers on mapped cells are loaded in a Content Addressable 
Memory (CAM). These pointers are used to find and locate nodes 
that are already mapped in the network. The CAM selects the 
node whose pointer is set by the CPL. If it is not present in the 
CAM the cell is not mapped and the CPL as to load it in the 
network. This CAM has been designed with standard registers and 
XOR gates. 

4.1.3 Freefinder & Leaffinder 
These two elements locate free cells and leaf cells in the network. 
They are implemented thanks to asynchronous round robins. Each 

free cell and leaf cell set up flags that are sent to these 
asynchronous round robins to select one cell at a time. These 
elements can be seen as asynchronous arbiter.  

4.1.4 Rac net 
The RAC net is composed of a set of cells, representing places 
and transition of the PN communicating through a reconfigurable 
network. In order to support the three basic functionalities 
explained previously, each cell is composed of three processes. 
Each of them is implemented as an asynchronous one-hot FSM. 
Additional synchronizations between FSMs guarantee the 
coherency of the system. 
The execution part implementing nets has to allow multiple 
connections between places and transitions (to implement 
convergence and divergence in the PN). Consequently, the events 
coming from the operative part have to be distributed to all the 
cells. The links between the event and the mapped places are done 
during the configuration of the cell. 
The interconnection network allows connections between every 
cell. Each cell can be connected with any other one through a 
hazard free full-connected network. The mapping strategy is thus 
very simple. The connections between two cells are performed by 
selecting of the source and the destination cells. A simple crossing 
enables to find the connection point between two cells. When two 
cells are connected together two kinds of information goes 
through the network: 

1. Tokens: they are implemented by asynchronous hand-
shaking between cells. Tokens are thus modeled as 
synchronization mechanisms between two cells. 

2. Accessibility flags: this information permits to identify 
cells that can be released. Indeed a cell that is not 
connected to any other could not receive any tokens and 
is thus useless. 

4.1.5 Instruction Memory 
The instruction memory sends tasks to the operative part. This 
memory is particular for several aspects. First, the cells directly 
command the line of the memory. This memory has thus no 
address decoder. Secondly, the memory is splitted in several 
flows which are independent and can be accessed concurrently. A 
cell can thus command independently either one or several blocks 
of a memory line according to its configuration. Consequently, as 
several blocks of the memory can be activated in parallel, the 
controller can manage several tasks in parallel. 
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Figure 4: Equivalence between place and transition of PN 

formalism and hardware cell of the RAC. 
 

4.2 Implementation 
A prototype of the RAC has been designed using a 0.13µm design 
kit provide by STMicroelectronics (HCMOS9). Logical synthesis 
flow from Synopsys has been used for front-end while backend 
has been performed with Cadence Soc Encounter.  



A first model has been developed in SystemC to provide fast and 
accurate simulations. A set of PNs testbenches has been used to 
validate the architecture and provide a good functional coverage 
(up to 90%). Each implemented graph validates basic 
functionalities as parallelism support, tasks synchronization or 
dynamic reconfiguration.  
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Figure 5: Interpreted Petri Net with {a;b;c} as event 

4.3 Application description 
The formalism used to describe a safe labeled Petri net, 
executable by the RAC, respects the theory of Petri. As shown in 
the figure 4, each cell of the RAC corresponds to a couple 
place/input transitions. The hardware and the function of routage 
are simplified since the network does not have to connect 
heterogeneous resources. 
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Figure 6: Translation of the PN figure 4 in the formalism 

understandable by the RAC 
As said before, the whole graph is described in a static memory. 
Places of the PN are identified with a memory address and an 
offset corresponding to the size of the description. Input events, 
tasks, modes, and following cells addresses are contained in the 
description of every cell. Each cell is associated to input ports  to 
receive the incoming events and tasks acknowledgement, and to 
an output port control the associated task. 

These cells allow the implementation of pure nets. The figures 5 
and 6 respectively show a simple Petri net and the associated 
implemented graph on the RAC. Except places p1, which needs 
cells {c10; c11; c12; c13; c14; c15; c16} to be mapped, all the others 
places just need one cell of the hardware structure. This 
transformation thus infers only a small overhead between on, the 
PN modeling the application. 

5.  Results 
The results presented below come from the analysis of the logical 
synthesis and the post place-and-route models. The gate-level 
netlist is used to study the scalability of the architecture while the 
post place-and-route model is used to exhibit accurate area and 
performance results. This section is divided in three parts. The 
first one presents some implementations results. The second 
discusses the performances of the architecture and the third 
subsection analyzes the implementation of a MPEG4-AVC 
application into the RAC. 

5.1 Layout analysis 
Because of a limited amount of pins available for our prototype, it 
is composed of 16 cells and provides 6 8-bit independent 
instruction streams. The area of the prototype is 0.81 mm2 of 
which only 0.2 mm² are needed for the RAC. The figure 7 shows 
this layout. 

rac_net
59%

CPL
5%

mem_commande
22%

mem_cam
6%

leaffinder
1% freefinder

1%

rest
6%

 
Figure 8: Functional distribution of the RAC in area  

The area distribution in the chip (Fig. 8) is relatively well 
balanced. Indeed, the execution part of the design fills 81 % of the 
layout, dynamic management of the cells network and debug 
resources of the circuit fill the rest. The interconnect network 
occupies 59 % of the area for a 16-cell RAC. For a 60-cell RAC, 
this interconnect will grows up to 79 % of the area. Its size 
evolving in O(N²), where N is the amount of cell,, it limits the 
scalability of this architecture.  
The modules of the resource management part are well balanced 
and their areas are homogeneous. Their contributions fall under 
5% of the area for a RAC with 60 cells. The RAC had been 
synthesized for different number of cells, ranging from 8 to 60. 
The minimum area obtained is 0.6 mm² (mainly devoted to the 
application memory) and the maximum is 2.9 mm². 
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Figure 7: Layout of the RAC and the Application Memory 

5.2 Performances 
The two main features discussed in this section are the response 
time of the RAC (in ns) and the output bandwidth of the 
instruction memory (in Million Commands Per Second: MCPS). 
The response time depicts the time between the arrival of an event 
at the input of the RAC and the triggering of the corresponding 
output in the instruction memory. 
These two parameters depend on the execution mode, i.e. static or 
dynamic. The static mode depicts the execution of a PN 
completely mapped on the RAC, while the dynamic one concerns 
the executions of PNs bigger than the RAC capabilities, that need 
to build and to release new cells during the execution. The static 
mode limits strongly the complexity of the application, which can 
be mapped on the architecture, but it gives the maximum 
performance. On the contrary, the dynamic mode allows mapping 
very complex application, but is associated to a bigger timing 
overhead. 
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Figure 9: Timing elements in the execution cycle : 1 time 
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; 2 time between the sending of a command and its reception 
by the computing part ; 3 response time of the computing part 
; 4 execution time of the task ; 5 propagation time of the event 
; 6 propagation time of the acknowledge ; 7 propagation time 
of the tokens between two cells. 
In the static mode, the response time is independent of the graph 
mapped into the RAC. This time is due to a sequence of actions to 
be done in the RAC (1, 2 and 5 in the figure 9) to propagate 

signals between events, cells and commands. Even in the worth 
conditions this time is lower than 10ns.  
The total bandwidth of the instruction memory is directly 
proportional to the amount of command flows that are configured. 
So in calculating the bandwidth of one flow the total bandwidth 
can be determined. The bandwidth of one flow is inversely 
proportional to the sum of the times 1, 2, 3, 6 and 7. This 
bandwidth for one flow is 48 MCPS. It can go up to 288 MCPS 
when the 6 command flows are used.  
In dynamic mode other timing constraints, mainly due to 
resources management, have to be taken into account. This timing 
highly depends on the graph mapped into the RAC. The evolution 
of the active windows within the hardware is very hard to predict. 
It is thus not possible to define all the contributions involved in 
the response time and in the bandwidth of the instruction memory 
as for the static mode. Nevertheless, the building of a graph is 
highly sequential and is done by the CPL. It takes 65 ns (13 
cycles at 200 MHz) to configure every new cell. The CPL could 
have been synthesized at 400 MHz but due to limitations on the 
input clock pin of the prototype, a slower version has been 
implemented. 
Lots of simulation involving dynamic graphs had shown that the 
bandwidth of the instruction memory is ranging from 8 MCPS to 
15 MCPS in average. Although the bandwidth can not be 
computed for a given application, the maximum is limited by the 
building of a cell. Indeed, the upper limit is equal to: 

build
MCPS T

Max 1
= , where Tbuild is the time of build of one 

cell. 
The response time can however be more precisely defined. 
Several cases can occur according to the execution time. First, if 
the execution on the RAO is low enough to hide the dynamic 
behaviour, the response time will be identical to that of the static 
mode. Conversely, if the execution time is in the same range than 
the building time, the response time will correspond to that of the 
building (70 ns). 
The RAC performances have been studied with several numbers 
of cells. The response time is relatively independent of it. The 
upper limit of the bandwidth is however clearly dependent of this 
number. The figure 10 shows both the evolution of the maximum 
static bandwidth for a flow versus the number of cells into the 
RAC and the maximum bandwidth for the instruction memory. 
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Figure 10: MCPS versus number of cells in the RAC 



It appears in figure 10 that the MCPS highly depends on the 
number of cells. For a 8-cell RAC, the maximum frequency for a 
flow is 70 MCPS. For a  128-cell RAC it falls to 11 MCPS. This 
is due to the contribution of the interconnect network which 
become prohibitive (time 7 on figure 9). Secondly, the crossing 
between the horizontal lines and the MCPS curve points the 
number of cells where the building time and the maximum 
bandwidth is the best balanced. According to the prototype results 
this 100 cells seems to be a good trade-off. 
The performance analysis reveals two drawbacks. First, the 
interconnect network is a limitation in term of area and 
performance. To improve the performances of the architecture, a 
better communication media have to be studied. Secondly, the 
management of resource is too sequential. It has been clearly 
shown that the dynamic management has a strong impact on the 
performance. Parallelizing the building process will thus 
significantly improve the performance of the controller. 

5.3 Case study 
As an example we have implemented the motion estimation of the 
MPEG-4 AVC encoder using the RAMPASS approach. The PN 
model of the application required 60 states with 6 branches, 
several synchronizations and parallel execution. The partionning 
of the application has been studied in [16] and has been done 
according to the analysis of the control flow and the data flow.  
The figure 11 shows some simulation results for a 16-cell RAC. It 
shows the execution overhead due to RAC according to the 
average task length. For a video in QCIF format the partionning 
leads to tasks whose average execution time is 4 µs. The RAC 
overhead is that case is very low. For tasks granularity around 1 
µs the overhead grows up to 5%. Finally for shorter tasks like that 
extracted to handle VGA video (300 ns) the RAC overhead 
become significant (12,1%).  
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Figure 11: Overhead due to the RAC versus granularity of 

task. 
In this case study, several granularities of tasks had been tested. 
This example shows that for tasks bigger than 500 ns the 
overhead due to the RAC is lower than 10% of the execution. As 
a comparative example, this task granularity corresponds to a 
mutex access in an embedded OS like µCOS II running in a ARM 
926 at 200 MHz. 

6. Conclusions and future works 
In this paper we have discussed an auto-adaptive asynchronous 
parallel controller component implementing in 0.13µm CMOS 
technology. This module executes Petri nets that model the 
control flow of an application. This programming model is simple 

and enables to describe complex applications merging several 
kinds of parallelism. 

The RAC is a trade off between the direct implementation of Petri 
net and the programming implementation found in the art. The 
features and the performances reached by the RAC allow new 
tradeoff between the dynamicity and the flexibility of the control 
flow and the performance of the system. The regular structure of 
the RAC provides it good scalability properties which have been 
verified in this paper. 

To ease application development on RAMPASS, software tools 
able to take an application specified in a procedural language and 
able to split it in tasks handled by the RAC has to be studied. A 
board had been developed to validate the prototype. The circuit is 
coupled to a Virtex 4 on which can be implemented the operators 
managed by the RAC. The validation of the prototype is actually 
running. 
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