
Automatic Floating-point to Fixed-point Conversion for
DSP Code Generation

Daniel Menard, Daniel Chillet
R2D2 Project - INRIA

LASTI - University of Rennes I
6, rue de kerampont

22300 Lannion, FRANCE

menard@enssat.fr, chillet@enssat.fr

François Charot, Olivier Sentieys
R2D2 Project - INRIA

IRISA
Campus de Beaulieu

35042 Rennes cedex, FRANCE

charot@irisa.fr, sentieys@irisa.fr

ABSTRACT
The development of methodologies for the automatic im-
plementation of floating-point algorithms in fixed-point ar-
chitectures is required for the minimization of cost, power
consumption and time to market of digital signal processing
applications. In this paper, a new methodology of imple-
mentation in Digital Signal Processors (DSP) under accu-
racy constraint is presented. In comparison with the exist-
ing methodologies, the DSP architecture is completely taken
into account for optimizing the execution time under accu-
racy constraint. The justification and the different stages of
our methodology are presented.

1. INTRODUCTION
Most digital signal processing algorithms are specified with

floating-point data types but they are finally implemented
in fixed-point architectures in order to satisfy the cost and
power consumption constraints of embedded systems. The
manual transformation of floating-point data into fixed-point
data is a time-consuming and error prone task. For reduc-
ing the time-to-market of applications, high-level develop-
ment tools, which allow the automation of some tasks, are
required. The manual conversion to the fixed-point level
hinders the reduction of the development time. Indeed,
some experiments [3] have shown that this manual conver-
sion can represent up to 30% of the global implementation
time. Thus, methodologies for the automatic transforma-
tion of floating-point data into fixed-point data have been
proposed [7, 17].

The aim of the methodology for Digital Signal Proces-
sors (DSP), is to define the optimal fixed-point data formats
which maximize the accuracy and minimize the size and the
execution time of the code. Existing methodologies [11, 17]
achieve a floating-point to fixed-point transformation lead-
ing to an ANSI-C code with integer data types. Neverthe-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...$5.00.

less, the different elements of the target DSP are not taken
into account for the process of fixed-point data coding. The
analysis of the influence of the fixed-point DSP architec-
ture on the computation accuracy underlines the necessity
of taking into account the DSP architecture for optimizing
the data coding [12].

In this paper, a new methodology for the implementation
of floating-point algorithms in fixed-point architectures un-
der accuracy constraint is presented. After a presentation of
the available methodologies, a new methodology is defined.
The different elements of our methodology are detailed in
the fourth section. Finally, some results obtained with the
tool developed for implementing this methodology are given.

2. RELATED WORK
In this section the different available methodologies for

the automatic implementation of floating-point algorithms
in fixed-point architectures are presented. In [8] the method
proposed for the floating-point to fixed-point conversion is
achieved after the code generation process. It allows to
implement floating-point algorithms in the TMS320C25/50
fixed-point DSP of Texas Instruments. This methodology
is specialized for this particular architecture and can not be
transposed to other kinds of architecture. The two method-
ologies presented below achieve the floating-point to fixed-
point transformation at the source code level.

The FRIDGE [6] methodology developed at the Aachen
University achieves a transformation of the floating-point C
source code into a C code with fixed-point data types. In the
first step called annotations, the user defines the fixed-point
format of some variables which are critical in the system
or for which the fixed-point specification is already known.
Moreover, global annotations can be defined in order to spec-
ify some rules for the entire system (maximal data word-
length, casting rules). The second step called interpolation
[16][6] corresponds to the determination for each data of the
word-length of the integer and fractional parts. The fixed-
point data formats are obtained from a set of propagation
rules and the analysis of the program control flow. This step
leads to an entire fixed-point specification of the application.
This description is simulated in order to verify if the accu-
racy constrains are fulfilled. The commercial tool CoCentric
Fixed-point Designer proposed by Synopsys is based on this
approach.

In [17] a method called embedded approach is proposed
for generating an ANSI-C code for a DSP compiler from
the fixed-point specification obtained previously. The data
(source data) for which the fixed-point formats have been
obtained with the technique presented previously, are spec-
ified with the available data types (target data) supported
by the target processor. The degrees of freedom due to the
position of the source data in the target data allow to min-
imize the scaling operations. This methodology allows to
achieve a bit-true implementation in a DSP of a fixed-point
specification. But the accuracy and the execution time are
not optimized through the modification of the fixed-point
format of some relevant variables.

The aim of the tool presented in [10, 11] is to transform
a floating-point C source code into an ANSI-C code with
integer data types in order to be independent of the target
architecture. Moreover, a fixed-point format optimization is
done in order to minimize the number of scaling operations.
Firstly, the floating-point data types are replaced by fixed-
point data types and the scaling operations are included in
the code. The scaling operations and the fixed-point data
formats are determined from the dynamic range informa-
tions obtained with a statistical method [9]. The reduction
of the number of scaling operations is based on the assigna-
tion of a common format to several relevant data allowing
the minimization of the scaling operation cost function. This
cost function takes account of the number of occurrence of
each scaling operation and depends of the scaling capacities
of the target processor. For processor with a barrel shifter,
the cost of a scaling operation is equal to one cycle, other-
wise the number of cycles required for a shift of n bits is
equal to n cycles.

This methodology allows to convert a floating-point C
code into a C code with integer data types. Moreover, the
scaling operations are minimized. But, the code execution
time is not optimized under a global accuracy constraint.
The accuracy constraint is only specified through the defi-
nition of a maximal accuracy degradation allowed for each
data. Specific elements of the architecture are not taken into
account for optimizing the fixed-point data formats. More-
over, the architecture model used for the minimization of
the scaling operations do not take account of the special-
ized shift registers which allow to make some specific shift
operations without supplementary cycles. Furthermore, for
processors with instruction level parallelism capacities, the
overhead due to scaling operations depends on the schedul-
ing step and can not be easily evaluated before the code
generation process.

3. METHODOLOGY DEFINITION
In this part a new methodology for the automatic imple-

mentation of a floating-point algorithm in a fixed-point DSP
is proposed. The structure of the methodology has been de-
fined from the analysis of the influence of the architecture
on the computation accuracy and from the study of the in-
teraction between the fixed-point data coding and the code
generation process. The results of these studies are summa-
rized below.

3.1 Architecture Influence
In [12], the influence of the fixed-point DSP architecture

on the computation accuracy has been analyzed. Different

elements of the architecture like the natural word-length of
the DSP, the number of accumulator guard bits, the scal-
ing capacities and the available quantification law, influence
the accuracy of the computation. New DSP architectures
like TMS320C64x (Texas Instruments), TigerSharc (Analog
Device), OneDSP (Siroyan), SP5 or UniPhy (3DSP) sup-
port a wide range of data types through sub-word paral-
lelism (SWP) instructions. An operator (multiplier, adder,
shifter) of word-length N is split in order to execute k op-
erations in parallel on sub-word of word-length N/k. These
SWP instructions require to explore the different opportu-
nities offered by these architectures for optimizing the im-
plementation. The results of the experiments presented in
[12], show the necessity of taking the different elements of
the DSP architecture into account in order to optimize the
data coding.

3.2 Code Generation and Data Coding
The goal of this section is to analyze the interaction be-

tween the fixed-point data coding and the different stages
of the code generation process. The aim of the code selec-
tion step is to select the set of instructions which allows to
achieved the algorithm operations as efficient as possible.
The code selection requires that the data types (data word-
length) of the input and output operands of each operation
are defined. The transfer of the data type selection during
the code generation will lead to more complex code gener-
ation stages. Thus, the word-length of each data has to be
defined before the code selection stage.

The register allocation step assigns a processor storage
unit to each variable. This stage defines if a variable is stored
in a register or in memory. Indeed, given that the number
of registers is limited, some variables have to be spilled in
memory. In traditional DSP, these spilling operations are
very frequent with the limited number of registers due to
the specialization of the architecture [18]. The execution
time and the code size are increased due to the introduction
of memory read and write instructions. In most of the DSP,
the calculations are done in double precision inside the com-
putation unit. The transfer of the data in simple precision
allows to reduce the transfer overhead. However, this for-
mat conversion operation will introduce a quantization noise
source and reduces the global application accuracy . Thus,
these spilling operations have to be taken into account for
coding the fixed-point data. Moreover, the evaluation of the
real accuracy of the implementation can be achieved only
after this register allocation step.

The scheduling stage defines the execution moment of
each instruction. These moments are defined in order to
respect the semantic of the application an to minimize the
global execution time. For VLIW processors, this schedul-
ing task achieves a code compaction phase which allows to
group together partial instructions which can be executed
in parallel. The aim of our methodology is to minimize the
execution time under accuracy constraint. Thus the costly
scaling operations have to be moved in order to reduce the
execution time. For processor with instruction level paral-
lelism the cost of a scaling operation depends on the op-
portunity of executing this operation in parallel with other
instructions and can be evaluated only during the schedul-
ing stage. These aspects are illustrated and quantified in

[12].

3.3 Methodology Presentation
The study of the available methodologies and the analysis

of the influence of the architecture and the code generation
lead to the definition of a new methodology for the imple-
mentation of floating-point algorithms in fixed-point DSP
under accuracy constraint. In our methodology, the deter-
mination and optimization of the data format are directed
by the accuracy constraint. Moreover, the DSP architecture
is completely taken into account. The different phases of
our methodology are presented in figure 1.

The first stage of the methodology is the evaluation of the
data dynamic range. The results obtained are used for the
determination of the binary point of the data in order to
avoid an overflow. Then, the word-lengths of each data are
defined in order to take account of the diversity of the data
types available in DSP. Finally, the data formats are opti-
mized in order to minimize the code execution time as long
as the accuracy constraint is fulfilled. The determination
and optimization of the data formats are made under ac-
curacy constraint. The Signal to Quantization Noise Ratio
(SQNR) is used for evaluating this accuracy . The analytical
expression of this metric is automatically obtained with the
methodology detailed in [13, 14]. For linear time-invariant
systems, the method is based on the automatic computa-
tion of the transfer functions between the output and the
quantization noise sources.

ArmorC

Assembly Code

F l oa t i n g - p oi n t C Cod e

C
o

d
e

 C
o

m
p

ila
tio

n

SQNR � � � � � � �

S Q N R E v a l u a t i on

S U I F F r on t - en d

I R G en er a t i on

S
U

I
F

I n s t ru c t i on S e l e c t i on

R e g i s t e r Al l oc a t i on

S c h e d u l i n g

O p t i mi s a t i on

C
A

L
I
F

E

D a t a D y n a mi c
D e t e rmi n a t i on

� � � � 	
 � � 	 �
 � � � �� � � � 	
 � � 	 �
 � � � �� � 	
 � ��� � � � � � � � � �� � � � 	 � � � 	
 � 	 ! ! �� " � � " # ! ! ! " � ! !$� � � � 	 � � � 	
 � 	 ! ! �� " � � " # ! ! ! " � ! !$% & ' () * + , *- . . / 0 . +
 1

Armor

D e s c ri p t i on

2 3 4 5 6 7 8 4 7 9 3 8
:<; = 8 >

F orma t
O p t i mi s a t i on

? @ A B

B i n a ry - p oi n t P os i t i on
D e t e rmi n a t i on

D a t a T y p e s
D e t e rmi n a t i on

S u i f T o C

Fixed point
C C ode

S u i f U p d a t e

Figure 1: Methodology structure

4. METHODOLOGY DESCRIPTION
The aim of this section is to detail the different parts of our

methodology. First, the floating-point C source algorithm is
transformed in an intermediate representation (IR). This IR
specifies the application with a Control Data Flow Graph
(CDFG) which is generated from the IR obtained with the
SUIF front-end [19]. This CDFG is made-up of Control Flow
Graphs (CFG) which represent the control structures of the
application. Each computation core of a basic bloc of the
CFG is represented with a Data Flow Graph (DFG). More-
over, each control structure bloc contains a specification of

its input and output data. The code generation is achieved
with the flexible code generation tool CALIFE presented in
[1] and the processor is described with the ARMOR lan-
guage [2].

4.1 Data Dynamic Range Determination
Two kinds of method can be used for evaluating the data

dynamic range of an application. The dynamic range of a
data can be computed from its statistical parameters which
are obtained with a floating-point simulation. These ap-
proaches allow to estimate accurately the dynamic range
with the help of the signal characteristics. These methods
guarantee a low probability of overflow for signal with the
same characteristics. Nevertheless, overflow can occur for
signal with different statistical properties.

The second kind of method corresponds to analytical ap-
proaches which allow to compute the expression of the dy-
namic range from the dynamic range of the inputs. These
methods guarantee no overflow but it leads to a more conser-
vative estimation. Indeed, the dynamic range expression is
computed in the worst case. The determination of the data
dynamic range can be obtained with the Interval Arithmetic
theory [4]. The data dynamic range of an operator output
is obtained from the dynamic of its inputs. A worst case
dynamic range propagation rule is defined for each kind of
operator. The dynamic range of each data is obtained with
the help of the propagation rules during the traversing of
the graph which represents the application. Thus, this tech-
nique can not be used if there is cycles in the graph like in
the case of recursive structures. The determination of the
data dynamic range in the tool FRIDGE [6] is based on this
technique [16].

For the linear time-invariant systems, the data dynamic
range can be computed from the L1 or Chebychev norm
[15] according to the frequency characteristics of the input
signal. These norms allow to compute the dynamic range of
a data in the case of non-recursive and recursive structures
with the help of the computation of the transfer functions
between the data and each input.

Data Dynamic
U p d ate

Data Dynamic
De te r minatio n

S F G G e ne r atio n

C D E FG G H H

C D E F

I E F
G’J K K

G’ L M N

G O P Q

I E F

Figure 2: Data Dynamic Range Determination

These two approaches have been combined for determin-
ing the data dynamic range in non-recursive systems and in
recursive linear time-invariant systems. The structure of this
module is presented in figure 2. The input of this module
is the intermediate representation which is a Control Data
Flow Graph (CDFG). The first step transforms the CDFG
in a Signal Flow Graph (SFG). The control structures are
eliminated in order to obtain a Data Flow Graph (DFG).
Then, the temporal informations are used for inserting the
delay operations.

The second step of the transformation is the computa-
tion of the data dynamic range of each data of the DFG.
For non-recursive structures the dynamic range informations
are obtained by traversing the graph from the sources to the
sinks. For each operator a propagation rule as defined in [4],
is applied. For recursive linear time-invariant structures the
transfer functions between the critical data and the inputs
are determined with the technique presented in [14]. These
critical data correspond to the output of the addition or sub-
straction operators. Then, the dynamic range is computed
from the input dynamic range with the L1 or Chebychev
norm. For the rest of the data, the dynamic range is ob-
tained with the propagation rule technique.

The last step of this module is the annotation of the data
of the CDFG with the dynamic range. For a data with only
one instantiation in the CDFG, its dynamic range is equal
to the dynamic range of the equivalent data in the SFG. For
data defined as vector (i.e. tabular) and used in loop, the
dynamic range of the vector in the CDFG corresponds to the
greatest value of the different elements of this vector used in
the SFG. The determination of the dynamic range is more
complex in the case of data with multiple instantiations like
in the FFT butterfly where the inputs and the outputs of
the butterfly are stored in the same variables. The dynamic
range of the output vector is multiplied by a factor of two at
each stage of the FFT. Thus, the fixed-point format of the
output vector must evolve at each stage. The first and final
values of the dynamic range of the vector X are specified
through the input and output loop bloc and the evolution of
the dynamic range of the vector X are specified through the
input and output CFG bloc which represents the ith stage
of the FFT. This is illustrated in figure 3. Consequently,
the expression of the evolution of the dynamic range of a
multiple instantiations data has to be determined.

FFT stage i

X

X

X

X

�����
]-1,1[

�����
]- N , N [

� � �
]-2 d ,2 d [

� � �
]-d ,d [

Fo r B l o c

� � �� 	
 � �
 � �� 	
�
 ���� �� �
� �� �

FFT r a d i x 2
 N p o i n t s

X X

X ∈]-1,1[

� � ��� � �"! #%$ & � '"()� *�+ ',� -".

� � �0/,! # � ! #�$ &,� '"(1� *2+ ' � -".

3 # '"-".)4 � �"� ! #5',� $/ ! # � ! #5$"& � '"(1� *2+ ',� -".

Figure 3: Data Dynamic Range for a FFT

4.2 Binary-Point Position Determination
The aim of this transformation is to obtain a correct fixed-

point specification of the application which guarantees no
overflow. Moreover, this transformation must allow to re-
spect the different fixed-point arithmetic rules. Thus, scal-
ing operations are included in the application in order to
fit the fixed-point format of a data to its dynamic range or
to align the binary-point of the adder inputs. The input of
this transformation is the CDFG GDyn where all the data
are annotated with their dynamic range. The output is a
CDFG where all the data are annotated with their binary-
point position. A hierarchical approach is used for deter-

mining the data binary-point position. First, all the DFG
of the application are independently proceeded and then a
global processing is applied at the CDFG in order to obtain
a coherent fixed-point specification.

S b 6 7 8 b 6 7 9 b 8 b : b 7 8 b 7 9 b 7 ; < 9 b 7 ;b 7 ; < 8 = > ?= > @= A
Integer part

m

 MSB

LSB

= B > @
Fractional part

b

Figure 4: Fixed-point data specification

For determining the binary-point position of the data of a
DFG, the graph representing the DFG is traversed from the
sources to the sinks. For each data and operator a rule is ap-
plied for determining the position of the binary point. This
kind of technique can be applied only on directed acyclic
graph (DAG). Thus, the graph representing a DFG is firstly
dismantled into a DAG if it contains cycles.

The binary-point position mx of a data x is referenced
from the most significant bit as presented in figure 4. For
a data x the binary-point position is obtained directly from
the dynamic range Dx with the following relation

mx = dlog
2
(Dx)e with Dx = max

n
(|x(n)|) (1)

A binary-point position is assigned to each input and out-
put operator (mx′ , my′ , mz′) as presented in figure 5. A
propagation rule has been defined for each kind of opera-
tor. This rule defines the value of mx′ , my′ , mz′ according
to the binary-point position of the input and output data
(mx, my, mz). The binary-point positions of the multiplier
inputs (mx′ , my′) correspond to those of the operator input
data (mx, my). The binary-point position of the multiplier
output is directly obtained from the binary-point position of
the operator inputs. Thus, the multiplier propagation rules
are

CD E mx′ = mx

my′ = my

mz′ = mx′ + my′ + 1
(2)

Ops z

x

F GH GI,J
m K m KML

m N�Lm N
m Om O L

y

Figure 5: Operator Model

For addition and subtraction operations, a binary-point
position which is common to the operator inputs has to be
defined in order to align the operator input binary-point.
This common position must guarantee no overflow. If there
is no guard bits with the adder for storing the supplementary
bits due to an overflow then this constraint must be taken
into account for determining the common binary-point po-
sition. Thus, in order to avoid overflow the common binary-
point position mc is defined as follows

C��D ��E mc = max (mx, my, mz)
mx′ = mc

my′ = mc

mz′ = mc

(3)

If there is guard bits with the adder, the word-length
of the inputs and output are different. Then, a common
reference has to be defined for comparing the binary-point
positions. New binary-point positions (mx′′ , my′′ , mz′′) ref-
erenced from the most significant bit of the data with the
minimum word-length are computed for the inputs and the
output as illustrated in figure 6. A new parameter g corre-
sponding to the number of guard bits used by the data is
introduced as follows

CD E mx′′ = mx′ − gx

my′′ = my′ − gy

mz′′ = mz′ − gz

(4)

� � � � � � � � � � � � � � 	 �
+�
 � � � � � � ��
 �
 � � � � 	 �� � �

� � � � � � ��
 � � � � 	 �

 � �

 ���
 � � �� � �
 � � �
 � �� �

� �

���

�

Figure 6: Binary-point position with guard bits

Given that the parameter gz is unknown for determining
mc, it is fixed to Ng, which is the number of guard bits
available with the adder.

mc = max (mx − gx, my − gy, mz − Ngb) (5)

The real number of guard bits used by the adder output
is equal to �

gz = mz − mc if mz > mc

gz = 0 if mz ≤ mc
(6)

And, the binary-point positions of the adder inputs and
output are equal to

CD E mx′ = mc + gx

my′ = mc + gy

mz′ = mc + gz

(7)

The scaling operations required for obtaining a correct
fixed-point specification are inserted in the CDFG. For each
operator as represented in figure 5, a scaling operation is
introduced if the binary-point position of the data mx (or
my) is different of the binary-point position of the operator
input mx′ (or my′). For the operator output a scaling op-
eration is introduced if the binary-point positions mz′ and
mz are different.

4.3 Data Type Determination
The aim of this section is to define the type (word-length)

of each data in order to obtain a complete fixed-point format

for each data. This module must allow to explore the diver-
sity of the data types available in some DSP as explained
in section 3.1. This module selects the instructions which
will respect the global accuracy constraint and minimize the
code execution time.

An instruction is characterized by the word-length of its
input and output operands (binst) and the execution time
of the operation (t). For SWP instructions the execution
time of the operation is set to the execution time of the
instruction dived by the number of computations achieved
in parallel. Each operation oi is annotated by the set of
instructions Ii which allow to achieved this operation. Thus,
an operation is characterized by a set of input and output
data word-length Bi. The optimal data word-length boptim

is obtained by minimizing the application execution time
T (b) as long as the accuracy constraint is fulfilled

min
b∈B � T (b) � such as SQNR(b) ≥ SQNRmin (8)

The most common used criteria for evaluating the accu-
racy of a fixed-point implementation is the Signal to Quan-
tization Noise Ratio (SQNR) [7, 5]. The expression of this
metric is automatically determined with the tool presented
in [14]. A simple estimation model for evaluating the appli-
cation execution time T is used. This application execution
time T is computed from the execution time ti and the num-
ber of occurrence ni of each operation oi as follows

T = �
i

ti.ni (9)

.
Given that the number of value of each variable is limited,

the optimization problem can be modelized with a tree and
a branch and bound algorithm can be used for obtaining the
optimal solution. The SQNR and the global execution time
are evaluated at each level of the tree in order to decide if
the exploration of the subtree is stopped. The exploration
of the subtree is stopped if the maximal SQNR which can
be obtained with this subtree is smaller than the SQNR
constraint or if the minimal execution time which can be
obtained with this subtree is higher than the minimal exe-
cution time already obtained.

4.4 Fixed-point Format Optimization
The aim of this part is to optimize the fixed-point data

formats in order to minimize the code execution time as long
as the accuracy constraint is fulfilled. The execution time is
modified through the moving of the scaling operations. For
traditional DSP, the instruction level parallelism is limited.
Thus, the execution time of a scaling operation can be esti-
mated from the execution time of the instructions used for
implementing this operation. The scaling operation execu-
tion time ts is obtained from the difference between tws and
twos. The time tws corresponds to the execution time of the
expression tree where the scaling operation is located and
tws is the execution time of the same expression tree with-
out the scaling operation. Each execution time is estimated
from the set of instructions obtained with the code selection
stage applied at this expression tree. For processor with in-
struction level parallelism, the estimation of the execution
time must be coupled with the scheduling stage in order to
take account of the partial instructions which are executed
in parallel.

The scaling operations are proceeded according to their
execution time and they are moved as long as the accu-
racy constraint is fulfilled. The right shift operations are
moved towards the sources of the Control Data Flow Graph
(CDFG). In the case of linear systems, two alternatives are
available for moving the right shift operations. These scaling
operations can be moved towards the inputs of the system
or towards the coefficients. For this last case the degrada-
tion of the SQNR is less important. But in the case of linear
filters, the degradation of the frequency response due to the
coefficient quantization is more significant.

5. EXPERIMENTATION AND RESULTS
� � ��������	
���
�������� ��� ��
�
������������ � � �����
���������������� � � ��� ��� ��
�
������! "

��$ %'&(��$)�* +
�
� � ������,�	
���
�� "
� � ������$)�-�.�� "
� � ��������/�/�"
� � ������0�"
$)���$ "

,�	 �����($)�-�.�� "
��/�/��!,�	 ��� 1 ��	 ����"

� ��2 * $ �3
�"�$ 43
���
�"�$ 5�5�+
�6��/�/!�(��/�/!5!,�	 $ � 1 ��	 $ � "
,�	 $ ���7,�	 $ �
�� "

0!����/�/�"

Figure 7: Floating-point FIR source code

Experiments have been achieved with the different mod-
ules of our methodology already developed. That allows to
implement automatically floating-point algorithms in fixed-
point DSP and to optimize the data fixed-point format in
the case of traditional architectures for which the instruction
level parallelism is limited. For illustrating the capacities of
our tool, a fixed-point C code for a FIR filter with 128 taps
has been generated. This code and the original floating-
point code are presented in the figures 7 and 8.

For illustrating the data type determination phase, a com-
plex correlator has been implemented in the TMS320C64x
(Texas Instruments). The quality of the implementation is
evaluated through the computation of the Signal to Quanti-
zation Noise Ratio. Different SQNR constraints have been
tested and the results are presented in the figure 9. Each
point corresponds to the estimation of the minimal execution
time obtained from the optimization process with a partic-
ular SQNR constraint. The execution time is normalized
with the execution time obtained with a classical implemen-
tation. In this implementation, the data word-lengths of
the input and output of the correlator are equal to 16 bits.
This experiment has been achieved with no constraint on
the data types of the application input and output. The
best execution time is obtained when SWP instructions are
used and the correlator input and output data word-lengths
are equal to 8 bits. The best accuracy is obtained when the
correlator input and output data word-lengths are equal to

8 9
9;:;<�= >@? = A B!C@D�>7E�F B�D�G B�H(D�I�G J�K!D�G = E�D�A A L@? F J�KNMPO@Q R
9SJ�T7:;<�I7U�I�TWVYX�Z�[X�X�[X�\�]�^�^�]�_
9 8
B�`�G B�F T!= T�G�<�a X�]�b�c d
B�`�G B�F Tfe�J�= HYK!D�= T�g h d

= T�G�<�a X�]�b�c�ikj3l]�m�V�X�n�_ _ _ n�]�Z�o�o�^�n _ _ _ nWl]�m�V�Xqp d

B�`�G B�F Tfe�J�= HYK!D�= T�g h
j
= T�G�`�a X�]�b�c d
= T�G�= T�r�I�G d
A J�T�s(D�E�E�d
= T�G�L�d
= T�G�= d

9 `(iN= T�r�I�G�t�t7o3d
D�E�E!i�9 `!9P9 <�d

? J�F�g =�iuX�d�=�vuX�]�b�d�= w�w�h
j
D�E�E�i(D�E�E�w7`�a = c�9x<�a = c d
`�a = c�i7`�a =�lPX�c d
p

L!i'g = T�G h g D�E�E�h d
F B�G I�F T�d
p

Figure 8: Generated fixed-point FIR code

32 bits. This experiment underlines the opportunities of-
fered by the new DSP architectures which can manipulate
a wide diversity of data types.

0,25

0,5

0,75

1

1,25

1,5

1,75

2

2,25

40 60 80 100 120 140 160

SQNR constraint (dB)

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e.

Figure 9: Complex correlator implementations

For illustrating the fixed-point format optimization phase
the execution time of the assembly code generated has been
measured with and without the optimization stage. In the
first case it corresponds to the fixed-point specification af-
ter the data types determination. Different algorithms have
been implemented and the results of the implementation of a
128 taps FIR filter in the TMS320C54x (T.I.) are presented
in figure 10. The solution obtained without the optimization
stage is called sfix and the optimal solution is called soptim.
Moreover, the other solutions obtained with the optimiza-
tion stage are presented.

50

60

70

1 3 5 7 9
Execution time � � ����� � �
	 �
�
 � � � ���
�� � � �

S
Q

N
R
 (

d
B
) � � � �

� � � � � �

Figure 10: FIR filter implementations

These results underline the necessity of the optimizing
stage for obtaining an efficient implementation and for re-
ducing significantly the execution time. Thus, these results
show the interest of coupling the fixed-point format deter-
mination with the code generation and the interest of taking
into account the processor architecture.

6. CONCLUSION
In this paper, a new methodology for the implementation

of floating-point algorithms in fixed-point architectures un-
der accuracy constraint has been presented. The modules
for the determination of the dynamic range, the binary-point
position and the data type have been developed. For the
data format optimization module the interaction with the
scheduling stage is not developed yet. The development of
this module will allow to optimize the implementation of
floating-point algorithms in VLIW fixed-point DSP. Never-
theless, implementations with traditional DSP can be al-
ready achieved with our tool.

In our methodology, the determination and optimization
of the data formats are directed by the accuracy constraint.
The DSP architecture is completely taken into account in
order to optimize the accuracy of the implementation. The
coupling of the fixed-point format optimization stage with
the code generation process reduces the execution time as
shown by the results obtained. Thus, this approach allows to
reduce the time-to-market with the automatic transforma-
tion of a floating-point description into a fixed-point speci-
fication and to obtain more efficient implementations.

7. REFERENCES
[1] F. Charot, F. Djieya, and C. Wagner. Retargetable

Compilation In The Service Of Interactive ASIP
Design. Technical Report 1173, IRISA, Rennes,
November 2000.

[2] F. Charot and V. Messe. A Flexible Code Generation
Framework for the Design of Application Specific
Programmable Processors . In 7th international
workshop on Hardware/Software Codesign,
CODES’99, Rome, Italy, May 1999.

[3] T. Grötker, E. Multhaup, and O.Mauss. Evaluation of
HW/SW Tradeoffs Using Behavioral Synthesis. In
ICSPAT’96, Boston, October 1996.

[4] R. Kearfott. Interval Computations: Introduction,
Uses, and Resources. Euromath Bulletin 2,
2(1):95–112, 1996.

[5] H. Keding, F. Hurtgen, M. Willems, and M. Coors.
Transformation of Floating-Point into Fixed-Point
Algorithms by Interpolation Applying a Statistical
Approach. In ICSPAT’98, 1998.

[6] H. Keding, M. Willems, M. Coors, and H. Meyr.
FRIDGE: A Fixed-Point Design And Simulation
Environment. In Design, Automation and Test in
Europe 1998 (DATE-98), 1998.

[7] S. Kim, K. Kum, and S. Wonyong. Fixed-Point
Optimization Utility for C and C++ Based Digital
Signal Processing Programs. IEEE Transactions on
Circuits and Systems II, 45(11), November 1998.

[8] S. Kim and W. Sung. A Floating-point to Fixed-point
Assembly program Translator for the TMS 320C25.
IEEE Trans. Circuits and Systems, November 1994.

[9] S. Kim and W. Sung. Fixed-Point Error Analysis and
Word Length Optimization of 8x8 IDCT
Architectures. IEEE Transactions on Circuits and
Systems for Video Technology, 8(8):935–940,
December 1998.

[10] K. Kum, J. Kang, and W. Sung. A Floating-Point to
Integer C Converter with Shift Reduction for
Fixed-Point Digital Signal Processors. In Proceedings
of the International Conference on Acoustics, Speech
and Signal Processing ICASSP’99, pages 2163–2166,
1999.

[11] K. Kum, J. Kang, and W. Sung. AUTOSCALER for
C: An optimizing floating-point to integer C program
converter for fixed-point digital signal processors .
IEEE Transactions on Circuits and Systems II -
Analog and Digital Signal Processing, 47:840–848,
September 2000.

[12] D. Menard, P. Quemerais, and O. Sentieys. Influence
of fixed-point DSP architecture on computation
accuracy. In XI European Signal Processing
Conference (EUSIPCO 2002) , Toulouse, September
2002.

[13] D. Menard and O. Sentieys. A methodology for
evaluating the precision of fixed-point systems. In
International Conference on Acoustics, Speech and
Signal Processing 2002 (ICASSP 2002) , Orlando,
May 2002.

[14] D. Menard and O. Sentieys. Automatic Evaluation of
the Accuracy of Fixed-point Algorithms. In Design
Automation and Test in Europe (DATE-02) , Paris,
March 2002.

[15] T. Parks and C. Burrus. Digital Filter Design. Jhon
Willey and Sons Inc, 1987.

[16] M. Willems, V. Bursgens, H. Keding, and H. Meyr.
System Level Fixed-Point Design Based On An
Interpolative Approach. In Design Automation
Conference (DAC-97), 1997.

[17] M. Willems, V. Bursgens, and H. Meyr. FRIDGE:
Floating-Point Programming of Fixed-Point Digital
Signal Processors. In ICSPAT’97, 1997.

[18] M. Willems and V. Zivojnovic. DSP-Compiler:
Product Quality for Control Oriented Applications?
In ICSPAT’96, pages 752–756, Boston, October 1996.

[19] R. Wilson and al. SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers.
Technical Report CA 94305-4055, Computer Systems
Laboratory, Stanford University, May 1994.

